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Abstract The goal of this article is to demonstrate

the applicability and to discuss the advantages and dis-

advantages of automatic differentiation in topology op-

timization. The technique makes it possible to wholly

or partially automate the evaluation of derivatives for

optimization problems and is demonstrated on two sep-

arate, previously published types of problems in topol-

ogy optimization. Two separate software packages for

automatic differentiation, CoDiPack and Tapenade are

considered, and their performance and usability trade-

offs are discussed and compared to a hand coded ad-

joint gradient evaluation process. Finally, the resulting

optimization framework is verified by applying it to a

non-trivial unsteady flow topology optimization prob-

lem.

Keywords Topology optimization · Automatic

differentiation · Lattice Boltzmann

1 Introduction

Automatic differentiation, also at times called algorith-

mic differentiation, is a technique that, according to

Griewank and Walther (2008) “has been rediscovered
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and implemented many times, yet its application still

has not reached its full potential”. Automatic differ-

entiation (AD) allows for the exact evaluation of the

Jacobian of an arbitrarily complicated differentiable

function, by partitioning the function into a sequence

of simple operations, which are by themselves trivially

differentiable. This process can be automated by soft-

ware, allowing developers to focus on the solution of

the problems requiring differentiation, rather than the

derivation and implementation of code for evaluating

derivatives. This potential for easily evaluated deriva-

tives makes AD very useful for design optimization, es-

pecially for highly non-linear problems (Albring et al

2016; Nemili et al 2014; Zhou et al 2017; Özkaya et al

2016). Despite this, to the authors knowledge, there

have been only few applications of AD for density based

topology optimization—the only example the authors

are aware of is the paper by  Laniewski Wo l lk and Ro-

kicki (2016). Thus, the aim of the presentation is to dis-

cuss the application details and to demonstrate AD for

two topology optimization problems in computational

mechanics.

An extensive review of topology optimization itself

is beyond the scope of this paper, but the interested

reader is referred to the monograph by Bendsøe and

Sigmund (2004), as well as the more recent review paper

by Sigmund and Maute (2013).

1.1 Automatic differentiation

The goal of this section is to give a brief introduction to

AD. For an extensive and more general treatment, the

reader is referred to the introductory text by Griewank

and Walther (2008). To simplify the discussion, assume

a continuous function F : Rn → Rm, with the Jaco-
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bian matrix F ′ : Rn → Rm×n. Further assume that

a routine (i.e. a particular computer implementation)

exists to evaluate F . In the AD literature, F is often

called the primal function. Even though F may be ar-

bitrarily complicated, its concrete implementation may

be decomposed into a series of simple operations (e.g.

additions, multiplication, elementary functions such as

the trigonometric functions) which are individually easy

to differentiate exactly. The differentiated value of each

operation can then be propagated to the next by the

chain rule. This idea of propagation can be applied in

two ways, either starting from the input vector x ∈ Rn,

which results in the forward mode, or from the out-

put vector y ∈ Rm, which results in the reverse mode.

Since the full mathematical details of AD are beyond

the scope of the paper, each mode will be demonstrated

by means of a very simple example.

For the forward mode, consider the function

f(x) : R→ R2,

y1 = cos(cos(x)),

y2 = exp(y1).

(1)

An implementation of (1) might evaluate the function

like so:

v1 = cos(x),

v2 = y1 = cos(v1),

v3 = y2 = exp(v2),

(2)

where the variables vi can be considered intermediate

values or “computational steps” taken to evaluate the

function. Using these steps, the derivative of f with

respect to x can be obtained as:

v̇1 = − sin(x),

v̇2 = ẏ1 = − sin(v1)v̇1,

v̇3 = ẏ2 = exp(v2)v̇2,

(3)

where the dot denotes differentiation with respect to x.

In general, the forward mode allows the evaluation of

the expression:

ẏ = F ′(x)ẋ, (4)

where ẋ ∈ Rn×1 is called the seed direction.

For the reverse mode, consider the function:

g(x1, x2) : R2 → R,
y = cos(cos(x1x

2
2)),

(5)

a possible evaluation procedure for this function is:

v1 = x1,

v2 = x2,

v3 = v2
2 ,

v4 = cos(v1v3),

v5 = y = cos(v4).

(6)

The adjoint variables, v̄i = ∂y/∂vi, may now be evalu-

ated by stepping through the evaluation (6) in reverse

order:

v̄5 = 1,

v̄4 = −v̄5 sin(v4),

v̄3 = −v̄4 sin(v1v3)v1,

v̄2 = ∂g/∂x2 = 2v̄3v2,

v̄1 = ∂g/∂x1 = −v̄4 sin(v1v3)v3.

(7)

In general, the reverse mode evaluates the expression:

x̄T = ȳTF ′(x), (8)

where ȳ ∈ Rm×1 is termed the weight functional.

Note that the two examples given above are inten-

tionally simplistic, as they serve only to demonstrate

the principle of AD at the most basic level. Evaluat-

ing more sophisticated functions, one has to consider

issues such as branching, potential instabilities caused

by differentiation close to singularities or discontinu-

ities, and the influence of round-off errors on the final

result. Dealing with these things is an active area of

research which is beyond the scope of this paper. The

authors simply note that none of the examples shown

in the following sections exhibit pathological behavior,

and that the gradients obtained with AD in all cases

have been verified by a finite difference check.

The expressions (4) and (8) above are general, but

by choosing a standard basis seed direction or weight

functional (e.g. ẋ =
[
1 0 0 . . .

]T
), equation (4) and (8)

allow the evaluation of a column or row of the Jacobian

matrix, respectively. While both modes have similar

mathematical properties, evaluating the reverse mode

requires more memory since intermediate values and

operations must be stored in order to step through them

in reverse order. AD packages supporting the reverse

mode generally provide a storage object—often called

a tape—which is responsible for storing the information

necessary to reverse the function F .

For topology optimization, the function of interest

is typically the objective function, Fobjective : RNd →
R, where Nd is the number of design variables. This

makes the reverse mode the obvious choice, since the

sensitivities

F ′objective =
[

dF ′
objective

ds1

dF ′
objective

ds2
. . .
]
,

can be computed with a single evaluation of the re-

verse mode (8), in the same manner that hand derived

adjoints allow. It should be stressed that for topol-

ogy optimization, Nd is typically much larger than in

other structural optimization problems, since in size

and shape optimization the geometry of the design is
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represented by a much smaller number of parameters.

In addition, note that the reverse mode is not funda-

mentally different from a hand derived discrete adjoint

approach; its purpose is to reduce the burden of imple-

menting the adjoint.

Generally, there are two approaches to implement-

ing an AD package: source transformation and object

overloading. Source transformation, as the name im-

plies, provides a program which takes as input the

source code to be differentiated, and outputs new source

code which evaluates the derivative of the original

source. An example of this type of implementation is

Tapenade (Hascoët and Pascual 2013; Tapenade web-

site 2016), which provides a convenient online server

on which users can upload their source code, which

will then get differentiated and served back. The ad-

vantage of this approach is that the differentiated code

can be inspected directly, and if necessary, the user can

manually optimize it to improve the execution speed

of the application. Of course, if one chooses to do this,

some convenience is sacrificed since the differentiation

procedure is no longer fully automatic. Additionally,

should the source code for the primal function change,

the source transformation procedure—possibly includ-

ing hand optimization—must be repeated.

The second approach, operator overloading, takes

advantage of a feature of certain programming lan-

guages (notably C++ and Fortran 90) which allows

the user to define basic operations such as addition and

multiplication on user-defined types. This is exploited

in AD libraries to provide types which perform both

primal and differentiated computations. The function

to be differentiated is then overloaded to accept these

library types as input—rather than intrinsic floating

point types such as double in C++. The resulting val-

ues can then be queried for their gradient as well as pri-

mal values. While this approach is typically slower than

source transformation, it was shown by Hogan (2014)

that in C++, expression templates could be used to

achieve execution speeds which are competitive with

source transformed code. The great advantage of this

approach is the convenience. The code for evaluating

the primal function can be reused without further im-

plementation effort to evaluate the gradients. Further-

more, any modifications made to the primal code will

be immediately reflected in the differentiated output,

without requiring further involvement from the user.

An example of this type of implementation is CoDi-

Pack (CoDiPack website 2016). The CoDiPack library

is header only, meaning that the code can simply be

included in the application code to be differentiated,

without any pre-compilation step. For further informa-

tion, the interested reader is referred to the CoDiPack

website cited above as well as Albring et al (2015a,b).

The two packages presented above will be used to solve

the optimization problems presented in this paper. For

a much more complete list of AD packages, the inter-

ested reader is referred to the online list available at the

AutoDiff website (2016).

The remainder of this paper is organized as fol-

lows: first AD is demonstrated for a relatively simple

1D wave propagation problem in Section 2. The exam-

ple allows for easy comparison between hand written

adjoint differentiation and fully automatic differentia-

tion. The readers familiar with traditional adjoint anal-

ysis applied to transient topology optimization prob-

lems will identify immediately the similarities between

the tape (the storage object in AD) and the storage

of the forward solution in transient optimization prob-

lems. In the following Section 3 the applicability of AD

is demonstrated for more complex optimization of tran-

sient fluid mechanics problems (Nørgaard et al 2016),

where the explicit form of the Jacobian of the state

equations including the boundary conditions is practi-

cally impossible to be derived by hand. The advantages

and the disadvantages of AD are discussed and demon-

strated in details, and finally the article is completed

with a topology optimized example of a fluid device for

oscillatory fluid input.

2 Application to transient wave propagation

problems

The goal in this section is to demonstrate AD for

well known one dimensional wave propagation problem

(Dahl et al 2008; Lazarov et al 2011). The aim of the

example is to compare and discuss the applicability of

AD for complex topology optimization problems where

significant amount of time is spend on derivation and

implementation of sensitivities. The optimization prob-

lem is given as

min
s

:J(s,u) =

∫ T

0

z (s,u) dt,

s.t. : r (t, s,u, u̇, ü) = 0, t ∈ [0, T ] ,

gi (s,u, u̇, ü) ≤ 0, i ∈ {1, . . . , Ng},
s ∈ Dad,

(9)

where, r (t, s,u, u̇, ü) = 0 is the discrete form of the

considered linear elastic state problem written in resid-

ual form, u is a vector with nodal displacements, u̇ is

a vector with nodal velocities, ü is a vector with nodal

accelerations, s is the design vector with relative ele-

ment densities, J (s,u) is the objective function and

gi (·) , i ∈ {1, . . . , Ng} is a set of additional constraints.
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Absorbing boundary conditions f(t)

Design domain

Fig. 1 Optimization setup. Absorbing boundary conditions are applied at both ends of the wave guide.

The residual form is given as

r (t, s,u, u̇, ü) = f(t)− [M (s) ü + C (s) u̇ + K (s) u] ,

(10)

where the mass, damping and stiffness matrices M (s),

C (s), and K (s) are obtained by standard finite ele-

ment assembly procedures. For every element the lo-

cal matrices are obtained using linear interpolation be-

tween the matrices for two different materials, i.e,

M (s)e = (1− se) M0 + seM1, (11)

C (s)e = (1− se) C0 + seC1, (12)

K (s)e = (1− se) K0 + seK1. (13)

An external excitation is applied as a time dependent

nodal force in the middle of the computational domain

f(t) =

{
cos(2πfc(t− t0))e−δ(

t
t0
−1)2 , t ≥ 0,

0, t < 0,
(14)

where t0 is the center of the wave packet in the time

domain, fc is the central frequency, and δ defines the

bandwidth (Dahl et al 2008). The excitation generates

two Gaussian wave packets propagating towards the

two ends of the wave guide. The set up is shown in

Fig. 1. The selected objective is to minimize an integral

of the squared displacements in a region of the design

domain for a selected time interval. The optimization

results in periodic band-gap structures as demonstrated

in Dahl et al (2008) and shown in Fig. 1, with a period

depending on the wavelength of the waves propagating

through the wave guide. As these results are well known

and investigated in details in the literature, study and

discussion of the optimized design will be omitted here

and the focus will be shifted on the sensitivity analysis.

The gradients of the objective in (9) can be obtained

using adjoint analysis as shown in Dahl et al (2008), and

are given as∫ T

0

∂z (s,u)

∂se
dt =∫ T

0

λT

[
∂M (s)

∂se
ü +

∂C (s)

∂se
u̇ +

∂K (s)

∂se
u

]
dt,

(15)

where the Lagrange multipliers vector λ (t) = λ (T − τ)

is obtained as the solution of the following equation

Mλ̈+ Cλ̇+ Kλ =
∂z (τ,u)

∂u
, τ ∈ [0, T ] , (16)

with initial conditions λ = 0 and λ̇ = 0 and τ = T − t.

2.1 Time integration

As no analytic solution to (10) exists in the general

case, the vectors of displacements, velocities and accel-

erations are obtained numerically at discrete time steps.

Here the time derivatives are computed based on finite

difference scheme and at the nth time step they are

given as

u̇n =
un+1 − un−1

2∆t
, (17)

ün =
un+1 − 2un + un−1

∆t2
. (18)

Inserting (11) and (14) in (10) and rearranging the

terms results in(
1

∆t2
M +

1

2∆t
C

)
un+1 =

fn −
(

2

∆t2
M + K

)
un −

(
1

∆t2
M− 1

2∆t
C

)
un−1.

(19)

The above equation provides the solution at time tn+1

using the system response at time steps n and n−1. The

integration starts with u0 = 0 and u−1 = 0. The time

step is chosen based on the Courant-Friedrichs-Lewy

(CFL) condition

∆t ≤ ∆tc =
∆x

c
, (20)

where ∆x is the distance between the finite element

nodes and c is the wave speed. The same scheme is ap-

plied for solving the adjoint equation (16). The second

derivative for the sensitivity analysis at t = 0 is com-

puted as ü = M−1f (0).

The Lagrange multipliers sequence can be obtained

from (16) by stepping backward in time. First, the

forward solution is computed for each discrete point

u0,u1, . . . ,uNs−1,uNs , and as second step the adjoint

equation is computed with right hand sides depending

on the forward solution. As final step the sensitivities

are evaluated based on (15). For more details the inter-

ested readers are referred to Dahl et al (2008); Elesin

et al (2012, 2014); Lazarov et al (2011).

The great advantage of the adjoint approach, com-

pared to for example finite difference derivatives, is that

all sensitivities can be evaluated by solving the adjoint

problem once. As noted above, however, the same is
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true of the reverse mode of automatic differentiation,

since the objective function is of type J : RNd → R.

For the numerical implementation, the discrete form of

the objective J is

J =

∫ T

0

z(s,u) ≈
∑
i

z(s,u(ti))∆t. (21)

The discretization (19) is sufficiently simple that it can

evaluated as a simple stencil type computation, as is

illustrated in Algorithm 1.

Algorithm 1 Evaluating the wave propagation objec-

tive.
u−1 = 0,u0 = 0.
for all t ∈ {0,∆t, 2∆t, . . . , T} do

for all e ∈ {0, . . . , Ne − 1} do

Compute local value u(xe, ti) by (19).
end for

J ← J + z(s,u)∆t.
end for

The key feature of Algorithm 1 is that it is relatively

simple to implement without the need of any external

linear algebra libraries. This makes it very simple to

automatically differentiate the evaluation of the objec-

tive function. Using the operator overloading approach,

the problem can be simply differentiated in a black box

manner without the need of deriving and implementing

the adjoint method. As an aside, note that even if a

linear algebra library was required, C++ libraries such

as Eigen (Guennebaud et al 2010) support linear alge-

bra on arbitrary numeric types, and thus would allow

automatic differentiation as well.

In order to allow the application of operator over-

loading AD, our implementation of Algorithm 1 was

converted into a C++ template, thus allowing the im-

plementation to use the numeric types provided by

CoDiPack. After this, the code must perform some calls

to the tape type provided by CoDiPack, before and

after the call to the function evaluating Algorithm 1.

These additional calls add very little code and are de-

scribed in the CoDiPack tutorial (CoDiPack website

2016). The differentiation procedure using CoDiPack

yields identical sensitivities to those yielded by evalu-

ating the adjoint expression (15). Comparative perfor-

mance measures are shown in Table 1. The code was

compiled with GCC 5.4.0 with -O2, and the perfor-

mance was measured on an Intel Core i7-3720QM pro-

cessor.

As expected the memory and the computational

time grow proportional to the number of the time steps

for the AD and the hand coded example. Comparing

the performance of AD with CoDiPack to the hand

coded adjoint, CoDiPack is roughly 1.5 to 1.8 times

slower. Considering that the development time needed

to obtain the derivative code is essentially zero, this

seems like a modest price to pay, though this would

of course depend on the specifics of the problem and

the performance requirements. The memory require-

ments of the AD solution, however, is more than an

order of magnitude greater than the hand coded equiva-

lent. This is because the tape structure implemented by

CoDiPack must store, in addition to all solution states

u0,u1, . . . ,uNs
, all operations needed by the compu-

tation in order to reverse them. Whether this memory

requirement is an intractable issue depends on the na-

ture and size of the problem one wishes to solve. For a

research problem such as this, the memory requirement

of AD is available on many modern personal computers,

and the advantage of being able to differentiate a code

without spending any significant time deriving, imple-

menting, and debugging an adjoint solver can hardly

be emphasized enough. Even in cases where AD does

not scale to the desired problem size, it would still be

a useful tool for prototyping the optimization problem

and verifying the derivation and implementation of an

adjoint code. As a final point, note that the large mem-

ory footprint of CoDiPack is due to the fact that we are

solving a transient problem. This means that the tape

structure redundantly stores the time stepping opera-

tions once for each time step taken. Thus, steady state

type problems would require significantly less memory.

In addition, CoDiPack is actively developed and future

optimizations might address this issue.

In the above discussion we considered a problem

which readily lent itself to black box automatic differ-

entiation. In the next section, we will consider a more

complicated example, in which automatic differentia-

tion is applied to an already existing parallel code.

3 Application to lattice Boltzmann

In this section, we will focus on a more involved ex-

ample of automatic differentiation applied to the lat-

tice Boltzmann method (LBM). While there has been

work to apply AD to an already existing parallel LBM

code (Krause and Heuveline 2013), the LBM imple-

mentation presented here uses a few components from

the open source topology optimization code presented

by Aage et al (2015), and thus uses the PETSc li-

brary (Balay et al 2016a,b) for execution in parallel. In

this case, neither source transformation (i.e. with Tape-

nade) nor operator overloading (i.e. with CoDiPack) are

naively applicable, since they do not interface directly

with PETSc. A different strategy than simple black box

differentiation is required (Sagebaum et al 2013). For
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2500 timesteps

Automatic differentiation Hand coded adjoint
Memory 1.0 Gb –

Wall time 6 s 4.2 s
Relative time 1.43 1

5000 timesteps

Automatic differentiation Hand coded adjoint
Memory 2.1 Gb 0.07 Gb

Wall time 13 s 8.5 s
Relative time 1.52 1

10000 timesteps
Automatic differentiation Hand coded adjoint

Memory 4.2 Gb 0.15 Gb
Wall time 26 s 16 s

Relative time 1.625 1
20000 timesteps

Automatic differentiation Hand coded adjoint
Memory 8.5 Gb 0.27 Gb

Wall time 50.53 s 32.46 s
Relative time 1.55 1

30000 timesteps

Automatic differentiation Hand coded adjoint
Memory 12.8 Gb 0.43 Gb

Wall time 88 s 48 s
Relative time 1.83 1

Table 1 Performance measurements comparing AD to the hand coded adjoint for the wave propagation problem. The number
of elements is Ne = 900. The memory utilized for AD can be significantly reduced to the level of the hand coded adjoint by
introducing checkpointing as discussed in section 3.2.

lattice Boltzmann, it is possible to derive an adjoint

method in which the local operations can be differenti-

ated with AD. In this way, the AD code is only invoked

within the main loop, which decouples the code from

external library calls.

3.1 The lattice Boltzmann equation

The lattice Boltzmann method is a method for com-

puting fluid flows based on kinetic theory, rather than

continuum dynamics. A thorough introduction is be-

yond the scope of this paper, but the interested reader

is referred to e.g. the book by Succi (2001). LBM is an

explicit time-stepping method, based on the equation

fα(xi + eα∆x, t+∆t) = Ω[f(xi, t)],

α ∈ {0, . . . , Nv − 1}, (22)

where f ∈ RNv is a set of distribution values associated

with a discrete set of particle velocities eα. The right

hand side models particle collisions and is known as

the collision operator. There are numerous different col-

lision operators available in the literature (Bhatnagar

et al 1954; D’Humieres 1994; Geier et al 2006; Latt and

Chopard 2006), and a large class of lattice Boltzmann

models differ only in the collision operator, while the

left-hand side—known as the streaming step—remains

unchanged. The collision operator is in general highly

non-linear in f ; indeed, this is part of the reason auto-

matic differentiation is attractive for the lattice Boltz-

mann method. For the purpose of density based topol-

ogy optimization, (22) is modified as follows:

fα(xi + eα∆x, t+∆t) = Ω̃[f(xi, t), s(xi)],

α ∈ {0, . . . , Nv − 1},
(23)

where s(xi) ≡ si determines whether the grid point xi
is a fluid or solid node. This modification of the colli-

sion step is to enforce an immersed no-slip boundary

in the solid part of the domain. Again, numerous mod-

els to achieve this are available in the literature (Ladd

and Verberg 2001; Spaid and Phelan 1997; Zhu and Ma

2013), and the modification is typically orthogonal to

the choice of “base” operator, leaving a high number of

possibly combinations that are all valid collision oper-

ators.

The macroscopic variables of the flow governed by

equation (23) can be computed by

ρ(xi, t) =
∑
α

fα(xi, t), (24)

ρ(xi, t)u(xi, t) =
∑
α

eαfα(xi, t), (25)

p(xi, t) = c2sρ(xi, t), (26)

where ρ, p,u are the macroscopic density, pressure, and

velocity, respectively. The lattice Boltzmann method is
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a weakly compressible method, and the macroscopic

pressure is proportional to the macroscopic density,

with a proportionality constant equal to c2s, the speed

of sound squared. The numerical value of this constant

depends on the choice of velocity discretization.

One attractive feature of the lattice Boltzmann

method is that the algorithm has high spatial locality:

the collision step requires only local information while

the streaming step requires only nearest neighbor in-

formation. This makes it ideally suited for execution in

parallel.

Time stepping in the LBM can be executed in ei-

ther a collide and stream fashion, in which the collision

step is executed followed by the streaming step, or con-

versely in a stream and collide fashion. For the purpose

of topology optimization, we choose the stream and col-

lide approach. The reason for this is that the objective

is a function of the macroscopic values, which are eval-

uated during the collision step. Hence, by performing

stream and collide from timestep n to n+1, the macro-

scopic variables are also in the correct state at step

n+ 1. A function of the macroscopic variables can then

be conveniently evaluated following the stream and col-

lide procedure.

In residual form the LB scheme can be written:

Rstream
α (xi, t) =f collision

α (xi + eα, t+∆t)−
f stream
α (xi, t) = 0,

(27a)

Rbc(xi, t) =ψ[f stream(xi, t)]−
f(xi, t) = 0,

(27b)

Rcollision(xi, si, t) =Ω̃[f(xi, t), si]−
f collision(xi, t) = 0.

(27c)

Above, f denotes the initial state of distributions at

timestep t, f collision denotes the post-collision state, and

f stream denotes the post-streaming state. On interior

nodes f = f stream; on boundary nodes, however, there

are unknown distribution values, which are computed in

the boundary value step (27a). Here ψ simply denotes

a generic boundary condition operator. For the LBM,

there are many different operators available for different

kinds of boundaries (Inamuro et al 1995; Junk and Yang

2008; Latt et al 2008; Zou and He 1997).

3.2 Automatic differentiation of lattice Boltzmann

As mentioned above, because the LB code relies on

an external library, it is not feasible to differentiate

the code in a black box manner. Instead, the discrete

adjoint method is applied to obtain an adjoint lattice

Boltzmann method in which the local collision step can

be evaluated with automatic differentiation. A similar

derivation was given by  Laniewski Wo l lk and Rokicki

(2016).

Following Kreissl et al (2011), we consider an objec-

tive function for unsteady flow of the following form

J =

Nt∑
t=0

z(t,f t, s), (28)

where Nt is the number of time steps,

f t = [f(x0, t),f(x1, t), . . .] is the vector of state vari-

ables (i.e. the LBM distributions) at timestep t, and

s = [s0, s1, . . .] is the vector of design variables. To de-

rive the adjoint LBM, Lagrange multipliers are added

to (28):

Ĵ =

Nt∑
t=0

z(t,f t, s) + λTt R
stream
t +

σTt R
bc
t + τTt R

collision
t .

(29)

Taking the derivative with respect to the design variable

si yields:

dĴ

dsi
=
∂Ĵ

∂si
+

Nt∑
t=0

∂Ĵ

∂f t

∂f t
∂si

+

∂Ĵ

∂f collision
t

∂f collision
t

∂si
+

∂Ĵ

∂f stream
t

∂f stream
t

∂si
.

(30)

For an optimal design, we must have dĴ/dsi = 0,∀i.
Since each term in (30) is mutually independent, this

implies that each summand must be zero.

From the residuals (27), we then have:

Nt∑
t=0

∂Ĵ

∂f t

∂f t
∂si

=

Nt∑
t=0

(
τTt

∂Ω̃

∂f t
− σTt I +

∂z

∂f t

)
∂f t
∂si

= 0,

(31)

where I is the identity matrix. Since the collision Ω is

purely local, this implies

σ(xi, t)
T = τ (xi, t)

T ∂Ω̃[f(xi, t), si]

∂f(xi, t)
+
∂z(t,f t, s)

∂f(xi, t)
.

(32)

This is the adjoint collision step. Notice that the first

summand on the right-hand side of (32) is of the form

(8), meaning that it can be evaluated exactly with one

computation of the AD reverse mode.
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Continuing, we further have:

Nt∑
t=0

∂Ĵ

∂f stream
t

∂f stream
t

∂si
=

Nt∑
t=0

(
σTt

∂ψ

∂f stream
t

− λTt
)
∂f stream

t

∂si
,

(33)

λ(xi, t)
T = σ(xi, t)

T ∂ψ[f stream(xi, t)]

∂f stream(xi, t)
, (34)

which is the adjoint boundary step, assuming the bound-

ary function ψ is purely local. This could again be

evaluated by AD, which would be advantageous for

complicated boundary conditions such as the regular-

ized boundary conditions (Latt et al 2008). For simpler

boundary conditions such as those presented by Zou

and He (1997), or the frequently applied “bounce back”

no-slip condition, it is quite simple to derive this step

by hand.

Differentiation of the final step leads to the adjoint

streaming step, which was shown by Liu et al (2014) to

be given by

τα(xi, t) = λα(xi − eα, t−∆t), (35)

that is, the adjoint streaming is backwards in time and

in the opposite direction of the primal streaming. Fi-

nally, the sensitivities can be evaluated by

∂Ĵ

∂si
=

Nt∑
t=0

∂z

∂si
+ τTt

∂Ω̃

∂si
(36)

=

Nt∑
t=0

∂z

∂si
+ τ(xi, t)

T ∂Ω̃[f(xi, t), si]

∂si
, (37)

with the final equality again being due to the local na-

ture of the collision operator Ω. This completes the

adjoint lattice Boltzmann method, its implementation

is summarized by pseudo code in Algorithm 2.

The adjoint lattice Boltzmann algorithm step back-

wards through time to evaluate the Lagrange multi-

pliers and thus the sensitivities. Note that at each

timestep, the primal vector f t must be known in or-

der to evaluate the adjoint lattice Boltzmann step. As

a consequence, the full time history of the primal solver

must be available. Naively, this means that the full his-

tory must be stored in memory. While such a strategy

is feasible for small problems, it does not scale well. As

an alternative, parts of the history can be recomputed

during the adjoint evaluation. With this strategy, only

selected time steps are stored in memory. These time

steps are typically referred to as checkpoints. The rest

of the time steps are then recomputed starting from

the nearest checkpoint as they are needed. The pa-

pers by Griewank and Walther (2000) and Wang et al

(2009) both describe provably optimal algorithms for

checkpoint placement. With these algorithms, the cost

of re-computation grows only logarithmically with the

memory saved. For example, allocating 20 checkpoints

for an objective requiring 200 time steps to evaluate

reduces the memory requirement by an order of mag-

nitude compared to the naive approach, but only in-

creases the computational cost of the adjoint evaluation

by a factor of log 10.

Algorithm 2 Adjoint lattice Boltzmann with AD.
for all t ∈ {Nt, . . . , 0} do

Obtain f t by reading from memory or performing nec-
essary re-computation.
for all xi, i ∈ {0, . . . , Nx − 1} do

Compute adjoint collision step by equation (32).
Add contribution to sensitivity dJ/dsi by equation
(37).
if xi is a boundary node then

Compute adjoint boundary conditions by (34).
end if

for all xi, i ∈ {0, . . . , Nx − 1} do
Perform adjoint streaming by (35).

end for

end for
end for

Note that Algorithm 2 is executed in collide and

stream order. This is a consequence of our choice of

the stream and collide order for the primal solver. Had

we chosen collide and stream for the primal solver, the

adjoint algorithm would have to be executed in stream

and collide order.

It should be emphasized that Algorithm 2 can be

used to differentiate a large class of LB models, as long

as the model follows the basic structure of a local col-

lision step and a shifting streaming step. More compli-

cated models which follow this basic structure include

thermal lattice Boltzmann (Bartoloni et al 1993; Guo

et al 2002; Mezrhab et al 2010), as well as lattice Boltz-

mann for multi-component flow (Asinari 2006; Parker

2008).

3.3 An example problem

The main challenge in implementing the adjoint LBM

introduced above is the evaluation of the adjoint colli-

sion step (32). Of course, the collision operator could be

differentiated by hand, but as noted above, the equa-

tion can be evaluated by applying the reverse mode of

automatic differentiation. In this section, we will test

our implementation against an example problem, fol-

lowed by an evaluation of the performance of different

AD implementations.
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Design domain n · ∇u = 0

ρ0 + ρr(t)

Nx

Ny

Nin Nout

Fig. 3 Computational domain for the pressure diode problem.

For the sample problem, the collision operator Ω

applied is the multiple relaxation time (MRT) operator

(D’Humieres 1994), operating on the common D2Q9

lattice (nine discrete velocities in two dimensions). For

this lattice, the velocities are given by

[e0, e1, e2, e3, e4, e5, e6, e7, e8] =

∆x

∆t

[
0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

]
,

(38)

the set of velocities defined by the D2Q9 lattice is illus-

trated in Fig. 2.

In order to enforce the no-slip condition on the solid

part of the domain, we use the partial bounce back

collision operator introduced by Zhu and Ma (2013). In

this model, the base collision operator Ω is modified to

Ω̃[f(xi, t), si]α =Ω[f(xi, t)] +
1

2
g(si)×

(Ω[f(xi, t)]−α −Ω[f(xi, t)]α),
(39)

where the index −α indicates the discrete velocity op-

posite to the index α, i.e. e−1 = e3; the function g(si)

is continuous and satisfies g(0) = 1 and g(1) = 0, so

that si = 0 corresponds to a solid node, while si = 1

corresponds to a fluid node. Here, we use the following

convex function introduced by Borrvall and Petersson

e0 e1

e2

e3

e4

e5e6

e7 e8

Fig. 2 The D2Q9 model.

(2003):

g(si) = 1− si
1 + γ

si + γ
, (40)

where γ is an adjustable parameter which allows pe-

nalization of intermediate values of si. Increasing γ in-

creases the penalization of intermediate values.

The example problem considered is an unsteady flow

problem with an objective function of the form (28).

The computational domain for the problem is shown in

Fig. 3. The problem is inspired by the work on fluid

diodes by Lin et al (2015).

The computational domain consists of two narrow

channels, the left side with prescribed density (and

therefore pressure, since ρ ∝ p in LBM), and the right

side with a Neumann boundary on the velocity. The en-

forced density on the left is oscillating, with oscillations
given by

ρoscillating(t) = ρ0 + ρr(t) = ρ0 +∆ρ sin

(
2πt

ω

)
, (41)

here, ∆ρ is the amplitude of the oscillation, and ω is

the period. We now seek to maximize the average out-

flow at the right end, subject to a volume constraint on

the amount of fluid in the design domain. That is, the

optimization problem is formulated as:

min
s
J = − 1

Nt

Nt∑
t=0

ūx,

s.t.


1

Ns

∑
i

si − Vfluid ≤ 0,

f t satisfies (27),

(42)

where Vfluid is the allowed fraction of fluid in the design

domain, and ūx is the spatially averaged x-component

of the velocity at the right outlet. In order to regularize
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Nx 350 Ny 125
Nin 75 Nt 20000
ρ0 1 ∆ρ 0.01
ω 1000 Vfluid 0.6
γ 1 Filter radius 6

Table 2 Numerical parameters for the example problem.

the design, and obtain a fully black and white solu-

tion, the projection filter (Guest et al 2004) is applied.

To compute the Reynolds number, the characteristic

length is defined as L = Nin, and the characteristic ve-

locity is taken to be ucharacteristic = 0.01. The choice of

characteristic velocity is somewhat arbitrary, since no

set velocity is directly imposed anywhere in the domain,

but agrees well with the observed order of magnitude of

velocities in the final designs. The remaining numerical

parameters used are listed in Table 2.

Two example designs at different Reynolds numbers

are shown in Fig. 4. Both have the same basic structure,

but higher Reynolds number results in slightly more

intricate side channels in the final design. In order to

better understand the working principle of the designs,

sample streamlines are shown in Fig. 5, both for the

case of the oscillatory term in equation (41) being neg-

ative (ρr > 0), and positive (ρr < 0). From the figure,

it is observed that even though the oscillating pressure

on the left side results in fluid periodically flowing both

in and out at the boundary, the right boundary only

ever acts as an outflow. It appears that the side “arms”

of the design act as a deposit for fluid during the out-

flow phase of the left boundary; this deposited fluid

then flows towards the desired outlet when the pres-

sure oscillations reverse. In Fig. 6, the average outflow

is plotted as a function of time. It is observed that the

cyclic behaviour observed in Fig. 5 does indeed repeat

throughout the whole time history.

3.4 Performance of AD implementation

To close this section, the performance of different AD

implementations will be reported. The performance is

measured according to the following methodology: since

reverse AD is applied only in the adjoint collision step

(32), we will only measure the computational time of

this step. The adjoint collision step is implemented in

a simple C++ for loop, no attempts have been made

at optimization for memory accesses. The performance

metric will be the average collisions per second (CPS)

in a single iteration of the example problem presented

above. Since the adjoint collision step is purely local,

we will consider only the single core performance and

thus ignore any parallel message passing overhead. The

performance is measured on an Intel Xeon X5660 pro-

cessor.

In addition to the MRT collision operator used

above, we will consider the commonly used Bhatnagar-

Gross-Krook (BGK) collision operator Bhatnagar et al

(1954), as well as the more recent cascaded collision

operator by Geier et al (2006). Both operator overload-

ing and source transformation implementations of the

adjoint collision (32) will be considered. For operator

overloading, CoDiPack will be used. For source trans-

formation, the online tool Tapenade will be used. For

Tapenade, two versions will be considered: the “raw”

source transformation output, and a version of the

source transformed output which has been hand opti-

mized. All kernels have been compiled with GCC 4.8.5

with -O3. The results of the performance measurements

are listed in Table 3.

As is apparent from Table 3, unsurprisingly, the

best performance also comes from the implementation

which requires the most effort. While the CoDiPack im-

plementation cannot compete with Tapenade in terms

of speed, it should once again be reiterated that using

Tapenade involves a trade-off between implementation

time and running time. Even if a good optimized col-

lision routine is implemented with the help of Tape-

nade, any changes in the source code for the primal

collision step will not be reflected in the adjoint code.

Conversely, with CoDiPack, any optimizations made to

the primal collision source code will immediately result

in better adjoint performance with no additional imple-

mentation effort.

4 Discussion and conclusion

In this paper, we have demonstrated the application

of automatic differentiation to two different classes

of problems for topology optimization. While the AD

promise of completely black box differentiation of nu-

merical codes is certainly tantalizing, achieving this

does require that the code has been written with the

application of AD in mind. For codes where this is not

the case, some additional implementation work will be

necessary. At best, it is simply a matter of parametriz-

ing core routines to accept generic numeric types (e.g.

turning core routines into templates). For more compli-

cated codes, which might have external dependencies

which are unrealistic or even impossible to modify, a

significantly greater implementation effort could be re-

quired. Whether this time investment is worth it will of

course be project dependent.

While the above considerations does limit the ap-

plicability of AD to some extent, many research codes

are developed from scratch in order to solve a single
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(a) Re = 100. (b) Re = 250.

Fig. 4 Example results at different Reynolds numbers.

Velocity Magnitude

0 0.0106

(a) ρr > 0.

Velocity Magnitude

0 0.0106

(b) ρr < 0.

Fig. 5 Sample streamlines during the inflow and outflow phase for the result at Re = 250.

Problem size: 350× 125, 20000 timesteps
BGK MRT Cascaded

CoDiPack 1.12× 106 CPS 0.631× 106 CPS 0.481× 106 CPS
Tapenade 4.18× 106 CPS 4.32× 106 CPS 1.17× 106 CPS

Tapenade (optimized) 12.27× 106 CPS 7.56× 106 CPS 4.23× 106 CPS

Table 3 Results of performance measurements for adjoint LBM with AD. Higher CPS (collisions per second) is better.

well-defined problem. In these cases, getting the deriva-

tives of a function for “free” can greatly decrease the

time required to solve a particular problem; even in

cases where black box differentiation is not possible,

AD might be still be applicable with a bit more up front

work. This was demonstrated in the lattice Boltzmann

example above. Here, some work was required to de-

rive and implement the AD supported adjoint method,
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0 5000 10000 15000 20000
Timestep

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

∆
ρ

/ū
x

Outflow velocity
Inflow velocity
∆ρ

Fig. 6 Average outflow velocity of the optimized design at Re = 250 as a function of time. Also shown are the average inflow
velocity, and the density variation ∆ρ.

but once this was done, it became possible to differ-

entiate any lattice Boltzmann type method with little

additional work.

The final point to consider is the issue of perfor-

mance. In both problems presented, there is a trade-off

between performance and development time; in both

cases it is possible to improve performance by imple-

menting a hand tuned adjoint code (either by deriva-

tion or by optimization of the output from Tapenade).

However, even if these performance improvements were

strictly necessary in order to solve the problem within

a realistic time, the less performant version would still

be useful for prototyping and validation. During devel-

opment of the optimized Tapenade routines for lattice

Boltzmann, the CoDiPack adjoint collision implemen-

tation was used as a reference known to give the correct

answer. This greatly eased development, since any mis-

takes introduced during the tuning of the code were

immediately caught.

As with all things in software development, auto-

matic differentiation is a technique which comes with

advantages and disadvantages. In the view of the au-

thors, it is a powerful tool that can be used to great

advantage in many types of problems in topology opti-

mization, and should be considered as a useful supple-

ment to hand derived adjoints.
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(2014) Optimal design of active flow control for a complex
high-lift configuration. In: Proceedings of 7th AIAA Flow
Control Conference, 2014-2515

Nørgaard S, Sigmund O, Lazarov B (2016) Topology op-
timization of unsteady flow problems using the lattice
Boltzmann method. Journal of Computational Physics
307:291 – 307, DOI 10.1016/j.jcp.2015.12.023

Parker J (2008) A novel lattice Boltzmann method for treat-
ment of multicomponent convection, diffusion, and reac-
tion phenomena in multiphase systems. PhD thesis, Ore-
gon State University

Sagebaum M, Gauger NR, Naumann U, Lotz J, Leppkes
K (2013) Algorithmic differentiation of a complex C++
code with underlying libraries. Procedia Computer Sci-
ence 18:208–217, DOI 10.1016/j.procs.2013.05.184

Sigmund O, Maute K (2013) Topology optimization ap-
proaches. Structural and Multidisciplinary Optimization
48(6):1031–1055, DOI 10.1007/s00158-013-0978-6, URL
http://dx.doi.org/10.1007/s00158-013-0978-6



14 Sebastian A. Nørgaard et al.

Spaid M, Phelan F (1997) Lattice Boltzmann methods for
modeling microscale flow in fibrous porous media. Physics
of Fluids 9(9):2468–2474, DOI 10.1063/1.869392

Succi S (2001) The lattice Boltzmann equation for fluid dy-
namics and beyond. Oxford University Press

Tapenade website (2016) Tapenade on-line automatic dif-
ferentiation engine. URL http://www-tapenade.inria.fr:

8080/tapenade/index.jsp, accessed: 2016-10-18
Wang Q, Moin P, Iaccarino G (2009) Minimal repeti-

tion dynamic checkpointing algorithm for unsteady ad-
joint calculation. Siam Journal on Scientific Computing
31(4):2549–2567, DOI 10.1137/080727890

 Laniewski Wo l lk L, Rokicki J (2016) Adjoint lattice Boltz-
mann for topology optimization on multi-gpu architec-
ture. Computers and Mathematics With Applications
71(3):833–848, DOI 10.1016/j.camwa.2015.12.043

Zhou BY, Albring T, Gauger NR, Illario da Silva CR,
Economon TD, Alonso JJ (2017) A discrete adjoint ap-
proach for jet-flap interaction noise reduction. In: Pro-
ceedings of 58th AIAA/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, AIAA
SciTech Forum, AIAA 2017-0130

Zhu J, Ma J (2013) An improved gray lattice Boltzmann
model for simulating fluid flow in multi-scale porous
media. Advances in Water Resources 56:61–76, DOI
10.1016/j.advwatres.2013.03.001

Zou Q, He X (1997) On pressure and velocity boundary con-
ditions for the lattice Boltzmann BGK model. Physics of
Fluids 9(6):1591–1598, DOI 10.1063/1.869307
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