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Deduction of a regularly spaced gravity anomaly grid from scattered survey data is studied, 

addressing mainly two aspects: reduction of gravity to anomalies and subsequent interpolation by 

various methods. The problem is illustrated in a heterogeneous study area and contrasting test 

areas including mountains, low terrain and a marine area. 
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Provided with realistic error estimates, Least Squares Collocation interpolation of Residual 

Terrain Model anomalies yields the highest quality gravity grid. In most cases, the Bouguer 

reduction and other interpolation methods tested are equally eligible. However, spline based 

interpolation should be avoided in marine areas with track wise survey data. 

Keywords 

gravity database, gridding, interpolation, residual gravity anomaly, Bouguer anomaly, 

Residual Terrain Model (RTM) anomaly, regional geoid, Nordic Geodetic Commission 

(NKG) 
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1. Introduction 

Although Global Geopotential Models (GGM) have become increasingly detailed and accurate, 

there is still a need for regional (quasi)geoid models that fulfil the needs of mapping and 

engineering applications, especially conversion of Global Navigation Satellite System (GNSS) 

derived ellipsoidal heights into conventional (physical) heights with respect to the sea level (as 

the geoid is a surface that roughly coincides with the mean sea level). Currently, the geodetic 

community has set the goal of achieving 5 to 10 mm accuracy in regional gravimetric 

(quasi)geoid modelling, imposing thus strict requirements not only on the modelling techniques 

but also on the input gravity data. 

Even though there are (quasi)geoid determination methods that can be applied directly 

without prior gridding of input gravity data (such as Tscherning 1985), many modelling 

techniques (such as Haagmans, de Min, and Gelderen 1993; Forsberg and Sideris 1993; Li and 

Sideris 1997; Sjöberg 2003; Ellmann and Vaníček 2007) need a regularly spaced gravity 

anomaly grid that has to be determined from the scattered survey data that are located from a few 

hundreds of meters up to a few tens of kilometres apart. 

Importantly, geoid modelling is not the only application for gravity (anomaly) grids, 

these are also needed for other geosciences. For example, different gravity anomalies (free-air, 

simple Bouguer, complete Bouguer, slab-residual, mantle Bouguer etc., see e.g. Hackney and 

Featherstone 2003; Radhakrishna, Lasitha, and Mukhopadhyay 2008) are used in two- or three-

dimensional inverse as well as forward modelling by various techniques to interpret variations in 

mass and density that reflect the structure of solid Earth. Gravity field derivatives such as 
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gradients also reveal density contrasts (Elkins 1951). Numerous contributions similar to Mandal 

et al. (2015); Baptiste et al. (2016); Klitzke et al. (2016) etc. describe and interpret the gravity 

field and geophysical features of specific regions. For the user of a regularly spaced gravity 

anomaly grid, it is beneficial to be familiar with the basis upon which such a grid can be 

constructed and also be aware of limiting factors in grid accuracy. 

Regional scale gravity database analysis and gridding are reported in Gil and Rodríguez‐

Caderot 1998; Hinze et al. 2005; Vergos et al. 2005; Jekeli, Yang, and Kwon 2009; Martín et al. 

2009; Saleh et al. 2013; Véronneau 2013. Although gravity anomaly gridding is a task often 

performed, it is rarely discussed in detail. Generally a method is chosen according to previous 

experience, popularity or software availability. Sometimes the choice is based on further analysis 

which is not reported upon in scientific literature. Accordingly, this contribution will analyse 

various methods of gravity gridding to determine their advantages and shortages. A general 

remove-interpolate-restore (RIR) process is used. That is, the gravity anomaly point values are 

reduced, interpolated and then restored to result in a surface gravity anomaly grid. In further text, 

the entire RIR process is referred to as “gridding” interchangeably. 

A number of different aspects of gravity data processing are discussed. Most importantly, 

two different gravity reduction/restoration methods (Sec. 2) and four different interpolation 

methods (Sec. 3) will be described and compared. All of these methods are known and often 

used, see the reference list. However, this contribution aims at offering a consistent comparison 

and evaluation of some gravity reduction and interpolation methods that could be used over large 

and challenging study areas. 
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In addition, the entire work flow of gravity data processing together with the effect of 

some alternative processing choices (such as omitting/incorporating certain reduction options, 

data weighting or changing the degree and order of the GGM used) will be discussed in detail. 

The current status (coverage and quality) of the North-European gravity data is reviewed, also 

illustrating the possible ways of solving gravity data unification issues in the context of a multi-

nation geoid modelling study covering both land and marine areas. 

The different methodological approaches and subsequent results achieved over the study 

area may be useful for any regional gravity gridding exercise worldwide. However, the quality of 

the actual result is dependent on many circumstances, including gravity data coverage, 

distribution, accuracy, gravity field properties (rough vs. smooth) etc. These issues will be 

discussed in appropriate sections of this contribution. 

The research reported in this contribution is an input to the Nordic Geodetic Commission 

(NKG) geoid modelling project (Ågren et al. 2015; 2016) which aims at calculating a high-

resolution and accurate regional gravimetric quasigeoid model over the Nordic and Baltic 

countries in Europe, embedding also the Baltic Sea, North Sea and a large portion of the Arctic 

Ocean. Parts of the research area are topographically varying and data coverage is rather 

heterogeneous (see Sec. 5), challenging the choice of uniform modelling methods for the entire 

research area comprising of marine and dry land parts. 

The specific area of interest has been subject to NKG geoid modelling projects since the 

mid 1980’s. The succession of NKG geoid models include NKG-86 (Tscherning and Forsberg 

1986), NKG-89 (Forsberg 1991), NKG-96 (Forsberg, Kaminskis, and Solheim 1997), NKG2002 
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and NKG2004 (Forsberg, Strykowski, and Solheim 2004). These regional geoid models were 

often adapted as national geoid models or height correction surfaces by fitting to a set of national 

GNSS/levelling points. In addition to NKG geoid models, parts of this region have been subject 

to other gravity field and geoid modelling studies such as Vermeer (1994); Noréus, Nyborg, and 

Hayling (1997); Korhonen et al. (1999); Omang and Forsberg (2000); Omang and Forsberg 

(2002); Ellmann (2002; 2005); Jürgenson (2003); Nahavandchi, Soltanpour, and Nymes (2005); 

Lysaker et al. (2007); Ågren, Sjöberg, and Kiamehr (2009); Ågren (2009); Denker et al. (2009); 

Bilker-Koivula (2010); Ellmann, Oja, and Jürgenson (2011); Omang, Tscherning, and Forsberg 

(2012); Bilker-Koivula (2014); Märdla et al. (2015). 

The NKG geoid modelling activities have contained extensive data improvements and 

preliminary computations. The NKG gravity database has been modernised, thoroughly updated 

and quality checked. A new regional high-resolution Digital Terrain Model (DTM) and an ice 

thickness model have been compiled. The used datasets were, if possible and meaningful, 

transformed into common reference frames. Preliminary grid compilations were made 

independently by a number of geoid computation centres, using different methods, software 

packages and strategies (Ågren et al. 2015). It was decided that certain aspects of gravity 

gridding should be further investigated before the final geoid computations. This triggered the 

present study and also affected the choice of reduction and gridding methods tested. 

This contribution is organised as follows. First, the gravity reduction (Sec. 2) and 

interpolation (Sec. 3) methods together with data requirements for accurate geoid computation 

(Sec. 4) are explained. Second, the study area is introduced (Sec. 5) leading to a description of 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 7 

experimental gravity gridding (Secs. 6 and 7). The results are then analysed (Sec. 8) and 

presented in the context of quasigeoid modelling (Sec. 9). Finally, conclusions are drawn from 

the findings of this study (Sec. 10). 

2. Gravity reductions for interpolation 

Interpolating the surface gravity values g  directly is inaccurate as the gravity field contains high 

frequency information due to the topography (or bathymetry), making it difficult for 

interpolation algorithms to estimate the correct gravity values at the grid nodes. A gravity 

reduction process converts the gravity point data values so that these are more reliable for 

prediction at desired locations. 

Thus, the surface gravity anomalies need to be first reduced. After reduction, the 

scattered point values are interpolated into a regular grid leading to a reduced gravity grid. To 

obtain the surface gravity anomaly grid, there has to be a corresponding restoration process. 

Importantly, the restore step adds to gravity data gaps either higher or lower frequency 

information from reference sources like the DTM, GGM or other relevant corrections. 

The used anomaly types and applied corrections are reviewed below. Besides the two 

reduction schemes tested in this contribution, there are others that could be used. These include 

mainly isostatic reductions such as the Airy-Heiskanen or the Pratt-Hayford reduction that could 

improve the gridding outcome over land or ocean areas respectively. 
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2.1. Free-air anomalies 

It is assumed that the gravity value g  on or above the topography in the point P  and the 

corresponding (normal or orthometric) height PH  is known. As a first step, the free-air or 

surface gravity anomaly Δ FAAg  is computed by (Heiskanen and Moritz 1967, Eq. 8--7): 

Δ  FAA
P P Qg g     (1) 

where  Q is the normal gravity in the point Q  at the height PH  (reckoned from the reference 

ellipsoid) and is computed by using standard formulas for the GRS-80 normal gravity field, cf. 

Moritz (2000). 

Although reduced in magnitude (compared to the initial gravity value itself), the free-air 

anomaly field can still be quite rough and correlated with height. It is smoother in marine areas, 

but significant variations in the bathymetry (not considered in this study) may result in a 

comparatively rough field also there. Thus, a further reduction of gravity anomalies is often 

needed to yield a smoother anomaly field. 

2.2. Simple and complete Bouguer anomalies 

Removing the gravitational effect of an infinite planar Bouguer plate leads to the simple Bouguer 

anomaly Δ SBAg  by (Heiskanen and Moritz 1967, Eq. 3--19): 

Δ Δ 2SBA FAA
P P Pg g G H     (2) 
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where G  is the gravitational constant and   is the topographic density (if approximated to 

2670  kg.m
3

 then the last term in the right-hand side becomes 0.1119 PH ). 

In areas of flat terrain, Δ SBAg  can be a useful quantity for gridding. However, in 

mountainous regions the Δ SBAg  field can be too biased for a meaningful interpolation (Janák and 

Vaníček 2005). Therefore, further reduction into planar complete Bouguer anomaly Δ CBAg  is 

obtained by (Heiskanen and Moritz 1967, Eq. 3--21): 

2

1

Δ  Δ
Pz H

CBA SBA T
P P P z H

g g g



   (3) 

where T
Pg  is the planar terrain correction and H  is the height of the moving integration point 

(determined from a DTM). Note that the alternative spherical Bouguer anomalies (see e.g. 

Vaníček, Novák, and Martinec 2001; Vaníček et al. 2004; Novák et al. 2001; Kuhn, 

Featherstone, and Kirby 2009) are not considered in this contribution. 

The terrain correction T
Pg  can be computed using different approximations. In the 

context of the remove-interpolate-restore technique, there is no need to extend the integration too 

far from the computation point P . The terrain correction is thus calculated by summing the 

attraction of a finite number of prisms according to (Forsberg 1984): 

 

      

2 2 2

1 1 1

3/2
2 2 2

x y z

PT
P

x x y y z z
P P P

z z
g G dxdydz

x x y y z z

 
  


   

    
     

(4) 
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where Px , Py , Pz  and x , y , z  are the local Cartesian coordinates of the computation point P  

and the moving integration element, respectively. The z  coordinate is the “up” direction, the 

limits 1x , 2x , 1y , 2y  are constants for each prism. Most commonly, only flat top prisms are used, 

i.e. 1z  and 2z  are also constant for each prism. The way 1z  and 2z  are chosen is indicated by the 

type of notation used in Eq. 3. Again, due to lack of density information available,   is usually 

taken to be constant. 

In the present study, the curvature of the Earth is taken into account by shifting each 

prism downwards by correcting the integration constants of Eq. 4 as (Forsberg 1984, p. 111): 

2 2
* *
1 1 2 2; 

2 2

s s
z z z z

R R
     (5) 

where s  is the distance between the computation point P  and the integration point, R  is the 

mean radius of the Earth. Admittedly, this is a crude way to take the Earth’s curvature into 

account, but accurate enough in the context of the present study where the topographic 

corrections in question are used only for the remove-interpolate-restore process. 

2.3. Residual Terrain Model (RTM) anomalies 

An alternative to the Bouguer reduction described in the previous section is to reduce the free-air 

anomaly field by a band-pass filter that attenuates signals above and below a desired frequency. 

The free-air anomaly values can be reduced in the long-wavelength spectrum by removing the 

gravity contribution of a GGM and in the short-wavelength spectrum by removing the 

contribution of a Residual Terrain Model (RTM) by: 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 11 

Δ Δ ΔRTMA FAA GGM RTM
P P P Pg g g g    

(6) 

where Δ GGM
Pg  is the gravity anomaly from a GGM evaluated to a suitable maximum degree and 

order (d/o) and RTM
Pg  is the topographic effect of the RTM reduction computed as (cf. Forsberg 

1984): 

2 2

1 1

2
ref

ref
P P

z H z HRTM ref T T
P P P P Pz H z H

g G H H g g    
 

 

         
 

(7) 

where refH  is the height of a smooth reference surface; 
2

1 P

z H
T
P z H

g



 and 

2

1

ref

ref
P

z H
T
P z H

g



 denote the 

terrain correction for the topographic surface and the reference surface respectively. Note that 

Eq. 7 does not demand the use of the so-called harmonic correction (Forsberg 1997, Sec. 2.3-

2.4). The reference elevation surface can be any smooth surface representing mean elevations in 

the area. It is often constructed by averaging the fine resolution DTM grid and then low-pass 

filtering this by taking moving averages of an appropriate number of adjacent blocks. Or 

alternatively, a spherical harmonic representation of either the regional or an independent global 

DTM is evaluated to a d/o that corresponds to the desired smoothness. For related studies, see 

e.g. Hirt (2010, 2013) and references therein. 
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2.4. Atmospheric and ice corrections 

For both of the gravity reduction processes described above, the atmospheric and ice correction 

(denoted below by superscript A  or I , respectively) can be applied. Again, these are applied 

before and removed after gridding. 

The atmospheric correction accounts for the gravitational effect of the atmospheric 

masses, much as the terrain correction accounts for the topographic masses. This effect can be 

computed by an empirical formula of DMA (1987, Eq. 4--23): 

1.0470.1160.87A Hg e     

(8) 

where 2.718e  , 
Ag  is in mGal and H  is in km. The resulting numerical values are similar to 

the recommendations given in Moritz (2000). This correction cannot exceed 0.87  mGal, that is, 

the effect of atmospheric masses on the sea level. 

Ag  is added to the surface gravity anomaly point values and subtracted (in gridded 

form) after interpolation. 

The ice correction is needed since the Bouguer and RTM corrections are initially 

computed using topographic density and DTM heights that refer to the surface of glaciers. The 

ice masses are artificially filled up to reach topographic density  , at the same time as the Airy-

Heiskanen isostatic compensation is taken into account (e.g. Sünkel 1986). After interpolation, 

the reduction is reversed, leading back to ice density (masses are moved back to where they 
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originate from). To achieve this, a residual ice mass potential IV  is defined as (e.g. Martinec 

1998; Ågren 2004): 

I I iso
P P PV V V    

(9) 

where isoV  is the corresponding compensating potential according to the Airy-Heiskanen 

hypothesis and I
PV  is the potential generated by the mass deficit of the glaciers, which is 

expressed by the Newton’s integral in spherical coordinates as 

 
2

 

I

I I I

R H
I I I

P

z R H T

z
V G dzd

s

  


  

  ∬  

(10) 

where  I  is the ice density, I  is the spatial domain covered with glaciers, IH  is the height to 

the (ice) surface and IT  is the ice thickness. Note that the density difference in Eq. 10 is 

assumed to be constant and that it is negative. The ice effect I
Pg  on the surface gravity anomaly 

is then given by the standard boundary condition of physical geodesy: 

2I
I IP
P P

P P

V
g V

r r


 


  


 

(11) 

where Pr  is the geocentric radius of point P . 
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Thereafter I
Pg  is subtracted from the surface gravity anomaly point values and added 

(in gridded form) after interpolation. 

3. Interpolation methods 

Most interpolation algorithms demand that the phenomenon described by the point data to be 

gridded could be regarded as a spatial stochastic process and the field to be homogeneous: that 

is, stationary (the mean would be constant over space and the covariance would be position 

independent) and isotropic (the spatial dependence of values would be independent of direction). 

The reduction processes described in Sec. 2 aim at fulfilling this requirement as rigorously as 

possible. However, in practice, also the reduced gravity data is somewhat non-stationary, 

anisotropic and contains unavoidable observation errors, resulting in various deficiencies of grids 

obtained by different interpolation methods. 

Numerous interpolation methods could be applied in gravity gridding. The four methods 

described in Secs. 3.1 to 3.4 were selected as these have been demonstrated to yield reasonable 

gravity anomaly estimates and are also often used in similar studies. 

Due to their varying nature, each method reveals different characteristics. Two methods 

(Secs. 3.1 and 3.2) are simple and fast deterministic methods that generate a spline-based 

surface. The other two (Secs. 3.3 and 3.4) are stochastic methods that demand a priori 

information about the spatial correlation and quality of the data. In different ways, all four 

interpolation methods allow the resulting gravity anomaly surface to deviate from input data, 

thus accounting for inaccuracies of the input data. 
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3.1. Continuous curvature splines 

According to this method, the gridded values Pz  (functions of grid node coordinates Px , Py ) are 

computed by solving: 

      1 0P PT L L z T L z        

(12) 

where 0 1T   is a tension factor and L  is the Laplace operator. 1T   results in a surface 

where maxima and minima are achievable only at data point locations while 0T   results in a 

minimum curvature solution (Smith and Wessel 1990). 

The continuous curvature splines interpolation method has been implemented in the 

Generic Mapping Tools (GMT, Wessel et al. 2013) sub-program surface and will hereafter be 

referred to as SURF. The default tension factor suggested by the program’s manual for 

interpolation of potential field data is 0.25T  . 

The SURF method is expected to generate a smooth gravity grid. However, in previous 

experience, it has shown some unreasonable undulation in larger data gaps, next to steep 

gradients and near the borders of input data area. It is possible to reduce the latter deficiency by 

setting the tension factor to 0  outside the research area. Another drawback of the SURF method 

is that it computes the z  values on a planar surface. Thus the Earth’s curvature induced errors 

may become significant over larger research areas. Third, the uniformly chosen tension factor 

may not represent the behaviour of the gravity field in all areas equally well. Note that, for 
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practical purposes, the resulting grid has to be uniform and seamless. Therefore varying the 

tension factor manually according to different sub-areas is not a feasible option. 

3.2. Spherical interpolation in tension 

According to this method, a Delaunay triangulation on a sphere (e.g. Renka 1997a) is performed 

on input data. Then, given a certain tension factor (determined automatically from local or global 

gradients) for each triangle side and arc containing the interpolation point and connecting a 

triangle vertex to the opposite side, a value is interpolated to the new point contained within that 

specific triangle, see e.g. Renka (1997b). Such a spherical interpolation in tension algorithm has 

been implemented in the GMT sub-program sphinterpolate and will hereafter be referred to as 

SPHI. 

As this method is rather similar to the SURF method, it is expected to yield similar 

results, desirably improved by the high degree of automation in choosing the tension parameters 

and by accounting for the Earth’s spherical geometry. 

3.3. Least Squares Collocation 

In the Least Squares Collocation (LSC) method, the gridded gravity anomaly values are obtained 

by solving the following matrix equation (Moritz 1980, Eq. 14.27): 

 
1

PP



 Δ Δ Δ ΔΔ Δg g g gg C C D g  

(13) 
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where Δg  is the vector of known (surveyed) anomaly point values, PΔg  is the vector of 

unknown (grid) values, 
Δ Δg gC  is the auto-covariance matrix of the Δg  values, 

PΔ Δg gC  is the 

cross-covariance matrix of the Δg  and PΔg  values and D is the noise variance-covariance 

matrix. For further details, see (Moritz 1980, Sec. 14). LSC is implemented in the GEOGRID 

sub-program of the GRAVSOFT research software package (Forsberg and Tscherning 2008). 

Importantly, for such an interpolation approach, the spatial dependence of the data in 

question is described by the covariance matrices and needs to be estimated from the survey data. 

This can be achieved by fitting a theoretical model to empirical covariance values. In this study, 

a second order Markov model is used (Sansò and Sideris 2013, Eq. 9.34): 

  /
0 1 ll

C l C e 


 

  
 

 

(14) 

where  C l  is the modelled covariance value over the distance l , 0C  is the signal variance and 

  is a constant related to the correlation length 1/2X  approximately as 1/20.595X  . The 

correlation length 1/2X  is here defined as the distance at which the covariance function reaches 

the value of 0 / 2C . 

In addition, individual point weighting can be done using a priori standard deviation 

values supplied together with the gravity data, assuming that the variance-covariance matrix D 

in Eq. 13 is diagonal. 
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As an advantage, a formal error grid can be determined together with the LSC 

predictions. Being a powerful and flexible interpolation method, the LSC is expected to perform 

well in areas that correspond to the average correlation properties estimated. Unfortunately, a 

single covariance function is unable to fully describe a heterogeneous or anisotropic dataset, 

which is a rather common situation in gravity anomaly gridding. Research on the so-called non-

stationary covariance function modelling is ongoing, see the detailed overview in Darbeheshti 

and Featherstone (2009). 

3.4. Kriging 

Kriging (Krige 1951, for a recent review see e.g. Cressie 2015) is an interpolation method that is 

similar to the concepts of LSC, for their differences see e.g. Dermanis (1984). 

In the current study, Kriging is implemented using a different covariance function than 

for LSC. Namely, the spherical semi-variogram model  SV l  (Isaaks and Srivastava 1989, Eq. 

16.6) is used: 

 
 

3

0 0 0

0

3
,    

2 2

,    

l l
c C c if l A

SV l A A

C if l A

   
      

     




 

(15) 

where 0c  is the nugget effect and A  is a length parameter corresponding to the range after which 

data are presumably no longer correlated. Note that the parameter A  can be modified to account 

for the anisotropy effect. In the simplest case of the anisotropy angle being 0°, A  is divided by 
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the anisotropy ratio. The semi-variogram values are related to the covariance values by 

   0C l C SV l   

(16) 

Kriging has many forms. In this study, Ordinary Kriging without a drift function implemented in 

the Surfer software (Golden Software LLC 2016) is used. This interpolation method will 

hereafter be referred to as KRIG. 

4. Propagation of terrestrial gravity data errors into geoid modelling 

The data related error of a (quasi)geoid model comprises of omission error (the lacking 

information with higher frequency than the model resolution) and commission error (errors in the 

existing data). The latter can in turn be separated into uncorrelated (white noise) and correlated 

(systematic) parts. 

The uncorrelated commission error has a relatively small effect as positive and negative 

errors tend to cancel out. The most dangerous are long-wavelength systematic effects because the 

(quasi)geoid has most power in long wavelengths. This is illustrated by the spectral relationship 

of the geoidal undulation to gravity anomalies over the entire globe (e.g. Goos et al. 2003, Eq. 1): 

 0

Δ
1

n n

R
N g

n



 

(17) 
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where nN  is the n -th degree surface spherical harmonic of the geoid height, R  is the mean 

Earth radius, 0  is normal gravity on the surface of the reference ellipsoid and Δ ng  is the n -th 

degree surface spherical harmonic of the gravity anomaly. 

In the simplified case of a sufficiently small spherical disc, the influence N  of a 

systematic gravity data error g  on the geoidal height N  can roughly be estimated by (cf. 

Heiskanen and Moritz 1967, Eq. 2-234): 

N g

P

S

g
  

(18) 

where Pg  is the gravity value at the computation point and S  is polar distance. For instance, the 

presence of a 0.1  mGal gravity bias within a 100  km radius around the computation point yields 

a geoid error in the order of 1 cm. 

Commonly, the Stokes (1849) formula is used to compute a gravimetric geoid from the 

gravity data. It can be modified so as to obtain the long wavelength (global) information from a 

GGM (see e.g. Vaníček and Sjöberg 1991) that is more accurate than the terrestrial data in the 

long wavelength spectrum. This alleviates the danger of having systematic errors in the regional 

gravity database. Nevertheless, since gravity data have usually been collected over long periods 

of time with varying accuracy and following different national conventions, it would be 

beneficial to analyse these in order to detect and eliminate systematic errors as much as possible, 

e.g. by a method in Saleh et al. (2013, Sec. 3) or Wang et al. (2012, Sec. 4.4). 
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Gravity point accuracy may currently be at the level of 5  μGal for absolute gravimetry 

(Niebauer et al. 1995) and 20  to 100  μGal for relative gravimetry surveys. However, as 

terrestrial gravity surveys are labour-intensive, a dense enough coverage of sufficient quality 

data is not available everywhere. Especially coastal and marine areas have gravity coverage of 

significantly lower quality and density (see e.g. Featherstone 2009). 

A recent summary on the practical data requirements for a 1 cm geoid can be found in 

Denker (2013, sec. 4.1.), see also references therein. It is concluded that gravity data need to be 

connected to a highly accurate gravity network (in the order of 0.01 mGal) while single 

observation accuracy of about 1 mGal is sufficient. 

Ågren and Sjöberg (2014) show that a 5  mm geoid can be achieved within a medium-

size country (Sweden) if the gravity anomaly data with uncorrelated noise below 0.5  mGal and 

systematic errors below 0.1  mGal are available on at least 5  km resolution with no data gaps in 

the computation area or its vicinity. As this conclusion depends on the roughness of the gravity 

field, it is not necessarily general. For instance, the extremely rough gravity field in mountainous 

areas most likely requires a significantly denser gravity sampling. 

5. Study area 

In the NKG geoid modelling project the quasigeoid is computed for the area of 53° to 73° N, 0

° to 34° E. This covers the territory of Denmark, Norway, Sweden, Finland, Estonia, Latvia and 

Lithuania plus the surrounding areas, including the Baltic Sea, North Sea and large parts of the 

Arctic Ocean (cf. Fig. 1). The gravity data from the NKG database cover the area of 52° to 74 ° 
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N, 2 ° to 36° E. It is a heterogeneous region covering both land and marine areas. Norway has 

a rugged terrain with deep fjords and heights exceeding 2  km while in Denmark and the Baltic 

countries (Estonia, Latvia, Lithuania) the topographic heights only reach a few hundred meters, 

see Fig. 1. 

The NKG gravity database holds data submitted by participating countries for NKG 

geoid modelling purposes only. The information is stored as “publications” (groups of 

observations submitted together) that have various amounts of meta data in the form of a report 

or short description. Most publications include a single approximate error estimate while some 

newer ones contain individual and well reasoned error estimates for each data point. The 

distribution and estimated accuracy of gravity data in the NKG database is shown in Figs. 2 and 

3, relevant characteristics are summarized in Table 1. 

. According to Sec. 4, the average gravity coverage (that corresponds to a distance of 

about 3.5  km between neighbouring points) could be sufficient for computing a geoid model 

with an accuracy of 5  to 10  mm. However, the average a priori error estimate of gravity data is 

about 2.3 mGal which is not up to the aforementioned requirements. 

To illustrate the differences in gravity field modelling methods, three test areas of 1° by 

2 ° with contrasting characteristics that could commonly occur in any regional gravity field study 

were selected. Area 1 ( 61° to 62 ° N, 6 ° to 8 ° E, Figs. 4a and 5a) was selected in the 

Sognefjord area, Norway. Sognefjord is a 200  km long and, on average, 4.5  km wide fjord with 

depths up to 1300 m surrounded by rugged cliffs. Area 2 (58.5° to 59.5° N, 25 ° to 27 ° E, 

Figs. 4b and 5b) was selected in central Estonia with flat terrain and unusually dense coverage of 
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accurate gravity data. Area 3 (55° to 56° N, 6 ° to 8 ° E, Fig. 5c) was selected in the marine area 

West of Denmark containing ship gravimetry tracks only. The data statistics for these test areas 

can also be found in Table 1.Area 2 is an example of very good gravity coverage and quality that 

comfortably fulfils the requirements discussed in Sec. 4 while Area 1 and 3 have similar statistics 

to the entire NKG area.Sec. 4 also stresses the importance of eliminating systematic long 

wavelength errors. In the current study, it was assumed that, due to the great care taken in 

preparing the NKG database by representatives of the participating countries, such errors would 

be minimal, at least on land of the Nordic-Baltic countries. An example of examining national 

data for the presence (and elimination) of systematic errors within the current study area can be 

found in Ellmann, All, and Oja (2009). 

For gravity data processing and evaluation, it is necessary to possess, in addition to the 

gravity survey values and positions, some supplementary information. First, a high-resolution 

DTM is necessary for terrain correction computation by Eq. 4. Second, a GGM is needed for 

generating a reference gravity field used in Eq. 6. Optionally, co-located GNSS and levelling 

points can be used for geometric geoid determination for comparison with the gravimetric geoid 

models derived from the gravity grids. 

As the current research was aimed at the NKG2015 geoid modelling project, it made use 

of the 3" 3 " NKG DEM 2014, which in the present study was further averaged to 0.001°

0.002 ° 3.6 " 7.2 " (Fig. 1) and 2538  GNSS/levelling points specially compiled by 

participating countries. Additionally, the project specification allowed for the use of either the 
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high-degree EIGEN-6C4 (Förste et al. 2015) or the satellite-only GO_CONS_GCF_2_DIR_R5 

(Bruinsma et al. 2013) global geopotential model. 

6. Preprocessing gravity data 

In this section, numerous steps of data preprocessing are described. It illustrates possible ways of 

solving unification issues of a heterogeneous gravity dataset and could be of reference to other 

geoscientists working on similar tasks. 

6.1. Reference systems 

When working with gravity data from different sources, it is first necessary to make sure that 

their horizontal positions, heights and gravity values are in the same reference frames and 

include the same, compatible corrections (e.g. tidal, atmospheric). In areas with significant 

geodynamic motions, like the postglacial land uplift in the Nordic-Baltic region, it is also 

important to choose a common reference epoch. Although small in magnitude, the errors 

introduced by inconsistencies in the above are systematic and widespread, thus of importance in 

geoid modelling (see Eqs. 17-18). 

In the NKG2015 geoid modelling project, it was set as a goal to transfer datasets of 

different nations into uniform reference systems/frames. A common postglacial land uplift epoch 

of 2000.0 and the zero permanent tide system was selected. The gravity values are given in the 

official national gravity systems based on either modern absolute gravimetry or on the 

International Gravity Standardisation Net 1971 (IGSN71, Morelli et al. 1971), in the latter case, 
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with a correction to convert from the mean tide to zero permanent tide system. Atmospheric 

corrections are not included in the NKG gravity database. Point positions are expressed in the 

national European Terrestrial Reference System (ETRS) 89 realisations and the normal heights 

in the national European Vertical Reference System (EVRS) realisations. More details on the 

NKG2015 geoid modelling project are available in Ågren et al. (2015; 2016). 

6.2. Update and analysis of the NKG gravity database 

Data updating for the NKG2015 geoid model project consisted of revising all the 

information in the NKG gravity database, cleaning or removing overlapping datasets and 

replacing or updating with new data in the correct reference systems/frames, permanent tide 

system and postglacial land uplift epoch. It was the responsibility of national representatives to 

decide which data to preserve and also to quality check all the remaining data within the country. 

The above rather challenging requirements on reference systems, etc., unintentionally, 

resulted in some large data voids. After extensive analysis, an exception was made for instance 

to parts of publication no. 345 that cover data void areas East of the Latvian border. The filling 

of this void affected the resulting quasigeoid model by around 2  cm in Eastern Latvia. 

The Nordic and Baltic countries are surrounded by marine areas that possess significant 

variations in gravity signal which can affect the gridding result also in coastal areas. Therefore an 

effort has been made over the past decades to cover these areas with terrestrial, shipborne, 

airborne and on-ice gravimetric data. 

When updating the gravity database, a bias was found and corrected between two marine 

datasets in Skagerrak, the strait between Norway and Denmark. Another problematical area is 
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the Eastern part of Gulf of Finland (GOF) where there are practically no terrestrial/marine data 

available in an area of about 20000  km
2
. It is not clear if there have ever been any surveys. 

Regardless, these are not available to the NKG community. Yet, information from this area 

directly affects the gravity gridding and subsequent quasigeoid modelling in Southern Finland 

and Northern Estonia, the region of intense shipping and economical activities. Therefore, to fill 

the data void in the Eastern part of GOF, a patch was generated by evaluating the 

GO_CONS_GCF_2_DIR_R5 GGM up to d/o 240  at empty cells of 0.01° by 0.02 ° in the area 

of 59° to 62 ° N and 25 ° to 30° E. 

Further improvements in gravity coverage over the marine areas are expected within the 

frames of the ongoing Finalising Surveys for the Baltic Motorways of the Sea (FAMOS 

Consortium 2014) international cooperation project. 

In the context of gravity gridding, it is important to notice that the distribution of data 

varies on land and sea. Gravity points surveyed on land are rather uniformly distributed while 

marine data are gathered along ship tracks. For the optimum gridding results, these would 

demand different interpolation approaches. For example, the SURF and SPHI algorithms may 

generate unnecessary undulations or large extrema in the relatively large data gaps between 

tracks. This is likely a result of the selected tension factor allowing the spline surface to undulate 

with a larger amplitude than appropriate. The alternative statistical LSC and KRIG methods 

using a covariance function to model the spatial dependence of gravity values can also start 

undulating between tracks. Consider the following example: marine tracks are separated by 100 

km and the spatial correlation goes to (nearly) zero in, say, 30  km, then the resulting gravity 
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anomaly grid may contain artificial stripes. The actual performance of interpolation algorithms in 

marine areas will be analysed in Sec. 8. 

6.3. Automatic blunder detection 

Plotting and visual inspection of data and their derivatives (such as the reduced gravity field in 

this case) can help detect gross errors, see e.g. Vergos, Tziavos, and Andritsanos (2005, sec. 2.2). 

However, larger datasets need a more automatic approach. A simple, yet effective, method for 

automatic detection of outliers can be leave-one-out cross validation (CV). CV limits are, 

however, very dependent on the spatial variability of the modelled quantity. Therefore, it is best 

used after the reduction of gravity anomaly values (see Sec. 2) to assure a minimally and 

homogeneously varying quantity across the entire research area. 

Nevertheless, it is challenging to find a uniform cross validation limit suitable for a 

heterogeneous area. In the current research area, CV limits as high as 20  to 30  mGal remove as 

many as 0.1  to 1% of the total points. Most of these are located in the rugged landscape such as 

the Norwegian mountains and clearly represent the actual gravitational signal. Meanwhile, no 

points are removed over the other areas, where a much lower CV limit would be needed. 

Certainly, automatic cross validation with a fixed limit across such a heterogeneous area 

is questionable. Recall that manual separation of the research area into sub-areas cannot be 

considered for practical reasons. Additionally, the reduced gravity fields computed as described 

in Sec. 2.2 or 2.3 have different characteristics, again demanding for slightly different CV limits. 

Therefore, means to automatically differentiate CV limits between rougher and smoother parts of 

the (reduced) gravity field under consideration can be investigated in further studies. Meanwhile, 
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it was decided that for the purpose of the gridding related research reported in this contribution, 

no cross validation will be used. This will also ensure that the different gravity anomaly grids 

will be comparable. Fortunately, an effort has already been made by participating countries to 

remove obvious gross errors from the NKG database. 

6.4. Downward continuation of airborne data 

Airborne gravimetry has proved to be a useful and fast method for covering large, sometimes 

hard-to-reach, areas with gravity data, for connecting different terrestrial gravity surveys and for 

improving the gravity field models in areas of high gravity field variability or low terrestrial 

point density (such as coastal and marine areas), see e.g. Bae et al. (2012); Bolkas, Fotopoulos, 

and Braun (2016); Tscherning, Rubek, and Forsberg (1998); Forsberg and Olesen (2010); Hwang 

et al. (2007). Several low-elevation airborne gravity datasets are also available over the marine 

parts of the study area, see the red-coloured tracks in Fig. 2. 

Aerogravity values are measured at the flight altitude. Due to the attenuation effect, it is 

not sufficient to use the free-air gravity gradient (approx. 0.3086H ) to “lower” these to the 

topographic surface. Instead, an additional downward continuation (DWC) correction needs to 

be added. After DWC, airborne data can be treated as terrestrial data. For the computation of the 

DWC correction, two different methods were tested. 

Method 1 
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The DWC correction is taken to be equal to the free-air anomaly difference at the flight altitude and the 

surface by using a high degree GGM (Ellmann 2011). The EIGEN-6C4 GGM was used in numerical 

computations. 

A drawback of this method is that it is limited to the maximum spherical harmonic degree 

of the GGM, that is 2190 . Also, the detailed gravity anomalies available for the regional geoid 

determination are not utilised. Instead, the unknown and possibly lower quality GGM derived 

gravity anomalies are used. 

Method 2 

The vertical gradient of the reduced gravity anomaly (in this study, the RTM anomaly) is estimated and 

used to DWC the reduced airborne data. Such a method is limited to the first linear term in the Taylor 

expansion of the reduced gravity anomaly with respect to the height. Also, numerical problems might 

occur when estimating the gradient, although the reduced field should be suitable for such a task. As 

opposed to Method 1, there is no limitation of the maximum spherical harmonic degree and the input 

information is of high quality. 

The standard deviation and maximum value of the DWC corrections computed is 0.37  

mGal and 3.3  mGal for Method 1 and 0.47  mGal and 8.7  mGal for Method 2 respectively. The 

standard deviation of the method differences is 0.38 mGal and the mean difference is 0.04  

mGal. The larger differences occur over Denmark and Sweden, where the flight heights were 

much higher than over the Baltic Sea (around 1000 m and 250  m respectively). Considering 

that the measuring noise of these airborne datasets is around 2  mGal, such differences between 

the methods can be considered negligible and either method can be used. 
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6.5. Covariance analysis 

To provide LSC or KRIG interpolation with spatial correlation information, covariance analysis 

was performed on the reduced (either Bouguer or RTM) gravity anomalies. 

First, the entire research area was considered. Empirical covariance functions were 

computed for the RTM and Bouguer anomaly data, to which the second order Markov 

covariance functions (Eq. 14) were fitted, see Figs. 6a and 6e. Similarly, spherical semi-

variogram models (Eq. 15) were computed. These were later used in the LSC or KRIG 

interpolations respectively. For comparability, the semi-variogram models were then converted 

to covariance functions by Eq. 16 and also depicted in Figs. 6a and 6e. 

For reference, the empirical covariances of individual test areas were also estimated, see 

Figs. 6b to 6d and 6f to 6g. Note, that separate theoretical covariance functions were not fitted 

for the test areas as these would not be used in the interpolation process. For the Bouguer 

anomalies only, the three test areas were extended by 1° in the NS direction and 2 ° in the EW 

direction, to increase the reliability of covariance estimation (because Bouguer anomaly 

correlation length is in the same order as the test area size). 

These figures illustrate the variability of spatial correlation of gravity anomalies between 

the test areas. Judging by the fit between empirical and theoretical covariance curves, a 

reasonable interpolation result can be expected in Area 2 and 3 using the RTM anomalies. In 

case of the Bouguer anomalies, the theoretical covariance function either under- or overestimates 

the spatial correlation in all the test areas. 
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Table 2 lists the estimated correlation lengths 1/2X  for both reduction methods. It is worth 

noting that the correlation lengths vary less for the RTM anomalies, while these of the Bouguer 

anomalies vary almost three times between the test areas. Another advantage of using the 

(relatively short correlation length) RTM anomalies for gridding is that in larger data voids, the 

underlying GGM and DTM will provide the missing information instead of the interpolation 

algorithm attempting to estimate the values based on spatial correlation. 

As a result of covariance analysis, for practical computations, the following parameters 

were chosen (by rounding downwards): 1/2 15X   km and 1A ° for the RTM anomalies;

1/2  70X   km and 6A ° for the Bouguer anomalies. 

7. Generating gravity anomaly grids 

Before testing the different gravity reduction and interpolation processes on the NKG gravity 

data, the following practical steps were taken. 

First, all data with a priori error estimates 8  mGal were excluded from the gridding. 

This limit corresponds to the highest realistic error estimates of the NKG gravity data. 

Second, to improve interpolation quality along the edges of the area of interest, additional 

gravity data was derived (on a regular grid of 0.01° by 0.02 ° not closer than 0.15° to any 

existing points) from EIGEN-6C4 GGM evaluated to its maximum d/o 2190  to fill all data gaps 

in the area of 51° to 75° N, 4 ° to 38° E. This was considered sufficient for the purposes of 

this study. However, considering the convergence of the meridians, an even larger buffer area 
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should be used for the actual geoid modelling in sub-polar latitudes. The error estimate of these 

fill-in points was set to 6  mGal to comply with the typical accuracy of GGMs over the oceans 

(see Förste et al. 2015; Andersen 2010) and be larger than that of most observed data. 

Third, the airborne observations were downward continued by Method 1 (c.f. Sec. 6.4). 

Fourth, multiple observations within a 50  m horizontal range were identified, arithmetically 

averaged and the standard deviation of the resulting point was taken to be equal to the minimum 

standard deviation input value of the multiple point cluster. 

Fifth, the effect of using the atmospheric and ice corrections (see Sec. 2.4) on the 

resulting surface gravity anomaly grid and the subsequent quasigeoid model (computed as 

described in Sec. 9) was analysed. For this, a gravity anomaly grid or corresponding quasigeoid 

with the atmospheric or ice corrections included in gridding was subtracted from an analogous 

product computed without these corrections. 

The effect of using the atmospheric correction (Eq. 8) in the remove-interpolate-restore 

process has a distinct pattern that is correlated with height. However, it is in the order of only 

0.1  mGal on the resulting surface gravity anomaly grid in the most rugged parts (Area 1) of the 

research area. The corresponding effect on the resulting quasigeoid model is certainly negligible 

with a standard deviation of 0.3  mm and the maximum difference reaching only 2  mm. 

The effect of using the ice correction (Eq. 11) in the gridding process is relevant only in 

the vicinity of Norwegian glaciers. In Area 1, it has a standard deviation of 1.4  mGal with 

maximum differences reaching 21 mGal, where the ice thickness reaches 440  m, see Figs. 7a 
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and 7b. Comparison of the resulting quasigeoid models reveals a systematic difference reaching 

5  cm in the ice-affected area, see Fig. 7c. 

Although the atmospheric correction is very small and the ice correction is significant 

only in Norway, both were applied in all of the test computations of the current study. Recall, 

that a superscript A  or I  denotes quantities that are also corrected for the atmospheric or ice 

effect respectively. 

7.1. Grids computed via Bouguer anomalies 

Grids computed via Bouguer anomalies were compiled in the following way: 

(1) The free-air anomaly point observations Δ FAAg  (Fig. 8) were reduced to simple 

Bouguer anomalies Δ SBAg  according to Eq. 2. For the result, see Fig. 9a. 

(2) The Δ SBAg  were further converted to complete Bouguer anomalies Δ  CBAg

according to Eq. 3 by removing the terrain corrections 
Tg  (Fig. 9b). 

The terrain corrections were computed according to Eqs. 4 and 5, using the DTM grid of 

0.001° by 0.002° to a distance of 15 km and the DTM grid of 0.01° by 0.02° to a distance 

of 200 km. Practical computations within the radius of 15 km were done using the 

GRAVSOFT subprogram TC. The DTM was locally spline interpolated to fit the given 

height of the gravity observation in the computation point P  (Forsberg 1984, p. 114). 

The sub-program TCFOUR that speeds up the computation by Fast Fourier 

Transformation (FFT) convolutions was used for the distance of 15 to 200 km. 
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(3) Since the atmospheric correction is not included in the NKG database, Eq. 8 was 

applied. 

(4) The ice correction was applied as described in Sec. 2.4. In practice, it was 

computed exactly as in Ågren (2004, Chapter 6), using rectangular prisms (Eq. 4) in the 

vicinity (closer than 0.1° in latitude and 0.2° in longitude) of each computation point P  

and spherical quadrature formulas with strict integration in the vertical (Martinec 1998, 

Sec. 3.8; Sjöberg 2000, Sec. 4) beyond the aforementioned limits. The ice density was set 

to 0.917 g.cm
3

, topographic density to 2.67 g.cm
3

 and the isostatic compensation depth 

was selected as 30 km. 

(5) For practical implementation of most interpolation algorithms, the scattered point 

data should first be low-pass filtered or averaged according to the grid step of the final 

grid to reduce cluttering (or high frequency information) that results in aliasing. 

Therefore, the point data to use were then selected so that a single point with the smallest 

a priori error estimate was preserved in each 0.01° by 0.02° cell (c.f. Table 1). 

(6) The resulting point values were interpolated to a regular grid using all the 

algorithms described in Sec. 3, for a sample result, see Fig. 11a. 

For the SURF algorithm, the GMT default tension factor of 0.25T   was used. Note that 

the research area is situated in sub polar latitudes, around 60° N. Therefore, an aspect 

ratio of 
1

2
   (where   is the latitude,   the longitude,   the grid step increment) 

was used for remedying the effect of the convergence of meridians. 
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For the SPHI algorithm, a smoothing interpolation with global gradient estimation was 

chosen with the -Q3 option in the GMT sub-program sphinterpolate, see Renka (1997b, 

Sec. 2.2). 

When computing a LSC solution in GEOGRID, the signal variance 0C  is automatically 

determined for the entire computation area, but for computational efficiency, only a 

limited number of (in this case 10) closest points in each quadrant are used in the 

prediction of each point. The second order Markov model is always used with the user 

specified length 1/2X . Importantly, in this research, a minimum limit of 0.5 mGal was set 

for point standard deviation values as a measure to dampen oscillations generated by 

closely located points that have a small standard deviation but a larger difference in 

values. 

For the KRIG solution, the nugget effect 0c  was set to 1 mGal. 

(7) The ice and atmospheric effects were removed on the grid, resulting in a complete 

Bouguer anomaly grid. 

(8) The terrain correction of Eq. 4 and 5 was subtracted to yield the simple Bouguer 

anomaly grid. 

(9) The simple Bouguer correction of Eq. 2 was added to the grid, yielding the final 

surface gravity anomaly grid. 

The effect of reducing gravity values to Bouguer anomalies is illustrated by Table 3, Fig. 8 vs. 

11a and Fig. 12c vs. 12a. Note, that this reduction did not reduce the overall amplitude of the 

anomalies. The standard deviation of Δ FAAg  is 26 mGal while that of 
, ,Δ CBA A Ig  is 28 mGal. 
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However, there is a significant effect in the rugged Area 1 where the standard deviation of 

, ,Δ CBA A Ig  is three times smaller than that of Δ FAAg , see Table 3. The figures show that the 

reduced gravity field is much smoother and less detailed, thus also more suitable for 

interpolation. 

7.2. Grids computed via RTM anomalies 

Grids computed via RTM anomalies were compiled in the following way: 

(1) The free-air anomaly point observations Δ FAAg  (Fig. 8) were first reduced by 

subtracting Δ GGMg , the second term on the right hand side of Eq. 6. Δ GGMg  was 

computed by evaluating the GO_CONS_GCF_2_DIR_R5 model up to its maximum d/o 

300. For the result, see Fig. 10a. 

The computation of Δ GGMg  at point P  was simplified to computing two regular grids at 

different (minimum and maximum) altitudes and then interpolating both in horizontal and 

vertical direction to specific point locations P  (Forsberg 1997, Sec. 2.8), thus reducing 

computational effort. 

(2) The GGM-reduced point observations were further reduced by removing the 

RTM contribution (Fig. 10b) computed according to Eq. 7. The integration to compute 

the RTM effect was again performed over a grid of 0.001° by 0.002° to a distance of 15 

km and a grid of 0.01° by 0.02° to a distance of 200 km using the GRAVSOFT sub-

programs TC and TCFOUR. 
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The height reference surface for the RTM reduction was computed by averaging the 

DTM to approximately the same resolution as the GGM. This was motivated by the fact 

that the GGM removal in the previous step also removes the topographic effect below the 

maximum d/o used and the aim of the RTM reduction is to remove the remaining 

topographic contribution beyond the maximum d/o used in the previous step. 

(3) The atmospheric and ice correction were applied as in Sec. 7.1. 

(4) The same selection process was applied as in Sec. 7.1. 

(5) The resulting point values were interpolated as in Sec. 7.1. For a sample result, 

see Fig. 11b. 

(6) Again, the ice and atmospheric effects were removed on the grid, resulting in a 

RTM anomaly grid. 

(7) The RTM contribution was restored on the grid. 

(8) The GGM contribution was restored on the grid, yielding the final surface gravity 

anomaly grid. 

The effect of reducing gravity values to RTM anomalies is illustrated by Table 3, Fig. 8 vs. 11b 

and Fig. 12c vs. 12b. Note, how the variability of the gravity field lowers: the overall standard 

deviation of Δ FAAg  is 26 mGal while that of 
, ,Δ RTM A Ig  is only 12 mGal. The variability of the 

field in Area 1 again reduces about three times, see Table 3. The reduced gravity signal is of 

short wavelength and uniform across most of the research area. 

It is worth noting that the standard deviation of 
, ,Δ RTM A Ig  is two times smaller than that 

of 
, ,Δ CBA A Ig  in the overall statistics, but slightly larger in Area 1 statistics. This suggests that 
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RTM and Bouguer anomalies could be more suitable for gridding in low-elevation and rugged 

terrain areas respectively. 

7.3. Test grids 

Altogether, fourteen different free-air anomaly grids were computed, see Table 4. Grids named 

G1 to G4 and G5 to G8 were computed exactly as described in Sec. 7.1 and 7.2 respectively, 

using the corresponding interpolation method in the first column of Table 4. Grids with the suffix 

B or C are special cases of the above. 

For instance, G3B and G7B denote LSC grids that were computed by not using a priori 

gravity error information from the NKG database, but a fixed value of 1 mGal instead. This was 

motivated by the varying quality of the a priori error estimates (see Fig. 3). For example, most 

terrestrial gravity observations in Norway hold a pessimistic error estimate of 5 mGal while most 

error estimates of analogous data over the other participating countries have been set to represent 

the actual quality of the observations (typically less than 1 mGal) after careful analysis. 

G3C and G7C denote LSC grids for the computation of which only the a priori error 

estimates of terrestrial points located in Norway were set to 1 mGal. Although the difference 

from grids G3B and G7B is numerically rather small, the C version grids allow to keep the error 

information in the other countries. 

G2B represents a grid otherwise like G2 with the exception that the GGM contribution 

Δ GGMg  was computed up to d/o 240 instead of the maximum d/o 300 of the satellite-only model 

used. The corresponding difference of the two gravity grids and the resulting quasigeoid models 
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is rather insignificant: the standard deviation is 0.44 mGal and 0.6 mm respectively. The absolute 

maximum deviation in the resulting quasigeoid models is 1.4 cm. 

G6B represents a grid otherwise similar to G6, except that the removal and restoration of 

the terrain correction 
Tg  was omitted to illustrate its effect on the gravity field and the resulting 

quasigeoid model. As expected, the effect is small elsewhere, but significant in rugged terrain 

such as Norway. In terms of the resulting quasigeoid model, the standard deviation of differences 

over Norwegian territory is 1.8 cm and maximum deviations reach 30 cm. 

8. Assessment of the gravity anomaly grids 

8.1. Interpolation methods 

First, the grids were analysed to evaluate the different interpolation methods. One way to do so is 

to examine the differences of reduced anomaly point data and the resulting reduced grid values at 

the point locations, see Table 4. As an illustration, these are presented for G6, G7 and G7C in 

Fig. 13. The residuals of SURF (G1, G5) and KRIG (G4, G8) methods appear to be numerically 

quite similar to those of SPHI (G2, G6). 

The SPHI method shows by far the smallest residuals for the full area and test areas (see 

Fig. 13a and Table 4), revealing that (with the selected parameter 0.25T  ) it is a rather “exact” 

interpolation method. SPHI does not account for the errors in point data values and in case these 

are large, like in the marine areas or Russian territory, the SPHI method appears to follow the 

point data values too rigorously. 
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The LSC method shows the largest residuals, especially over areas where the a priori 

standard error of gravity data is large (see Figs. 3 and 13b). Over areas of high quality gravity 

data and lower elevations (e.g. Area 2), the LSC residuals are larger than for other methods, but 

not as significantly, see Table 4. Considering that LSC accounts for observation errors and that 

the encountered residuals are in the same order of magnitude as the a priori error estimates, these 

residuals should not be interpreted as errors of the interpolation process. If data with large errors 

are situated close to each other, the optimal interpolation surface will be a smooth one with large 

residuals. 

Using LSC without individual or only partially individual a priori error information 

(grids G3B, G7B, G3C and G7C) also gives a more “exact” interpolation of the input points, see 

Table 4. Thus, the choice of interpolation methods somewhat narrows down to whether the a 

priori error estimates should be trusted. 

The grids' behaviour near the especially challenging Area 1 (see Fig. 12) was further 

analysed by examining two profiles, one crossing a fjord (Fig. 14a) and the other crossing an 

area where the computed grids showed large differences (Fig. 14b). The profile plots depict grids 

G3, G7, G7C and, to demonstrate the violent change in the resulting grid depending on the 

chosen error estimate, an additional grid just like G7C except that the accuracy of gravity points 

in Norway was estimated to be even higher, 0.5 mGal. To visualise the input information 

available for grid generation, neighbouring (selected) input points together with a linear 

(triangulated) grid from input point values are plotted as a reference. 
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At the edge of the fjord, the SPHI grids often show an abrupt zig zag pattern while LSC 

generates a smoother transition. All of the gridding algorithms tested in this study overestimate 

the gravity field, the more so, the larger the data gap next to the steep gradient. It is a typical 

behaviour to minimal curvature algorithms such as SPHI, but it also affects LSC depending on 

the covariance function. LSC with fixed (smaller) standard deviation values is affected the least, 

generating the most realistic gravity anomaly field model. This profile illustrates why gravity 

surveys in areas of steep gravity gradient should always be planned so that the immediate 

neighbourhood would also be covered rather densely. 

On the fjord surface, the reference linear interpolation probably shows quite a realistic 

gravity field as the gravity data are dense and accurate. There, all of the tested algorithms 

underestimate the gravity field with SPHI usually going 5 to 10 mGal further down than the 

other algorithms. 

In the future, gridding in such fjord areas can be improved by using bathymetric 

corrections which should reduce the extreme gradient currently present in the reduced gravity 

field. 

A single point that stands out from the surrounding field (Fig. 14b), that may or may not 

be erroneous, is expectedly reflected most in the SPHI grid and least in the LSC grid with 

individual weights (as in this particular case the a priori error estimates were large and the 

corresponding point weights thus small). 
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It is worth noting how large in magnitude are the differences in the grids on both of the 

profiles, also between the LSC grids. These differences do not correspond directly to the a priori 

error estimates supplied. 

Another aspect discussed earlier is the behaviour of different interpolation methods in 

data gaps that are often present in marine areas. Let us inspect the reduced gravity grids of Area 

3 (Fig. 15), starting with Fig. 15b depicting the SPHI grid. Triangular patterns have formed, the 

most prominent one being at 55°5ˈ N, 6°30ˈ E. There is at least one area around 55°35ˈ N, 7°10ˈ 

E (depicted in purple) where an extreme minima is generated that most likely does not reflect the 

actual gravity signal. In addition, there were several other marine areas West of Norway, where 

the SPHI algorithm generated erratic maxima in the order of up to 100 mGal(!). In general, there 

is abundance of noise around and between the survey tracks. It is clear that SPHI does not 

qualify for interpolating track wise (marine gravity) data. 

On the plot of the SURF grid (Fig. 15a), and also the very similar KRIG grid, smaller 

anomaly values can be seen at the close vicinity of input gravity point tracks compared to the 

areas in between, thus generating unrealistic undulation between the tracks. The LSC grid (Fig. 

15c) is clearly the most physically meaningful grid in Area 3, although it also suffers slightly of 

similar undulation, see the NE-SW track close to which the gravity values are slightly larger than 

in the neighbourhood. 

8.2. Gravity reduction methods 

Second, the grids were analysed and compared to evaluate the suitability of the RTM or the 

Bouguer anomalies for interpolation. The differences in reduced point values from the grid 
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values presented in Table 4 are very similar for both reduction schemes with neither of the 

methods showing significantly smaller RMS or extreme values. 

Although free-air anomalies are rough and maybe not best suited for evaluation, the final 

free-air anomaly grids were also compared to input free-air anomalies. The only interpolation 

method for which either of the reduction methods shows smaller residuals, is LSC, where the 

grid computed via RTM anomalies shows 9% and 11% better RMS values in the overall and 

Area 1 statistics respectively. 

The two reduction methods have different physical meaning, but the resulting surface 

gravity anomaly grids show a similar fit to the input data. It is difficult to prefer either of the 

reduction methods based on the test results obtained. A reason to prefer RTM anomalies could be 

their properties of shorter correlation length that are theoretically more suitable for gridding, see 

Sec. 6.5. 

8.3. Overall gridding quality 

Leaving aside the extreme examples represented by Area 1 and 3, in most areas, especially 

where sufficiently high quality data is available (e.g. Area 2), it seems clear that both of the 

reduction and all of the interpolation methods could in practice be considered for gravity 

gridding tasks. This is further supported by the GNSS/levelling evaluations of the corresponding 

gravimetric quasigeoid models presented in the next section. 

Under this assumption of all the reduction and interpolation methods being equally 

plausible, the uncertainty stemming from the use of different gridding approaches is illustrated 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 44 

by the standard deviation of the values of the different test grids in each grid cell, see Fig. 16. 

Thus, free-air gravity grid accuracy better than 0.5 mGal can only be reached in flat areas with 

high quality gravity data such as Area 2, Denmark and Estonia, while the accuracy is limited to 

around 1 mGal in areas with slightly lower quality gravity data (Latvia and Lithuania) or higher 

terrain such as Sweden and Finland. Due to sparse data tracks, the marine areas are affected most 

by the choice of gridding methods, even if the spline based grids are excluded from such an 

evaluation. 

The research area is rather heterogeneous in terms of topography and data coverage, 

offering an overview of expected gridding results in varying conditions. However, in other 

similar computations, the results presented here can only be of general reference as the final grid 

is strongly dependent on the local situation -- topography, bathymetry, gravity data coverage, 

distribution etc. 

9. Assessment by subsequent quasigeoid models 

The main aim of the NKG project is to compute a quasigeoid model. Each gravity anomaly grid 

yields a preliminary quasigeoid model that is computed using Least Squares Modification of 

Stokes' formula with Additive Corrections (LSMSA, Sjöberg 1984; 1991; 2003). The LSMSA 

method is likely to be applied in the final NKG2015 quasigeoid computation (that will be 

reported upon in a separate publication, see also Ågren et al. 2016). 

These gravimetric quasigeoid models were then compared with each other and to national 

GNSS/levelling datasets, i.e. to a geometric geoid determined from the difference of physical and 
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ellipsoidal heights. The physical (normal) heights are either in the national EVRS realisations 

with land uplift epoch 2000.0 (Nordic countries) or in the pan-European EVRS realisation 

European Vertical Reference Frame (EVRF) 2007 (Baltic countries), which also has the epoch 

2000.0. The zero permanent tide system is used for the physical heights. The GNSS heights 

above the ellipsoid were first transformed into European Terrestrial Reference Frame (ETRF) 

2000 with land uplift epoch 2000.0 using the NKG transformation parameters derived by Häkli 

et al. (2016) and then converted to the zero permanent tide system. It is important to note that the 

following results may also contain the errors in GNSS/levelling control points used for the 

quasigeoid validation. 

The resulting RMS values of GNSS/levelling residuals (after mean removal) are reported 

in Table 5. In the NKG Area, there are all together 2538 points, out of which 51 and 23 fall in 

test Area 1 and 2 respectively. Again, the residuals are larger for the LSC grids, especially in the 

mountainous Area 1. However, the LSC associated residuals in the NKG Area result only from 

the algorithm generating an unrealistically smooth grid in Norway. Note that LSC yields the best 

fit in Area 2. Also, quasigeoid models computed from the B and C versions of LSC grids show a 

better fit than the original LSC with individual error estimates. There is practically no numerical 

difference in the two reduction methods, except that LSC grids yield a slightly better fit to 

quasigeoid models in conjunction with RTM anomalies rather than the Bouguer anomalies. 

Unfortunately GNSS/levelling data are not available over marine areas. Therefore, in 

specified computations the choice of gridding methods suitable for marine areas needs to rely on 
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the gravity grid analysis above and the conclusions drawn from studying land areas with similar 

gravity field and data coverage characteristics. 

The expected accuracy of quasigeoid models related to the used gravity gridding 

approach was analysed, again presuming, that all the tested gridding methods are equally 

plausible in many practical cases. The expected accuracy for the NKG area is illustrated by the 

standard deviation of quasigeoid models computed using the different gravity grids, see Fig. 17. 

Therefore, from the gravity data gridding point of view, it is possible to compute a 5 mm 

(quasi)geoid model over most of the Nordic-Baltic dry land. Again, the marine areas are affected 

most by the choice of gridding methods. If the spline based grids are excluded from such an 

evaluation, 1 cm accuracy can be expected over most of the Baltic Sea (except the Eastern part of 

GOF), but the situation does not improve much over remote parts of the Arctic Ocean. Thus, for 

the optimum outcome, the data situation and gridding approaches still need to be improved in 

view of the desired 5 mm accuracy geoid model. 

10. Conclusions 

This contribution compared and analysed methods of computing a surface gravity anomaly grid 

from scattered survey data. A general remove-interpolate-restore method was used, that is, the 

surface gravity anomalies were reduced before and restored after the interpolation process. Two 

concurrent reduction and four interpolation methods were studied and assessed in the extended 

Nordic-Baltic area. The entire work flow of gravity data processing together with the effect of 

some alternative processing choices was discussed. The gravity field model was reduced to 
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complete Bouguer or Residual Terrain Model (RTM) anomalies; the interpolation methods 

analysed include two spline-based (SURF and SPHI) and two statistical (LSC and KRIG) 

methods. LSC was the only method allowing points to be weighted according to individual a 

priori error estimates. The resulting gravity grids were assessed by comparison to input data and 

subsequent GNSS/levelling fit to the quasigeoid model. 

Overall, it is not so crucial whether the surface gravity anomaly grid is computed via 

RTM or Bouguer type anomalies. The numerical results are similar in reasonably flat terrain 

areas containing high quality observations. Due to their more homogeneous and isotropic 

property, in conjunction with statistical interpolation methods such as LSC, the RTM anomalies 

perform slightly better. 

The spline-based interpolation methods SURF and SPHI generate a rather “exact” grid 

that closely follows the input data. So does the KRIG method, at least when using the parameters 

fitted for the current dataset. The result of LSC interpolation depends significantly on the quality 

of the a priori error estimates: if these are not trustworthy, the benefits of using LSC with 

individual weights become disadvantages. 

It is advisable not to judge an interpolation method only according to its ability to 

generate a grid matching the input data as closely as possible. If the residuals between input 

point data and the resulting grid are within the limits of data error estimates, a smoother grid can 

in fact be physically more realistic and thus more appropriate. This is especially valid for marine 

areas where data points are often available along sparsely placed and rather inaccurate survey 

tracks, but the gravity field is usually quite smooth. 
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Both spline based methods, especially SPHI, are best used in areas with many 

observations and no data gaps. Grids computed by SPHI displayed some uncontrolled behaviour 

over marine areas with track wise gravity coverage, data gaps and next to steep gravity gradients. 

In such areas, other methods, such as LSC, should be preferred for generating a physically 

meaningful gravity grid. 

Based on the above, it was concluded that, provided that realistic error estimates are 

available, gridding RTM anomalies using LSC results in the highest quality gravity field 

representation. 

It was also demonstrated that changing the maximum d/o (within reasonable limits of 240 

to 300) to which the GGM is evaluated when computing RTM anomalies, has insignificant effect 

on the resulting gravity field and subsequent quasigeoid models. As expected, the use of simple 

instead of complete Bouguer anomalies in gridding has a notable effect on the resulting 

quasigeoid model in areas of rugged terrain and almost no positive effect elsewhere. Over the 

rugged Norwegian territory, these differences had a standard deviation of  2 cm. 

The expected accuracy of quasigeoid models related to the used gravity gridding 

approach was analysed in view of the geodetic community now aiming at 5 mm accuracy in 

(quasi)geoid modelling. The standard deviation of quasigeoid models computed from different 

gravity grids confirmed that a quasigeoid model with an accuracy of 5 mm could be computed in 

most areas with terrain elevations up to 2 km and gravity data with an average error estimate of 

1.8 mGal available with a density of 1 points per 10 km
2
. However, accuracy of 5 mm cannot yet 

be reached over more rugged terrain and most marine areas. 
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The main recommendations for the NKG2015 geoid modelling project that motivated this 

research are the following. First, both, Bouguer type or RTM anomalies may be used for 

gridding. Second, in general, any of the tested interpolation methods may be used. However, the 

SPHI method should be avoided due to unrealistic and extreme behaviour in between the marine 

data tracks. Also, in Norway, where many of the a priori error estimates for contemporary 

terrestrial gravity data are set to be unrealistically large (i.e. 5 mGal), the usage of LSC with such 

individual a priori error estimates should be avoided. Attempts to provide more realistic error 

estimates should be encouraged. 

Gravity gridding is of interest to other ongoing geodetic projects, for example the 

multinational GEOMED 2 (Barzaghi et al. 2016) and the EGG (Denker 2016) co-operation 

projects, or countries like Canada, USA, Russia or Australia that have a large area covered with 

inhomogeneous gravity data. Also, accurate gravity field and geoid modelling is a key feature in 

the realisation of the International Height Reference System (IHRS) reference stations and other 

datum unification tasks. 

Although the gravity gridding procedure was analysed in ample detail, further work 

outside the scope of this study can be conducted to elaborate the analysis reported above. Other 

gravity reduction methods, such as isostatic reductions, could be compared to the two methods 

tested. All of the gravity reductions could be improved by including density and bathymetry 

information, undoubtedly improving the accuracy of the resulting marine geoid model. Statistical 

interpolation could be improved by future research in non-stationary covariance function 

modelling (see e.g. Darbeheshti and Featherstone 2009). The KRIG solutions could be improved 
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by including individual error estimates as it was done for the LSC method and the spline-based 

solutions of SURF and SPHI by tuning the tension factor according to some criterion to better fit 

the characteristics of the gravity field automatically in a specific area. The gravity data could 

benefit from automatically varying cross validation limits for gross error detection according to 

the field’s roughness. Over the open oceans, it could be beneficial to include satellite altimetry 

data (in combination with terrestrial data) as these have been shown to reach accuracies of a few 

mGal thanks to newer Cryosat and Sentinel satellite related improvements (Andersen and 

Knudsen 2016). As for the specific area of the Nordic-Baltic region, improvements in the Baltic 

Sea gravity grid are expected due to the FAMOS project (FAMOS Consortium 2014) collecting 

new ship borne gravity data. 

The recommendations and methodological approaches discussed above, together with the 

concerns and exceptions mentioned, are applicable to other gravity gridding tasks worldwide. A 

resulting surface gravity anomaly grid can serve as input to numerous geoscientific tasks. Other 

types of gravity anomalies, for example those used in geophysical studies or concurrent geoid 

modelling techniques, can then be derived from the surface gravity anomaly grid. 
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Table 1. Characteristics of the research and test area data 

  Full area NKG area
a 

Area 1 Area 2 Area 3 

No. of points  512772 172406 4509 8043 1819 

(after selection)
b 

 421108 141418 1609 5928 1518 

1 point per no. of km
2 

 11.9 8.1 2.7 1.5 6.7 

(after selection)  14.4 9.8 7.5 2.0 8.0 

Elevation [m]
c 

Mean 107 304 882 68 0 

 StDev 196 305 481 23 0 

 Min 0 0 0 0 0 

 Max 2419 2419 1977 146 0 

Free-air anomaly [mGal] Mean -0.48 0.97 -61.84 -12.92 5.71 

 StDev 26.41 28.07 61.24 9.80 11.53 

 Min -307.79 -307.79 -117.70 -45.52 -19.10 

 Max 210.46 210.46 145.59 18.18 35.91 

(after selection) Mean -0.35 1.35 -16.62 -12.70 5.40 

 StDev 24.65 27.48 75.33 9.90 10.97 

A priori gravity Mean 2.32 1.83 2.01 0.34 3.76 

error estimate [mGal] StDev 1.86 2.07 1.78 0.11 2.06 

 Min 0.10 0.10 0.20 0.10 2.00 

 Max 7.00 5.00 5.00 0.80 7.00 

(after selection) Mean 2.22 1.63 3.09 0.32 3.81 

 StDev 1.84 1.99 2.09 0.12 2.10 

a
dry land and inland water territory of the participating Nordic-Baltic countries 
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b
after preserving a single point with the lowest a priori error estimate in each 0.01° by 0.02° grid 

cell 

c
topographic elevation statistics are given from the 0.001° by 0.002° DTM 
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Table 2. Estimated correlation lengths of gravity anomalies
* 

Grid Area 
1/2X  [°] 1/2X  [km] 

, ,Δ CBA A Ig   

Full area 0.65 71.5 

Area 1 0.63 69.3 

Area 2 0.23 25.3 

Area 3 0.49 53.9 

, ,Δ RTMA A Ig   

Full area 0.17 18.7 

Area 1 0.11 12.1 

Area 2 0.21 23.1 

Area 3 0.21 23.1 

*
Explanation of the symbols used in this and the following tables can be found in the text 
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Table 3. Statistics of the NKG gravity anomaly points 

Quantity Mean StDev Min Max Mean StDev Min Max 

 Full area
a 

Area 1 

Δ FAAg   -0.48 26.41 -307.79 210.46 -61.84 61.24 -117.70 145.59 

Δ SBAg   -9.91 29.03 -307.79 174.59 -85.54 19.40 -117.70 -25.91 

Δ CBAg   -9.29 28.06 -255.31 176.50 -72.68 20.44 -108.77 -23.13 

, ,Δ CBA A Ig   -8.44 28.07 -254.46 177.34 -71.97 20.41 -108.01 -22.43 

, ,Δ CBA A Ig  

(selected)
b 

-8.96 27.13 -254.46 177.34 -61.04 18.97 -107.80 -22.47 

Δ ΔFAA GGMg g   -3.68 20.95 -342.93 177.49 -109.44 59.95 -181.43 94.03 

Δ RTMAg   -1.28 13.15 -242.55 194.26 -31.07 24.26 -79.26 30.82 

, ,Δ RTMA A Ig   -0.42 13.15 -241.70 195.10 -30.36 24.23 -78.51 32.23 

, ,Δ RTMA A Ig  

(selected) 
0.21 12.27 -241.70 195.10 -15.98 21.64 -78.51 31.23 

a
including the EIGEN-6C4 GGM based fill-in on the edges, 524274 points 

b
after preserving only the point with the lowest a priori error estimate in each 0.01° by 0.02° grid 

cell 
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Table 4. Reduced gravity anomalies minus interpolated values from the reduced grid, units in 

mGal 

Interpolation method Grid Mean RMS Min Max Grid Mean RMS Min Max 

 
, ,Δ CBA A Ig  

, ,Δ RTM A Ig  

Full area 

SURF G1 -0.0035 0.8667 -121.74 81.87 G5 -0.0034 0.8670 -121.71 82.31 

SPHI G2 -0.0062 0.5649 -71.60 82.47 G6 -0.0063 0.5667 -71.59 82.46 

LSC G3 -0.0052 2.5168 -141.87 137.37 G7 0.0260 2.0091 -164.22 236.20 

KRIG G4 -0.0029 0.9108 -127.91 120.11 G8 -0.0031 0.8873 -118.20 111.26 

           

SPHI (no 
Tg ) G2B -0.0050 0.6737 -136.18 80.55      

SPHI (GGM d/o 240)      G6B -0.0064 0.5641 -71.59 82.47 

LSC (all 1 mGal) G3B -0.0129 1.7532 -228.46 176.31 G7B -0.0030 1.2008 -186.71 155.08 

LSC (Norw. 1 mGal) G3C -0.0404 2.1944 -227.25 176.31 G7C 0.0042 1.5158 -186.44 155.08 

Area 1 -- Sognefjord area 

SURF G1 -0.0747 2.5996 -20.72 21.76 G5 -0.0721 2.6112 -20.79 21.90 

SPHI G2 -0.3660 1.7543 -10.48 27.63 G6 -0.3695 1.7577 -10.46 27.66 

LSC G3 0.0430 6.2978 -25.22 39.69 G7 0.5041 5.3594 -21.33 40.51 

KRIG G4 -0.1750 2.8376 -10.78 29.36 G8 -0.2068 2.6996 -11.86 28.20 

           

LSC (Norw. 1 mGal) G3C -0.5782 5.9242 -22.33 28.30 G7C -0.2090 3.8518 -19.18 22.66 

Area 2 -- central Estonia 

SURF G1 0.0036 0.2073 -0.93 1.76 G5 0.0046 0.2078 -0.95 1.80 

SPHI G2 -0.0011 0.1335 -0.71 0.87 G6 -0.0008 0.1336 -0.71 0.87 
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LSC G3 0.0006 0.3425 -1.94 2.01 G7 -0.0007 0.2007 -1.26 1.10 

KRIG G4 -0.0015 0.1983 -1.31 1.10 G8 -0.0008 0.1916 -1.24 1.04 

Area 3 -- West of Denmark 

SURF G1 0.0252 0.9318 -6.03 6.26 G5 0.0236 0.9311 -6.02 6.28 

SPHI G2 0.5608 0.5614 -3.37 4.01 G6 0.5606 0.5613 -3.37 4.01 

LSC G3 -0.4540 2.9997 -10.60 7.81 G7 0.2697 1.7776 -10.75 7.71 

KRIG G4 0.0153 0.8634 -5.37 3.70 G8 0.0088 0.8530 -5.16 3.55 
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Table 5. RMS values of the quasigeoid differences from GNSS/levelling points after mean 

removal 

 Quasigeoid via 
, ,Δ CBA A Ig  [cm] Quasigeoid via 

, ,Δ RTMA A Ig  [cm] 

Interpolation Grid NKG area Area 1 Area2 Grid NKG area Area 1 Area 2 

SURF G1 2.92 4.94 2.04 G5 2.92 4.94 2.08 

SPHI G2 2.85 3.80 1.96 G6 2.85 3.82 1.96 

LSC G3 3.36 5.58 1.91 G7 3.16 5.37 1.94 

KRIG G4 2.90 4.93 1.97 G8 2.90 4.80 1.99 

         

SPHI (no 
Tg ) G2B 3.05 5.28 1.97     

SPHI (GGM d/o 

240) 

    G6B 2.85 3.98 1.95 

LSC (all 1mGal) G3B 2.96 5.64 1.97 G7B 2.89 4.66 1.98 

LSC (Norw. 1 

mGal) 

G3C 3.00 5.88 1.89 G7C 2.96 5.64 1.97 
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Figure 1. Terrain elevations of the NKG data area 
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Figure 2. Distribution of the NKG gravity point data (blue – terrestrial, green – marine or sea 

bottom, red – airborne) 
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Figure 3. A priori error estimates of the NKG gravity point data 
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(a) Area 1 – Sognefjord area (b) Area 2 – central Estonia 

Figure 4. Terrain elevations in the test areas (note the different colour scales) 
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(a) Area 1 - Sognefjord area (b) Area 2 - central Estonia 

(c) Area 3 - West of 

Denmark 

Figure 5. Free-air gravity anomaly point data available in the test areas 
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(a) Full area (b) Area 1 (c) Area 2 (d) Area 3 

    

(e) Full area (f) Area 1 (g) Area 2 (h) Area 3 

Figure 6. Covariance functions for the RTM (top row) and the Bouguer (bottom row) anomalies
*
  

*
The red or green lines depict the empirical covariance function, blue line the second order 

Markov and orange line the spherical model. Spherical distance [°] and variance [mGal
2
] 

are represented on the horizontal and vertical axis respectively. 
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(a) Ice thickness (b) Effect on the gravity field (c) Effect on the quasigeoid 

Figure 7. Ice thickness related effects in Area 1 
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Figure 8. Free-air anomaly       data points 
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(a) Simple Bouguer anomalies       (b) Terrain corrections     

Figure 9. The Bouguer reduction 
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(a) Difference             (b) RTM effect       

Figure 10. The RTM reduction 
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(a)           grid (G3) (b)            grid (G7C) 

Figure 11. Reduced gravity anomaly grids (interpolated by LSC) 
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(a)           grid (G3) (b)            grid (G7C) (c)       grid (G7C) 

Figure 12. Reduced (a, b) and restored (c) LSC-derived gravity anomaly grids in Area 1 

  



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 87 

 

 

   

(a) G6 –             grid 

interpolated by SPHI 

(b) G7 –             grid 

interpolated by LSC 

(c) G7C –             grid 

interpolated by LSC 

(Norway 1 mGal) 

Figure 13. Reduced anomaly point values minus reduced grid values interpolated to point 

locations 
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(a) 5.52° E (b) 7.72°E 

Figure 14. Profiles of free-air anomaly grids computed via RTM anomalies
*
 

*
The dots indicate input gravity data points coloured according to their a priori error estimates. 

RTM anomalies in mGal and latitude are depicted on the vertical and horizontal axis 

respectively. 
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(a) G5 –            by 

SURF 

(b) G6 –            by SPHI (c) G7 –            by LSC 

Figure 15. RTM anomaly grids in Area 3, black dots indicate the locations of input gravity data 
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Figure 16. Standard deviation of G1 to G8 (with C versions of G3 and G7) surface gravity 

anomaly values in each grid cell 
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Figure 17. Standard deviation of quasigeoid models computed from G1 to G8 (with C versions of 

G3 and G7) in each grid cell 
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