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Abstract 1 

 2 

Specialty software and simplified models are often used to estimate migration of potentially toxic chemicals 3 

from packaging into food. Current models, however, are not suitable for emerging applications in decision-4 

support tools, e.g. in Life Cycle Assessment and risk-based screening and prioritization, which require rapid 5 

computation of accurate estimates for diverse scenarios. To fulfil this need, we develop an accurate and rapid 6 

(high-throughput) model that estimates the fraction of organic chemicals migrating from polymeric packaging 7 

materials into foods. Several hundred step-wise simulations optimised the model coefficients to cover a range 8 

of user-defined scenarios (e.g. temperature). The developed model, operationalised in a spreadsheet for future 9 

dissemination, nearly instantaneously estimates chemical migration, and has improved performance over 10 

commonly used model simplifications. When using measured diffusion coefficients the model accurately 11 
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predicted (R
2 

= 0.9, standard error (Se) = 0.5) hundreds of empirical data points for various scenarios. Diffusion 12 

coefficient modelling, which determines the speed of chemical transfer from package to food, was a major 13 

contributor to uncertainty and dramatically decreased model performance (R
2
 = 0.4, Se = 1). In all, this study 14 

provides a rapid migration modelling approach to estimate exposure to chemicals in food packaging for 15 

emerging screening and prioritization approaches. 16 

Keywords: risk; life cycle assessment; low-tier; exposure modelling; product intake fraction; food contact 17 

materials 18 

1. Introduction 19 

Food contact materials (FCM) are a source of consumer exposure to potentially hazardous chemicals, 20 

such as bisphenol A, phthalates and fluorinated compounds (Begley et al. 2005b; Tittlemier et al. 21 

2007; Apelberg et al. 2007; Cao 2010; Geens et al. 2012). In addition, thousands of other chemicals 22 

are legally acceptable in FCM and can lead to human exposure (Geueke et al. 2014; FDA 2015a). 23 

Concern over consumer risks are bolstered by data gaps in FCM safety assurance as well as recent 24 

hazard information generated by in silico and in vitro high-throughput toxicity and bioactivity 25 

screening studies (Biedermann and Grob 2013a; Neltner et al. 2013; Muncke et al. 2014; Price and 26 

Chaudhry 2014; Evans et al. 2016; Karmaus et al. 2016). To estimate potential risks posed by 27 

chemicals in FCM, hazard and exposure must be quantified. Empirical exposure data, however, are 28 

scarce and analytically challenging to obtain (Rudel et al. 2011). Modelling the migration of chemicals 29 

from materials into food is therefore critical to fill empirical data gaps and quantify exposure.  30 

Chemicals in food packaging in particular have been a major focus of consumer exposure assessments 31 

that build on migration modelling. The Cumulative Estimated Daily Intake (CEDI) database of the 32 
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United States Food and Drug Administration (FDA 2015a) and the Flavourings, Additives, and food 33 

Contact materials Exposure Tool (FACET) (Oldring et al. 2014b) of the European Commission’s Joint 34 

Research Center (JRC) are recent large-scale advances to estimate realistic exposure to chemicals in 35 

food packaging, for 1,302 and 6,499 chemicals, respectively (although only 5 chemicals are pre-36 

installed in FACET as of May 2017). In both cases, exposure estimates (expressed in mg/kg/d) are a 37 

function of undisclosed data e.g. based on an annual country-specific market survey.  By fixing 38 

exposure estimates based on undisclosed market-wide occurrences of a chemical in package-food 39 

combinations combined with a food consumption estimate, CEDI and FACET cannot be used to 40 

estimate exposure to chemicals in packaging per unit(s) of product use, such as one packaged food 41 

consumed by one person. Comparing different unit(s) of product use or unit(s) of chemical use (e.g. 42 

kilogram of chemical used as a plasticizer in many different polymers) is a main application of 43 

emerging exposure screening tools such as SHEDS-HT (Isaacs et al. 2014), ECETOC TRA (Delmaar et al. 44 

2013), USEtox (Rosenbaum et al. 2008), and the PiF framework (Fantke et al. 2016). A per-unit 45 

assessment structure facilitates comparing products on a per use basis (regardless of total market 46 

volume), or comparing extrapolated uses (e.g. to the entire population or a company-specific 47 

production volume). Therefore, in order to be coupled or incorporated within emerging assessment 48 

tools, a chemical exposure model for food packaging should have the flexibility to assess various units 49 

of packages used by consumers. A major research gap remains, as no peer reviewed tool or method 50 

exists to facilitate high-throughput, transparent and flexible estimation of exposure to chemicals in 51 

food packaging to support applications in screening and prioritization tools. 52 
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With millions of product-chemical combinations on the market, screening has emerged as a 53 

resourceful approach to prioritize chemicals and/or products that require further scrutiny. High-54 

Throughput Risk-based Screening (HTRS), and environmental Life Cycle Assessment (LCA) are distinct 55 

screening and prioritization tools that can consider potential impacts on human health related to 56 

chemical exposure. HTRS combines low-tier high-throughput exposure modelling with risk-based 57 

indicators, such as high-throughput screening bioassays (Wambaugh et al. 2013; Isaacs et al. 2014; 58 

Wetmore et al. 2015; Shin et al. 2015; Karmaus et al. 2016). LCA is an established sustainability 59 

assessment framework that combines multiple modelling approaches to screen product systems and 60 

their potential impacts on human health, ecosystems, and natural resources (Hauschild 2005; Hellweg 61 

and Milà i Canals 2014). Both HTRS and LCA rely on practical, high-throughput models that require 62 

limited parameterization and computational capacity. Exposure models can thereby be designed for 63 

both tools despite their different applications (Wambaugh et al. 2013; Shin et al. 2015; Huang et al. 64 

2017a).  65 

High-throughput models, compatible with LCA and HTRS, to estimate exposure to chemicals in food 66 

packaging are specifically needed to complement fast-paced advances towards sustainability and 67 

resource management targets. Concern over chemicals in food packaging is a barrier to the rising 68 

interest in circular economy and use of recycled or re-used materials (Biedermann and Grob 2013b; 69 

Lee et al. 2014; European Bureau for Conservation and Development 2015; FDA 2015b; Leslie et al. 70 

2016). Furthermore, bio-based packaging designs (Yuan et al. 2016), or designs to reduce food waste 71 

(Siracusa et al. 2014), can also influence packaging materials, their contained chemicals, and their 72 

environmental impacts. LCA is extensively used to inform decision making regarding more sustainable 73 
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food packaging design (Hunt and Franklin 1996; Flanigan et al. 2013). However, LCA methods 74 

traditionally only consider environmental exposure pathways, and not indoor exposure pathways 75 

related to product use, such exposure to chemicals that have migrated from a package into a food. . 76 

To address this inconsistency, there are recent modelling efforts to make LCA more comprehensive 77 

and include exposure to chemicals in products (Shin et al. 2012; Jolliet et al. 2015a; Fantke et al. 2016; 78 

Ernstoff et al. 2016; Csiszar et al. 2016b; Huang et al. 2017a), although LCA-compatible models do not 79 

yet exist to estimate exposure through food packaging.  80 

The objective of this study is thereby to develop a high-throughput (HT) modelling approach for 81 

estimating migration of chemicals from packaging into food for emerging applications in screening 82 

and prioritization tools, such as LCA and HTRS. The main criteria for our HT approach was to design a 83 

rapid, accurate, and accessible migration model—meaning nearly instantaneous computation, 84 

representative of the average and not the worst-case, and easily applicable to existing exposure 85 

assessment frameworks. To maximize future applicability, the HT model should be valid across 86 

chemical-package-food scenarios sensitive to packaging type, thickness, the food type and quantity, 87 

and the time and temperature of contact between the package and the food. Archetypal scenarios 88 

can be defined in an assessment framework to minimize required user inputs. As a first step we focus 89 

on organic chemicals in a single layer of polymeric packaging directly contacting food. Our goals are to 90 

1) analyze commonly used migration models to identify needs for high-throughput approaches, 2) 91 

develop a new HT approach for predicting migration for chemical-food-packaging scenarios (e.g. 92 

characteristics of package and food, and contact time and temperature) defined by users, 3) and test 93 
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the developed approach against other models and empirical migration data available from the United 94 

States Food and Drug Administration (US FDA). 95 

2. Methods 96 

2.1 Product intake fraction framework 97 

To quantify exposure to chemicals in food packaging in LCA and HTRS, we propose using the product 98 

intake fraction metric (PiF - Jolliet et al. 2015a)—defined as the mass of a chemical taken in by all 99 

exposed persons versus the mass of chemical in a product after manufacturing. PiF has been applied 100 

to several other groups of consumer products and HT approaches (Shin et al. 2015; Jolliet et al. 2015a; 101 

Fantke et al. 2016; Csiszar et al. 2016a; Ernstoff et al. 2016). Assuming that the majority of exposure 102 

to chemicals within a manufactured food package occurs via migration into food and not through 103 

other pathways (e.g. dermal uptake through contact with package or inhalation via releases into 104 

indoor air), PiF = fc× f�, where ft is the time-dependent fraction of the initial mass of chemical in the 105 

packaging that has transferred (i.e. migrated) into food, and fc is the fraction of food consumed (e.g. 106 

not wasted). In the case of food packaging, PiF is specific for each chemical in a given package-food 107 

scenario, where a scenario is specified by packaging (material type, thickness, and amount) and food 108 

(type and amount) characteristics, and the contact duration and temperature (e.g. according to 109 

pasteurization and/or storage). 110 

Values for fc can be estimated through studies quantifying consumer food waste, fw, where fc =1- fw. 111 

Various country-specific studies have found consumer-level wastes between 9-45% depending on the 112 

food category (Beretta et al. 2013; Buzby et al. 2014). Accounting for food waste could be especially 113 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

7 

 

important in assessments of packaging designs that result in different food spoilage rates (Williams 114 

and Wikström 2011; Williams et al. 2012). This study will focus on providing methods to estimate the 115 

second parameter ft through mathematical modelling for various chemical- package-food 116 

combinations and scenarios, as ft is not a value that can be typically obtained from prior studies. 117 

2.2 Analysis of migration model behaviour and needs for a high-throughput model 118 

Various migration models exist to estimate migration of a chemical from FCM into food. Models tend 119 

to be computationally complex, require empirical input data for parameterization, or only be valid for 120 

specific scenarios (Pocas 2008; Piringer and Baner 2008; Pocas et al. 2012). We focused on widely 121 

used migration models that have also been empirically validated and require a limited amount of 122 

empirically-derived input parameters (Begley et al. 2005a; Piringer and Baner 2008; Oldring et al. 123 

2014b, a; Hoekstra et al. 2015; FDA 2016). The most commonly used migration model is derived from 124 

a mass-balance equation based on Fick’s second law (Crank 1975). Arranging the terms to solve for 125 

the fraction of the initial chemical mass mi,0 that has migrated from a package into a food after a 126 

contact duration of t results in 127 

�� = ��,���,� = � 	1+	� 
1 − ∑ 2	(1+	)1+	+	2��2∞�=1 exp �−���� ��2��2�� (1) 128 

where 129 

		 = ���, ! !�. 130 

Migration of chemical i is modelled as a function of the partition coefficient KP,F between package and 131 

food; the ratio of food to package volumes VF /VP (cm
3 

cm
-3

) the diffusion coefficient for a chemical in 132 
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a package, DP (cm
2
s

-1
); the duration of food-package contact, td (s); the thickness of the package, dP 133 

(cm); and the infinite solutions of qn, where qn are the positive roots of the transcendental equation 134 

tan(�") = −	�". 135 

The complexity of eq (1) requires specialty software or model simplification which can lead to over or 136 

underestimation. A common approach is to obtain values of qn from a look-up table of 6-50 solutions 137 

for pre-specified values of α (Crank 1975; Piringer and Baner 2008; Hoekstra et al. 2015). Another 138 

common approach is using short-term diffusion-dominated and long-term partitioning-dominated 139 

models, respectively eq (2) and eq (3), where 140 

��,# = ��,���,� = 	2/�� × (����/&)1/2 (2) and 141 

��,' = ��,���,� = 	1+	 (3). 142 

The parameters are defined above with eq (1). Eq (2) and (3) are computationally simple, but only 143 

valid for restricted timescales, for example eq (3) is valid when ����/��2>>0.001 (Piringer and Baner 144 

2008). To apply eqs (1)-(3), the parameters are either fixed or estimated. For example, regulatory 145 

models often fix KP,F = 1 as a claimed “worst-case” scenario, and fix the volume of food to 1000 mL (1 146 

kg) in Europe or 10 g of food in the US. When applying the formulas in regulatory settings, the 147 

packaging volume is determined by the typical reference surface area of 6 dm
2
 in Europe and 1 in

2
 the 148 

US, and assuming packaging thickness generally between 0.001-0.1 cm (Oldring et al. 2014b; Hoekstra 149 

et al. 2015; FDA 2016). Regardless of the input parameters, eq (2) always surpasses eq (1) at a food-150 

package contact duration referred to in this study as the deviation time, td*. Using eq (2) beyond td* 151 
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can result in surpassing the ultimate equilibrium value achieved according to eq (3), and grossly over-152 

estimating migration. Quantification of when td* occurs has not been to our knowledge defined, and 153 

changes according to the model input parameters.  154 

We programmed simulations in Matlab R2015a to elucidate the behaviour of eq (1) in order to 155 

understand the needs for operationalizing HT models. To begin, we investigated the feasibility of 156 

using eq (1) and associated simplifications for HT modelling. Specifically, we elucidated the 157 

consequences on the model behaviour when simulations of eq (1) were performed a) with a limited 158 

number of qn roots or b) using a fixed value for input parameter KP,F . We also compared the 159 

behaviour of eq (1) with eq (2) and eq (3). Figure 1 is a generic representation of the model system 160 

with a sufficient number of qn roots to achieve eq (1) with accuracy; the required number of qn roots 161 

as well as the shape of the ft curve and values on the X and Y axes will differ depending on input 162 

parameters.  163 
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 164 

Figure 1. Representation of model behaviour through an undefined package-food contact duration. 165 

Eqs (1) ft (solid line) with sufficient qn roots, (2) ft,s (dashed line), and (3) ft,l (dotted line), are 166 

demonstrated. The point at which the short term simplification deviates from the model with >99% 167 

accuracy, td*, is indicated with a star.  168 

Preliminary simulations demonstrated that the number of qn roots needed to estimate eq (1) with 169 

high accuracy (e.g. up to 99%) cannot easily be predetermined; in addition to the relationship 170 

����/��2 (Piringer and Baner 2008), the number of qn roots required to accurately estimate eq (1) is 171 

also dependent on α.We found as α decreases the number of roots required to obtain eq (1) increases 172 

(Figure S1A-B). The number of roots and thus iterative calculations affected the required computation 173 

time. We found generally when α was high (> 10) computation time was rapid and few roots were 174 
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needed (e.g. 5 - 50,000). For very low α (< 0.001) even 1 million roots resulted in several orders of 175 

magnitude overestimation during short time scales (i.e. in the first 24 hours). Taking 1 million roots 176 

substantially lengthened the computation time. Restricting the number of qn values to rapidly solve 177 

eq (1) always led to overestimation of the model ft at short time scales (supporting information (SI), 178 

Figure S1A-B), typically by several orders of magnitude. This suggests using a limited number of qn can 179 

be appropriate for safety assessments, but does not provide a realistic estimation, especially at short 180 

time scales and for low values of α. In all, using eq (1) is not practical for rapid and accessible HT 181 

methods that are operational across all time scales and values of α. Iterative calculation steps can 182 

lengthen computation time and furthermore poses a computational barrier to pragmatically coupling 183 

of the model to spreadsheet-based tools.  184 

The partition coefficient between packaging and food for a migrant, KP,F , is an important parameter 185 

influencing the behaviour of eq (1) and eq (3). When KP,F is high the chemical has higher affinity for 186 

the package, and when KP,F is low (e.g. KP,F < 1 ) the compound has higher affinity for the food 187 

(Tehrany and Desobry 2004; Ozaki et al. 2010). When analysing model behaviour to inform method 188 

development we found no evidence that the simplification of KP,F = 1 is a “worst-case” scenario as 189 

claimed by regulatory documents and publications (e.g. Brandsch et al. 2002; Begley et al. 2005a; 190 

Hoekstra et al. 2015). We found that setting KP,F < 1 can lead to migration estimates greater than the 191 

model outcome when KP,F = 1, especially when the food and packaging volume are of similar 192 

magnitude. KP,F < 1 have also been observed empirically (Tehrany and Desobry 2004; Piringer and 193 

Baner 2008; Ozaki et al. 2010). Quantitatively, KP,F = 1 corresponds to the chemical concentration 194 

being equal in the package and the food. Our simulations demonstrated that setting KP,F = 1 can 195 
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underestimate the migrated chemical mass at equilibrium, e.g. by a factor of ≈2 when KP,F <= 0.1 196 

when the volumes of food and packaging material are equivalent (SI Figure S2A versus S2B when KP,F = 197 

1), and this factor increases if the ratio between the package and food increases above 1. Therefore, 198 

in situations when the mass of packaging material approaches the mass of the food (e.g. for small 199 

candies, capsules, and single-serving condiments) and equilibrium can be approached or reached—200 

e.g. due to a long contact time, small package thickness, and/or due to rapid diffusion—KP,F cannot be 201 

set to 1 to obtain a realistic or worst-case value for chemicals with KP,F < 1. Using the default 202 

regulatory values for the amounts of packaging and food, the assumption KP,F = 1 provides nearly an 203 

upper-bound (worst-case) estimate of eq (1) (SI Figure S2B). There is substantial empirical evidence 204 

that chemicals in polymers can have KP,F < 1, and < 0.01, (Mercea 2008), however, we cannot 205 

determine the frequency such chemicals occur in situations where packaging and food volumes are 206 

similar. Nevertheless, we recommend that regulatory documents and other publications do not state 207 

that KP,F = 1 is a “worst-case” scenario. Instead, we recommend stating that setting KP,F = 1 is a 208 

pragmatic approximation of a worst-case scenario when the volume ratio of food to package is >100. 209 

Moreover analysing the consequence of setting KP,F = 1 points to a need for a model to estimate KP,F to 210 

be used in HT estimates of realistic exposure, as setting KP,F = 1 can overestimate exposure when KP,F > 211 

1, and underestimate exposure when KP,F < 1.  212 

 To summarize, analysing the behaviour of existing modelling approaches demonstrated that using 213 

too few qn roots can lead to drastic overestimation of eq (1), but that using more qn roots slows 214 

computation times; eq (2) is a simple and accurate method suitable for HT estimates of migration for 215 

short timescales (< td*), but this timescale is not well defined; and setting KP,F = 1 does not provide 216 
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either representative or worst-case estimates for all scenarios. These findings informed the research 217 

needs for developing an HT model that can rapidly provide representative migration estimates across 218 

all timescales and for a variety of chemical-package-food combinations. Specifically, the identified 219 

needs are to 1) design a model that does not require iterative calculations based on qn roots, 2) 220 

identify package-food contact duration, td*,where eq (2) is no longer valid and 3) more accurately 221 

estimate KP,F. 222 

2.3 Development of a high-throughput model for migration estimation 223 

To address these three needs, we aimed to develop a parsimonious approach valid for all time-scales 224 

and a large range of input parameters.  225 

First we defined td* (Figure 1) as the contact duration between package and food when the solution 226 

to eq (2) deviates from the solution of eq (1) by more than >1% of the ultimate equilibrium value. At 227 

contact durations < td* eq (2) is valid, compares well with eq (1) (R2≈ 1) and thus eq (2) can be directly 228 

used for HT approaches in this time range. To determine td* as an explicit function of main 229 

parameters, we hypothesized that it is a function of α, DP, and dP due to the influence of these 230 

parameters on the function behaviour. To test this hypothesis we obtained td* from several hundred 231 

simulations for random permutations of the input parameters DP (10
-10

, 10
-20 

cm
2
/sec), α (values 232 

randomly generated between 10
-6 

and 10
5
), and dP (0.01, 0.1, 1 cm), using up to 1 million roots in eq 233 

(1) to ensure high accuracy. Next, we plotted the resulting values of td* as function of α, DP, and dP 234 

and used the Matlab 2015a Curve Fitting Toolbox™ to determine an explicit function of these 235 

variables and enabling prediction of td* with reasonable accuracy. 236 
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After determining a predictive function for td*, we aimed to develop an HT migration model valid 237 

after td*.  The model theory is based on recent work by Huang & Jolliet (2016) where a parsimonious 238 

model was developed for HT prediction of volatile organic compound releases from solid materials. 239 

This approach demonstrated a Fickian-based differential equation requiring the infinite sum of qn 240 

roots, similar to eq (1), can be approximated as a two-term exponential decay model (Huang and 241 

Jolliet 2016). The first exponential term captures short-term diffusion-dominated behaviour and the 242 

second exponential term captures long-term partitioning-dominated behaviour (Chang and Guo 243 

1992). A model of this form relates the mass transferred (lost from the material) through time, m(t), 244 

as a function of the initial mass, m0, in the material multiplied by an exponential decay with constant 245 

k, m(t) = m0 e
-kt

. When estimating the fraction of chemical mass initially in the material (i.e. the 246 

package) that has transferred (i.e. into the food) this results in the form 1- e
-kt

. We therefore 247 

hypothesized that a 2-term decay model in the form of 1- e
-kt

 could capture the behaviour of eq (1). 248 

Furthermore, since the shape of eq (1) through time is determined by input parameters α, DP, and dP, 249 

likewise the exponential shape parameters (analogous to the decay constant) could be predicted as a 250 

function of α, DP, and dP. We found that one exponential term sufficed (R
2
>0.99) when α ≈>10 and 251 

there were no partitioning constraints (given infinite time nearly all of the chemical will have 252 

transferred from package to food), however, in order to obtain high values of R
2
 (R

2
>0.97) when 253 

comparing the simplification to eq (1) across values of α two exponential terms were needed (SI 254 

Figure S3) (eq 4). We therefore followed a two exponential form in order to provide a model valid for 255 

all values of α. The resulting model form for all contact durations and values of α was determined as 256 
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��,� = ( 2�� × (�� td/&)12	eq(2)						if td ≤ td
∗,	else

*�� + � 	1+	− *���× �+ × ,1 − e−.×/×(td−td
∗)0+ (1 − +) × �1 − e−1×/(td−td

∗)�� ,	(4) 257 

where / = 234td
∗536  , 258 

and where A, B, and C are varying coefficients discussed further below; slope factor 7��  is the 259 

derivative of eq (2) at the contact duration td* to train the slope towards the slope of eq (2) at that 260 

point; *�� is the vertical shift to begin the double exponential model at contact duration td* and is 261 

equal to the value of eq (2) at td*; other equation parameters are defined within eq (1).  262 

To operationalize eq (4), coefficients A, B, C, must be determined as explicit function of main 263 

parameters. Based on observations from the initial simulations, we hypothesized each coefficient is 264 

interdependent and a function of α. To test this hypothesis, we ran simulations of ft as well as the 265 

predicted function ft,p using random permutations of input parameters to cover range of potential 266 

migration scenarios, i.e. for DP (10
-10

, 10
-20 

cm
2
/sec), α (values randomly generated between 10

-6 
and 267 

10
5
) and dP (0.01, 0.1, 1 cm) with up to 1 million roots to ensure accuracy. These simulations were 268 

used to develop predictive models for the coefficients A, B, and C, applying the following stepwise 269 

procedure to iteratively restrict noise due to interactions between these parameters: 270 

The first step was to investigate values of A, B, and C as a function of α as completely “free” variables, 271 

optimised by minimizing the residual squares between eq (4) and eq (1) using the Matlab 2015a pre-272 

existing function fminsearch. From this exercise we observed that values of A were being optimised to 273 

force the equation towards a 1-exponential (e.g. A approaches 1) when α ≈>10. We then fixed A as a 274 
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piece-wise function of α and ran simulations to predict values of B and C. Again seeing that B was 275 

forced towards 1 at high values of α, we then also fixed B as piece-wise functions of α to finally obtain 276 

a predictive function of C.  277 

Finally we tested the accuracy of eq (4) at estimating ft eq (1) when using the final resulting 278 

predictions of td, A, B, and C. Because ft,s eq (2) and ft,l eq (3) model short and long-term behaviour, 279 

we also compared our modelling approach to a simple approach using ft,s until it is equal to ft,l and 280 

then switching to ft,l. Nine simulations were run to cover the range of α from (10
-4

-10
3
), where the 281 

simulation time for low values of α was extensive due to the number of qn roots required. 282 

2.4 Model parameterization  283 

Chemical diffusion coefficient: Chemical diffusion is influenced by material and chemical properties 284 

(e.g. molecular size) as well as the ambient temperature. Diffusion coefficients are commonly 285 

estimated using eq (5) (Brandsch 2000; Mercea 2000; Begley et al. 2005a; Hoekstra et al. 2015)  286 

�8 = ��exp �+8 − 0.1351=>23 + 0.003=>− 10454@ � 	�A�2# � (5)	 287 

where	+B = +BC − DE , �F = 1	 m2/s = 10G cm2/s	and H = 8.3145	J	molN�	KN�	.  288 

Molecular weight (MW g/mol) is specific to the migrant; AP is a dimensionless polymer-specific 289 

diffusivity parameter that is sensitive to the ambient temperature, @	(K) of the food-material system; 290 

P and the constant 10,454 are polymer-specific and account for the diffusion activation energy (where 291 

10,454 is the reference constant for polyethylene) (Barnes et al. 2006). When applying this model in 292 

regulatory settings typically “worst case” values of AP are used. LCA compatible models do not 293 
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typically estimate worst case scenarios but aim to estimate average scenarios, therefore to estimate 294 

AP we used average values (not ‘upper-bound’ or worst case) of +8′  (a standard polymer-specific 295 

diffusivity parameter) which we calculated from data listed in Begley et al. 2005a as listed in SI Table 296 

S1. The diffusion coefficient is highly sensitive to ASC  where a 10% change in ASC  can lead to a 300% 297 

change in the diffusion coefficient. The full model, eq (1), however, is less sensitive to changes in the 298 

diffusion coefficient (e.g. a 10% change in the diffusion coefficient leads to a <5% change in model 299 

output), where the level of sensitivity depends on the contact duration and if this is in the diffusion-300 

dominated timescale.  301 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

18 

 

Package-food partition coefficient: As discussed in Section 2.2 the partition coefficient KP,F influences 302 

model behaviour after contact duration td* and KP,F cannot be set to a fixed value to obtain realistic 303 

estimates. Therefore, we focus on developing HT methods to estimate KP,F for various scenarios. 304 

Previous works (Tehrany and Desobry 2005; Tehrany et al. 2006; Ozaki et al. 2010) to this aim have 305 

developed correlations of KP,F with the chemical and food lipophilicity, where the octanol-water 306 

partition coefficient, Kow, is used as a the chemical proxy and the simulant ethanol-equivalency EtOH-307 

eq is used as the food proxy. KP,F is also temperature sensitive but the relationship is not known to be 308 

easily predictable (Tehrany and Desobry 2004). In this study we do not attempt to predict the 309 

temperature-dependency of KP,F. We build on more recent empirical work by Ozaki et al. 2010 310 

correlating KP,F with a range of chemical log Kows and across a range of food EtOH-eqs. The FACET 311 

project (Seiler et al. 2014) also built on this work and performed experiments to extend the 312 

correlation range of KP,F, but the experimental data and subsequent correlations are not available to 313 

our knowledge. 314 

Therefore, we developed a method to estimate KP,F as a function of a chemical Kow and food EtOH-eq 315 

by generalizing the three log-log linear EtOH-eq correlations in Ozaki et al. 2010 to all potential 316 

combinations of EtOH-eq and Kow. We assumed the gradient between the slopes of these log-log 317 

linear curves would be uniformly distributed across EtOH-eqs and therefore follows the format 318 

log U8,V = �(EtOH − eq) × log(U�\)− ], with m a linear function of EtOH-eq. The solver add-in in 319 

Microsoft Excel 2010 was used to optimize the parameters of a log-log linear model while minimizing 320 

the residual error between our predicted values and the measured values from Ozaki et al. 2010. We 321 

restricted the applicability range of the KP,F correlations according to the Kow values empirically 322 
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measured in Ozaki et al. 2010, e.g. data were not available for chemicals with log Kow >≈5, 8, 18 when 323 

the EtOH-eq is ≈10, 50, 95% respectively. Finally, to test the accuracy of our modelling approach by 324 

external validation, we obtained a separate dataset of 163 different experiments that measured 325 

partition coefficients between LDPE and HDPE polymers and 13 different foods at ambient 326 

temperature 296 K (Mercea 2008). We assigned these 13 different foods to EtOH-eq according to SI 327 

Table S2. 328 

2.5 Applying the high-throughput estimation approach – external validation 329 

We ran the developed HT model to predict migration for various chemical, package, and food 330 

combinations that have empirical data available. The empirical data were provided by request from 331 

the US FDA (FDA 2016). These requested data are used to provide industrial guidance for pre-market 332 

submissions, and the data set contains 12,773 independent measurements for migration. 333 

Most of the migration measurements in the database also included the parameters needed for 334 

modelling, e.g. according to eq (4), specifically the tested chemical’s MW and Kow, the food or 335 

simulant tested, the polymer tested and its thickness, the duration and temperature of the test. 336 

Entries reporting a “0” starting concentration of a chemical in a polymer, or reporting that the final 337 

migrated mass into a simulant or food exceeded the initial mass in the tested material (perhaps due 338 

to experimental uncertainty) were disregarded. Diffusion coefficients are also provided for each 339 

experiment in the spreadsheet. Several parameters required for modelling were also not reported in 340 

the database, for example +8′  which is required to model the diffusion coefficient, and EtOH-eq of the 341 

food or simulant which is required to model the partition coefficient. We therefore matched the 342 

database to the available polymer-specific average +8′  (Section 2.4.1; SI Table S1) and a list of EtOH-eq 343 
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matched to food or simulants (SI Table S2) in order to simulate each applicable experimental value. 344 

4,492 applicable experimental values remained with available +8′ , and EtOH-eq. Migration modelling 345 

was then performed using three different approaches: A) the HT model (Table 1) and using measured 346 

diffusion coefficients from the database, B) applying the HT model (Table 1) and using modelled 347 

diffusion coefficients estimated with eq (5), and finally C) using a combination of eq (2) (diffusion-348 

dominated model) and (3) (partition denominated model) and taking the minimum value, i.e. the 349 

value of eq (2) until it intersects with eq (3), and then the value of eq (3). . The two first modelling 350 

approaches A and B were employed to elucidate the contribution of the estimated diffusion 351 

coefficient to model uncertainty. The final approach C, is the most simple and was tested against the 352 

first two approaches A and B. 353 

3. Results and discussion 354 

3.1 Development of an accurate model for high-throughput migration modelling 355 

Model development: The operationalised form of the HT migration model eq (4), including estimates 356 

for td*, A, B, and C is compiled in Table 1. Predicting td* first is important for knowing the contact 357 

duration after which the simplified diffusion eq (2) is no longer valid, and also to serve as input for eq 358 

(4). To avoid over-estimating td*, which would jeopardize the predictive ability of the model, we 359 

determined two equations to predict td*as a function of α, i.e. one for α ≤ 0.2 and one for α > 0.2 as 360 

described by eq (6) in Table 1, with a high accuracy (R
2
≈1, Figure S4C). The coefficients A, B, and C of 361 

the HT migration model are obtained as a direct function of alpha as defined by equation (8a,b,c) of 362 

Table 1 and the stepwise procedure to determine these is further detailed in SI Figure S5. 363 
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td* is proportional to the ratio �82/�8 which we have defined as a characteristic time of migration 364 

(CTM (s), see SI Figure S4) as a function of the thickness of the diffusive path length and the diffusion 365 

coefficient. . CTM can range from a few hours to thousands of years depending on the packaging 366 

thickness and diffusion coefficient (Figure 2). td* may only be a small fraction of CTM, and the fraction 367 

lessens as α and the equilibrium value decrease.  368 

Table 1. Final high-throughput estimation model and required parameters. 369 

Model 

��,� = _̀̂
_a 2��× (�� td/&)12	eq(2)						if td ≤ �5∗ ,	else

*bc∗ + � 	1+	−*bc∗�× d+× ,1− e−.×/×,td−bc∗00+ (1−+)× �1− e−1×/,td−bc∗0�e (4)  

 where *��∗ = 	 f53 × (�g��∗/&)h6 

Diffusion coefficient  �8 = ��exp �+8−0.1351=>23+0.003=>− 10454@ �	�A�2# �   (5)	 
where	+B = +BC − P@ , �F = 1	 m2/s = 10G cm2/s	and 

H = 8.3145	J	molN�	KN�	. 
 

Contact time when eq 

(2) deviates from  

eq (1) >1% 
�5∗  = (5�

62� � ih�ji6klm×nop	(q)� 	for 	≤ 0.2

 5�62� rGsit×	uvw	(x)	 for 	> 0.2	 (s)   (6) 

R
2
=0.99 when the values and the 95% confidence interval (CI) are: 

r1(95% CI)=0.3552 (0.3549, 0.3555) 

r2 (95% CI)=85.88 (83.99, 87.77),  

r3(95% CI)=-3.506 (-3.524, -3.488),  
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r4(95% CI)=8.495
E
-3 (8.375

E
-3, 8.616

E
-3) 

r5(95% CI)=4.458 (4.445, 4.47). 

Slope factor (/), 

approximation of the 

slope (derivative) of eq 

(2) at time td* 

/ = �5�y2�z��∗ × { x	�jx	|k}	(~)− f53 × (�g	��∗/&)h6�����������k}	(f)	�b	��∗
	�	

N�
 (s

-1
) (7) 

Coefficients A, B, and C +(��) = �0.7	for ��< 0.7 

1	for �� > 1	��	elsewhere;	  where �1 = 100.12	'��(	)+'��	0.8	(8�) 
.(�f) = �0.3	for �f< 0.3

0.9	for �f > 0.9	�f	elsewhere; 

 where �2 = 100.22	'��(	)+'��	0.5	(8]) 
1	(�~) = �0.004	for �~< 0.3

1	 for�~ > 1	�~	elsewhere;

 where �3 = 100.7	'��(	)+'��	0.08 (8c) 

Partition coefficient 

between package and 

food. 

 logU8,V =�× log(U�\)−]  (9) 

 where � = −0.0085 × EtOH − eq	 + 	0.876, and b= 1.05.
#
  

#
Data were not available for chemicals with log Kow >≈5, 8, 18 when the EtOH-eq is ≈10, 50, 95% 370 

respectively, and the model accuracy in this range is thus unknown. 371 

HT Model performance: Figure 2 demonstrates the resulting model performance across a wide range 372 

of permutations of α, DP, and dP, where the model behaviour is specific to combinations of α and 373 

CTM, within a feasible contact duration between package and food (i.e. <30y). Simulations were 374 

chosen within realistic values of α and CTM based on observed ranges of partition coefficients, 375 

diffusion coefficients and packaging thicknesses (Piringer and Baner 2008). Figure 2 is organised in 376 

rows and columns, where alpha decreases from the first to third column, and where the CTM 377 

increases from first to third row. When alpha is large the potential migrated fraction approaches 1, 378 

and as alpha decreases (see first to third column) so does the migrated fraction. As CTM increases 379 

between the first and third rows, the time to reach full migration (seen as the curve flattening at a 380 
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plateau) also increases. For each CTM (see first to third column for each row) the model plateaus at 381 

earlier contact times when there is a lower α value which corresponds to a lower equilibrium value. 382 

For each CTM (rows) the model plateaus earlier with low α values and subsequent equilibrium value 383 

(columns). Figure 2 also demonstrates that the HT model (in red) fits very well the original model (in 384 

black) with R
2
 between 0.97 and 1, across a wide range of relevant time scales from a few minutes to 385 

30 years and input parameter combinations. The HT model represents a substantial improvement 386 

compared to the combination of the minimum value of the short-term diffusion dominated model (in 387 

green) and the long-term equilibrium value (pink dotted line) that may over-estimates ft by a factor of 388 

3 (Figure 3). The points plotted in the figure represent the maximum over-estimation which always 389 

occurs when eq (2) intersects eq (3) (also see Figure 1). SI Table S3 provides example combinations of 390 

DP, and dP (infinite combinations are possible) to obtain the CTMs that were simulated. 391 
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 392 

Figure 2. Comparison between the migrated fraction, ft, predicted by the HT model (Table 1) after the 393 

deviation point, td* (red solid line), with ft predicted by the original model, eq (1) (black solid line). A 394 

range of combinations of α and characteristic times (�82/��, converted to relevant units, where My is 395 

millions of years) were simulated to cover a feasible span of scenarios and R
2
 were obtained. The 396 

diffusion-based model, eq (2) (turquoise dashed line), and the equilibrium-based model, eq (3) (pink 397 
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dotted line) are also shown. Eq (2) and eq (1) are >99% equal until td* (black asterisk); the red asterisk 398 

is the predicted td* where the double exponential form begins.  399 

 400 

Figure 3. Comparison between the migrated fraction ft predicted by the detailed model eq (1), by the 401 

HT model (Table 1) and by taking the minimum of the diffusion-based model eq (2) and the 402 

equilibrium-based model eq (3). Standard error, Se, on the logarithmic scale is indicated with the 403 

legend.404 
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 405 

3.2 Model parametrization  406 

Determination of the diffusion and partition coefficients, DP and KP,F, are essential to model migration 407 

and key parameters in all model eqs (1) to (3) and in the HT model described in Table 1. For DP we 408 

used the established equation presented by Begley et al. (2005) as shown in equation (5), but when 409 

available a measured value or more precise model should be used for this parameter. Eq (9), Table 1, 410 

provides the model to estimate the log-log linear approximation of KP,F. SI Figure S6 compares this 411 

approximation with the empirical data reported in Table 2 of Ozaki et al. 2010 (Table 2), 412 

demonstrating a good resulting correlation. The performance of the model on the log-scale was 413 

described by standard error (Se), the coefficient of determination (R
2
), and the squared geometric 414 

standard deviation (GSD
2
); assuming with a log-normal distribution of uncertainty around the 415 

modelled value, the product of the modelled value and GSD
2
 is equal to the 97.5%-ile and the 416 

quotient of the modelled value and GSD
2
 is equal to the 2.5%-ile of the expected data uncertainty 417 

distribution (Heijungs and Frischknecht 2004). 418 
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 419 

Figure 4. Comparison of the predictions of partition coefficients KP,F by the HT model with empirical 420 

data from Mercea 2008; dotted line is the 1:1 diagonal; the squared geometric standard deviation 421 

(GSD
2
), standard error (Se) and coefficient of determination (R

2
) are evaluated on the log-scale. 422 

Figure 4 demonstrates an external validation of the developed KP,F model compared with empirical 423 

data for 17 chemicals from Appendix II Piringer & Baner (2008) (Mercea 2008) with various food types 424 

and two polymers at 23 
o
C (Figure 4). The considered chemicals’ MWs ranged from 94 to 220 g/mol 425 

and from log Kow 1.3 to 5.2. The performance of the KP,F model was reasonable for both LDPE and 426 

HDPE, likely because these polymers have similar properties influencing partitioning (e.g. polarity) 427 

(Ozaki et al. 2010). The applicability of the model for polymers other than LDPE and HDPE is unknown 428 

at this time and should be explored in future work. The influence of KP,F uncertainty can be 429 
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understood by examining the influence of α on the ultimate equilibrium value, where α is a function 430 

of KP,F and the volumes of food and packaging material. The sensitivity of the equilibrium value to α 431 

depends on the magnitude of α. Since equilibrium is determined as α / (1 + α), eq (3), there is 432 

maximum a factor 2 difference between the equilibrium values of any α >= 1 (which range between 433 

0.5 and 1). This means uncertainty of KP,F becomes less important as the equilibrium value increases. 434 

When α <=0.1 the sensitivity of the equilibrium value is mirrored, where a factor 10 difference in α (or 435 

KP,F holding all else constant) results in nearly a factor 10 difference in the equilibrium value. This 436 

means when equilibrium is low the uncertainty on KP,F is more important.  437 

3.3 High-throughput migration modelling – external validation 438 

The calculation speed for the HT migration model developed in this paper and listed in Table 1 is 439 

nearly instantaneous, and the full model was programmed in a spreadsheet. Of the 4,492 FDA data 440 

points with data available for parameterization 1,428 were excluded due to high Kow outside of the 441 

range of the empirical data used for determining KP,F. We first applied the HT model (Table 1) with the 442 

measured diffusion coefficients reported in the FDA database (SI Figure S6), considering all data 443 

points (GSD
2 

= 24, R
2
 = 0.6, Se = 0.7). Two sets of data points from one experimental data set referred 444 

to as “Models for the Migration of Low Molecular Weight Additives in Polyolefins. National Bureau of 445 

Standards. Report NBSIR 81-2264, April, 1981.”, corresponding to experiments for a chemical called 446 

BHT in DEHP migration to corn oil and ethanol and dotriacontane in corn oil were clear outliers. The 447 

reported diffusion coefficients caused an unexplainable vertical shift (SI Figure S7) from the trend 448 

observed for the rest of the data, including other data for the same chemicals, polymers and 449 

simulants, suggesting analytical issues from this experimental dataset. We therefore also removed 450 
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these 744 points for these two chemicals of this dataset. Screening was finally performed for the 451 

remaining 2,320 data points (Figure 5) and when using measured data for the diffusion coefficient 452 

(Figure 5A), the uncertainty was minimal (GSD
2
=8, R

2
 =0.87, Se= 0.48).  453 

 454 
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Figure 5A-B. Prediction of mi,t/mi,0 using the developed HT model (Table 1) compared to empirical 455 

data from US FDA, where either the measured (Figure 5A) or modelled DP, eq (5) was used (Figure 456 

5B). Dotted red line represents the 1:1 diagonal; the squared geometric standard deviation (GSD
2
), 457 

standard error (Se) and coefficient of determination (R
2
) values are evaluated on the log-scale. 458 

Using eq (2) and eq (3) to model these points yielded the same results as applying the approach in 459 

Table 1, because the experiments in the FDA study were all in the short-term contact duration 460 

range—and in fact are reasonably estimable by only eq (2). The US FDA empirical dataset provides 461 

estimated diffusion coefficients, therefore experiments were likely intentionally restricted to be in the 462 

range of diffusion-dominating behaviour. To our knowledge there is no available empirical dataset to 463 

test the model that covers a full range of measured values shifting from diffusion-dominated to 464 

partition-dominated behaviour (as experiments are usually designed to obtain either of these 465 

parameters).  466 

When the HT model (Table 1) was applied with modelled diffusion coefficients, eq (5), the 95
th

 467 

percentile distribution increased by more than an order of magnitude on either side of the modelled 468 

point and the goodness of fit fell (Figure 5B) (GSD
2
 =230, R

2
 =0.49, Se = 1.2). This dramatic increase in 469 

uncertainty is thereby directly attributable to the diffusion coefficient model. To reduce the 470 

uncertainty of diffusion modelling, topological molecular descriptors (e.g. molecular volume) are an 471 

area of interest (Fang and Vitrac 2017); however, more accurate models using topological input 472 

parameters have not yet been operationalised for rapid HT modelling. Therefore, improving HT-473 

compatible modelling of the diffusion coefficient, for example through quantitative property-property 474 
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relationship modelling (Huang et al. 2017b), is necessary for future HT models estimating migration of 475 

chemicals from packaging into food.  476 

Eq (1) and the resulting HT approach is mathematically valid when the matrix of the food poses no 477 

resistance to diffusion and is continuously mixed, e.g. valid for fluids, which is the most studied and 478 

empirically validated scenario (Pocas 2008; Piringer and Baner 2008). Most of the empirical data used 479 

to validate the model is from liquid foods (e.g. beverages) and only several experiments were 480 

available for non-liquid foods, mayonnaise and chocolate. Given these limited data, there was also 481 

good agreement between the model and the estimates of the migration of chemicals from packaging 482 

into foods (SI Figure S9). Further work would be required to develop and test the model against solid 483 

and dry foods; applying a multiplying ratio of the diffusion coefficients between food and polymer 484 

may be useful in future approaches to adjust the model (Piringer and Baner 2008).  485 

4. Conclusion 486 

High-throughput (HT) modelling approaches were developed to estimate the fraction of an organic 487 

chemical migrating from a polymeric food contact material into a food. The primary aim was to 488 

operationalize migration modelling, e.g. eqs (1)-(3), to be suitable for decision-support tools that 489 

require rapid calculation of best-estimates of migration. Setting the partition coefficient between 490 

packaging and food equal to one (which we found was not a universal “worst-case” scenario) can lead 491 

to grossly misestimating the equilibrium value. Therefore, we also developed methods to estimate 492 

the partition coefficient to ensure more accurate HT methods. A main outcome was furthermore, a 493 

method to more precisely determine the timespan for which an existing simple, diffusion-based 494 

model, eq (2), is valid. We determined this simple model is valid when the contact duration between 495 
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the food and package is less than the developed prediction for td* (eq 6, Table 1), which can range 496 

from fractions of a second to several years depending on the input parameters and can be predicted 497 

as a function of α and CTM – the characteristic time of migration. 498 

By providing a method to determine td*, the timespan where eq (2) is valid, and additionally 499 

developing a method to estimate migration after td*, the developed HT model (Table 1) is valid over 500 

all relevant timespans. The new HT model also showed good agreement with eq (1) over a full range 501 

of input parameters and agreement improved as the parameter α increased (meaning the equilibrium 502 

concentration in food increased). The developed HT model offers substantial improvement compared 503 

to the combination of the minimum value of the diffusion-based model eq (2), and the equilibrium 504 

value eq (3), that may otherwise over-estimate ft by a factor of 3 after td* and before equilibrium is 505 

achieved. Additionally, our model was more accurate by several orders of magnitude than using eq (1) 506 

with a limited number of tabulated roots at short time scales; therefore the developed HT model is 507 

preferred to eq (1) for comparative assessments that aim at average rather than conservative 508 

estimates. Furthermore, the model demonstrated good agreement with measured data, especially 509 

when using a measured diffusion coefficient. When a modelled diffusion coefficient was used, there 510 

was a drastic increase in uncertainty, underscoring the importance of improving diffusion coefficient 511 

modelling. 512 

The developed model, as well as eq (1), rely on α which is a direct function of the partition coefficient 513 

between a polymer and a food, KP,F . The model we developed, eq (9), to estimate KP,F as a function of 514 

the chemical Kow and the food’s assigned ethanol-equivalency, EtOH-eq, also had good agreement 515 

with the empirical data (R
2
=0.81) which are limited to LDPE and HDPE polymers. The approach is 516 
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similar to other models (Seiler et al. 2014), however, we additionally provide the equation to support 517 

application in future uses. 518 

The developed model is intended for future use in decision support tools that consider exposure to 519 

chemicals in food packaging materials in a variety of scenarios, for example in Life Cycle Assessment 520 

(LCA) or high-throughput risk-based screening (HTRS) (Shin et al. 2015; Jolliet et al. 2015b). In such 521 

decision support assessments the model could be combined with the initial chemical mass in a food 522 

packaging material in order to estimate the migrated mass and subsequent exposure. Furthermore, in 523 

order to estimate risk exposure estimates can be combined with toxicity information, e.g. if available 524 

through high-throughput screening (Karmaus et al. 2016) and relevant dosimetry adjustments 525 

(Wetmore et al. 2015). The initial concentration of chemicals in various consumer products are 526 

becoming increasingly available through databases (Goldsmith et al. 2014); however, concentrations 527 

of chemicals in packaging are not yet available. Future research is required to fill this concerning data 528 

gap, e.g. through rapid analytical identification methods or function-based chemical concentration 529 

modelling, as has been recently performed for cosmetics (Isaacs et al. 2016). 530 

The model was specifically designed to address the need for estimating the product intake fraction 531 

(Jolliet et al. 2015a) (Section 2.1) of food contact materials in LCA. Recent studies have underscored 532 

trade-offs between environmental impacts of food packaging systems and exposure to potentially 533 

toxic chemicals in food packaging materials (Lee et al. 2014; Yuan et al. 2016; Leslie et al. 2016). 534 

Considering exposure to chemicals in packaging within LCA could, for example, help ensure that 535 

system or packaging designs aiming to minimize environmental impacts (e.g. greenhouse gas 536 

emissions or resource use) do not unintentionally increase exposure to hazardous chemicals in 537 
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packaging, and vice versa that system or product designs to minimize migration and exposure to 538 

hazardous substances do not increase environmental impacts.  539 

In all, this study presents a rapid method to provide best-estimates of migration of chemicals from 540 

packaging with a first focus on organic chemicals in polymeric food packaging. Future work could 541 

extend this approach to other food contact materials (e.g. paper and board) and chemical types (e.g. 542 

nanoparticles or inorganic chemicals). Future focus on diffusion coefficient modelling, for polymers 543 

and other material types, should also be a priority to improve the accuracy of migration modelling in 544 

general. Additionally, future work should focus on identifying data availabilities that will be required 545 

for application of the model in decision support tools, such as the initial chemicals in packaging and 546 

toxicity of these chemicals. 547 
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Highlights 

• A rapid and accurate migration model for chemicals in food packaging was developed for exposure 

screening and assessment. 

• The model estimates the product intake fraction due to transfer of organic chemicals in polymeric 

packaging to food. 

• The model is a function of packaging, food, and chemical aspects, as well as time and temperature. 

• The model performs well when compared to empirical data, but the diffusion coefficient estimation leads 

to uncertainty.  

• The model is available for dissemination in a spreadsheet to facilitate application in prioritization and 

screening tools. 


