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A SECOND-ORDER CLASS-D AUDIO AMPLIFIER∗

STEPHEN M. COX† , MENG TONG TAN‡ , AND JUN YU‡

Abstract. Class-D audio amplifiers are particularly efficient, and this efficiency has led to
their ubiquity in a wide range of modern electronic appliances. Their output takes the form of
a high-frequency square wave whose duty cycle (ratio of on-time to off-time) is modulated at low
frequency according to the audio signal. A mathematical model is developed here for a second-order
class-D amplifier design (i.e., containing one second-order integrator) with negative feedback. We
derive exact expressions for the dominant distortion terms, corresponding to a general audio input
signal, and confirm these predictions with simulations. We also show how the observed phenomenon
of “pulse skipping” arises from an instability of the analytical solution upon which the distortion
calculations are based, and we provide predictions of the circumstances under which pulse skipping
will take place, based on a stability analysis. These predictions are confirmed by simulations.
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1. Introduction. Class-D amplifiers are used widely in modern electronic de-
vices, such as laptops, mobile phones, and hearing aids, because they are particularly
efficient. Their output takes the form of a high-frequency square wave whose switching
times are modulated in such a way that the low-frequency components of the output
correspond to the intended audio signal. The high-frequency switching components
of the output are filtered out.

For an open-loop class-D amplifier (i.e., a class-D amplifier without feedback), it
is readily shown that no distortion is introduced into the audio range of the output
signal by the pulse-width modulation (PWM) process [4, 6, 12, 14]. However, due
to nonidealities in practical designs (e.g., output-stage noise, component variation, or
distortion in the carrier signal that drives the switching), it is desirable in practice
to add a negative feedback loop to the design, but this inevitably introduces some
distortion into the audio components of the output (see, for example, [15]). In this
paper, we develop a mathematical model for a second-order class-D amplifier, in
which a loop filter is configured as a second-order integrator. (For the purpose of
our analysis, this second-order integrator is modeled as two first-order integrators
connected in series.) We have previously derived similar models for first-order class-D
amplifier designs [6], but the presentation here is more systematic and is extended to
allow consideration of the stability of the analytical solutions that we develop; the
question of their stability proves to be essential in explaining the observed behavior of
the amplifier. A further motivation for the design considered here is that the second-
order integrator is now becoming much more prevalent than its first-order counterpart
in state-of-art audio amplifier design, as it provides higher loop gain, which allows it
to better overcome the nonlinearities inherent in practical designs. Other attempts
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to model class-D amplifiers with negative feedback have generally been more ad hoc,
subject to uncontrolled approximations or at least incapable of being extended beyond
leading order (where this refers to a perturbation expansion in the small parameter
ε = ωT � 1, ω being a typical audio frequency and T being the period of the high-
frequency carrier wave).

The second-order amplifier analyzed here exhibits somewhat richer behavior than
the models we have investigated previously [6], as we now describe. We first need
to note that the criterion governing the switching of the square-wave output may be
interpreted geometrically as arising from the intersection of two graphs; one of these
is a high-frequency triangular carrier wave. Under certain circumstances, the second-
order design is observed, in both numerical simulations and circuit operation, to
exhibit the phenomenon of “pulse skipping,” which generates undesirable harmonic
distortion and noise on the output signal. Pulse skipping arises when the relevant
graphs do not in fact intersect during a given carrier-wave period. It is not observed
in the lower-order designs that we have analyzed previously [6]. We shall show that,
while pulse skipping does not seem to be a feature of the analytical solution that we
derive in our distortion calculation, its origin can be understood as arising from an
instability of that solution.

To support our analytical description of the amplifier behavior, we carry out
some complementary numerical simulations of various kinds. First, we carry out
high-precision simulations of the amplifier with a formulation in terms of difference
equations, using computer algebra (Maple). Next, the whole amplifier system is
modeled in Simulink (i.e., the simulation tool in MATLAB) with ideal component
and numerical integration blocks provided by the software model library. It will be
shown in sections 4 and 5 that the mathematical model perfectly predicts the intrinsic
harmonics of the amplifier (i.e., the frequency components of the output signal at
multiples of the basic frequency of a sinusoidal input signal), thus capturing the main
source of amplifier nonlinearity, which is particularly marked when the input signal
frequency is high and its magnitude is large.

The plan of this paper is as follows. In section 2 we develop our mathematical
model for the amplifier, and then in section 3 we derive a perturbation solution for
that model. This perturbation solution allows us to characterize the detailed behavior
of the amplifier, but a further step is needed to extract the audio-frequency content
from the square-wave output of the amplifier; this step is described in section 4, and
it allows us to predict the distortion introduced by the amplifier for a general input
signal. Then, in section 5, we show how pulse skipping, which is not present in the
solutions of section 3, can be explained by examining the stability of those solutions.
We provide a criterion to be satisfied by the parameters of the problem to avoid the
undesirable phenomenon of pulse skipping, and we report supporting simulations. We
discuss our results and draw our conclusions in section 6.

2. Mathematical model. The class-D amplifier considered in this paper is used
in the output stages of an audio amplifier to convert an audio signal (of relatively low
frequency, typically 1kHz) into a corresponding high-frequency square wave (typi-
cally of frequency 250kHz); see, for example, [3]. It is clearly important that such a
conversion should be achieved without the introduction of significant audio distortion.

Figure 1 shows a diagram representing the second-order class-D amplifier under
consideration. The audio signal s(t) feeds into an integrator, whose output we denote
by m(t); this output is then passed through a second integrator to give p(t). A
multiple −k of the audio signal is added to the outputs of the two integrators and
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Fig. 1. Second-order class-D amplifier with negative feedback. The signal s(t) is fed into a
device that multiplies it by a constant −k, and also into an integrator whose output we denote by
m(t). The output of this integrator is fed into another integrator whose output we denote by p(t).
The outputs of the two integrators and the multiplier are summed, together with a high-frequency
triangular carrier wave v(t), and input to the noninverting input of a comparator whose inverting
input is grounded. The output of the comparator is a square wave, g(t). This output is fed back to
the input of the first integrator.

further added to a high-frequency triangular carrier wave v(t); this sum is fed to the
noninverting input of a comparator, whose inverting input is held at zero volts. The
comparator output voltage is +1 if the voltage at its noninverting input exceeds that at
its inverting input, and is−1 otherwise (all voltages in this paper have been normalized
by the supply voltage, assumed constant). Thus the output of the comparator is a
square wave, which we denote by g(t). This square wave is fed back and added to the
audio input signal to provide the full input to the first integrator.

The voltages m(t), p(t), and h(t) satisfy

(2.1)
dm

dt
= −c1(s(t) + g(t)),

dp

dt
= c2m(t),

with

(2.2) h(t) = m(t) + p(t).

The comparator output g(t) satisfies

(2.3) g(t) =

{
+1 if h(t)− ks(t) + v(t) > 0,
−1 if h(t)− ks(t) + v(t) < 0.

The carrier wave v(t) is a triangular wave of period T and is specified by

(2.4) v(t) =

{
1− 4t/T for 0 ≤ t < 1

2T,−3 + 4t/T for 1
2T ≤ t < T,

with v(t+T ) = v(t) for all t. We note that in all practical implementations of such an
amplifier the integration time constants in (2.1) satisfy c1T = O(1) and c2T = O(1).

We denote the switching times of the output g(t) by t = An and t = Bn, for
integers n, so that

(2.5) g(t) =

{
+1 for Bn < t < An+1,
−1 for An < t < Bn.

We further assume that the value of g(t) switches precisely twice during each carrier-
wave period, and correspondingly we write

(2.6) An = (n+ αn)T, Bn = (n+ βn)T,
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where

(2.7) 0 < αn <
1
2 < βn < 1.

This assumption is generally the case when the amplifier is operating correctly, al-
though we shall investigate below, in section 5, circumstances under which g(t) may
fail to switch precisely twice, an occurrence usually described as “pulse skipping.”

For convenience, in view of (2.1) and the need to integrate the input signal twice,
we introduce f(t) such that the input signal is

(2.8) s(t) = f ′′(t).

We next integrate the ODEs (2.1) from t = An to t = An+1, to yield difference
equations that relate the state of the circuit at the latter time to its state at the
former.

2.1. Integration over the interval An < t < Bn. In this interval, it follows
from (2.1), (2.5), and (2.8) that

(2.9) m′(t) = −c1(f ′′(t)− 1), p′(t) = c2m(t),

and hence by straightforward integration we have

m(Bn) = −c1 (f ′(Bn)− f ′(An)− (Bn −An)) +m(An),(2.10)

p(Bn) = −c1c2
(
f(Bn)− f(An)− f ′(An)(Bn −An)− 1

2 (Bn −An)
2
)

+ c2m(An)(Bn −An) + p(An).(2.11)

The end of this interval is when g(t) switches from −1 to +1; the corresponding
switching condition is, from (2.3) and (2.4),

(2.12) m(Bn) + p(Bn)− ks(Bn)− 3 + 4βn = 0.

2.2. Integration over the interval Bn < t < An+1. In this interval, it
follows from (2.1), (2.5), and (2.8) that

(2.13) m′(t) = −c1(f ′′(t) + 1), p′(t) = c2m(t),

and hence, by integration over this interval and use of (2.10) and (2.11), we have

m(An+1) = −c1 (f ′(An+1)− f ′(An) +An+1 +An − 2Bn) +m(An),(2.14)

p(An+1) = −c1c2
(
f(An+1)− f(An)− f ′(An)(An+1 −An)

+ 1
2 (An+1 +An − 2Bn)

2 − (Bn −An)
2
)

+ c2m(An)(An+1 −An) + p(An).(2.15)

The switching condition at the end of this interval is then, from (2.3) and (2.4),

(2.16) m(An+1) + p(An+1)− ks(An+1) + 1− 4αn+1 = 0.

2.3. Summary. The typical behavior of the various voltages in the circuit is
illustrated in Figure 2.

The equations (2.10), (2.11), and (2.12), together with (2.14), (2.15), and (2.16),
allow us to iterate the state of the system forwards from t = An to t = An+1. Solving
(numerically) these nonlinear difference equations allows quick and accurate iteration
forwards in time, at significantly less computational expense than direct numerical
integrations of the underlying ODEs. However, such a numerical iteration gives little
insight into the general behavior of the amplifier, so next we turn to an analytical
approximation to their solution, using perturbation methods.
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Fig. 2. Typical behavior of the voltages in the circuit. For the purposes of illustration, we have
taken c1T = 1.5, c2T = 4, k = 0, s = 0.4 (constant input signal).

3. Solving the model. In operation, a class-D amplifier has carrier-wave fre-
quency much greater than a typical audio frequency. Thus if ω is a typical audio
frequency (corresponding to an input s(t) = s0 sinωt, for instance) then

(3.1) ε ≡ ωT � 1.

We thus use the small parameter ε as the basis for a perturbation expansion of the
problem.

We introduce the dimensionless time variable

(3.2) τ = ωt = εt/T.

Then, since s(t) has typical frequency ω, we may write

(3.3) s(t) = S(τ).

If we also introduce F (τ) such that

(3.4) S(τ) =
d2F (τ)

dτ2
,

it follows that

(3.5) F (τ) =
ε2

T 2
f(t).

Next we note that, although the voltages in the amplifier circuit vary on the fast
time scale of the carrier wave, the αn and βn themselves vary only on the slower audio
time scale. Thus we introduce functions A, B, M , and P such that

(3.6) A(εn) = αn, B(εn) = βn, M(εn) = m(An), P (εn) = p(An)

for integers n. Substitution of the foregoing in (2.12), (2.14), (2.15), and (2.16) and
applying (2.10) and (2.11) then yield the following rather involved equations for A,



SECOND-ORDER CLASS-D AMPLIFIER 275

B, M , and P :

0 = −c1T
{
ε−1(F ′

2 − F ′
1)− (B̄ − Ā)

}
+ M̄

− c1c2T
2

{
ε−2(F2 − F1)− ε−1(B̄ − Ā)F ′

1 −
1

2
(B̄ − Ā)2

}

+ c2T (B̄ − Ā)M̄ + P̄ − 3 + 4B̄ − kS2,(3.7)

M(ε(n+ 1)) = −c1T
[
ε−1(F ′

3 − F ′
1) + 1 +A(ε(n+ 1)) + Ā− 2B̄

]
+ M̄,(3.8)

P (ε(n+ 1)) = −c1c2T 2

[
ε−2(F3 − F1)− ε−1(1 +A(ε(n+ 1))− Ā)F ′

1

+
1

2
(1 +A(ε(n+ 1)) + Ā− 2B̄)2 − (B̄ − Ā)2

]

+ c2T (1 +A(ε(n+ 1))− Ā)M̄ + P̄ ,(3.9)

0 =M(ε(n+ 1)) + P (ε(n+ 1)) + 1− 4A(ε(n+ 1))− kS3.(3.10)

In all of these expressions, and in similar expressions to follow, we use the prime in
the obvious way, so that F ′(τ) denotes dF (τ)/dτ . The subscripts on F , F ′, and S are
used for brevity to indicate the arguments of these functions: F1 = F (ε(n+A(εn))),
F2 = F (ε(n + B(εn))), F3 = F (ε(n + 1 + A(ε(n + 1)))), S2 = S(ε(n + B(εn))), and
S3 = S(ε(n + 1 + A(ε(n + 1)))). To aid clarity, we have written Ā to mean A(εn),
with corresponding definitions for B̄, M̄ , and P̄ .

These four equations are simply a restatement of the corresponding set of dif-
ference equations (2.12), (2.14), (2.15), and (2.16) (with (2.10) and (2.11)). Next,
although only the sampled values of A, B, M , and P are physically relevant, ac-
cording to (3.6), we suppose that these four functions are smoothly interpolated to
intervening times, and that (3.7)–(3.10) in fact hold not just at τ = εn, but at all
intermediate times too. Thus we aim to solve

0 = −c1T
{
ε−1 [F ′(τ + εB(τ))− F ′(τ + εA(τ))] − [B(τ) −A(τ)]

}
+M(τ)

− c1c2T
2

{
ε−2 [F (τ + εB(τ)) − F (τ + εA(τ))]

− ε−1F ′(τ + εA(τ))(B(τ) −A(τ)) − 1

2
(B(τ) −A(τ))2

}

+ c2T (B(τ) −A(τ))M(τ) + P (τ)− 3 + 4B(τ) − kS(τ + εB(τ)),(3.11)

M(τ + ε) = −c1T
{
ε−1 [F ′(τ + ε+ εA(τ + ε))− F ′(τ + εA(τ))]

+ 1 +A(τ + ε) +A(τ) − 2B(τ)
}
+M(τ),(3.12)

P (τ + ε) = −c1c2T 2

{
ε−2 [F (τ + ε+ εA(τ + ε))− F (τ + εA(τ))]

− ε−1F ′(τ + εA(τ))(A(τ + ε)−A(τ))

+
1

2
(1 +A(τ + ε) +A(τ) − 2B(τ)) − (B(τ) −A(τ))2

}

+ c2T (A(τ + ε)−A(τ))M(τ) + P (τ),(3.13)

0 =M(τ + ε) + P (τ + ε) + 1− 4A(τ + ε)− kS(τ + ε+ εA(τ + ε)).(3.14)

Note that, in these equations, the functions S and F are known (they are, respectively,
the input signal and its second integral), and we aim to find the functions A, B, M ,
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and P . An exact solution of these equations seems infeasible; hence we solve them by
first expanding the unknown functions as series in ε, so that

(3.15) A(τ) =

∞∑
n=0

εnA(n)(τ),

with similar representations for B,M , and P , and then solving the resulting equations
at successive orders in ε.

3.1. Solution for the functions A, B, M , and P . The expansion in powers
of ε is rather lengthy and involved, and is carried out using computer algebra. Fur-
thermore, since an additional calculation must subsequently be performed to provide
details of the audio output of the amplifier, we give only the leading-order results here
for A, B, M , and P . These are that

A(0)(τ) = 1
16 (1− S(τ))(4 − c1T (1 + S(τ))),(3.16)

B(0)(τ) = 1
2 + 1

16 (1 + S(τ))(4 − c1T (1− S(τ))),(3.17)

M (0)(τ) = − 1
4c1T (1− S2(τ)),(3.18)

P (0)(τ) = −(1− k)S(τ).(3.19)

The results for A(0) and B(0) in particular turn out to be the same as for other
negative-feedback class-D amplifier designs that we have considered [6] (although the
terms at higher orders in ε differ). Thus, in view of (3.6), the switching times are
determined by

αn = 1
16 (1 − s(nT ))(4− c1T (1 + s(nT ))) +O(ε),(3.20)

βn = 1
2 + 1

16 (1 + s(nT ))(4− c1T (1− s(nT ))) +O(ε),(3.21)

and hence during the nth carrier-wave period the average value of the output g(t) is

(3.22) (+1)× αn + (−1)× (βn − αn) + (+1)× (1− βn) = −s(nT ),
so that in the audio-frequency range, the output is, to leading order in ε, simply −s(t).
The minus sign is of no consequence in the context of an audio amplifier, and so to
leading order in ε the present design is confirmed to introduce no audio distortion.
There is, unfortunately, distortion at higher orders in ε, as we shall see.

4. Determining the audio output of the amplifier. Once the problem
(3.11)–(3.14) has been solved to some order in ε, it remains to calculate the audio
output corresponding to a given audio input, assuming that all the high-frequency con-
tributions to the output, associated with switching around the carrier-wave frequency,
have been filtered out. Such a calculation is generally performed in the engineering lit-
erature (for a wide variety of switching technologies, not just class-D amplifiers) using
Black’s method [4, 9]. However, Black’s method is rather algebraically cumbersome,
as are some alternatives [13, 14], and will not be used here.

Instead, to calculate the audio output of the amplifier, we follow a compact for-
mulation, which we have recently introduced elsewhere [5, 7] in the context of power
converters. Thus we begin by noting that the full amplifier output may be written in
the form

(4.1) g(t) =

∞∑
n=−∞

{
ψ(t;Bn, An+1)− ψ(t;An, Bn)

}
,
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where ψ is the “top-hat” function given by

(4.2) ψ(t; t1, t2) =

{
1 for t1 < t < t2,
0 otherwise.

Hence the Fourier transform of the output is

ĝ(ω) =

∫ ∞

−∞
e−iωtg(t) dt

= 2(−iω)−1
∞∑

n=−∞

{
e−iω(n+αn)T − e−iω(n+βn)T

}

= 2(−iω)−1
∞∑

n=−∞
e−iωnT

{
e−iωA(εn)T − e−iωB(εn)T

}
.(4.3)

Note that this formula clearly cannot be used directly to evaluate ĝ(0), so later we
shall have to consider the zero-frequency component of g(t) separately. We next apply
the Poisson resummation identity,

(4.4)

∞∑
n=−∞

Φ(n) =

∞∑
n=−∞

∫ ∞

−∞
e2πinφΦ(φ) dφ,

to (4.3), which yields

(4.5) ĝ(ω) = 2(−iω)−1

∫ ∞

−∞
e−iωφT

∞∑
n=−∞

e2πinφ
{
e−iωA(εφ)T − e−iωB(εφ)T

}
dφ.

The integral in this expression is in the form of a Fourier transform, with each term
in the sum corresponding to frequencies around the nth harmonic of the carrier-wave
frequency. If our concern is the audio part of the output, which we shall denote by
ga(t), then only the term with n = 0 is of interest. Thus we see that ga(t) has Fourier
transform

(4.6) ĝa(ω) = 2(−iω)−1

∫ ∞

−∞
e−iωφT

{
e−iωA(εφ)T − e−iωB(εφ)T

}
dφ.

By expanding each of the exponentials in this expression as a Taylor series, and using
the result

(4.7)

∫ ∞

−∞
(−iω)e−iωφTΦ(φ) dφ = −T−1

∫ ∞

−∞
e−iωφTΦ′(φ) dφ,

we see that

ĝa(ω) = 2

∫ ∞

−∞
e−iωφT

∞∑
n=1

(−1)n−1 T

n!

dn−1

dφn−1
[An(εφ)−Bn(εφ)] dφ

= 2

∫ ∞

−∞
e−iωt

∞∑
n=1

(−1)n−1T
n−1

n!

dn−1

dtn−1
[An(εt/T )−Bn(εt/T )] dt.(4.8)

We may thus readily invert (4.8) to obtain the audio output, apart from the zero-
frequency contribution, which is obtained by noting that the time average of g(t) is
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zero. Hence

ga(t) = 1 + 2

∞∑
n=1

(−1)n−1T
n−1

n!

dn−1

dtn−1
[An(εt/T )−Bn(εt/T )]

= 1 + 2
∞∑
n=1

(−1)n−1 ε
n−1

n!

dn−1

dτn−1
[An(τ)−Bn(τ)]

= 1 + 2(A(τ) −B(τ)) − ε
d

dτ

[
A2(τ)−B2(τ)

]
+
ε2

3

d2

dτ2
[
A3(τ)−B3(τ)

]
+ · · · .(4.9)

Finally, by substituting the solutions obtained previously for A and B (see sec-
tion 3.1) in (4.9), after lengthy algebra we find the audio output to be
(4.10)

ga(t) = −S(τ) + ε2

24c1c2T 2

d2

dτ2

{[
24(1− k) + c1c2T

2
]
S(τ)− c1c2T

2S3(τ)

}
+O(ε3),

where we recall that τ = ωt. Several features of this result are worthy of note. First,
in view of (3.3), the dominant contribution to the audio output is (minus) the input
signal, with no distortion. Second, there is no distortion at O(ε). Third, the distortion
at O(ε2) comprises terms linear and cubic in the input signal. So, for a sinusoidal
input signal, the output, to the order calculated in (4.10), comprises the fundamental
and its third harmonic: for example, if s(t) = s0 sinωt, then

ga(t) = −s0 sinωt+ ω2

96c1c2

{[−(96(1− k) + 4c1c2T
2)s0 + 3c1c2T

2s30
]
sinωt

− 9c1c2T
2s30 sin 3ωt

}
+ · · · .(4.11)

The results above enable us to give an analytical expression for the total harmonic
distortion (THD) of the amplifier, defined as follows. If a sine wave

(4.12) s(t) = s0 sinωt

is the input and if

(4.13) ga(t) =

∞∑
n=−∞

gne
niωt

is the audio output, then the THD is defined as

(4.14) THD =

√|g2|2 + |g3|2 + · · ·
|g1| .

In the second-order amplifier analyzed above, the THD based on (4.11), to O(ε2), is

(4.15) THD ∼ 3
32ω

2T 2s20.

We have carried out various comparisons between this result and simulations
based on the Simulink model of the class-D amplifier; two of these are reported below.
The parameter values used for comparisons are

(4.16) T = 4× 10−6 sec, c1 = 3.8× 105 sec−1, c2 = 1.03× 106 sec−1, k = 0.
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Fig. 3. Top: fundamental component of the PWM output signal, |g1|, plotted against input
signal frequency in Hz, i.e., ω/(2π). Bottom: third harmonic component of the PWM output signal,
|g3|, plotted against the input signal frequency in Hz, i.e., ω/(2π). In each case, s(t) is given by
(4.12), with s0 = 0.7, and the comparison is made between an analytical solution (from Maple) and
a simulation (from MATLAB).

Thus the carrier wave has frequency 250kHz. The values of the integrator coefficients,
c1 and c2, have been chosen to be typical of practical designs.

In the first comparison, the input signal magnitude s0 is fixed at 0.7 and its
frequency is varied between 100Hz and 20kHz. The analytical result (4.11) and sim-
ulation results are shown in Figure 3. The figure shows that the analytical results
match the simulations extremely well, in the middle frequency range. At high fre-
quency (above approximately 10kHz), the analytical prediction for the third harmonic
is noticeably below the simulation results. Of course, it should be borne in mind that
when the input signal frequency is above 7kHz, its third harmonic is out of the audio
range (i.e., from 20Hz to 20kHz). Therefore, the small mismatch is acceptable. Note
that when the input signal frequency is 100Hz, the simulation result for the third
harmonic is a little bit higher than the analytical result. It turns out that this is due
to the effect of pulse skipping, which will be discussed in the next section.

In the second comparison, the input signal frequency is fixed at 5000Hz and the
input signal magnitude (termed the modulation index in the engineering literature)
varies from 0.1 to 0.9, in increments of 0.2. The analytical and simulation results are
shown in Figure 4. Again, there is excellent agreement between the two.

5. Pulse skipping. The analysis above assumes that g(t) switches from +1
to −1 and back to +1 during each carrier-wave period. However, it is observed in
numerical simulations in Simulink (i.e., using numerical time integration blocks pro-
vided by the software) that, on occasion, g(t) may fail to switch between ±1 during
the relevant time interval, in conflict with the assumption in (2.5)–(2.7). This failure
to carry out one or another switching may be interpreted as the skipping of a positive
or negative pulse in g(t), and hence it is referred to as “pulse skipping.” (Corre-
sponding behavior is observed in circuit implementations of this amplifier design.)
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Fig. 4. Top: fundamental component of the PWM output signal, |g1|, plotted against the
modulation index, i.e., input signal magnitude, s0. Bottom: third harmonic component of the
PWM output signal, |g3|, plotted against the modulation index. In each case, s(t) is given by (4.12),
with frequency 5kHz (i.e., ω = 2π×5000), and the comparison is made between an analytical solution
(from Maple) and a simulation (from MATLAB).

Indeed, during the numerical simulations discussed at the end of the previous section,
pulse skipping is found to occur shortly after each positive and negative peak in s(t).
Such pulse skipping raises the noise floor of the output signal and causes significant
harmonic distortion. For these reasons, it is an undesirable phenomenon, because
it limits the performance of the amplifier, particularly when the input signal is of
relatively low frequency and large magnitude.

Pulse skipping manifests itself in our mathematical model when the solution to
(2.12) or (2.16) is required to fall outside of its intended range, that is, if the solution
is required to satisfy αn > 1

2 or βn > 1. Intriguingly, accurate numerical iteration
of the difference equations (2.12), (2.14), (2.15), and (2.16), for the same parameters
as used in the numerical integrations, shows no evidence of pulse skipping, and we
find that αn and βn remain comfortably within their designated constraints, as given
by (2.7). Furthermore, in the continuous description of section 3, pulse skipping
would be indicated if the functions A and B were to venture into the range A > 1

2
or B > 1. However, it is clear from (3.16) and (3.17) that if the signal remains
within the bounds −1 < s(t) < 1 and if c1T < 2 (which is the case in practical
applications), then, based on the leading-order contributions A ∼ A(0) and B ∼ B(0),
neither of the transgressions A > 1

2 and B > 1 may occur. (Of course, we should
note that, while A > 1

2 or B > 1 would indicate the possibility of pulse skipping,
the continuous model is unable to predict in detail the behavior of the system during
pulse skipping, because its underlying assumption of slow, smooth variations in A(τ)
and B(τ) specifically precludes investigation of such fast instabilities; see [2, 8].) A
little further analysis, in the case s(t) = s0 sinωt, near the maxima and minima of
s(t), shows that if higher-order terms are retained in A and B, then we may indeed
find A > 1

2 or B > 1, but only if the amplitude s0 is very close to 1—in fact, if
|s0| − 1 = O(ε2). This circumstance is clearly not the case for the pulse skipping
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Fig. 5. Top: plot of the switching constant αn ≡ (An mod T )/T against times t = nT . Only
the discrete points (nT, αn) have any physical meaning; they are joined by lines to aid the eye.
The smooth curve is the result of numerical iteration of the difference equations (2.12), (2.14),
(2.15), and (2.16) in the computer algebra package Maple using 24 digits of numerical precision; the
other solutions are computed with 11 and 10 digits of precision (respectively, resulting in successively
stronger evidence of instability). Parameter values are as in (4.16), and the input signal is 0.7 cosωt,
with frequency 400Hz. With 10 digits of precision, a pulse is skipped during the switching period
beginning at t = 0.003844. Bottom: corresponding plot of g(t), showing the skipped pulse.

reported above, since it occurs for an input signal of far more modest amplitude (for
example, s0 = 0.7, with ε2 = (ωT )2 = 0.016). So there is an apparent inconsistency
between the theory and (numerical and actual) experiments regarding the presence
or absence of pulse skipping.

A resolution can be found by considering the stability of the analytical solution
that we have evaluated using high-precision computer-algebra simulations of the differ-
ence equations. A crude way to investigate the stability of this solution is by reducing
the precision with which these calculations are performed. At very high precision (for
example, 24 digits of precision in Maple), we find that, for the case s(t) = s0 sinωt,
with s0 = 0.7 and frequency 400Hz, perturbations to the exact solution for αn or βn
induced by numerical roundoff error generally do not grow to any significant mag-
nitude (hence, it is possible to compute this solution accurately using high-precision
arithmetic). However, if we use lower-precision arithmetic, then the roundoff errors
are greater, and we observe that, near the maxima and minima of s(t), these roundoff
errors do grow, in an oscillatory fashion. Eventually, if the precision is low enough,
these perturbations may become sufficiently large that they cause pulse skipping; see
Figure 5. Since the numerical integrations all necessarily have much lower accuracy
than our numerical iterations of the difference equations, this explains why pulse skip-
ping is seen there. The noise present in the circuit implementations of this amplifier
is also evidently sufficiently great to trigger pulse skipping. Note that when pulse
skipping occurs in simulations of our difference equations, we need to broaden the
definition of αn and βn so that

(5.1) αn =
An mod T

T
, βn =

Bn mod T

T
.

(These definitions are entirely consistent with the previous definitions given by (2.6)
in the absence of pulse skipping.) As is evident from Figure 5, this instability occurs,
as we demonstrate below, on the short time scale of the switching [10, 11, 16], so it
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cannot be captured by the analysis of section 3, which accommodates only variations
on the audio time scale. We thus turn next to an analysis of the difference equations
(2.12), (2.14), (2.15), and (2.16).

5.1. Instability. For notational convenience we now denote m(An) by mn and
p(An) by pn. We shall refer to the solution obtained by solving the difference equa-
tions in high-precision arithmetic, with no fast perturbations, as the “unperturbed
solution.” We let the unperturbed solution be denoted by

(5.2) m(An) = m̄n, p(An) = p̄n, An = Ān, Bn = B̄n.

The perturbed solution is then written as

(5.3) mn = m̄n+δmn, pn = p̄n+δpn, An = Ān+δAn, Bn = B̄n+δBn.

We suppose that an initial perturbation is induced by roundoff error, and we ex-
plore whether such a perturbation decays or grows, that is, whether the unperturbed
solution is stable or unstable.

The governing difference equations may be written compactly as follows.
The equation governing the switching time t = An is essentially (2.16), which we

write as

(5.4) φ0(mn, An) = pn.

The equation governing the switching time t = Bn is (2.12), which we write as

(5.5) φ1(mn, pn, An, Bn) = 0.

The equations determining mn+1 and pn+1, from (2.14) and (2.15), respectively, may
be written in the form

(5.6) φ2(mn, An, An+1, Bn) = mn+1, φ3(mn, pn, An, An+1, Bn) = pn+1.

Finally, (2.16) for the switching time t = An+1 may be written as

(5.7) φ4(mn+1, An+1) = pn+1.

We next linearize each of these equations about the unperturbed solution. Thus
from (5.4) and (5.5) we obtain

(5.8)
∂φ0
∂mn

δmn+
∂φ0
∂An

δAn = δpn,
∂φ1
∂mn

δmn+
∂φ1
∂pn

δpn+
∂φ1
∂An

δAn+
∂φ1
∂Bn

δBn = 0,

which we may use to determine δpn and δBn in terms of δmn and δAn. The remaining
equations, (5.6) and (5.7), give us

∂φ2
∂mn

δmn +
∂φ2
∂An

δAn +
∂φ2
∂An+1

δAn+1 +
∂φ2
∂Bn

δBn = δmn+1,(5.9)

∂φ3
∂mn

δmn +
∂φ3
∂pn

δpn +
∂φ3
∂An

δAn +
∂φ3
∂An+1

δAn+1 +
∂φ3
∂Bn

δBn = δpn+1,(5.10)

∂φ4
∂mn+1

δmn+1 +
∂φ4
∂An+1

δAn+1 = δpn+1.(5.11)
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Fig. 6. Plot of Λ ≡ max(|λ|, |μ|) against s0, for a constant input signal s(t) ≡ s0, and for the
parameter values in (4.16). The analytical solution, based on (3.16)–(3.19), is stable where Λ < 1
and unstable where Λ > 1. We find that where Λ > 1, the eigenvalue responsible for instability is
real and negative, consistent with the oscillations seen in the values of αn shown in Figure 5.

Using (5.11), we may then eliminate δpn+1, leaving a pair of equations relating
(mn+1, An+1) to (mn, An), which we may write in the form

(5.12)

(
mn+1

An+1

)
= Cn

(
mn

An

)
,

where Cn is a 2 × 2 matrix, whose coefficients may be computed numerically, simul-
taneously with the numerical iteration of the solution itself.

Now, since the governing system is nonautonomous (it is forced by the time-
dependent input signal), the stability of perturbations in general requires careful con-
sideration. Here, however, the input signal varies only slightly during a carrier-wave
period, so that Cn+1−Cn = O(ε), and hence the eigenvalues λn and μn of the matrix
Cn give a good indication of the stability or otherwise of the unperturbed solution. If
Λ ≡ max(|λn|, |μn|) > 1, then there is instability.

Figure 6 shows the values of Λ corresponding to the analytical solution resulting
from a constant input signal s(t) ≡ s0, for values of s0 in the range 0 ≤ s0 ≤ 1
(by symmetry the values of Λ are the same for s0 �→ −s0). Here, the problem is
autonomous, and all the matrices Cn are equal. The parameter values used are given
in (4.16). We see that for small and moderate values of s0 the analytical solution is
stable, since Λ < 1. Furthermore, for the smallest values of s0, the two eigenvalues
λ, μ are complex conjugates; for larger values of s0 (above approximately 0.55), each
of the eigenvalues is real and negative. For s0 > sc, where sc ≈ 0.665, Λ > 1 and
the solution is unstable. We have confirmed this threshold between stability and
instability by carrying out numerical simulations for a constant input signal; we find
excellent agreement with the instability threshold sc.

Figure 7 shows the growth of perturbations to the switching times, for a sinusoidal
input signal with peak amplitude 0.7 in simulations of our difference equations (2.12),
(2.14), (2.15), and (2.16), using 10 digits of precision. Since, as shown in Figure 6,
the smooth solution for the response of the amplifier is unstable when s(t) > sc, it
is clear that we expect growth of perturbations around the maxima in the absolute
value of s(t). Furthermore, it is also clear that the corresponding high-frequency
disturbances will tend to become visible towards the later parts of the interval of
instability, since they must grow from a small initial amplitude (roundoff error in
these simulations). These considerations are consistent with the observations of pulse
skipping in numerical simulations and in circuit implementations of the amplifier.

Finally, we note that it would be possible to investigate in much greater detail the
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Fig. 7. Plots for an input signal s(t) = s0 cos ωt and for the parameter values in (4.16), with
s0 = 0.7 and frequency 400Hz. Upper curve shows Λ ≡ max(|λn|, |μn|) against time; where Λ > 1,
we expect disturbances to the exact solution to grow. Middle and lower curves show βn and αn,
respectively. The appearance of high-frequency perturbations to the smooth solutions for βn and αn

can clearly be seen, corresponding to the time intervals where Λ > 1. Simulations are of the difference
equations (2.12), (2.14), (2.15), and (2.16), using 10 digits of precision in calculations.

onset of oscillations as |s(t)| passes through the threshold sc, using the techniques of
Baer, Erneux, and Rinzel [1]. In our context, their WKB-type analysis would provide
a quantitative estimate of the delay between the passage of |s(t)| through sc and
the visible manifestation of instability. Furthermore, it is conceivable that such an
analysis could be extended to provide information about the effects of the instability
on the output spectrum. However, we shall not embark on such a detailed analysis
here, because the primary engineering interest is in the behavior of the amplifier prior
to the onset of the high-frequency instability, and certainly prior to the onset of pulse
skipping.

5.2. General stability criteria. We now turn to the determination of condi-
tions under which the amplifier may suffer an instability, potentially leading to pulse
skipping. Although it seems infeasible to give such conditions for a general input
signal, we shall proceed with the simpler task of approximating the appropriate con-
ditions for a typical audio input, by considering in more detail the stability of the
amplifier output for a constant input signal. Our goal is to determine analytical
conditions on the parameters to preclude pulse skipping.

For the case of a constant input signal, s = s0, we consider the eigenvalues of
the matrix in (5.12) (recall that in the steady-state operation of the amplifier for a
constant input signal, all the matrices Cn are identical). These eigenvalues satisfy a
quadratic characteristic equation, whose coefficients are complicated functions of the
parameters s0, c1, c2, and T ; these complicated expressions are not recorded here. It is
readily determined from this characteristic equation (although algebraically involved
to do so) that instability with an eigenvalue λ passing through the unit circle at eiθ

is possible only if θ = π; i.e., a transition to instability is possible only as λ passes
through the value −1. This result helps significantly in the analysis that follows.

If we now fix c1, c2, and T and seek conditions on the input amplitude s0 at which
instability arises, we obtain the quartic equation
(5.13)
4c21c

2
2T

4s40−8c1T (c1c
2
2T

3+16c2T+8c1T )s
2
0+1024+64c21T

2+4c21c
2
2T

4−128c1c2T
2 = 0.

We shall assume that with s0 = 0 the amplifier is stable; otherwise, the amplifier is
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impractical. This assumption is equivalent to requiring the condition

(5.14) 1024 + 64c21T
2 + 4c21c

2
2T

4 − 128c1c2T
2 > 0.

Equation (5.13) is then readily observed to have two positive roots for s20, and we
denote the corresponding positive roots for s0 by s−0 and s+0 (with s+0 > s−0 ). The
amplifier would then be stable for constant inputs with 0 ≤ |s0| < s−0 and unstable for
s−0 < |s0|. However, the input signal amplitude is limited to be no greater than 1, so
if we can ensure that s−0 > 1, then the amplifier will be stable for all allowed inputs.
Analysis of (5.13) shows that s−0 > 1 provided

(5.15) c1c2T
2 < 4.

This is the condition for pulse skipping to be entirely precluded. If it is not satisfied,
then the smaller positive root of (5.13) gives the threshold value of the input signal at
which instability arises, potentially leading to pulse skipping. Numerical simulations
of the amplifier confirm these thresholds.

Of course, the analysis above concerns a constant input signal. For a more general
audio input signal, we do not expect to see pulse skipping if the condition (5.15) is
satisfied. However, if instead c1c2T

2 > 4, then there is the potential for pulse skipping
whenever s(t) exceeds the threshold s−0 given by (5.13). But there must be adequate
time for any noise to grow to an appreciable level while s(t) > s−0 , so pulse skipping will
be more prevalent for low-frequency audio inputs of a given amplitude (as observed in
practice). Unfortunately, it is beyond the scope of our analysis to give exact formulas
for this frequency dependence.

6. Conclusions. We have developed a mathematical model for a second-order
class-D amplifier with negative feedback, and we used it to derive an exact mathemat-
ical expression for the most significant (third-harmonic) distortion term. A correct,
predictive determination of this distortion term has not previously been possible. The
analytical prediction is in excellent agreement with spectra obtained from numerical
simulations.

We have shown how the pulse skipping that is observed in practice (in both nu-
merical simulations and in circuit implementations of the amplifier) arises from an
instability of the analytical solutions we have derived for the circuit behavior. By an-
alyzing the stability of our smooth analytical solution, we have show that we expect
instability when the input signal exceeds some threshold amplitude. This result is con-
sistent with observations of associated pulse skipping around (but generally slightly
after) maxima and minima of the input signal, once the instability has had the oppor-
tunity to grow to an appreciable magnitude. Pulse skipping generates high-frequency
noise, which is filtered out along with the high-frequency components associated with
the switching. It is also responsible for the slight disagreements observed, with low-
frequency inputs, between analytical predictions of the output audio spectrum which
ignore the phenomenon and simulations which necessarily suffer from it.

In the future, we hope to develop this model to explore ways in which the most
significant distortion term can be eliminated, although this is not a simple task.

Appendix A. Relation between integration time constants and system
parameters. In practice, the integrators in the amplifier are implemented by means
of a second-order loop filter, as shown in Figure 8. In this appendix, we record
the relationship between the integration time constants (c1 and c2) and the circuit
elements in the loop filter.
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Fig. 8. Circuit schematic of the second-order loop filter used to implement the two integrators
of the amplifier design.

All quantities in Figure 8 are assumed to be dimensional, so that

vin(t) = K1s(t), g∗(t) = K2g(t), vout(t) = K3(m(t) + p(t))

for some voltage scaling factors K1, K2, and K3. Then it is readily determined that,
in between the switching times of g∗(t), vout(t) satisfies the second-order differential
equation

v′′out(t) = −C1 + C2

C1C2R1
v′in −

1

C2R3

(
1

C1R1
vin +

1

C1R2
g∗(t)

)
.

Hence

c1 =
(C1 + C2)K2

C1C2R2K3
, c2 =

1

(C1 + C2)R3
.
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