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Abstract

Traditional pharmaceutical freeze-drying is an inefficient batch process often applied to improve the stability

of biopharmaceutical drug products. The freeze-drying process is regulated by the (dynamic) settings of

the adaptable process parameters shelf temperature Ts and chamber pressure Pc. Mechanistic modelling

of the primary drying step allows the computation of the optimal combination of Ts and Pc in function of

the primary drying time. In this study, an uncertainty analysis was performed on the mechanistic primary

drying model to construct the dynamic Design Space for the primary drying step of a freeze-drying process,

allowing to quantitatively estimate and control the risk of cake collapse (i.e., the Risk of Failure (RoF)).

The propagation of the error on the estimation of the thickness of the dried layer Ldried as function of

primary drying time was included in the uncertainty analysis. The constructed dynamic Design Space

and the predicted primary drying endpoint were experimentally verified for different RoF acceptance levels

(1%, 25%, 50% and 99% RoF), defined as the chance of macroscopic cake collapse in one or more vials.

An acceptable cake structure was only obtained for the verification runs with a preset RoF of 1% and

25%. The run with the nominal values for the input variables (RoF of 50%) led to collapse in a significant

number of vials. For each RoF acceptance level, the experimentally determined primary drying endpoint was

situated below the computed endpoint, with a certainty of 99%, ensuring sublimation was finished before

secondary drying was started. The uncertainty on the model input parameters demonstrates the need of

the uncertainty analysis for the determination of the dynamic Design Space to quantitatively estimate the

risk of batch rejection due to cake collapse.

Keywords: Freeze-drying, Mathematical modelling, Dynamic Design Space, Quantitative risk assessment,

Error propagation, Risk of failure control
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1. Introduction

Pharmaceutical freeze-drying is a process often used to improve the stability of biopharmaceutical drug

products with a limited stability when formulated as an aqueous solution [1]. Traditionally, freeze-drying is

a batch-wise process during which all vials of each batch are processed through a sequence of consecutive

steps (i.e. freezing, primary and secondary drying) until the dried end product is obtained [2]. Glass vials

containing the aqueous drug formulation (i.e. unit doses) are loaded onto temperature-controlled shelves

in the drying chamber. At the start of the freezing stage, these shelves are gradually cooled until ap-

proximately -45 ◦C, depending on the formulation characteristics. The temperature of the aqueous drug

formulation decreases until ice nucleation takes place and part of the water is converted into ice. While

ice crystal growth proceeds upon further cooling, the solutes gradually concentrate between these crystals

(freeze-concentration) [3]. At the end of the freezing step, the shelf temperature reaches a value well below

the eutectic temperature Te or the glass transition temperature of the maximum freeze-concentrated for-

mulation T ′g for crystalline or amorphous products, respectively, resulting in complete solidification of the

product. To allow full crystallization of crystalline components or to enhance the batch uniformity of the

ice crystal size, an annealing step can be added to the freezing stage [4–6]. Here, the shelf temperature at

the end of the freezing step is raised to a temperature above T ′g, but below Te. This shelf temperature is

maintained for several hours before re-establishing the final freezing temperature, below T ′g. The primary

drying step is initiated by lowering the chamber pressure, conventionally to a value between 5 and 30 Pa.

When the desired pressure is reached, the shelf temperature is raised to promote ice sublimation. The

sublimation front, i.e. the interface separating ice-free product from the ice crystal matrix, moves gradually

downward with the progress of primary drying. When ice sublimation is completely finished, the shelf tem-

perature is further raised during the secondary drying step supporting the desorption of unfrozen water in

the amorphous matrix and/or the removal of hydrate water in crystalline material until the desired residual

moisture content of the end product is obtained.

One of the Critical Quality Attributes (CQAs) of lyophilized biopharmaceutical products, defined as product
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properties or characteristics that should meet defined standards to ensure the desired quality (ICH Q8), is

the cake appearance [7]. Loss of cake structure (collapse) should be avoided throughout the lyophilization

process to ensure reconstitution of the drug product within an appropriate timing and for aesthetic purposes

[1]. For this reason, the product temperature at the sublimation front Ti should be maintained below the

critical product temperature Ti,crit during the entire primary drying step. Ti,crit is characteristic for each

formulation and identified as the collapse temperature Tc or Te for amorphous and crystalline products,

respectively. In general, Tc lies a few degrees above T ′g because the viscosity near T ′g is sufficiently high to

limit viscous flow [3]. During secondary drying, the product temperature should be kept below the glass

transition temperature of the dried product Tg to avoid molecular motion and loss of cake structure. The

value of Tg is much higher compared to T ′g of the freeze-concentrate and is highly influenced by the residual

moisture content, due to the plasticizing effect of water [1]. In general, the shelf temperature ramp during

the transition of the primary to secondary drying step is rather conservative, due to the potential high resid-

ual moisture content immediately after primary drying. However, several approaches have been developed

to optimize this transition phase [8, 9].

The freeze-drying process is characterized by two adaptable process variables, i.e. the shelf fluid inlet tem-

perature Ts and chamber pressure Pc. Combinations of both parameters are set in function of time, specific

for each process step. During primary drying, the settings of Ts and Pc should result in a value for Ti asso-

ciated with maximum sublimation efficiency, while maintaining an appropriate cake structure. Mechanistic

models based on the fundamental understanding of the underlying physical mechanisms of the sublimation

process, allow the determination of the optimal combination of Ts and Pc during primary drying and their

calibration for a formulation to be freeze-dried [10, 11]. The development of these mechanistic models only

requires a limited amount of experiments, compared to data-driven empirical models associated with a high

experimental load. Mechanistic modelling assists in cycle development and optimization by computing Ti for

different combinations of Ts and Pc, eventually leading to the construction of the Design Space for primary

drying [12–14]. The Design Space is defined as the multidimensional combination and interaction of input

variables and process parameters leading to an acceptable product quality with a controlled probability (ICH

Q8) [7]. For primary drying, the Design space is demarcated by the equipment limitations, the sublimation

efficiency and the specific CQA for the lyophilized biopharmaceutical product, in this case the dried cake

appearance [15–17]. All combinations of Ts and Pc within these limits lead to a lyophilized product with an

appropriate cake appearance that is achieved within an acceptable time-frame. Model input variables can

change with the progress of primary drying, such as the thickness of the dried product layer Ldried. Upon
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an increase in Ldried, the path of the water vapour originating from the sublimation interface through the

pores of the above dried product layer becomes longer, associated with an increase in the dried product mass

transfer resistance Rp. Therefore, the heat transfer to the product should be gradually lowered, to avoid

an increase in Ti. As a consequence, the optimal combination of Ts and Pc changes in time to maintain Ti

below Ti,crit, leading to a dynamic Design Space [12, 13].

The mechanistic models are a mathematical approximation of the sublimation process during the primary

drying stage. Inherent to model development, a few assumptions and simplifications are included in these

primary drying models (e.g. a planar sublimation front and steady-state system are assumed). In addition,

the model input variables and process parameters are in some cases an estimation of the real value. Some

input variables (i.e. Rp and the vial heat transfer coefficient Kv are quantified by one global value for the

entire batch, while they can differ from vial to vial (inter-vial variability). For these reasons, the computa-

tional model predictions are associated with a degree of uncertainty, through which they can deviate from

the actual (experimental) drying behaviour. By including this parameter uncertainty into the mechanistic

primary drying model, the uncertainty on the model predictions can be determined leading to the quantita-

tive estimation of the RoF (i.e. risk of cake collapse) for each combination of the adaptable process variables,

Pc and Ts, in the dynamic Design Space. Only a limited number of studies have been conducted focusing on

quantitative risk assessment. The uncertainty of two input variables, Rp and Kv, can be compensated by

assuming a Gaussian distribution of the values around their mean [10, 18]. Alternatively, the impact of the

variation in Rp and Kv was assessed by determining the variance for these parameters and their influence on

the primary drying time [19]. In both approaches, only Rp and Kv were considered as uncertain parameters.

In previous work, the use of a dedicated uncertainty analysis was presented, in which the uncertainty on each

uncertain input variable and process parameter was estimated and quantified [13]. However, Ldried is both

an input and output variable of the mechanistic model. As the value of Ldried is computed throughout the

simulation, the uncertainty on this input parameter results from the other uncertain input variables and, in

addition, the uncertainty increases with the drying progress due to the accumulation of error. In this paper,

the aforementioned dedicated uncertainty analysis was refined and extended with a strategy to incorporate

the accumulation of error into the primary drying model. The combination of the dedicated uncertainty

analysis with the time dependent process variables results in the dynamic Design Space with the ultimate

aim of quantifying and controlling the risk of cake collapse and reducing the risk of batch rejection, while

maximizing the drying efficiency.
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2. Materials and methods

2.1. Freeze-drying model

The mechanistic model describing the primary drying step of a pharmaceutical batch freeze-drying

process is described in detail by Mortier et al. [13]. The nominal values of the model input parameters are

listed in table 1. The coefficients describing Kv were experimentally determined, as explained in section 2.3.

The coefficients describing Rp for the model formulation were taken from literature [20]. The aqueous model

formulation contained 30 mg/mL of sucrose (Sigma-Aldrich, Saint-Louis, MO, USA). Ti,crit was assumed

to be equal to T ′g of the model formulation, which was determined using Modulated Differential Scanning

Calorimetry (MDSC) (Section 2.4). A planar sublimation interface was assumed for the model. Finally, the

system was considered to be at steady-state, i.e. the transferred energy was only used for ice sublimation.

To limit the computational load, the grid for Pc and Ts for the grid-search was limited. As the optimal value

Table 1: Nominal values of the parameters of the model describing the primary drying step

Parameter Numerical value
Inner radius of 10R vial rv,i 0.011 m
Outer radius of 10R vial rv,o 0.012 m
Radius of the vial neck rv,n 0.0063 m

Radius of the duct of the dryer rd 0.08 m
Kv-coefficient α 11.18 J/(m2sK)
Kv-coefficient β 1.435 J/(m2sKPa)
Kv-coefficient γ 0.04008 1/Pa
Rp-coefficient Rp,0 6.926 104 m/s
Rp-coefficient ARp 9.124 106 1/s
Rp-coefficient BRp 0 1/m

Critical product temperature Ti,crit -32.5 ◦C
Filling volume V 2.5 mL
Density of ice ρice 919.4 kg/m3

Volume fraction of ice ε 0.97
Ratio of the specific heat for water k 1.33

Molecular weight of water M 0.018015 kg/mol

for the chamber pressure is seldom increasing after reaching the vacuum conditions, the limits for Pc were

set at [10 Pa 14 Pa] after the exponential pressure decrease at the start of primary drying [13]. The lower

boundary was chosen based on the lower limit that can be reached by the equipment. The upper boundary

was initially set based on expert knowledge. In case this upper boundary was reached during the grid-search,

the upper limit was extended. The grid boundaries for Ts changed during the process, and the range was

based on the maximum temperature ramp that can be supported by the freeze-dryer, i.e. 1 ◦C/min. The

time step used for the calculations increased with the progress of primary drying. Consequently, the width
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of the range for Ts changed accordingly throughout the calculations based on the value of Ts for the previous

time step and the maximum ramp of Ts, e.g., for a value of -20◦C for Ts and a time step of 5 minutes, the

range is [-25◦C -15◦C].

The optimal process settings were determined on both vial and dryer-level. On vial-level, only choked flow

at the vial neck is taken into account, as it is the most narrow point for the mass transfer, which is calculated

using the following relation [17]:

ṁsub,chok,vial =
0.3 r2v,n π

√
k Tr R
M M

RTr
Pc (1)

with ṁsub,chok,vial the maximum sublimation rate avoiding choked flow at vial level (kg/s), rv,n the equivalent

radius corresponding with the most narrow lumen at the stopper placed upon the vial neck opening (m),

k the ratio of the specific heat for water (1.33), Tr the temperature of the water vapour (K), R the gas

constant (8.3144621 J/(K mol)) and M the molecular weight of water (kg/mol). The choked flow at dryer-

level, where the valve in the duct connecting the drying chamber and the condenser is the limiting factor,

is given by [17]:

ṁsub,chok,dryer =
0.3 r2d π

√
k Tr R
M M

RTr

Pc

nvials
(2)

with ṁsub,chok,dryer the maximum sublimation rate avoiding choked flow at dryer level (kg/s), rd the equiv-

alent radius corresponding with the most narrow lumen at the valve connecting the drying chamber and

condenser (m) and nvials the theoretical maximum number of vials that can fit in the drying chamber of the

freeze-dryer (1,140). Here, rd is defined for the used equipment, equipped with a butterfly valve. For other

types of equipment, rd can be defined as the radius of the duct connecting drying chamber and condenser

itself.

2.2. Uncertainty analysis

The uncertainty analysis on the freeze-drying model leading to the dynamic Design Space was conducted

using the sampling-based approach [21]. For this method, the model is run for different combinations of

input variables and process parameters, based on their uncertainty range. Next, the uncertainty on the

model output is estimated from the predictions at these sample points. The input matrix containing 10,000

samples (i.e. the sampling scheme) was constructed using the Sobol sampling technique [22]. The analysis

was done for 8 factors that were considered to be uncertain. Ti,crit was assumed to be equal to T ′g of the

model formulation. In general, T ′g is a few degrees lower than Tc, the temperature at which collapse actually
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occurs. This should provide a sufficient safety margin to avoid cake collapse. For this reason, Ti,crit was

not considered as one of the uncertain factors. The uncertainty levels for each factor are given in table

2. For most factors, the uncertainty was not implemented as a percentage of the nominal value as the

range is highly dependent on the magnitude of the factor. For these factors (i.e., Ts, Pc, rv,i and rv,o), the

uncertainty was defined by an absolute range, based on experimental data or data provided by the supplier

(see further). Ldried was calculated for each time step throughout the process, based on the other (uncertain)

model input variables. Therefore, there is uncertainty about the exact value of this input variable due to

the uncertainty of the initial conditions and the model parameters. In addition, the uncertainty on Ldried

increases throughout the simulation due to the accumulation of error in the previous steps. The uncertainty

level was determined by calculating the standard deviation on a fixed number of samples, i.e. 1,000 samples,

by varying the values of the model parameters within their specified ranges. Kv is described in function of

Pc via [13]:

Kv = α+
βPc

1 + γPc
(3)

with α (J/(m2sK), β (J/(m2sKPa) and γ (1/Pa) constants describing Kv quantitatively in function of Pc

(Table 1). Rp is described in function of Ldried via [13]:

Rp = Rp,0 +
ARpLdried

1 +BRpLdried
(4)

with Rp,0 (m/s), ARp (1/s) and BRp (1/m) constants describing Rp quantitatively in function of Ldried

(Table 1). The uncertainty on these coefficients is lumped by introducing an uncertainty on the entire

parameter, i.e. Rp and Kv. The uncertainty on the inner and outer radius of the vials, rv,i and rv,o, is

based on data provided by the supplier of the 10R vials (Schott, Müllheim, Germany). The filling volume

V was included in the analysis because of the inherent error during the filling stage. Depending on the

location of the vial on the shelf, Ts can be somewhat higher or lower than the set value. This error has

been experimentally determined for both a constant value of Ts and during a shelf temperature ramp. The

uncertainty level for Ts is based on these preliminary experiments. When the shelf fluid inlet temperature is

kept constant, the uncertainty level on Ts is fixed at 2.5 ◦C. During a shelf temperature ramp, it was revealed

that Ts reaches the set value with a delay due to thermal inertia of the shelves, leading to a broadening of

the uncertainty range. When the shelf temperature is set to increase, the upper uncertainty level remains

fixed at 2.5 ◦C, while the lower level linearly increases from 2.5 ◦C until a maximum of 10 ◦C at the same

rate as the temperature ramp (Figure 1). The lower limit remains 10 ◦C as long as Ts increases, until the set
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value is reached and the uncertainty on Ts gradually vanishes within 15 minutes. Vice versa, when the shelf

temperature is set to decrease, the lower level of the uncertainty range remains constant while the upper

level increases. The error on Pc is based on the maximum allowed deviation of the feedback pressure control

system.

Table 2: Uncertainty level for the input factors of the uncertainty analysis

Factor Uncertainty level Reason of inclusion in uncertainty analysis
Ldried - Error propagation
Rp 20% Based on experimental data
Kv 5% Based on experimental data
rv,i 10−4 m Process variable with inherent error
rv,o 10−4 m Process variable with inherent error
V 1% Process variable with inherent error
Ts 2.5-10 ◦C Based on experimental data
Pc 1 Pa Process variable with inherent error

Process time (min)
0 5 10 15 20 25 30 35 40 45

T
s (

°C
)

-45

-40

-35

-30

-25

-20

-15

Figure 1: Illustration of the uncertainty on Ts during temperature ramp: theoretical (set) value of Ts (solid line)
with uncertainty levels (dash dotted line) in function of process time

2.3. Determination of the vial heat transfer coefficient

Kv was determined via a gravimetric method [23]. A total of 100 type I glass vials, each filled with

2.5 mL of deionized water, were placed on the precooled shelves (3 ◦C) in the drying chamber. The shelves

were further cooled until -45 ◦C at a rate of 1 ◦C/min. This temperature was maintained for 1 hour. Next,

the temperature was linearly increased until -20 ◦C in 25 minutes, after which the pressure was lowered until

the desired value. After 6 hours of primary drying, ice sublimation was interrupted by aerating the drying

chamber with dry nitrogen and subsequently closing the vials. Each individual vial was weighed before and

after primary drying. The value of Kv changes in function of Pc, therefore, this cycle was repeated at six
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different pressure levels: 5, 10, 15, 20, 25 and 30 Pa. Type-K thermocouples (Conrad Electronic, Hirschau,

Germany) were placed inside four different vials, which were randomly distributed at the border and the

center of the batch, against the bottom in the center of the vial, to monitor the ice temperature during

primary drying [24]. Kv was calculated at each pressure level according to equation 5 [12]:

Kv =
∆m∆Hsub

∆t (Ts − Tb)AvM
(5)

with ∆m the mass of sublimated ice (kg), ∆Hsub the latent sublimation heat of ice (J/mol), ∆t the primary

drying time interval (s), Ts the shelf fluid inlet temperature (K), Tb the ice temperature at the bottom of

the vial (K) and Av the outer vial area (m2). For each pressure level, equation 3 was fitted to the value of

Kv via nonlinear regression to obtain these coefficients. Because of the difference in radiation energy coming

from the surrounding walls, discrimination was made between vials situated in the center and at the edge of

the batch. The first group consisted of vials which were at all four sides surrounded by other vials (center

vials). The second group consisted of vials situated at the edge of the shelf, with at least one side directed

towards the door or the walls of the drying chamber (edge vials). The parameters α, β and γ describing

Kv in function of Pc, were determined separately for both groups. This implies that Kv combines both the

radiative and conductive energy transfer. The total energy transfer to the edge vials is higher compared to

the center vials (Section 3.1), which is associated with a higher risk of cake collapse for the vials situated at

the border of the batch. Because they are the limiting factor, α, β and γ for the edge vials were selected as

input variables for the freeze-drying model to compute the dynamic Design Space.

2.4. Determination of the critical product temperature

Ti,crit of the model formulation was determined via MDSC using a differential scanning calorimeter Q2000

(TA instruments, Zellik, Belgium). Hermetically sealed aluminum pans (TA instruments, Zellik, Belgium)

were filled with approximately 12 mg of the model formulation, containing 30 mg/mL sucrose. The DSC

cell was constantly purged with dry nitrogen at a flow rate of 50 mL/min. Initially, the sample was rapidly

cooled until -90 ◦C. This temperature was maintained for 5 minutes. Subsequently the temperature was

linearly increased until 0 ◦C at a heating rate of 2 ◦C/min. The modulation amplitude and period were set

at 0.212 ◦C and 40 seconds, respectively. The analysis was performed in triplicate. The thermograms were

analyzed with TA Instruments Universal Analysis 2000 version 4.7A (TA Instruments, Zellik, Belgium).
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2.5. Experimental verification of the dynamic Design Space

Four experimental runs were conducted to verify the dynamic Design Space for the model formulation

under study. The settings of the adaptable process parameters Ts and Pc were computed for different RoF

acceptance levels (1%, 25%, 50% and 99%). The RoF acceptance level is defined as the chance of batch

rejection due to macroscopic cake collapse in one or more vials. The experiments were conducted in a

laboratory scale freeze-dryer Lyobeta 25 (Telstar, Terrassa, Spain) equipped with four shelves, each with a

heatable area of 0.16 m2, in the vacuum-tight drying chamber with a volume of 0.2 m3. The system contains

a condenser with 35 kg of ice capacity and a vacuum pump to evacuate the drying chamber. Chamber

pressure control was performed via a Baratron Type 626A capacitance manometer (MKS Instruments,

Andover, MA, USA). Comparative pressure measurements were conducted using a Pirani Type PSG-502-S

thermal conductivity gauge (Inficon, Bad Ragaz, Switzerland). Temperature control of shelf and condenser

was based on Pt100 thermal sensors (WIKA Instruments, Klingenberg, Germany) measurements.

The freezing step for each verification run was identical to the freezing procedure used to determine Rp of

the model formulation [20]. A total of 100 glass vials, each filled with 2.5 mL of the model formulation, was

placed on the precooled shelves (3 ◦C) in the drying chamber. The shelves were chilled at a rate of 1 ◦C/min

until -45 ◦C. This temperature was maintained for 1 hour. An annealing step was included in the freezing

procedure, during which Ts was increased in 25 minutes until -20 ◦C and kept at this value for 2 hours. After

re-establishing the final freezing temperature of -45 ◦C at a rate of 1 ◦C/min, Ts was kept for another hour

at this value, before the condenser was cooled and the vacuum pump was activated. The primary drying

settings were characteristic for each verification run and the corresponding RoF acceptance level. When

the endpoint of primary drying was detected, secondary drying was conducted at 20 ◦C, after ramping the

temperature at 1 ◦C/min starting from the final Ts at the end of primary drying. The value of Pc during

secondary drying was kept equal to the one during primary drying. At the end of each run, the vials were

stoppered under a controlled nitrogen atmosphere.

The dynamic Design Space was computed based on the coefficients describing Kv for the edge vials (Table

1). As compensation for the slower sublimation rate in the center vials (Section 3.1), the primary drying

phase of each verification run was prolonged by maintaining the final optimal combination of Ts and Pc for

a few additional hours, on top of the predicted dynamic primary drying trajectory for the edge vials. The

total drying time for the complete batch, including the center vials, was predicted based on the coefficients

describing Kv for these center vials. The computed optimal dynamic settings of Ts and Pc were used as
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input for the primary drying model to calculate the sublimation rate ṁsub using equation 6 [13]:

ṁsub = Ap
(Pw,i − Pw,c)

Rp
(6)

where Ap is the product area available for sublimation (m2), Pw,i the vapour pressure of ice at the sublimation

interface (Pa), Pw,c the partial pressure of water in the drying chamber (Pa). Here, Pw,c is assumed to be

equal to Pc, as during primary drying the gas composition in the drying chamber consists almost entirely of

water vapour [12]. The nominal values of the input parameters (Table 1) and uncertainty levels (Table 2)

required for the calculation of the total primary drying time were equal to the ones used for the calculation

of the dynamic Design Space, with the coefficients describing Kv for the center vials instead of the edge

vials. The propagation of errors on Ldried was not included for the computation of the total drying time,

as the primary drying endpoint was based upon complete sublimation of the ice mass instead of correlating

Ldried with the total layer thickness to avoid an overestimation of the drying time. For each verification

run, the primary drying endpoint was computed with a certainty of 99% based on the uncertainty level of

each parameter, as illustrated in figure 2, ensuring the batch is completely dry.

The end of primary drying was detected based on the ratio of the Pirani thermal conductivity gauge and

Primary drying endpoint (h)

99% limit

Figure 2: Illustration of the computation of the primary drying endpoint with a certainty of 99%

the Baratron capacitance manometer. The capacitance manometer measures the absolute pressure, while

the relative pressure measurement of the thermal conductivity gauge changes with the gas composition in

the drying chamber. The gas composition changes from mainly water vapour during primary drying to

mostly nitrogen towards the end of primary drying, when ice sublimation is complete. Primary drying

was considered finished at the midpoint of the drop in Pirani pressure [25]. As this comparative pressure
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measurement method monitors the entire batch, the endpoint is only reached when the last vials of the

batch are dry.

Ti was constantly monitored via thermocouples in contact with the bottom of the vials, to evaluate whether

Ti,crit was exceeded during primary drying or not. Vials situated in the center and at the edge of the batch

were monitored, which allowed the comparison in drying behaviour between these two positions. After freeze-

drying, the cake appearance of each vial was visually evaluated to look for signs of macroscopic collapse.

Slight shrinkage of the cake was attributed to the amorphous characteristics of the sucrose formulation and

was not considered as macroscopic collapse [26].

3. Results

3.1. Experimental determination of the vial heat transfer coefficient

Kv as function of Pc is displayed in figure 3. Higher values of Pc are associated with a significant

increase in Kv, as reported before [13, 23, 27]. Sub-optimal contact between the stainless steel shelf and the

bottom of the glass vials leads to an enhanced conductive heat flux for an increased gas molecule density

between both surfaces. Furthermore, Kv is higher for vials situated at the edge of the batch due to the

significantly higher contribution of radiation energy coming from the surroundings, compared to vials in

the center of the batch [13, 23, 27]. Therefore, discrimination was made between these two groups of vials.

The relation between Kv and Pc is described by equation 3. For both groups of vials, non-linear regression

was applied to fit equation 3 to the data, resulting in the parameters describing Kv as function of Pc.

For the center vials, α = 6.11 J/(m2sK) (95% CI [5.21,7.01]), β = 1.54 J/(m2sKPa) ([1.31,1.78]) and γ =

0.046 1/Pa ([0.037,0.055]) were obtained. For the edge vials, α = 11.16 J/(m2sK) (95% CI [10.16,12.16]),

β = 1.44 J/(m2sKPa) ([1.20,1.69]) and γ = 0.040 1/Pa ([0.031,0.050]) were obtained. As the edge vials

receive additional radiation energy, the risk of cake collapse is higher in these vials compared to the center

vials. For this reason, the parameters describing Kv as function of Pc for the edge vials were selected as

input factors for the mechanistic model. Consequently, the predicted drying time will be underestimated

for the center vials. To assure primary drying is finished for all vials, the total drying time was prolonged

by maintaining the final optimal combination of Ts and Pc for a few additional hours on top of the optimal

dynamic trajectory for the edge vials, based on the coefficients describing Kv for these center vials (Section

3.4).
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Figure 3: Vial heat transfer coefficient Kv plotted as function of chamber pressure Pc for edge (squares) and center
vials (circles)

3.2. Dynamic Design Space for Risk of Failure of 1%

The procedure to determine the optimal combination of Pc and Ts is presented in figure 4. The coloured

rectangle in the figures represents the grid used at the current time step. The full range of Pc is explored,

while the range for Ts is based on the maximum temperature ramp which can be obtained by the shelves of

the freeze-dryer. As the time step is small at the start of the calculations, the range of Ts is also small. With

the increase of the time step throughout the simulation, the width of the range of Ts also increases. On the

left side of the figure, the calculated sublimation rate ṁsub is given for each combination of Pc and Ts in

the explored range. In the figure in the center, the product temperature Ti is plotted, while the black line

indicates Ti,crit. Below this black line the critical value is not exceeded. The right part of figure 4 indicates

for which Pc-Ts-combinations the choked flow criterion is exceeded, both at vial and dryer-level, which is

never the case here. After determining the optimal combination of Ts and Pc, which is indicated with a

black dot in the left figure, the uncertainty level on Ldried is calculated using an uncertainty analysis.

The evolution of Ldried for an RoF of 1% is given in figure 5. Initially, Pc is equal to the ambient pressure,

the condition used during the freezing step. At this high pressure, the sublimation rate is zero and Ldried

remains at zero, until Pc becomes lower than the ice vapour pressure and sublimation starts. Later on,

during primary drying, the increase in Ldried is almost linear.

In figure 6, the optimal values for Ts and Pc are presented. Initially, Ts equals -45 ◦C, the temperature used

during the freezing step. As soon as sublimation starts, the optimal value of Ts increases at the maximum

rate which can be obtained by the freeze-dryer. After approximately 1 h, the optimal value starts to decrease

again due to the limitation of Ti,crit. Pc is lowered at the start of primary drying and, after reaching vacuum
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Figure 4: Determination of the optimal values for Pc and Ts (e.g., at t = 1.31 h): In the left figure, ṁsub is plotted
for each combination of Pc and Ts where the optimal TsPc combination is indicated with a black dot. In
the middle figure, Ti is plotted for each combination of Pc and Ts with the black line indicating Ti,crit;
below this line Ti,crit is not exceeded. In the right figure, the choked flow criterion is evaluated: the result
is either 0 (not exceeding the limit) or 1 (exceeding the limit).
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Figure 5: Evolution of Ldried for an RoF acceptance level of 1%

conditions, the optimal value is hardly ever changing.

In figure 7 the uncertainty level on Ldried (SLdried
) is plotted in function of Ldried. The increase of the

uncertainty on Ldried with the drying time is obvious, i.e. the error is based on deviations in the previous

steps, which leads to a cumulative effect: error propagation.

Figure 8 presents the uncertainty level on Ts which is asymmetric. When the Ts is increasing, i.e. the first

1 h, the actual value runs behind due to thermal inertia of the shelves, and therefore, the uncertainty is

higher at the lower boundary compared to the upper boundary. The opposite is true when the temperature

starts to decrease, i.e. after 1 h.
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Figure 6: Optimal values for Ts (Left) and Pc (Right) for an RoF acceptance level of 1%
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Figure 7: Uncertainty level on Ldried (SLdried) for an RoF acceptance level of 1%
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Figure 8: Uncertainty level on Ts for an RoF acceptance level of 1% for the model formulation

3.3. Comparison of dynamic Design Space for different Risk of Failure levels

In the left part of figure 9, Ts is plotted in function of t for four different RoF acceptance levels. A

higher RoF allows the use of less conservative settings, therefore, Ts is obviously higher compared to lower

RoF levels. The difference in the maximum value of Ts is around 17 ◦C between an RoF-value of 99% and
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50%. Between 1% and 99% this difference is about 29 ◦C. The corresponding evolution of Ti is given in

the right part of figure 9. It is obvious that Ti is higher for higher RoF levels. When the RoF-value is

higher than 50%, the chance that Ti,crit is exceeded is higher than 50%. Therefore, Ti,crit is evolving after

the start-up phase towards the nominal value of the Ti, i.e. -32.5 ◦ when the RoF is 50%. For an RoF of

99%, Ti is evolving towards -30 ◦, which is higher than Ti,crit. For an RoF of 1% and 25%, Ti is evolving to

respectively -34.5 ◦ and -33 ◦, both lower than Ti,crit.

The difference in Pc for different values of RoF is negligible (Figure 10). At the start, Pc is decreasing to
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Figure 9: Optimal values for Ts and the evolution of Ti for an RoF acceptance level of 1%, 25%, 50% and 99%

vacuum conditions, while an increase is noted after around 0.6 h. This increase is higher for a higher RoF

level. It is clear that the total value of t is larger when the RoF is lower. The computed drying time for
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Figure 10: Optimal values for Pc for an RoF acceptance level of 1%, 25%, 50% and 99%

the edge vials is 12.28 h, 9.97 h, 9.05 h and 6.67 h for an RoF of 1%, 25%, 50% and 99%, respectively. It has

to be remarked that these drying times are computed based on the coefficients describing Kv for the edge

vials. As compensation, the total drying time for the complete batch is prolonged by maintaining the final

optimal combination of Ts and Pc for a few additional hours on top of the optimal dynamic trajectory for
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the edge vials as calculated based on the coefficients describing Kv for the center vials (Section 3.4).

3.4. Experimental verification of the dynamic Design Space

In figure 11, the monitored Ti is plotted in function of t for an RoF acceptance level of 1%, 25%, 50%

and 99%, while the horizontal line represents Ti,crit. Immediately after introducing the vacuum, Ti was

very low (below -40 ◦C). With the progress of drying, Ldried and Rp simultaneously started to increase.

Consequently, the mass transfer of water vapour through the dried layer got more obstructed, associated

with a local pressure rise at the sublimation front and, hence, an increase in Ti, eventually leading to a

gradual limitation of Ts. Ti was measured at the bottom of the vial, while there is a (small) temperature

gradient across the frozen product layer between the sublimation front and the bottom of the vial. In

general, the temperature measured at the bottom of the vial is slightly higher compared to the sublimation

front. As the sublimation interface gradually moved downwards during primary drying, this temperature

gradient became smaller, which might explain the gradual decrease in Ti. This observed decrease is mostly

relevant for the more aggressive cycles with a higher RoF. Therefore, this feature might be linked to the

occurence of collapse at the ice-dried product interface due to the exceedance of Ti,crit. The increased pore

size in the dried product layer might reduce Rp and in turn Ti [28, 29]. Near the end of primary drying,

when the ice in contact with the thermocouple was completely sublimated, Ti increased drastically, as more

energy was transferred to the vial than was removed via ice sublimation.

The measured value of Ti was obviously higher with the increase in RoF acceptance level (Figure 11), as
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Figure 11: Experimental Ti for an RoF acceptance level of 1%, 25%, 50% and 99% and Ti,crit for an edge (left)
and center (right) vial

Ts was set at a higher (mean) value for each corresponding verification run (Figure 9). Ti was also higher

for edge vials compared to center vials during the same RoF verification run, due to the additional radiation

energy originating from the surroundings received by the edge vials (Section 3.1). During the experimental
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verification run based on an RoF acceptance level of 50% and 99%, Ti exceeds Ti,crit in both the edge and

center vials. For an RoF of 25%, Ti remains below Ti,crit in the center vials, while Ti is slightly above Ti,crit

in the edge vials. For an RoF of 1%, Ti remains below Ti,crit in both the edge and center vials. These

temperature data can be related to the resulting cake appearance after each verification run. Macroscopic

cake collapse was observed in a significant part of the batch for an RoF acceptance level of 50% and 99%,

as Ti,crit was greatly exceeded during primary drying (Figure 12). The degree of collapse was more severe

for a higher RoF. The majority of the vials where loss of structure occurred, was situated at the edge of the

batch, due to the additional energy transfer (Section 3.1). The vials obtained during the verification run

with an RoF of 25% did not show any sign of (macroscopic) collapse. Despite (just) exceeding Ti,crit in the

edge vials, Ti remained below Tc. Ti,crit was assumed to be equal to T ′g of the model formulation (Section

2.2). Because the viscosity near T ′g is sufficiently high to prevent viscous flow, no macroscopic collapse was

observed. Ti,crit was never exceeded during the verification run for an RoF of 1%. Logically, an acceptable

cake appearance was obtained at the end of this run (Figure 12). Due to the amorphous characteristics of

the product, partial cake shrinkage of approximately 10% was observed for all non-collapsed vials in the

batch.

For each RoF acceptance level, the computed primary drying endpoint with a certainty of 99%, based on

Figure 12: Cakes yielded after experimental verification runs for RoF of 1% (left), 25% (middle left), 50% (middle
right) and 99% (right)

the coefficients describing Kv for the center vials, is listed in table 3. These predictions are in accordance

with the experimentally determined primary drying endpoint, determined via the ratio of the relative and

absolute pressure measurement. For each RoF acceptance level, the experimental endpoint was situated

below the computed limit, indicating that primary drying was finished before the shelf temperature ramp

to secondary drying was started.
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Table 3: The experimentally determined primary drying time for the center vials for different RoF acceptance levels
compared with the computed primary drying endpoint with 99% certainty

Risk of Failure Computed primary drying endpoint (h) Experimental value (h)
1% 17.61 16.83
25% 14.19 13.59
50% 12.61 11.72
99% 9.22 9.09

4. Discussion

Conventionally, the primary drying step of a freeze-drying process is characterized by fixed settings for

the adaptable process parameters Ts and Pc. These suboptimal process conditions lead to the prolongation

of the primary drying time, associated with an increase in production costs and inefficient usage of the

equipment. Alternatively, mechanistic modelling is a cost-effective and efficient approach for the development

and optimization of freeze-drying cycles, via the construction of the Design Space for the primary drying

step. Because some model input variables change with the primary drying progress, e.g. the gradual increase

in Ldried corresponds to an increase in Rp (Section 1), the optimal combination of Ts and Pc also changes

throughout the process. Instead of a static Design Space, this leads to the construction of a dynamic

Design Space, associated with an increased processing efficiency. Because model input variables and process

parameters are often an estimation of the real value and due to the fact that several assumptions and resulting

simplifications were included in the model, an uncertainty analysis was conducted to quantitatively estimate

the risk of cake collapse for each combination of the adaptable process parameters Ts and Pc in the dynamic

Design Space. In addition, experimental verification of the Design Space is required before conclusions can

be drawn with the final aim of implementing the Design Space in production processes.

The experimental run based on the nominal values of the input parameters (i.e. RoF of 50%) led to cake

collapse in a significant number of vials, mainly situated at the edge of the batch, which would in practice

lead to rejection of the complete batch. This observation indicates the necessity of including the parameter

uncertainty during Design Space construction via the uncertainty analysis. The nominal values of the input

variables are often associated with a certain degree of uncertainty. For instance, Rp is characterized by one

global set of coefficients describing Rp in function of Ldried. However, this parameter is inherently associated

with a high inter-vial variability due to the stochastic nature of ice nucleation leading to differences in ice

crystal size, which is linked to the final pore size in the dried product [3]. As the pore size impacts the

mass flow dynamics through the dried layer, Rp is subject to an immense vial-to-vial variability [30]. The

inclusion of an annealing step improves the inter-vial homogeneity in pore size [4]. However, an assessment
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of the uncertainty on Rp is still required, as indicated during the experimental verification of the dynamic

Design Space.

The observation that cake collapse mainly occurred in the vials situated at the edge of the batch was

attributed to the additional radiation energy transfer to these vials (Section 3.1). As Kv is highly different

between the edge and center vials [13, 23, 27], which is inherent to the design of the freeze-dryer, a global

value for the quantification of Kv for the whole batch would be associated with a very high uncertainty

for each individual vial. This issue was addressed by dividing the batch in two groups, based on whether

radiation from the surroundings contributed to the energy transfer or not (Section 2.3). This way, the

uncertainty on Kv was reduced as within each individual group the variability was much smaller. However,

due to local differences in energy transfer to the individual vials of each group depending on the location of

the vial in the drying chamber, the shape of the vial bottom and temperature differences across the shelves,

Kv should still be included in the uncertainty analysis. In addition, the inherent inter-vial variability in both

Rp and Kv also yields a potential increased variability in final product quality, which however is difficult to

avoid due to the design of the equipment.

As the total energy transfer to the edge vials is significantly higher compared to the center vials, this group

was considered for the construction of the dynamic Design Space, while the center vials were the limiting

factor regarding the computation of the primary drying endpoint. The endpoint of primary drying was

experimentally verified based on the pressure ratio measurement between a Pirani gauge and a capacitance

manometer. To avoid the introduction of secondary drying before primary drying is finished, the one-sided

97.5% confidence limit is considered as the most relevant and safe parameter in estimating the primary

drying endpoint. An even better approach, which would fit the Process Analytical Technology (PAT)

initiative issued by the Food and Drug Administration (FDA), would be to monitor the pressure ratio real-

time and in-line and to start the secondary drying ramp-up when a predefined threshold value is reached

[31].

The parameters which should be included in the uncertainty analysis and their respective uncertainty level

should be considered very carefully, as they impact the Design Space [13]. Preferably, the uncertainty level

is based on experimental data, e.g. Ts, Kv, rv,i or rv,o. In case experiments do not give an indication

about the degree of uncertainty, the uncertainty level should be estimated based on expert knowledge. This

estimation should be conservative, associated with rather broad uncertainty levels, otherwise this could lead

to collapse of the product, even for very low risk of failure acceptance levels.
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5. General conclusion

The dynamic Design Space for the primary drying step of the freeze-drying process was constructed,

allowing the determination of the optimal combination of the adaptable process parameters Ts and Pc in

function of the primary drying time. The inclusion of the uncertainty analysis extended with the error

propagation, lead to the quantification and control of the risk of cake collapse and rejection of the batch.

The dynamic Design Space was verified with experimental data for different risk of failure acceptance levels.

The experimental run based on the nominal values of the input variables (i.e. RoF of 50%) resulted in cake

collapse for a significant part of the batch. An acceptable cake appearance was only obtained for a minimum

risk of failure acceptance level of 25%. This study demonstrates that the uncertainty analysis is an essential

step in the establishment of the dynamic Design Space, with a controlled risk of cake collapse.
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Nomenclature

α Constant describing Kv in function of Pc (J/(m2sK))

β Constant describing Kv in function of Pc (J/(m2sKPa))

∆Hsub Latent sublimation heat of ice (J/mol)

∆m Mass of sublimated ice (kg)

∆t Primary drying time interval (s)

ṁsub,chok,dryer Maximum sublimation rate avoiding choked flow at dryer level (kg/s)

ṁsub,chok,vial Maximum sublimation rate avoiding choked flow at vial level (kg/s)

ṁsub Sublimation rate (kg/s)

ε Volume fraction of ice (-)

γ Constant describing Kv in function of Pc (1/Pa)
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ρice Density of ice (kg/m3)

Ap Product area available for sublimation (m2)

Av Outer vial area (m2)

ARp
Constant describing Rp in function of l (1/s)

BRp Constant describing Rp in function of l (1/m)

k Ratio of specific heats (-)

Kv Vial heat transfer coefficient (J/(m2sK))

Ldried Dried layer thickness (m)

M Molecular weight (kg/mol)

nvials Amount of vials (-)

Pc Chamber pressure (Pa)

Pw,c Partial water pressure in the drying chamber (Pa)

Pw,i Vapour pressure at the sublimation interface (Pa)

R Gas constant (8.3144621 J/(K mol))

Rp Dried product mass transfer resistance (m/s)

rd Equivalent radius corresponding to duct opening between chamber and condenser (m)

Rp,0 Constant describing Rp in function of l (m/s)

rv,i Inner radius of the glass vial (m)

rv,n Equivalent radius corresponding to vial neck opening (m)

rv,o Outer radius of the glass vial (m)

SLdried
Uncertainty level on Ldried (m)

t Primary drying time (h)

Tb Ice temperature at bottom of the vial (K)
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Tc Collapse temperature (K)

Te Eutectic temperature (K)

Tg Glass transition temperature of the freeze-dried product (K)

T ′g Glass transition temperature of the maximum freeze-concentrated formulation (K)

Ti Product temperature at sublimation front (K)

Tr Temperature of the water vapour (K)

Ts Shelf fluid inlet temperature (K)

Ti,crit Critical product temperature (K)

V Filling volume (mL)
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