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Abstract

The variability of neuronal firing has been an intense topic of study for many years.

From a modelling perspective it has often been studied in conductance based spiking

models with the use of additive or multiplicative noise terms to represent channel

fluctuations or the stochastic nature of neurotransmitter release. Here we propose

an alternative approach using a simple leaky integrate-and-fire model with a noisy

threshold. Initially, we develop a mathematical treatment of the neuronal response

to periodic forcing using tools from linear response theory and use this to highlight

how a noisy threshold can enhance downstream signal reconstruction. We further de-

velop a more general framework for understanding the responses to large amplitude

forcing based on a calculation of first passage times. This is ideally suited to under-

standing stochastic mode-locking, for which we numerically determine the Arnol’d

tongue structure. An examination of data from regularly firing stellate neurons within

the ventral cochlear nucleus, responding to sinusoidally amplitude modulated pure

tones, shows tongue structures consistent with these predictions and highlights that

stochastic, as opposed to deterministic, mode-locking is utilised at the level of the

single stellate cell to faithfully encode periodic stimuli.
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1 Introduction

A vast body of work has been devoted to understanding the variability of single neuron

response to repeated stimuli, especially as regards the consequences for neural coding

(Mainen and Sejnowski, 1995; Nowak et al., 1997; Beierholm et al., 2001; Fellous et al.,

2001). For a recent perspective on this within the computational neuroscience commu-

nity we refer the reader to Longtin and Rinzel (2009). The source of spike-train variabil-

ity is often linked to noise which can arise across a broad range of spatial and temporal

scales. Examples of stochastic processes within the single neuron include the dynamics of

gene regulatory networks, ranging up to channel kinetics and neurotransmitter release.

Recent work has begun to quantify these, and other, sources of noise and uncover how

they contribute to trial-to-trial variability (Faisal et al., 2008). Theoretical work in this area

has greatly benefited from the use of techniques from nonlinear dynamics and statistical

physics (Holden, 1976; Tuckwell, 1989; Lindner et al., 2004) and is still an active area of

research (Laing and Lord, 2010). In this paper, we are primarily interested in the variable

times of generation of action potentials in response to a given input, as opposed to spon-

taneous action potentials. The latter are often thought of as arising from intrinsic channel

fluctuations in an excitable system (Chow and White, 2000), whereas for strongly driven

systems extrinsic fluctuations are more important. Although it is common to model the

generation of action potential timings through a stochastic point process (Rieke et al.,

1999) we shall favour the use of a mechanistic model that retains a clear notion of a volt-

age threshold for spike generation. The simplest class of models of this type are those

of integrate-and-fire (IF) type. The dynamics of these noiseless models subject to peri-

odic forcing has been developed in Coombes and Bressloff (1999), using the language of

Arnol’d tongues, building on the seminal work of Keener et al. (1981). Obviously these

are deterministic dynamical systems models that are unlikely to generate variable firing

times without some additional stochastic component. This is often introduced as an addi-

tive or multiplicative noise source in the current drive to the model in order to mimic the

effects of channel fluctuations or the stochastic nature of neurotransmitter release. Nu-

merical studies of sinusoidally forced IF models with additive zero-mean Gaussian white

noise have been pursued in Hunter et al. (1998) to show a resonance-related enhance-

ment in spike time reliability that decreases as the relative amplitude of the fluctuations
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increases. Similar studies of quasi-periodically forced noisy IF models have also been per-

formed by Tiesinga (2002) who showed that neuronal reliability is strongly influenced by

the location of Arnol’d tongues in parameter space. Mathematical techniques for study-

ing periodically forced noisy IF models have been developed by many authors using

techniques from statistical physics (mainly for Langevin and Fokker-Planck equations)

(Plesser and Gerstner, 2000; Burkitt and Clark, 2000; Brunel et al., 2001; Verechtchaguina

et al., 2006; Kostur et al., 2007; Schwalger and Schimansky-Geier, 2008) as well as the nu-

merical analysis of an appropriate stochastic phase transition operator (Tateno et al., 1995;

Shimokawa et al., 2000). However, noise at the axon hillock (connecting the cell body to

the axon and being the primary site of action-potential initiation) is another mechanism

that may underlie spike variability. The source of this noise is once again due to channel

noise (despite the comparatively large number of ion channels that are present at these

sites). Stochastic simulations suggest that it is the number of ion channels open at the

action potential threshold that determines its timing precision and that the resulting vari-

ability in spike timing is larger for weaker driving signals, for which the likelihood of the

membrane potential reaching the action potential threshold is more affected by channel

noise (Schneidman et al., 1998). Because of this it would seem natural to model firing

variability at the axon hillock via a random modulation of the threshold in an IF model.

Indeed such a model has already been shown to be capable of representing the responses

of H1 cells in the visual system of the fly (Gestri et al., 1980). H1 cells are directionally

selective and their mean response has been shown to encode reliably the velocity con-

trast of drifting gratings. Importantly, threshold noise is a natural model that can cover

a broad spectrum of biophysical sources of stochasticity in a phenomenological fashion.

From a functional perspective it is probably of less consequence as to how one models

noise as opposed to recognising that in some form or other it underlies spike-train vari-

ability (assuming the model also accurately fits data). As well as providing a convenient

description for such behaviour, noisy threshold models are in fact mathematically and

computationally easier to deal with than models with random current injection (Lindner

et al., 2005) and have been analysed in the context of optimal linear signal estimation in

(Gabbiani and Koch, 1996, 2001; Steinmetz et al., 2001)

In section 2, we introduce the IF model and the form of threshold noise that we shall

study throughout this paper. Next we develop a linear response theory for the determina-
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tion of firing patterns in the regime of small amplitude periodic forcing. Here we review

work of Knight (1972a; 1972b; 2008) and use simulations to show that a population of un-

coupled leaky IF neurons with sufficient threshold noise can faithfully encode a stimulus

in the network firing rate. In section 4 we develop a novel method for the determination

of first passage times in IF systems with threshold noise based on the notion of a Rice

expansion. This allows us to work in the regime of large amplitude periodic forcing to

determine inter-spike interval (ISI) histograms. Numerical simulations of the stochastic

model are used to confirm the validity of our calculations. We also numerically explore

the patterns of ISIs throughout parameter space and determine how increasing the level

of noise modifies the landscape for stochastic mode-locking. In section 5 we show that

data from stellate cells in the ventral cochlear nucleus are very well explained by an IF

model with threshold noise, which supports the hypothesis that stochastic, as opposed

to deterministic, mode-locking is utilised at the level of the single chopper cell to encode

periodic stimuli. This leads to a tentative proposal concerning the role of stochasticity in

coding different aspects of the stimulus envelope in these neurons. Finally in section 6

we give a brief summary and discussion of the work in this paper.

2 The model

The evolution of the voltage V in a linear (leaky) IF model is given by

C
dV
dt

= −gL(V − VL) + I(t), (1)

where I(t) is an injected current. An action potential is said to occur whenever the mem-

brane potential V reaches some threshold Vth. The set of action potential firing times are

defined by

Tn = inf{t | V (t) ≥ Vth ; t ≥ Tn−1}. (2)

The corresponding set of inter-spike intervals (ISIs) is given by ∆n = Tn+1 − Tn. Immedi-

ately after a firing event the system undergoes a discontinuous reset such that V (T+
n ) = VR.

Hence, the flow generated by the IF process is discontinuous at the firing times t = Tn. In-

troducing the membrane time-constant τ = C/gL and absorbing a factor of gL within the

definition of I(t) the deterministic solution of (1) may be written

V (t) = VL +G(t) + e−(t−Tn)/τ [VR − VL −G(Tn)] , Tn < t < Tn+1, (3)
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where

G(t) =
1

τ

0∫
−∞

es/τI(s+ t)ds. (4)

In this paper we shall focus on periodic forcing with I(t) = I0 + a sinωt. A simple calcu-

lation gives

G(t) = I0 +
a√

1 + ω2τ 2
sin(ωt− θ), tan θ = ωτ. (5)

In the case that the threshold Vth is a constant, the properties (existence and stability)

of mode-locked solutions can be explicitly calculated (Coombes and Bressloff, 1999). By

a mode-locked solution we mean here that the spike train generated in response to a

periodic signal shows a repeating pattern of p clustered spikes, which repeat at integer

multiples q of the stimulus period. The explicit construction of borders in parameter space

that define the instabilities of mode-locked states, labelled p:q, can be used to build up the

so-called Arnol’d tongue structure for the model. For example a 1:1 mode-locked state

fires with period ∆ = 2π/ω at a phase φ ∈ [0,1) determined by the solution of V (Tn) = Vth

with Tn = (n+ φ)∆, which from (3) gives

G(φ∆) =
Vth − VL + e−∆/τ [VL − VR]

1− e−∆/τ
. (6)

Here we have used the fact that G is a ∆-periodic function. From the form of (5) and (6)

we see quite clearly that in the limit τ →∞ (so that the model is a perfect integrator) then

the neuron could lock to the signal at any arbitrary phase as long as I0∆/τ = Vth − VR.

Hence, there is a big difference in the behaviour of perfect and leaky IF models. A perfect

integrator could show variability in its phase-locking to a periodic signal (depending on

initial data) though a leaky integrator could not (as it would always lock to the phase φ

determined by (6)). However, to incorporate the effect of threshold noise we shall move

away from a completely deterministic description and reinterpret the threshold for firing

as a random variable, such that Vth → Vth + ξ, where ξ is drawn from a distribution ρ(ξ).

In this case, the probability of the neuron firing when the membrane potential is equal to

V is

P (V ) =

∞∫
−∞

H(V − Vth − ξ)ρ(ξ)dξ, (7)

where H is a Heaviside function. A common choice for the distribution of thresholds

is one that reproduces the Little model (Little, 1974; Little and Shaw, 1978) with ρ = f ′
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Figure 1: The probability of firing in a model with Gaussian threshold noise. Here Vth =

−40 mV and σ = 4 mV−1 (black), σ = 3 mV−1 (red), σ = 2 mV−1 (green), σ = 1 mV−1 (blue)

and σ = 0.5 mV−1 (magenta).

and f(ξ) = (1 + e−βξ)−1. Here the temperature parameter β controls the width of the bell-

shaped distribution for ρ and we have simply that P (V ) = f(V − Vth). Other sigmoidal

forms for the probability of firing can be generated by choosing bell shaped distributions

for ρ. Throughout the rest of this paper we shall work with the Gaussian choice

ρ(ξ) =
1√

2πσ2
e−ξ

2/(2σ2). (8)

The probability of firing in a model with Gaussian threshold noise defined by (8) is

shown in Fig. 1. For the rest of this study we shall represent the fluctuating threshold by

a stochastic process Φ(t) whose stationary probability distribution around the mean Vth

is given by (8) with a temporal correlation function γ(τ) = 〈Φ(t)Φ(t+ τ)〉 = σ2e−τ2/(2η2).

Since |γ′′(0)| = σ2/η2 <∞, Φ(t) is differentiable in the mean-square sense, so that thresh-

old crossings are well defined. The numerical scheme that we have developed for the

implementation of this IF model with a stochastic threshold is given in Appendix A.

3 Linear response theory

To gain an understanding of the response properties of a periodically forced leaky IF neu-

ron model (both with and without noise) it is first useful to develop a linear response
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theory. In fact this has already been done in a very beautiful paper by Knight (1972a),

who focused on stochastic effects that can be modelled by choosing an appropriate distri-

bution for the ISIs. In this section we shall review the techniques of Knight for both single

unit and population responses (as well as their relation), though focus more closely on

threshold noise and how it enforces a specific ISI distribution. For a recent discussion

on how to analyse networks of nonlinear IF neurons we refer the reader to Richardson

(2008).

3.1 Deterministic single unit response

Consider I(t)→ I(t) + δI(t), with corresponding changes G(t)→ G(t) + δG(t), Tn→ Tn +

δTn and ∆n→∆n + δ∆n. Here δG(t) =
∫∞

0
es/τδI(s+ t)ds/τ . For a frequency fn = 1/∆n we

have the corresponding change 1/fn→ 1/(fn + δfn), so that δ∆n =−δfn/(fn)2. Expanding

the firing map Vth = V (Tn+1 + δTn+1), with V (t) given by (3), to first order gives

0 = G′(Tn+1)δTn+1

+ δG(Tn+1)− δ∆n

τ
e−∆n/τ [VR − VL −G(Tn)]− e−∆n/τ [G′(Tn)δTn + δG(Tn)]. (9)

From (4) we note that if I(t) is slowly varying then G(t) ∼ I(t) with G′(t) ∼ 0. In this case

we have from (9) the simpler relationship that

δ∆n = τ
e∆n/τ

VR − VL − I(Tn)
[δG(Tn+1)− e−∆n/τδG(Tn)]. (10)

Fixing t = Tn+1 and writing the instantaneous period Tn+1 − Tn as ∆(t) gives

δf(t) =
e∆(t)/τ

∆(t)2

t∫
t−∆(t)

δI(s)

[VL − VR + I(t)]
e−(t−s)/τds. (11)

For I(t) = I0, ∆(t) = ∆0, f0 = 1/∆0, and δI(t) = δI(0)eiωt then

δf(t)

δI(t)
=

f0

[VL − VR + I0]
e1/(τf0) 1− e−(iω+1/τ)/f0

(iω + 1/τ)/f0

, (12)

which is independent of t. Here ∆0 = τ log((VR− VL− I0)/(Vth− VL− I0))H(Vth− VL− I0).

We interpret equation (12) as the deterministic single unit response gain function, which

gives the corresponding change in frequency as a function of the change in the drive.

Note that for a perfect integrator (τ →∞) then (12) has zeros when sω ≡ ω/ω0 = n, n ∈ Z,

and ω0 = 2πf0.
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3.2 Deterministic population response

Consider a population density ρ(V, t) for a large uncoupled network indexed by i =

1, . . . ,N :

ρ(V, t) = lim
N→∞

1

N

∑
i=1

δ(V − Vi(t)). (13)

The dynamics for ρ(V, t) can be written in terms of a conservation law:

∂ρ

∂t
= − ∂J

∂V
, (14)

for some flux J(V, t). The population firing rate, r(t), can be identified with the flux

through V = Vth, namely

r(t) = J(V, t)|V=Vth
= ρV̇

∣∣∣
V=Vth

. (15)

In an asynchronous state the density ρ(V, t) is a time-independent constant ρ0. Hence, for

a pure integrator with τ V̇ = I

r(t) =
ρ0

τ
I(t), (16)

and the signal can be reconstructed from the population rate. This has recently been

termed the faithful copy property by Knight (2008). Since asynchrony underlies this coding

property it is interesting to note that a recent theoretical study has shown that recur-

rent neural networks are capable of generating such states despite substantial amounts of

shared input (and also retain low mean spiking correlations) (Renart et al., 2010). For a

constant signal I = I0 we have simply that r0 = ρ0I0/τ . A linear perturbation analysis can

be performed by considering I0→ I0 + δI and r0→ r0 + δr in which case it may be shown

that (see Appendix B)
δr

δI
=
r0

I0

. (17)

For a model that deviates from (17) the implication would be that signal reconstruction

from the population rate is not optimal.

3.3 Relationship between single unit rate and population rate

Consider a large uncoupled network of N spiking neurons with a population firing rate

r(t). In an asynchronous state over one ISI, ∆(t), of a single neuron all neurons in the
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network must fire once. Hence

N =

t∫
t−∆(t)

r(t′)dt′. (18)

A linear response theory may be developed by letting ∆→ ∆ + δ∆, r→ r+ δr(0)eiωt and

expanding (18) to first order around (r,∆) = (r0,∆0). This yields

δr

δf
=
r0

f0

iω/f0

1− e−iω/f0
, (19)

which is valid for any model described by (18). Note the divergence of δr/δf when ω/f0 =

2πn. To obtain the variation in r in terms of the variation in I we write

δr

δI
=
δr

δf

δf

δI
, (20)

where δf/δI is model dependent. Using (12) for a leaky integrator we find

δr

δI
=

r0

[VL − VR + I0]

iω

iω + 1/τ

e1/(τf0) − e−iω/f0

1− e−iω/f0
. (21)

We see that only in the limit τ → ∞ and VL = VR do we recover the relationship (17),

suggesting that signal reconstruction for a network of (uncoupled) leaky IF neurons is

poor especially near resonances where ω/f0 = 2πn. Obviously one way to compensate is

to work with membrane models that are not leaky. However, physiologically this does

not seem to be the preferred choice. Rather we will next show that threshold noise is a

natural way to flatten (21) and improve the ability of a network to reconstruct an input

signal.

3.4 Stochastic encoding

Noise may be thought to serve two purposes for uncoupled leaky IF networks: i) to com-

bat the tendency to synchronise and promote asynchronous states (which are better for

signal reconstruction at the network level), and ii) to diminish resonances (and again lead

to better signal reconstruction). To establish the former property we perform simulations

of N = 1000 uncoupled leaky IF neurons with increasing levels of threshold noise and

track the Pinsky-Rinzel measure of synchrony (Pinsky and Rinzel, 1995). This is defined

with the introduction of a set of phases, φk(j,m), associated with the firing times of the

jth neuron:

φk(j,m) =
Tk(j,m)− Tmj
Tm+1
j − Tmj

, Tmj ≤ Tk(j,m) < Tm+1
j . (22)
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Here the Tk(j,m) represent the set of firing times of neurons i 6= j that occur on the interval

[Tmj , T
m+1
j ). The number of such events will be denoted by A(j,m) with 1 ≤ k ≤ A(j,m).

For a set of phases Φ(j,m) = (φ1(j,m), . . . , φn(j,m)) with n = A(j,m) and fixed (j,m) we

introduce the order parameter

R(Φ) =
1

n2

n∑
k,l=1

cos 2π (φk − φl) . (23)

An overall measure of synchrony, R, is defined by averaging R(Φ) over all neurons and

firing events in some time window. Perfect synchrony would correspond to R = 1 and

asynchrony to R = 0. Figure 2 confirms the conjecture that increasing the threshold noise

strength does indeed promote asynchronous network states. In this plot we vary the ratio

of the driving frequency to the natural frequency of the neuron, sω ≡ ω/ω0, as well as the

amplitude of forcing, a, and show that in all cases synchrony drops off with increasing

variance of the noisy threshold.
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Figure 2: Loss of synchrony with increasing noise strength in a network of 1000 uncoupled

leaky IF neurons for different values of the ratio of the driving frequency to the natural

frequency of the neuron, sω ≡ ω/ω0, and the amplitude of forcing, a. Parameter values are

(left) sω = 1.1, a = 1, (middle) sω = 2.2, a = 2, (right) sω = 3.1, a = 1.5. Other parameter

values are η = 2 ms, I0 = 2.4, VL = VR = −60 mV, Vth = −40 mV and τ = 10 ms.

To establish the second conjecture regarding the ability of noise to diminish resonances

we present the following mathematical analysis (making use of linear response theory).

In the presence of threshold noise the instantaneous ISI is a random variable defined,

from (3), according to

Vth + ξ = VL +G(∆) + e−∆/τ [VR − VL −G(0)] . (24)
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For the case of a constant drive with I = I0 the ISI ∆ = ∆0 is simply defined by

Vth + ξ = (I0 + VL)(1− e−∆0/τ ) + VRe−∆0/τ , (25)

where for a constant drive G(t) = I0 for all t. From the linear response theory of section

3.1, with I = I0, we have an explicit form for δ∆ = δ∆(∆0) as

δ∆(∆0) = −(e∆0/τ − e−iω∆0)

(iω + 1/τ)

δI

[VL − VR + I0]
. (26)

Denote the probability density for ∆ as ψ(∆) and the corresponding distribution for ∆0

as ψ0(∆0). The mean value of δ∆ is thus

δ∆ =

∫
ψ0(∆0)δ∆(∆0)d∆0. (27)

Introducing the function ψ̃0(iω) =
∫

d∆0ψ0(∆0)e−iω∆0 , allows us to write (27) in the form

δ∆ =
ψ̃0(iω)− ψ̃0(−1/τ)

(iω + 1/τ)

δI

[VL − VR + I0]
. (28)

As we did for the noise free case in section 3.3 we next show how to calculate a population

response (uncoupled) in the presence of noise.

Denote the probability density that a single neuron fires at time t after firing at t−∆

as ψ(∆, t). Denote the number of firings in the population between t and t−∆ as n(∆, t),

which is related to the population rate r(t) as

n(∆, t) =

t∫
t−∆

dsr(s). (29)

The number of neurons in the network then satisfies

N =

∫
d∆ψ(∆, t)n(∆, t). (30)

Performing a linear response analysis according to r(t) = r0 + δr(t) and ψ(∆, t) = ψ0(∆) +

δψ(∆, t) gives
∞∫

0

d∆ψ0(∆)

t∫
t−∆

dsδr(s) = −r0∆, (31)

where ∆ is an average with respect to the perturbation of the distribution:

∆ =

∞∫
0

d∆δψ(∆, t)∆. (32)
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For δr(t) = δr(0)eiωt and using
∫

d∆ψ0(∆) = 1 we find

δr

∆
= −r0

iω

1− ψ̃0(iω)
. (33)

Identifying ∆ = δ∆ then using (28) and (33) gives the result

δr

δI
=

δr

δ∆

δ∆

δI
=

r0

[VL − VR + I0]

iω

iω + 1/τ

ψ̃0(−1/τ)− ψ̃0(iω)

1− ψ̃0(iω)
. (34)

Noting that |ψ̃0(iω)|<
∫

d∆|ψ0(∆)|= 1 the denominator in (34) cannot equal zero, and res-

onances (where sω is integer) are suppressed. In the noise free limit (when the distribution

for ψ0 is a delta-Dirac function centred at the value of ∆0 defined by (25) with ξ = 0), we

recover the deterministic result (21) with Vth = (I0 + VL)(1− e−1/(τf0)) + VRe−1/(τf0).

To compute (34) it is necessary to evaluate ψ̃0(iω) for the given distribution of thresh-

old noise. To do this we note that ψ0 (∆0) d∆0 = ρ (V (∆0)− Vth) dV (∆0), where V (∆0) =

Vth + ξ = (I0 + VL)(1− e−∆0/τ ) + VRe−∆0/τ , so that we may write

ψ̃0(iω) =

∫
ρ (V (∆0)− Vth)

dξ
d∆0

δ∆(∆0)e−iω∆0d∆0, (35)

with ξ = ξ(∆0) defined by (25). By differentiation of (25) we see

dξ
d∆0

=
1

τ
e−∆0/τ [VL − VR + I0]. (36)

Hence,

ψ̃0(iω) =
VL − VR + I0

τ

∫
ρ (V (∆0)− Vth) e−∆0/τe−iω∆0d∆0, (37)

which may be evaluated numerically. A plot of the amplitude of (34) for various levels of

noise is shown in Fig. 3.

The linear response theory that we have reviewed here is limited in that it can only

treat small amplitude periodic signals. However, to establish whether the faithful copy

property can be achieved for large amplitude forcing we resort to direct numerical simu-

lations. In Fig. 4 we show results of a study of 1000 uncoupled IF neurons with threshold

noise for both small and large noise strengths. In the low noise case phase-locking to the

periodic driving signal dominates and the neurons operate in synchrony. The network

firing rate is able to track the frequency of the drive but not its specific temporal shape.

In contrast, high levels of noise promote asynchrony (see Fig. 2), and the network rate

accurately reflects the shape of the sinusoidal driving force.
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Figure 3: A plot of the amplitude of the population response function |δr/δI|/r0 for a

leaky integrator network as a function of sω ≡ ω/ω0 for σ = 0.01 (black), σ = 0.1 (green),

σ = 0.15 (blue), σ = 0.2 (red) and σ = 0.25 (magenta). The response function becomes

progressively flatter and resonances are abolished as the blow up around sω = 1 on the

right illustrates. Other parameter values are VL = VR = −60 mV, Vth = −40 mV, τ = 10 ms

and I0 = 2.3.
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Figure 4: Network rate r (dots) for σ = 0.001 mV (left) and σ = 5.5 mV (right) in the 1:1

case for sω = 1.1 and a = 1. The solid black line in the right panel corresponds to the

oscillating input signal. Other parameter values are η = 2 ms, I0 = 2.4, VL = VR =−60 mV,

Vth = −40 mV and τ = 10 ms.
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In the next section we move beyond linear response theory by developing the calcula-

tion of first passage times in IF systems with threshold noise. Moreover, we will broaden

our discussion to include the properties of other mode-locked states, and not just the 1:1.

4 First passage times

The observation that neurons generate voltage spikes as soon as the membrane potential

reaches a critical value has led to the identification of ISIs with first passage times (Ger-

stein and Mandelbrot, 1964; Capocelli and Ricciardi, 1971). Generally, a first passage time

corresponds to the time that a stochastic process needs to reach a predefined boundary

given some initial data. Hence, the first passage time is a random variable. Since the

neuron is reset to a fixed value after eliciting a spike, each ISI presents a realisation of

a first passage time, so that the distribution of first passage times is identical to the ISI

distribution. The most common approaches to quantify first passage times have assumed

a constant threshold, e.g. Ricciardi and Sato (1988), but see Tuckwell and Wan (1984) for

a contribution involving a deterministically moving barrier and Tateno and Jimbo (2000)

for an IF model with periodically varying threshold (though constant drive). In contrast,

we here consider a fluctuating threshold in the presence of a deterministic membrane

potential.

4.1 Solution for varying boundary

Since we have chosen the fluctuating threshold to be a stationary Gaussian process Φ(t)

(see section 1), then the calculation of the ISI distribution is equivalent to computing the

first passage time of this process through the deterministically evolving trace of the mem-

brane potential. Following ideas of Rice (1944), the probability that Φ(t) crosses through

the boundary V (t) in the interval [t, t+ dt] is given by

F (V (t), t|φ0) =W1 (t|φ0)−
t∫

0

dt1W2 (t1, t|φ0)

+
∞∑
n=2

(−1)n
t∫

0

dt1

t∫
t1

dt2 . . .

t∫
tn−1

dtnWn+1 (t1, . . . , tn, t|φ0)

, (38)
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whereWn(t1, t2, . . . , tn|φ0) dt1dt2 · · ·dtn denotes the joint probability that the random thresh-

old crosses the voltage trace from above in the intervals [t1, t1 + dt1], . . . , [tn, tn + dtn] con-

ditioned on Φ(0) = φ0. A closed form expression for Wn follows readily as (Ricciardi and

Sato, 1983; Verechtchaguina et al., 2006)

Wn(t1, t2, . . . , tn|φ0) =

V̇1∫
−∞

dx1 · · ·
V̇n∫
−∞

dxn
n∏
k=1

(
xk − V̇k

)
p2n (V1, . . . , Vn, x1, . . . , xn|φ0) , (39)

with Vk = V (tk) and V̇k = [dV/dt]t=tk . The probability p2n (V1, . . . , Vn, x1, . . . , xn|φ0) de-

scribes all trajectories with Φ(tk) = Vk and [dΦ/dt]t=tk = xk, k = 1, . . . , n conditioned on

Φ(0) = φ0. Since Φ(t) is a Gaussian process, the unconditioned joint probability p2n(q)

with q =
(
φ1, . . . , φn, φ̇1, . . . , φ̇n

)
, φ̇i = dφi/dt, takes the form

p2n(q) =
1

(2π)n
√

det Γ2n

exp

(
−(q− µ)TΓ−1

2n (q− µ)

2

)
. (40)

Here, we introduced the mean vector µ = (Vth, . . . , Vth,0, . . . ,0) ∈ R2n and the symmetric

correlation matrix Γ2n with entries

Γij =


〈Φ(ti)Φ(tj)〉 = γ(ti − tj) , i, j = 1, . . . , n ,

〈Φ′(ti−n)Φ′(tj−n)〉 = −γ′′(ti − tj) , i, j = n+ 1, . . . ,2n ,

〈Φ(ti)Φ
′(tj−n)〉 = −γ′(ti − tj) , i = 1, . . . n, j = n+ 1, . . . ,2n ,

(41)

where γ(τ) = σ2e−τ2/(2η2). The conditional joint probability then follows from Bayes’ the-

orem as

p2n(q|φ0) =
p2n+1(φ0, q)

p1(φ0)
=

σ

(2π)n
√

det Γ2n+1

exp

(
−(q− λ)TΛ2n(q− λ)

2

)
, (42)

where Γ2n+1 is the correlation matrix for the 2n+ 1 dimensional vector (φ0, q). The matrix

Λ2n results from crossing out the first column and the first row of Γ−1
2n+1, and we have set

λ = µ+ (φ0 − Vth) γ̃/σ2 with γ̃ = (γ(t1), . . . , γ(tn), γ′(t1), . . . , γ′(tn)). To gain a first insight

into ISI distributions, we compute the leading term in equation (38), which results in

W1 (t|φ0) =
σ det Γ3

σ4 − γ2(t)

{
κ(t)√

8π det Γ3

[
1 + erf

(
κ(t)√

2

)]
exp

(
− σ2v2(t)

2(σ4 − γ2(t))

)

+ p2(v, v̇|0)

} , (43)
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where v(t) = V (t)− γ(t)φ0, v̇ = dv/dt, and

erf(x) =
2√
π

x∫
0

e−y
2

dy , κ(t) =

√
σ4 − γ2(t)

det Γ3

[
v̇ +

γ(t)γ′(t)v(t)

σ4 − γ2(t)

]
. (44)

Since the exact time evolution of the membrane potential enters the calculation of W1,

its value depends on the initial phase ψ0 of the input current, which we take as I(t) =

I0 + a sin(ωt + ψ0) in this section. Suppose we start from a fixed value of ψ0, then the

resulting ISI distribution for the first threshold crossing gives rise to a distribution of

phases g1 (ψ|ψ0) at reset. Therefore, the ISI distribution at the second threshold crossing

F2(V (t), t) is the weighted average

F2(V (t), t) =

2π∫
0

W1(t)g1 (ψ|ψ0) dψ . (45)

Here we have dropped the dependence ofW1 on the initial value of the random threshold

assuming that the correlation time of Φ(t) is much shorter than any ISI. Since equation (45)

determines the phases of the input current at the second reset, we introduce the operator

K defined through g2 (ψ|ψ0) = Kg1 (ψ|ψ0). Therefore, the phase distribution at the nth

reset is given by

gn (ψ|ψ0) = Kgn−1 (ψ|ψ0) = K2gn−2 (ψ|ψ0) = Kn−1g1 (ψ|ψ0) . (46)

If equation (46) possesses a stable fixed point, i.e. a stable distribution g? such that

g? (ψ|ψ0) = Kg? (ψ|ψ0), then the full ISI distribution is given by

F (V (t), t) =

2π∫
0

W1(t)g? (ψ|ψ0) dψ . (47)

The existence of an invariant distribution g? follows from e.g. (Tateno, 1998). The right

column in Fig. 5 shows ISI distributions from direct numerical simulations and from the

evaluation of W1 employing the iteration outlined above. The frequency of the drive is

given by ω = sωω0, where ω0 is the frequency of the unforced neuron (see section 3.1). The

analytical results follow closely the simulated distributions for various sets of parameter

values. Upon decreasing the strength of the fluctuations, we find narrower distributions.

Note that the ISI time at the maximum of the distribution corresponds to the deterministic

period. Since the distributions shown in Fig. 5 have a single peak they describe stochastic
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Figure 5: Left: Membrane potential (solid black line) and threshold (dotted black line) for

different sinusoidal drive. Right: ISI distribution corresponding to the trajectories on the

left; analytical results (solid black line) and histograms from direct numerical simulations

(grey bars). Parameter values are from top to bottom η = 2 ms, σ = 0.2, sω = 1.2, a = 1,

I0 = 2.3; η = 2 ms, σ = 0.2, sω = 2.2, a= 2, I0 = 2.3; η = 2 ms, σ = 0.1, sω = 1.2, a= 1, I0 = 2.3;

η = 2 ms, σ = 0.2, sω = 1.2, a = 1, I0 = 2.4. Other parameter values are VL = VR = −60 mV,

Vth = −40 mV and τ = 10 ms.
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phase-locked states in which there is only a single phase, namely that the neuron fires

only one spike per q cycles of forcing. In other parameter and noise regimes different

responses are possible where the neuron fires p spikes per q cycles of forcing, and in this

instance we would expect to see p peaks in the distribution of ISIs, as illustrated in Figs. 6

and 7. The changes in the peak structure of the ISI distribution may be used to define phe-

nomenological stochastic bifurcations, often referred to as P-bifurcations (Arnold, 1998).

Characterising P-bifurcations is one practical method to detect changes in the behaviour

of noisy neural systems (Doi et al., 1998; Tateno, 1998, 2002; Tateno and Pakdaman, 2004),

and the method we have developed here is ideally suited to this since it can be used to nu-

merically estimate the stationary ISI distribution. However, it is beyond the scope of our

intention to pursue this here as we would need to go to higher order in the Rice expansion

to get an accurate representation of the stationary ISI distributions of p:q states. Rather to

gain an understanding of the type of stochastic bifurcations that can be supported in a IF

model with threshold noise we next turn to direct numerical simulations of the spiking

model and show how responses can be organised in parameter space using the notion of

Arnol’d tongues.

4.2 Tongue structure

The phenomenon of mode-locking has been intensely studied in the context of the peri-

odic forcing of nonlinear oscillators, with the standard circle map providing a canonical

model, see for example (Boyland, 1986). For deterministic periodically forced IF mod-

els the firing map is known to support regions of parameter space where the firing rate

takes the value p/q, where p, q ∈ Z+. These regions are referred to as Arnol’d tongues,

and describe recurring firing patterns for which a neuron fires p spikes for every q cycles

of a periodic injected current (p:q mode-locked states). With an increase of the amplitude

of the driving current from zero Arnol’d tongues typically open as a wedge, centered at

points in parameter space where the natural frequency of the neuron is rationally related

to the forcing frequency. In between tongues quasi-periodic behaviour, emanating from

irrational points on the amplitude/frequency-ratio axis, are observed. The tongue bor-

ders are defined in terms of instabilities of solutions with rational firing rate, and have

been calculated in (Coombes and Bressloff, 1999). In the presence of noise it would be
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Figure 6: ISI distribution for different noise strengths: σ = 0.1 (top left), σ = 0.5 (top

right), σ = 1 (bottom left), σ = 2 (bottom right). The deterministic dynamics shows a 1:4

mode-locked state. Other parameter values are η = 2 ms, sω = 4.1, av = 2.25, I0 = 2.4,

VL = VR = −60 mV, Vth = −40 mV and τ = 10 ms.
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Figure 7: ISI distribution when the deterministic dynamics shows a 2:1 mode-locked state.

Parameter values are σ = 0.5, sω = 0.5, a = 1, η = 2 ms, I0 = 2.4, VL = VR = −60 mV,

Vth = −40 mV and τ = 10 ms.

natural to calculate such borders using the notion of P-bifurcations described above in

section 4.1. However, it is equally useful to simply scan through parameter space and

collect some useful measure of the output of a simulated neuron. One natural response

measure would be the average firing rate. However, within a tongue this would show no

variation, even though the ISI distribution would change shape (though not develop new

peaks). In a deterministic setting one alternative measure would be the Liapunov expo-

nent. For an IF model this can be written in closed form as a function of the derivative of

the voltage and threshold just before and after firing (Coombes, 1999). Since our choice of

threshold noise is differentiable this formula may also be applied in the stochastic setting.

Although its strict interpretation as a Liapunov exponent would no longer be valid it does

provide some measure of response more subtle than a simple calculation of the average

firing rate. We write this response measure as

λ = −1

τ
+ lim

n→∞

1

Tn − T0

n∑
m=1

ln

∣∣∣∣∣ V̇ (T+
m)

V̇ (T−m)− Φ̇(Tm)

∣∣∣∣∣ (48)

where V̇ (T+
m) and V̇ (T−m) are the time derivative of V just after and just before the mth

firing event respectively and Φ̇ is the time derivative of Φ. Figure 8 shows a sequence

of Arnol’d tongue structures with an increasing level of noise. For low noise tongue

structures are easily identifiable, with the dominant ones being 1:q, emanating from the

points where sω = q. The action of the noise is to erode small tongues with the 1:1 state
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Figure 8: Plots of the Liapunov exponent in the (a, sω) plane showing Arnol’d tongues for

σ = 0, 0.5, 1, 1.5, 2, 2.5 (from top down and left to right). Other parameter values are η = 2

ms, I0 = 2.3, VL = VR = −60 mV, Vth = −40 mV and τ = 10 ms.

being the most persistent.

5 Application to auditory processing

We have seen how the characteristics of threshold noise in IF models affects the coding

of periodic inputs at the population level. We now relate this theory back to a specific

example of sensory coding, in the brainstem of the auditory pathway. Encoding in the

peripheral auditory system is inherently noisy. It is therefore an important question what

the role of this noise is in terms of stimulus encoding. We show that the instantiation

of stochasticity in the neural threshold can reproduce with remarkable accuracy the re-

sponses of a cell where the dominant source of noise is at the input. We then go on to

tentatively propose how the degree of stochasticity might affect stimulus coding in dif-

ferent sub- populations of cells. To place this theoretical work in context, we begin with a

simplified account of the sensory processes leading to the stimulus encoding. The cochlea

can be thought of as an ‘array of band pass filters’ (Holdsworth et al., 1988). These filters

are implemented mechanically by a flexible membrane in the cochlea, the basilar mem-
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brane. The time varying motion of the basilar membrane is converted to electrical activity

by the inner hair cells (IHCs). IHC receptor potentials follow the oscillatory motion, but

are half wave rectified and low-pass filtered, with a cut-off between 2-5 kHz (Johnson,

1980; Palmer and Russell, 1986). In high-frequency channels, therefore, a demodulation

or ‘envelope extraction’ occurs. A high-frequency (> 5 kHz) pure tone that is sinusoidally

amplitude modulated will produce IHC depolarisation with a d.c. component and a si-

nusoidal a.c. component. IHC depolarisation drives stochastic neurotransmitter release

at synapses between the IHC and the auditory nerve fibre. The resulting action potentials

reflect the time-varying nature of the IHC membrane fluctuations. The auditory nerve

fibres project into the ipsilateral cochlear nucleus (CN), that is located in the brainstem.

The ventral division of the CN (VCN (Hackney et al., 1990; Osen, 1969; Rose et al., 1959))

might be described as a kind of ‘auditory pre- processor’, splitting the input into multiple

pathways each of which emphasizes a particular aspect of the stimulus. One particular

morphological class of VCN neurons is the stellate cell. Stellate cells have a small num-

ber of fairly thick dendrites, with numerous small synapses from auditory nerve fibres

(Smith and Rhode, 1989). Injecting current into a stellate cell causes the cell to fire reg-

ularly for the duration of the current and below threshold the relationship between the

injected current amplitude and the intracellular voltage is linear (Oertel, 1983). Electro-

physiologically, many of these cells are classified as ‘choppers’, because in response to

a pure tone they fire regularly, not unlike during current injection (Rhode and Smith,

1986). Membrane capacitance confers a temporal integration lasting several milliseconds

and their numerous inputs serve to average out some of the stochasticity of the input

nerve firings (Oertel, 1985). However, stellate cells also vary in how regularly they fire

(Blackburn and Sachs, 1989; Young et al., 1988). Cells which fire precisely at preferred

times throughout a sound stimulus are sub-classified as ‘sustained’ choppers, whilst oth-

ers which only fire regularly at the beginning of the response (10-20 ms) are classified as

‘transient’ choppers (see Blackburn and Sachs 1989). Some VCN neurons fire mainly at

the onset of a sound. Many of these appear also to be stellate cells (Palmer et al., 2003;

Smith and Rhode, 1989), and possess similar electrical (Oertel et al., 1990) and temporal

integration properties (Palmer et al., 1996). Unlike other stellate cells, they are extremely

densely innervated on their soma (Smith and Rhode, 1989). With many small inputs and

little dendritic filtering, these cells act as coincidence detectors which is a major factor
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in generating a response at the beginning of a stimulus (Sumner et al., 2009), when all

input auditory nerve fibres are firing. Although onset units fire mainly at the onset of a

pure tone, they fire very reliably and regularly in response to periodic stimuli, such as

AM tones, vowels and harmonic complexes (Winter et al., 2003). The sub-threshold lin-

earity of stellate cells means that they are well characterised by linear IF models. Such

models have been used to emulate chopper responses (Arle and Kim, 1991; Hewitt and

Meddis, 1993) and onset responses (Kalluri and Delgutte, 2003; Sumner et al., 2009). IF

models also provide a good approximation of the responses of these cells to envelope fluc-

tuations, such as sinusoidal amplitude modulation (Hewitt et al., 1992). Recently it was

further confirmed that the behaviour of stellate cells in the VCN is well modelled by IF

neurons by demonstrating the stochastic mode-locked behaviour, seen in the above anal-

ysis, in their response to AM tones and other complex stimuli such as vowels (Laudanski

et al., 2010).

An IF model driven by a sinusoidal input with a d.c. component, as used for the

analysis presented in this paper, offers a good first approximation of these cells responses

to an amplitude modulated tone stimulus. In the upper row of Fig. 9 we show an example

of the responses of a chopper unit to an amplitude modulated tone with modulation

rates of different frequencies (see Laudanski et al. 2010 for details). The spiking patterns

are represented here as pairs of intervals, in an inter-spike interval scattergram. These

representations reveal pairs of intervals that indicate the presence of stochastic mode-

locked states. In the lower row of panels we show an IF model with a noisy threshold

in which the parameters have been set so as to approximate the responses of the cell,

when periodically forced with a sinusoid. It demonstrates a good correspondence with

the data despite lacking a realistic simulation of auditory nerve inputs. The bottom panel

shows, for a short time period in response to the 50 Hz modulation rate, the evolution

of the membrane potential (action potentials are not shown) and the stochastic threshold.

Thus, the simple models upon which the presented analysis is based, appear to be able

to reproduce the spike patterns seen in real VCN stellate cells. The instantiation of the

noise as either input noise or threshold noise is clearly not crucial, and ‘threshold-noise’

based IF neurons appear to offer a convenient formalism for investigating population

coding in VCN stellate cells. Assuming that variation in the degree of stochasticity has

a similar impact on coding in these cells as the presented analysis, we can speculate on
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Figure 9: A-C. ISI scattergrams of the responses of a VCN chopper unit to amplitude

modulated tones. The tone was 3 s long, with a frequency the same as the characteristic

frequency of the unit, 50 dB above the CF threshold. AM depth was 100% and frequency

was as indicated. D-F. The responses of a stochastic-threshold IF model fitted to the data.

The model parameters were: sinuisodal input: a = 0.7, I0 = 1.5 mV, threshold noise:

σ = 2.7, η = 0.75 ms, IF parameters: τ = 3.18 ms, VL = VR = −60 mV, Vth = −42 mV. G.

An example of the evolution of the membrane potential of the model (blue) for the 50 Hz

modulation rate, the stochastic threshold (green) and the modulated input on an arbitrary

scale.
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the role of noise on envelope coding in these neurons. Laudanski et al. (2010) found

considerable variation in the degree of complexity in the modes of firing in VCN neurons.

More-complex mode-locking properties (precise intervals at modes other than 1:1) were

seen in choppers and onset units which fired more regularly in response to pure tones.

We would predict that a population of the less regularly firing chopper units, and thus

a population showing less complex modes of firing to a periodic signal, would actually

encode stimulus envelope more faithfully. Onset cells, in general, showed less high order

modes, but this was attributable not to a lack of regular responding, but because they

locked (or phase locked) almost perfectly to the fundamental of a complex signal with

a 1:1 mode (Winter et al., 2003). A population of such onset cells should, like the more

regular chopper units, show a poor representation of the stimulus envelope. However,

they may in turn provide a non-linear coding (i.e. feature emphasis) of certain aspects

of the envelope, such as the fundamental period or its harmonics. Thus, the theory of

Knight (1972a; 1972b; 2008), together with the theoretical insights into the role of noise

in stimulus encoding, presented here and elsewhere, raises the possibility that the range

of response regularity seen across stellate cells in the VCN might be contributing (even

usefully) to the different envelope coding properties at the population level.

6 Discussion

In this paper we have introduced a form of threshold noise into the leaky IF model and

shown how it can be analysed, first using linear response theory and then by develop-

ing a novel calculation of first passage times using a Rice expansion. Direct numerical

simulations of the model in response to sinusoidal forcing were shown to be organised

in parameter space in accordance with a tongue structure inherited from the noise-free

model. With increasing threshold noise this structure was eroded in the sense that nar-

row tongues became less identifiable. However, this structure is the one recently recog-

nised to exist in data from stellate units of the ventral cochlear nucleus in response to

amplitude-modulated tones. Indeed we were able to choose model and noise parameters

to fit this data and thus show that a theory of stochastic mode-locking can be used to

understand stellate responses across a wide range of stimulus conditions. Moreover, by

revisiting original arguments of Knight (1972a; 1972b) it is intriguing to think that stel-
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late cells might in fact be utilising noise to achieve asynchrony at the population level,

allowing the faithful encoding of a stimulus envelope in the population firing rate. Inter-

estingly a general approach to the reconstruction of sensory stimuli with leaky IF neurons

with random thresholds has recently been developed by Lazar and Pnevmatikakis (2009)

making use of a reproducing kernel Hilbert space framework.
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Appendix A

In the numerical simulations we combined a second order scheme for the membrane po-

tential (Hansel et al., 1998) with a spectral method for the fluctuating threshold. The latter

is based on the spectral decomposition of a stochastic process (Papoulis and Pillai, 2002)

X(t) =

∞∫
0

[cos (ωt) du(ω) + sin (ωt) dv(ω)] , (49)

which can be rewritten as (Shinozuka and Deodatis, 1991)

X(t) =
∞∑
k=0

cos (ωkt) du(ωk) + sin (ωkt) dv(ωk) =
√

2
∞∑
k=0

Ak cos (ωkt+ αk) , (50)

with Ak =
√

2S(ωk)∆ω and ωk = k∆ω for sufficiently small but finite ∆ω. The indepen-

dent random phases αk are uniformly distributed on [0,2π], and we have introduced the

Fourier transform of the correlation function γ(τ) as

S(ω) =
1

2π

∞∫
−∞

γ(τ)e−iωτdτ . (51)

Equation (51) measures the spectral power associated with each frequency ω, and we can

usually assume that S(ω) decays towards zero for high frequencies. Note that the decay is
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Gaussian in the case of a Gaussian correlation function. This decrease in power introduces

a cut-off frequency ωu defined by
ωu∫
0

S(ω)dω = (1− ε)
∞∫

0

S(ω)dω , (52)

for 0 < ε� 1. Setting ωu = N∆ω, we find from equation (50) an approximation X̃(t) of

the random process X(t) given by

X̃(t) =
√

2
N∑
k=0

Ak cos (ωkt+ αk) , (53)

where we have to enforce the condition A0 = 0 for S(0) 6= 0 to insure that the mean and

the autocorrelation of the approximate stochastic process X̃(t) match those of the origi-

nal process X(t) (Shinozuka and Deodatis, 1991). To generate sample paths of X̃(t), we

introduce a temporal discretisation ∆t and rewrite equation (53) as

X̃(p∆t) = Re

[
M−1∑
n=0

Bn exp{i(n∆ω)(p∆t)}

]
, p = 0, . . . ,M − 1 , (54)

with Bn =
√

2An exp(iαn) for n = 0, . . . ,M − 1. It follows from equation (50) that X(t) has

a period of T = 2π/∆ω, so that ∆ω and ∆t are related by ∆t∆ω = 2π/M due to T = M∆t.

Moreover, the sampling theorem leads to the condition ∆t ≤ 2π/2ωu, which in turn gives

rise to M ≥ 2N . An efficient way to compute a sample path of X̃(t) is by the use of fast

Fourier transforms, since equation (54) expresses X̃(t) as the inverse Fourier transform of

a function B(ω) that is sampled at points Bn. Note that Bn = 0 for N + 1 ≤ n ≤M − 1 as

we assume S(ωn) = 0 for n > N .

Appendix B

Variation of the flux J = ρ V̇
∣∣∣
V=Vth

with ρ0 → ρ0 + δρ, gives δJ = (ρ0δI + I0δρ)/τ . Using

(14) we may differentiate δJ to obtain

τ
∂δJ

∂t
= ρ0

∂δI

∂t
− I0

∂δJ

∂V
. (55)

Letting δI(t) = δI(0)eiωt, δr(t) = δr(0)eiωt and δJ(V, t) = δJ(V )eiωt we obtain the ordinary

differential equation
d

dV
δJ(V )eiωτV/I0 = ρ0δI(0)

iω

I0

eiωτV/I0 . (56)
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Integrating between V = VR and V = Vth and using the fact that δr(0) = δJ(Vth) = δJ(0)

gives (17).

References

Arle, J. E, and Kim, D. O (1991). Neural modeling of intrinsic and spike-discharge prop-

erties of cochlear nucleus neurons. Biological Cybernetics. 64, 273–283.

Arnold, L (1998). Random Dynamical Systems Springer.

Beierholm, U, Nielsen, C. D, Ryge, J, Alstrom, P, and Kiehn, O (2001). Characterization

of reliability of spike timing in spinal interneurons during oscillating inputs. Journal of

Neurophysiology. 86, 1858–1868.

Blackburn, C. C, and Sachs, M. B (1989). Classification of unit types in the anteroventral

cochlear nucleus: PST histograms and regularity analysis. Journal of Neurophysiology.

62, 1303–1329.

Boyland, P. L (1986). Bifurcations of circle maps: Arnol’d tongues, bistability and rotation

intervals. Communications in Mathematical Physics. 106, 353–381.

Brunel, N, Chance, F. S, Fourcaud, N, and Abbott, L. F (2001). Effects of synaptic noise

and filtering on the frequency response of spiking neurons. Physical Review Letters. 86,

2186–2189.

Burkitt, A, and Clark, G (2000). Calculation of interspike intervals for integrate-and-fire

neurons with Poisson distribution of synaptic inputs. Neural computation. 12, 1789–1820.

Capocelli, R. M, and Ricciardi, L. M (1971). Diffusion approximation and first passage

time problem for a model neuron. Biological Cybernetics. 8, 214–223.

Chow, C. C, and White, J. A (2000). Spontaneous action potentials due to channel fluctu-

ations. Biophysical Jounal. 71, 3013–3021.

Coombes, S (1999). Liapunov exponents and mode-locked solutions for integrate-and-fire

dynamical systems. Physics Letters A. 255, 49–57.

28



Coombes, S, and Bressloff, P. C (1999). Mode-locking and Arnold tongues in integrate-

and-fire neural oscillators. Physical Review E. 60, 2086–2096.

Doi, S, Inoue, J, and Kumagi, S (1998). Spectral analysis of stochastic phase lockings and

stochastic bifurcations in the sinusoidally forced van der Pol oscillator with additive

noise. Journal of Statistical Physics. 90, 1107–1127.

Faisal, A. A, Selen, L. P. J, and Wolpert, D. M (2008). Noise in the nervous system. Nature

Reviews Neuroscience. 9, 292–303.

Fellous, J.-M, Houweling, A. R, Modi, R. H, Rao, R. P. N, Tiesinga, P. H. E, and Sejnowski,

T. J (2001). Frequency dependence of spike timing reliability in cortical pyramidal cells

and interneurons. Journal of Neurophysiology. 85, 1782–1787.

Gabbiani, F, and Koch, C (1996). Coding of time-varying signals in spike trains of

integrate-and-fire neurons with random threshold. Neural Computation. 8, 44–66.

Gabbiani, F, and Koch, C (2001). Principles of spike train analysis In Methods in Neuronal

Modeling. C. Koch, and I. Segev, editors MIT Press 313–360.

Gerstein, G. L, and Mandelbrot, B (1964). Random walk models for the spike activity of a

single neuron. Biophysical Journal. 4, 41–68.

Gestri, G, Mastebroek, H. A. K, and Zaagman, W. H (1980). Stochastic constancy, vari-

ability and adaptation of spike generation: Performance of a giant neuron in the visual

system of the fly. Biological Cybernetics. 38, 31–40.

Hackney, C. M, Osen, K. K, and Kolston, J (1990). Anatomy of the cochlear nuclear com-

plex of guinea pig. Anatomy and Embryology. 182, 123–49.

Hansel, D, Mato, G, Meunier, C, and Neltner, L (1998). On numerical simulations of

integrate-and-fire neural networks. Neural Computation. 10, 467–483.

Hewitt, M. J, and Meddis, R (1993). Regularity of cochlear nucleus stellate cells: a compu-

tational modeling study. Journal of the Acoustical Society of America. 93, 3390–3399.

Hewitt, M. J, Meddis, R, and Shackleton, T. M (1992). A computer model of a cochlear-

nucleus stellate cell: responses to amplitude-modulated and pure-tone stimuli. Journal

of the Acoustical Society of America. 91, 2096–3109.

29



Holden, A. V (1976). Models of the stochastic activity of neurones Springer-Verlag.

Holdsworth, J, Nimmo-Smith, I, Patterson, R. D, and Rice, P (1988). Implementing a

gamma tone filter bank Technical report MRC Applied Psychology Unit, Cambridge,

UK.

Hunter, J. D, Milton, J. G, Thomas, P. J, and Cowan, J. D (1998). Resonance effect for neural

spike time reliability. Journal of Neurophysiology. 80, 1427–1438.

Johnson, D. H (1980). The relationship between spike rate and synchrony in responses

of auditory-nerve fibers to single tones. Journal of the Acoustical Society of America. 68,

1115–1122.

Kalluri, S, and Delgutte, B (2003). Mathematical models of cochlear nucleus onset neu-

rons: I. Point neuron with many weak synaptic inputs. Journal of Computational Neuro-

science. 14, 71–90.

Keener, J. P, Hoppenstaedt, F. C, and Rinzel, J (1981). Integrate-and-fire models of nerve

membrane response to oscillatory input. SIAM Journal on Applied Mathematics. 41, 503–

517.

Knight, B (2008). Some hidden physiology in naturalistic spike rasters. The faithful copy

neuron. Brain Connectivity Workshop, Sydney. .

Knight, B. W (1972)a. Dynamics of encoding in a population of neurons. The Journal of

General Physiology. 59, 734–766.

Knight, B. W (1972)b. The relationship between the firing rate of a single neuron and the

level of activity in a population of neurons. The Journal of General Physiology. 59, 767–778.

Kostur, M, Schindler, M, Talkner, P, and Hänggi, P (2007). Neuron firing in driven nonlin-

ear integrate-and-fire models. Mathematical Biosciences. 207, 302–311.

Laing, C, and Lord, G. J, editors (2010). Stochastic Methods in Neuroscience Oxford Uni-

versity Press.

Laudanski, J, Coombes, S, Palmer, A. R, and Sumner, C. J (2010). Mode-locked spike trains

in responses of ventral cochlear nucleus chopper and onset neurons to periodic stimuli.

Journal of Neurophysiology. 103, 1226–1237.

30



Lazar, A. A, and Pnevmatikakis, E. A (2009). Reconstruction of sensory stimuli with

integrate-and-fire neurons with random thresholds. EURASIP Journal on Advances in

Signal Processing. 2009, 1–14.

Lindner, B, Chacron, M. J, and Longtin, A (2005). Integrate-and-fire neurons with thresh-

old noise: A tractable model of how interspike interval correlations affect neuronal

signal transmission. Physical Review E. 72, 021911(1–21).

Lindner, B, Garcia-Ojalvo, J, Neiman, A, and Schimansky-Geier, L (2004). Effects of noise

in excitable systems. Physics Reports. 392, 321–424.

Little, W. A (1974). The existence of persistent states in the brain. Mathematical Biosciences.

19, 101–120.

Little, W. A, and Shaw, G. L (1978). Analytic study of the memory storage capacity of a

neural network. Mathematical Biosciences. 39, 281–290.

Longtin, A, and Rinzel, J (2009). Neuronal dynamics of sensory coding: the legacy of Jose

Pedro Segundo. Biological Cybernetics. 100, 409–411.

Mainen, Z. F, and Sejnowski, T. J (1995). Reliability of spike timing in neocortical neurons.

Science. 268, 1503–1506.

Nowak, L. G, Sanchez-Vives, M. V, and McCormick, D. A (1997). Influence of low and

high frequency inputs on spike timing in visual cortical neurons. Cerebral Cortex. 7,

487–501.

Oertel, D (1983). Synaptic responses and electrical properties of cells in brain slices of the

mouse anteroventral cochlear nucleus. Journal of Neuroscience. 3, 2043–2053.

Oertel, D (1985). Use of brain slices in the study of the auditory system: Spatial and tem-

poral summation of synaptic inputs in cells in the anteroventral cochlear nucleus of the

mouse. Journal of the Acoustical Society of America. 78, 328–333.

Oertel, D, Wu, S. H, Garb, M. W, and Dizack, C (1990). Morphology and physiology of

cells in slice preparations of the posteroventral cochlear nucleus of mice. Journal of

Comparative Neurology. 295, 136–154.

31



Osen, K. K (1969). Cytoarchitecture of the cochlear nuclei in the cat. Journal of Comparative

Neurology. 136, 453–84.

Palmer, A. R, Jiang, D, and Marshall, D. H (1996). Responses of ventral cochlear nucleus

onset and chopper units as a function of signal bandwidth. Journal of Neurophysiology.

75, 780–794.

Palmer, A. R, and Russell, I. J (1986). Phase-locking in the cochlear nerve of the guinea-pig

and its relation to the receptor potential of inner hair-cells. Hearing Research. 24, 1–15.

Palmer, A. R, Wallace, M. N, Arnott, R. H, and Shackleton, T. M (2003). Morphology of

physiologically characterised ventral cochlear nucleus stellate cells. Experimental Brain

Research. 153, 418–426.

Papoulis, A, and Pillai, S. U (2002). Probability, Random Variables and Stochastic Pro-

cesses Mc Graw Hill.

Pinsky, P. F, and Rinzel, J (1995). Synchrony measures for biological neural networks.

Biological Cybernetics. 73, 129–137.

Plesser, H. E, and Gerstner, W (2000). Noise in integrate-and-fire neurons: from stochastic

input to escape rates. Neural Computation. 12, 367–384.

Renart, A, de la Rocha, J, Bartho, P, Hollender, L, Parga, N, Reyes, A, and Harris, K. D

(2010). The asynchronous state in cortical circuits. Science. 327, 587–590.

Rhode, W. S, and Smith, P. H (1986). Encoding timing and intensity in the ventral cochlear

nucleus of the cat. Journal of Neurophysiology. 56, 261–286.

Ricciardi, L, and Sato, S (1988). First-passage-time density and moments of the Ornstein-

Uhlenbeck process. Journal of Applied Probability. 25, 43–57.

Ricciardi, L. M, and Sato, S (1983). A note on the first passage time problems for Gaussian

processes and varying boundaries. IEEE Transactions on Information Theory. 29, 454–457.

Rice, S. O (1944). The mathematical analysis of random noise. Bell Systems Technical Jour-

nal. 23, 282–332.

32



Richardson, M. J. E (2008). Spike-train spectra and network response functions for non-

linear integrate-and-fire neurons. Biological Cybernetics. 99, 381–392.

Rieke, F, Warland, D, de Ruyter van Steveninck, R, and Bialek, W (1999). Spikes: Explor-

ing the Neural Code MIT Press.

Rose, J. E, Galambos, R, and Hughes, J. R (1959). Microelectrode studies of the cochlear

nuclei of the cat. Bulletin of the Johns Hopkins Hospital. 104, 211–251.

Schneidman, E, Freedman, B, and Segev, I (1998). Ion channel stochasticity may be critical

in determining the reliability and precision of spike timing. Neural Computation. 10,

1679–1703.

Schwalger, T, and Schimansky-Geier, L (2008). Interspike interval statistics of a leaky

integrate-and-fire neuron driven by Gaussian noise with large correlation times. Physi-

cal Review E. 77, 31914(1–9).

Shimokawa, T, Pakdaman, K, Takahata, T, Tanabe, S, and Sato, S (2000). A first-passage

time analysis of the periodically forced noisy leaky integrate-and-fire model. Biological

Cybernetics. 83, 327–340.

Shinozuka, M, and Deodatis, G (1991). Simulation of stochastic processes by spectral rep-

resentation. Applied Mechanics Reviews. 44, 191–204.

Smith, P. H, and Rhode, W. S (1989). Structural and functional properties distinguish two

types of multipolar cells in the ventral cochlear nucleus. Journal of Comparative Neurol-

ogy. 282, 595–616.

Steinmetz, P. N, Manwani, A, and Koch, C (2001). Variability and coding efficiency of

noisy neural spike encoders. BioSystems. 62, 87–97.

Sumner, C. J, Meddis, R, and Winter, I. M (2009). The role of auditory nerve innervation

and dendritic filtering in shaping onset responses in the ventral cochlear nucleus. Brain

Research. 1247, 221–234.

Tateno, T (1998). Characterization of stochastic bifurcations in a simple biological oscilla-

tor. Journal of Statistical Physics. 92, 675–705.

33



Tateno, T (2002). Noise-induced effects on period-doubling bifurcation for integrate-and-

fire oscillators. Physical Review E. 65, 021901(1–10).

Tateno, T, Doi, S, Sato, S, and Ricciardi, L. M (1995). Stochastic phase lockings in a re-

laxation oscillator forced by a periodic input with additive noise: a first passage-time

approach. Journal of Statistical Physics. 78, 917–935.

Tateno, T, and Jimbo, Y (2000). Stochastic mode-locking for a noisy integrate-and-fire os-

cillator. Physics Letters A. 271, 227–236.

Tateno, T, and Pakdaman, K (2004). Random dynamics of the Morris-Lecar neural model.

Chaos. 14, 511–530.

Tiesinga, P. H. E (2002). Precision and reliability of periodically and quasiperiodically

driven integrate-and-fire neurons. Physical Review E. 65, 041913(1–14).

Tuckwell, H. C (1989). Stochastic Processes in the Neurosciences SIAM.

Tuckwell, H. C, and Wan, F. Y. M (1984). First-passage time of Markov processes to mov-

ing barriers. Journal of Applied Probability. 21, 695–709.

Verechtchaguina, T, Sokolov, I. M, and Schimansky-Geier, L (2006). First passage time

densities in resonate-and-fire models. Physical Review E. 73, 031108(1–11).

Winter, I. M, Palmer, A. R, Wiegrebe, L, and Patterson, R. D (2003). Temporal coding of the

pitch of complex sounds by presumed multipolar cells in the ventral cochlear nucleus.

Speech Communication. 41, 135–149.

Young, E. D, Robert, J. M, and Shofner, W. P (1988). Regularity and latency of units in

ventral cochlear nucleus: implications for unit classification and generation of response

properties. Journal of Neurophysiology. 60, 1–29.

34


