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Abstract 

Effective national and regional policy guidance on climate change adaptation relies on 

robust scientific evidence. This two-part series of papers develops and implements a novel 

scenario-neutral framework enabling an assessment of the vulnerability of flood flows in 

British catchments to climatic change, to underpin the development of guidance for the 

flood management community. In this first part, the sensitivity of the 20-year return period 

flood peak (RP20) to changes in precipitation (P), temperature (T) and potential 

evapotranspiration (PE) is systematically assessed for 154 catchments. A sensitivity domain 

of 4,200 scenarios is applied combining 525 and 8 sets of P and T/PE mean monthly 

changes, respectively, with seasonality incorporated using a single-phase harmonic function. 

Using the change factor method, the percentage change in RP20 associated with each 

scenario of the sensitivity domain is calculated, giving flood response surfaces for each 

catchment. Using a clustering procedure on the response surfaces, the 154 catchments are 

divided into nine groups: flood sensitivity types. These sensitivity types show that some 

catchments are (very) sensitive to changes in P but others buffer the response, while the 

location of catchments of the same type does not show any strong geographical pattern. 

These results reflect the range of hydrological processes found in Britain, and demonstrate 

the potential importance of catchment properties (physical and climatic) in the propagation 
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of change in climate to change in floods, and so in characterising the sensitivity types 

(covered in the companion paper).  

Keywords 

Flood risk; climate-runoff sensitivity analysis; climate change factors; seasonality; response 

surface; climate elasticity of streamflow 
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1. Introduction 

With a growing scientific consensus on global warming (IPCC, 2007a, b), national and local 

authorities have started to account for possible climate change impacts in their policy 

planning. In England and Wales, flood management appraisal guidance has been issued by 

the UK Government’s Department for Environment Food and Rural Affairs (Defra). Until 

recently this required all flood management plans to include, within a sensitivity analysis, an 

increase of up to 20% in peak river flows over the next 50 to 100 years for any catchment, 

making no allowance for regional variation in climate change or catchment properties (see 

http://www.defra.gov.uk/environ/fcd/pubs/pagn/climatechangeupdate.pdf).  

Typically, the science basis for flood risk policy has been dominated by conventional “top-

down” (scenario-led) approaches (Figure 1, left). Such impact and adaptation assessments 

for climate change involve three steps (Prudhomme et al., 2010): (i) scenarios describing 

future climate are derived from Global Climate Models (GCMs); (ii) these scenarios are input 

to impact models to provide estimates of future consequences; (iii) adaptation responses 

are invoked to mitigate risks or realise benefits. Difficulties in accessing multi-model 

projections and an inability of some users to increase computing load often result in climate 

change impact assessments being made for a limited number of sites based on a limited 

number of global or regional climate models (RCMs). 

Such scenario-led approaches have a number of limitations:  

(i) By definition, scenarios are subsets of all possible outcomes (Pielke and Bravo de 

Guenni, 2004): one GCM/RCM output only provides a single representation of a future 

large-scale climate;  

(ii) GCM/RCMs may not adequately represent the regional and local climate, particularly 

the characteristics of extremes (e.g. Frei et al., 2006);  

(iii) Results from multi-scenario analyses provide an indication of uncertainty through a 

range of potential future changes, but generally have no associated probabilities and 

therefore make risk-based decision-making and policy development difficult;  

(iv) Streamflow response to climate variability and change is non-linear (Mosley and 

McKerchar, 1992) and there may be tipping points resulting in significant flow changes 

that fall outside the future climate represented by GCM/RCMs;  

http://www.defra.gov.uk/environ/fcd/pubs/pagn/climatechangeupdate.pdf
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(v) The dynamics by which climate and catchments interact are complex with  response of 

river flow to change in precipitation conditioned by catchment properties (Fu et al., 

2007) and influenced by changes in rainfall intensity, frequency, seasonality and total, 

as well as evapotranspiration, soil moisture and temperature (Mosley and McKerchar, 

1992). A single set of GCM/RCM outputs may not increase our understanding of how 

these variables interact. 

In the last few years, a new scenario-neutral paradigm in climate change impact analysis has 

emerged (Figure 1, right) where sensitivity to the entire spectrum of environmental threats, 

including climate change, is first assessed before the future likelihood of such scenarios is 

tested. This approach combines: 

1. Sensitivity: the degree to which a system is affected by changes in certain variables 

(e.g. by changes in climate); 

2. Exposure: the projected change in variables that could affect the system (e.g. the 

climate change scenarios); and  

3. Adaptive capacity: the ability of a system to adapt to changes (Lindner et al., 2010). 

Figure 1. (place holder) 

Mastrandrea et al. (2010) suggests that combining ‘top-down’ approaches with ‘bottom-up’ 

analyses (e.g. identifying impact thresholds) is necessary to bridge the gap between 

climate-impact research and adaptation policies. Moreover, integrating knowledge on 

sensitivity and exposure from probabilistic projections (e.g. UKCP09. Jenkins et al., 2009) 

results in a probabilistic assessment of impacts, addressing one of the main weaknesses of 

sensitivity analyses identified by Wilby et al. (2009). Once the framework is in place, risk 

assessments can be performed and adaptation strategies evaluated (e.g. Sharma and 

Bharat, 2009). 

Sensitivity testing of water resources based on mean annual changes in climate has been 

reported by Fu et al. (2007) and Yu et al. (2010) while Bastola et al. (2011) and Weiß (2011) 

included seasonal changes but most considered few catchments and/or scenarios. In 

contrast, and for the first time a scenario-neutral framework has been applied here to 

many catchments and typical catchment responses to climatic changes identified and 
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characterised, so that vulnerability to climate change can be readily assessed, even for 

ungauged catchments. Two research questions are addressed: 

 Does the sensitivity of flood flows to climate change vary across Britain? (this paper) 

 Does the sensitivity of flood flows to climate change depend on catchment 

properties? (Prudhomme et al., submitted) 

This paper implements the sensitivity framework of Prudhomme et al. (2010) to generate 

flood response surfaces to climatic change for 154 catchments across Britain. The analysis is 

shown here for changes in the magnitude of the 1 in 20-year flood peak (or 20-year return 

period flood peak, RP20 hereafter), as this is typically used for flood risk policy, but the 

framework has also been applied to other flood frequencies, RP2 and RP10, which showed 

similar response surfaces (Reynard et al., 2009). Note that changes in daily precipitation 

patterns are not included mainly due to the lack of skill in modelling daily precipitation fields 

by GCMs at the time of the analysis. Thus the results only reflect the implications of changes 

in monthly precipitation on the calculated flood peaks and not any changes in the intensity 

and frequency of daily precipitation extremes other than those implied by applying monthly 

change factors to an observed baseline of daily precipitation. 

2. Data and methods 

The sensitivity framework is implemented on 154 catchments in Britain, representative of 

the range of catchment properties and climatic variability in the country. For each 

catchment a hydrological model is run with different climatic inputs defined according to 

the same sensitivity domain, and changes in RP20 are calculated. 

2.1. Hydrological models 

Two hydrological models are applied: the Probability Distributed Model (PDM, Moore, 2007) 

is used for 120 (generally) smaller catchments, and the Climate and Land-use Scenario 

Simulation In Catchments (CLASSIC) model (Crooks and Naden, 2007) is used for 35 

(generally) larger catchments; one catchment is simulated by both models. The PDM is a 

lumped rainfall-runoff model with three conceptual stores (soil moisture, fast flow and slow 

flow). A simplified version of the full PDM is used to reduce the problem of equifinality 
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(Beven and Freer, 2001) and allow automatic calibration. CLASSIC is a semi-distributed grid-

based rainfall-runoff model with three main modules (soil moisture accounting, drainage 

and channel routing) and semi-automatic calibration. As snow plays a determinant role in 

climate-to-flow response in mountainous areas and can affect UK upland catchments a 

snowmelt module (Bell and Moore, 1999) is used as a pre-processor for the precipitation 

inputs, to improve simulation of snowmelt influenced river flow and allow for possible 

changes in the split between snowfall and rainfall. Different objective functions are used 

within the calibration procedure, as appropriate to the role of the parameter, including fit of 

observed and simulated flood frequency curves. To ensure integrity of calibration 

hydrological model performance was manually assessed for each catchment. Catchments 

were only included in the sensitivity modelling if they satisfied performance criteria, 

particularly for simulation of high flows, though a few with lower performance were tracked 

through the analyses to identify if performance affected the results. Details on models, 

catchments, calibration and performances are in Crooks et al. (2009). 

2.2. Data 

Calibration data are provided by the UK National River Flow Archive (NRFA), Environment 

Agency and Scottish Environment Protection Agency (river flow) and UK Met Office 

(precipitation). The majority of catchments have at least 30 years of good quality data with a 

maximum period from January 1961 to December2001. Point precipitation data are used to 

generate catchment/grid-average precipitation (P) using the Triangle method (Jones, 1983). 

Gridded monthly potential evapotranspiration (PE) based on the Penman-Monteith 

equation (Monteith, 1965) is from the UK Met Office Rainfall and Evaporation Calculation 

System (MORECS) (Hough et al., 1997; Thompson et al., 1982) and distributed uniformly 

within the month. Gridded daily minimum and maximum temperature (T) are from the UK 

Met Office (http://www.ukcip.org.uk/). Corresponding altitudes are from a Digital Terrain 

Model (Morris and Flavin, 1990).  

http://www.ukcip.org.uk/
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2.3. Sensitivity domain 

a) Background 

For a sensitivity analysis to provide useful insights into the response between a driver (here 

climate) and an impact variable (here flood peaks) the domain must describe the major 

aspects influencing the variable. Sensitivity testing of water resources has so far been 

limited to two-dimensional analyses where responses of combined changes in mean annual 

P and T (e.g. Yu et al., 2010) or changes in mean annual P and PE (Liu and Cui, 2011) are 

investigated.  

However, P and T seasonality is known to influence streamflow generation, as it controls 

antecedent conditions (Ziervogel et al., 2010). Elsner et al. (2010) suggested that 

considering only mean annual change might mask important inter-annual processes and 

result in different impacts, as for snowpack in Washington State (USA). In Britain, 

hydrological processes have strong seasonality, with the recharge season (when water 

stores fill) and spring (when evaporative losses increase with the start of the growing 

season) being pivotal to determine the annual water balance. Any changes in climatic 

characteristics during these seasons are therefore likely to affect streamflow generation in 

the following months and years.  

Prudhomme et al. (2010) showed that decadal and intra-annual climate changes in P and T 

from CMIP3 outputs (Covey et al., 2003) can be smoothed by a single-phase harmonic 

function, with a peak in January for P (January or August for T). This enforces symmetry on 

changes in the transitional seasons of autumn and spring. Alternative smoothing 

procedures, not imposing symmetry, are possible, but Prudhomme et al. (2010) showed no 

evidence that the seasonal pattern of change is significantly different from that described by 

a single-harmonic function. The analysis of Bosshard et al. (2011) confirms the need to 

smooth change factors in some way, to reduce sampling artefacts caused by natural 

variability, though they apply a spectral smoothing technique to the annual P and T cycles 

before calculating change factors, rather than directly smoothing the change factors. Some 

smoothing was also used for the UK Climate Impacts Programme’s sets of monthly change 

factors UKCIP02 (Hulme et al., 2002). 
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While previous studies suggest that scenario-neutral, sensitivity-based analyses provide a 

step forward for assessment of climate change impacts, particularly when including changes 

in seasonality, they cover few catchments and/or few climate projections and no attempt is 

made to regionalise responses. Changes in the frequency and intensity of wet days are very 

important for fast responding catchments, as their flood-generation processes are sub-daily. 

However, current GCMs and RCMs are not yet able to simulate well sub-monthly 

precipitation characteristics in regions such as Europe, in particular high intensity daily and 

sub-daily precipitation (Kjellstrom et al., 2010). Therefore changes in rainfall 

frequency/intensity at the sub-monthly scale were not considered. 

b) Definition 

Here, the sensitivity domain developed by Prudhomme et al. (2010) is used, as summarised 

below. Monthly changes in P and T are defined by the single-harmonic function 

Equation 1 )(
12

2
cos0 tAXX t

 

where Xt is the value at time t (month number), X0 is the arithmetic mean, A is the 

amplitude and  is the phase (time of year the maximum occurs, in months). The type of 

variation dominating the curve is revealed by the size of the amplitude A (hereafter referred 

to as ‘seasonality’). P changes are represented as percentages, while T changes are in °C.  

For P, the phase was fixed to correspond to January ( =1). Sets of pairs (X0, A) then define 

the 2-dimensional P sensitivity domain and are used in Equation 1 to derive the 

corresponding Xt (monthly percentage changes in P; Supplementary Figure a): X0 varies 

between -40% and +60% and A between 0% and +120%, each by increments of 5% (a total 

of 525 P scenarios). Note that some combinations lead to no precipitation occurring in 

summer or to increases in summer precipitation. 

As streamflow and flood regimes are less sensitive to T and PE than to P, the number of T 

scenarios – and associated PE scenarios – is restricted to eight (Supplementary Table a), and 

Equation 1 is used to derive monthly T changes. Associated PE changes are estimated using 

the T-based equation of Oudin et al. (2005) with the Central England Temperature series 

(http://www.cru.uea.ac.uk/~mikeh/datasets/uk/cet.htm) as the baseline.  

http://www.cru.uea.ac.uk/~mikeh/datasets/uk/cet.htm
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2.4. Implementation 

For each of the 4,200 combinations of monthly P and T/PE change factors of the sensitivity 

domain, synthetic catchment climate time series (P, T and PE) are generated using the 

‘change factor’ method (e.g. Hay et al., 2000) with the historical catchment climate time 

series. For each catchment, the impact model is run using each set of synthetic climate 

series as driving data, producing corresponding synthetic daily river flows.  

Following Prudhomme et al. (2003) a generalised pareto distribution (Naden, 1992) is fitted 

to peaks-over-threshold POT2 series (Bayliss and Jones, 1993), independently for the 

baseline daily flows (i.e. those simulated using historical climate time series) and synthetic 

daily flows, to estimate percentage changes in the magnitude of 20-year return period flood 

peaks (RP20). In addition, the elasticity of flood flows (i.e. “proportional change in 

streamflow divided by the proportional change in a climate variable” Schaake, 1990) is used 

to aid understanding of the non-linearity of the rainfall-runoff processes. The elasticity of 

RP20 is calculated as the ratio between RP20 change and January P change, and provides 

information on the influence of winter P changes on the flood regime (while January is the 

month of maximum P change, by construction, December and February will experience the 

second highest P changes of the year). Elasticity values higher (lower) than 1 indicate a 

change in RP20 greater (smaller) than that of January P. Elasticity provides a way of 

normalising the percentage changes in RP20; P in other months could be used, when the 

values of elasticity would be different but the general pattern would be the same.  

Flood response surfaces are generated for each T/PE scenario separately and describe 

changes in RP20 and elasticity of RP20. Graphical representation consists of 3-dimensional 

diagrams with X0 (changes in mean annual P) on the y-axis, A (reflecting the seasonality of P 

changes) on the x-axis and changes in RP20 or elasticity of RP20 as colour gradients 

(Supplementary Figure b).  
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3. Flood response to climate change in Britain: flood sensitivity types 

3.1. National picture for Britain 

Response surfaces for all 154 catchments (Supplementary Figure c) show great similarity for 

RP20 changes: changes in flood magnitude decrease with a decrease in mean annual P when 

the seasonal variation is small; changes in flood magnitude gradually increase when both 

mean annual P and seasonality increase; changes in flood magnitude can be very large for 

large changes in mean annual P and/or seasonality. In contrast, the elasticity of RP20 shows 

more variability throughout Britain. Elasticity varies with changes in mean annual P but also 

has a strong relationship with the seasonality of P changes. This links with the different 

rainfall-runoff processes that occur in different seasons in Britain. The 154 response 

surfaces show that this variation is not uniform from catchment to catchment.  

3.2. Identification of flood sensitivity types 

Typical flood sensitivities are investigated through a clustering analysis of the response 

surfaces of the 154 catchments (RP20 changes for all P and T/PE combinations together) 

based on a hierarchical agglomerative clustering algorithm with Euclidian distance as the 

dissimilarity measure and the Ward algorithm (function agnes of the package ‘cluster’ of 

the statistical software R). This is similar to the clustering analysis of Köplin et al. (2012), 

who grouped catchments in Switzerland according to their hydrological response (changes 

in mean monthly flows) to a small set of climatic changes (derived from 10 GCM/RCM 

combinations). 

To avoid extreme P scenarios (not projected to occur in Britain with current climate models 

Prudhomme et al., 2010) overly influencing the analysis, only responses from scenarios with 

A up to 80% are considered (although the full extent is displayed in the response surfaces). 

Three catchments are a priori excluded from the analysis as they showed different 

sensitivity to climate change than the rest of the catchments but could not be systematically 

discriminated by the clustering algorithm due to their limited sample size. As they show 

similar sensitivity to each other, these three catchments are considered a separate group. 

Eight groups are identified for the remaining 151 catchments. To avoid too many small 
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groups being formed, a two-stage process is used; first four groups are produced then the 

two largest are further divided. 

The resulting nine groups (eight from the clustering analysis, plus one (Damped-Extreme) 

from the excluded catchments) represent nine typical flood sensitivity types to climatic 

change, named Damped-Extreme, Damped-High, Damped-Low, Neutral, Mixed, Enhanced-

Low, Enhanced-Medium, Enhanced-High and Sensitive. These are briefly characterised 

across the range of P changes in Table 1 and shown schematically in Supplementary Figure 

d. Composite (or average) response surfaces are calculated for each sensitivity type (Figure 

2): 

 Composite RP20 change: mean of RP20 change (arithmetic mean for each of the 525 P 

changes of the sensitivity domain, over all T/PE scenarios and all catchments of that 

type); 

 Composite elasticity of RP20: mean of elasticity of RP20 (calculated as above for each of 

the 525 P changes of the sensitivity domain); 

 Standard deviation of RP20 change: standard deviation of RP20 change (calculated as 

above for each of the 525 P changes of the sensitivity domain) — a measure of spread 

within a sensitivity type. 

Table 1. (place holder) 

Figure 2. (place holder) 

The composite response surfaces (Figure 2a) are ordered according to the width and 

shape/curvature of the percentage change bands, from Damped-Extreme (widest bands) to 

Sensitive (narrowest bands). The width of the bands illustrates how sensitive a type is to 

mean P changes. The names of the sensitivity types describe how flood peaks change 

relative to the maximum change in P and not how a catchment responds to P as an input 

per se. The Neutral response type has the most linear relationship of the nine types 

between change in P and change in flood peak; width of the bands in approximately straight 

lines (Figure 2a), with an elasticity of around 1.0 for most of the surface (Figure 2b) is 

illustrative of the linear relationship.  
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3.3. Robustness of flood sensitivity types 

The robustness of the sensitivity types is assessed by investigating the influence of the T/PE 

scenarios, and the internal and external variability of each type. 

a) Influence of T/PE scenarios on flood response to climate change 

The variability of response surfaces for a catchment due to different T/PE scenarios is found 

to be much smaller than that between catchments (Supplementary Figure e), confirming the 

lesser role of T/PE variability compared to P variability in controlling high flow and flood 

variability in Britain. The degree of response surface variation between T/PE scenarios varies 

between catchments/types though, as it depends on the relative values of P and PE, which 

determine whether all the precipitation is used to satisfy the evaporative demand or if there 

is enough water for infiltration (filling up of catchment water stores) or to contribute to 

streamflow (and possibly flood) generation.  

b) Internal and external sensitivity type variability 

The variation in response surfaces of catchments with the same sensitivity type (internal 

variability) is compared to that of catchments with different sensitivity types (external 

variability) using Taylor diagrams, designed to summarise how well patterns match each 

other (Taylor, 2000). Figure 3a uses each composite response surface in turn as the 

reference pattern, and compares all the catchment response surfaces (for a single T/PE 

scenario) to that reference , where the symbol colour/shape indicates the sensitivity type of 

each catchment. For each sensitivity type, the similarity between catchment response 

surfaces is good and the spread around the reference is small compared with that for all 

response surfaces: internal variability is much smaller than external variability. Thus the 

sensitivity types are homogeneous and each composite response surface is significantly 

different from the others, confirmed by comparing the composite surfaces in a Taylor 

diagram (Figure 3b).  

Figure 3 also illustrates that Damped types show the least variability within response 

surfaces (smallest pattern standard deviations). As the climate change signal is damped 

(Figure 2) the variation in RP20 changes is smaller. Conversely, Enhanced types show high 

variability within their response surfaces, also associated with larger internal variance (wider 
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range of response surfaces of the same type). The variability of Mixed and Neutral types is 

between that of Damped and Enhanced. The Sensitive type shows the largest response 

surface variability and the largest internal variance. 

Figure 3 (place holder) 

3.4. Interpretation of the flood sensitivity types 

Figure 4 shows the sensitivity types of the 154 catchments plotted to the catchment outlet 

locations. The location of sensitivity types across Britain does not show any strong 

geographical pattern, although some features emerge: Catchments associated with a 

Damped type are generally found in the west and north-east, while those with a Neutral 

type are often located in the west. Catchments with a Mixed type are found in most parts of 

Britain except in western Scotland and catchments with an Enhanced type are generally 

found in the south-east. 

Figure 4. (place holder) 

The differentiating factors between the nine sensitivity types can be understood in terms of 

climatology, including seasonality and natural variability of climatic variables, combined with 

hydrological processes in the catchment; the main factors are discussed briefly below.  The 

relationship between sensitivity types and catchment properties is the focus of the 

companion paper. 

a) Water balance 

The seasonality of the hydrological water balance between incoming P and outgoing losses 

(mainly through evaporation and water usage) provides the background which determines 

whether a ‘precipitation event’ is sufficient to generate a flood. In winter (Dec–Feb) inputs 

generally greatly exceed losses; the sign of the water balance is not affected by changing P 

and PE so, on average, flood potential is not changed. However, in the remainder of the year 

changes in P and PE may change the sign of the water balance, with consequent effects on 

flood potential. Catchments sensitive to changes in the seasonal water balance are more 

influenced by T/PE scenario seasonality and tend to belong to the Mixed or Enhanced types. 
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b) Catchment memory 

The response between P and runoff is determined by catchment properties such as 

topography, soil type and geology. These properties determine the water storage capacity 

and lag between P and river flow, or the catchment ‘memory’. With a short memory 

catchment (e.g. an upland catchment with impermeable bedrock and little storage), changes 

in the water balance have influence over a limited time, such as hours or days, whereas for a 

long memory catchment (e.g. a catchment with permeable bedrock such as chalk), changes 

to the water balance, through changes in stored water, may be evident over months, or 

even years. Catchments with short memory tend to be Damped or Neutral types, while 

those with long memory tend to be Enhanced-High or Sensitive types. Note that the analysis 

undertaken here only concerns precipitation changes at the monthly scale, not sub-monthly 

patterns, which are more important for short-memory catchments. 

c) Natural variability 

The future climate series have been created using the change factor method applied to 

observed P, T and PE. The sequencing and time of year of extreme rainfall events in the 

observed data series, inherent within natural variability of the climate, may have an effect 

on the resultant change in frequency of the associated flood events.  

d) Frequency of floods in baseline time series 

The mean and coefficient of variation of the observed and modelled POT2 series for each 

catchment are analysed to investigate whether the characteristics of the sampled flood 

peaks (controlled by the baseline climate time series) are linked to sensitivity type. No 

marked difference is found in the dispersion between the nine sensitivity type and no 

systematic bias appears in the reproduction of the daily flood peak variability for particular 

types. Thus the sensitivity types identified for the study catchments are not related to flood 

history, hence are a reliable description of catchment (albeit modelled) behaviour under 

climatic change. 

4. Discussion and conclusion 

This paper describes the first part of a novel methodology using a scenario-neutral 

framework. The method quantifies catchment flood response to climatic change using the 
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same sensitivity analysis for 154 British catchments, and aims to provide scientific evidence 

to policy makers regarding the expected range of impacts that could occur in different 

catchments. Changes in 20-year return period flood peaks (RP20) are simulated for each 

catchment, for a sensitivity domain comprising 525 sets of precipitation (P) changes 

combined with eight sets of temperature/potential evapotranspiration (T/PE) changes 

including changes in both mean annual magnitude and seasonality of the climate.  

For each T/PE scenario, flood response surfaces for changes in P are generated for each of 

the 154 catchments, describing the associated change in RP20 and the elasticity of RP20 

(ratio of change in RP20 over the January P change). These show that: 

 There is a large variation in response surfaces across catchments. The same climate 

change scenario can result in very different changes in flood peaks, and some 

catchments are much more sensitive to climatic (particularly P) change than others. This 

is important for long-term planning, as adaptation measures could be more appropriate 

in some catchments than others. Note that changes in high intensity precipitation are 

not investigated. 

 Changes in RP20 and elasticity of RP20 are strongly linked to the seasonality of climatic 

changes. Note that January is winter in Britain; generally wet and when most recharge 

occurs. A phase (month of largest P increase) occurring in a dry season is likely to result 

in different responses. While Fu et al. (2007) showed that elasticity varies with mean 

annual P change, they did not study the effect of seasonality of changes. These results 

demonstrate that undertaking impact studies using only mean annual P changes might 

underestimate flood magnitude changes. Moreover, traditional elasticity analyses 

aiming to understand the non-linearity of streamflow generation processes, based on 

combining mean annual P and T changes only, might be less efficient to describe and 

understand climate-catchment dynamics than a sensitivity analysis where seasonality is 

explicitly considered. This could also be the case for other sectors. 

 The variation in response surfaces generated with different T/PE scenarios for a 

catchment is generally small compared to the variation in response surfaces between 

different catchments. This confirms the relatively low importance identified by Zheng et 

al. (2009) of T/PE compared to P for streamflow and flood generation processes, and 
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that for flood impact studies in Britain, analyses using more P than T/PE scenarios are 

appropriate.  

 The range of response surfaces found for the 154 study catchments in Britain can be 

classified into nine flood sensitivity types, describing five main behaviours: Neutral, with 

elasticity of RP20 close to 1; Damped, with elasticity of RP20 often less than 1; 

Enhanced, with elasticity of RP20 often greater than 1 for increases in mean P; Mixed, 

where elasticity of RP20 strongly depends on the magnitude and seasonality of P 

changes; and Sensitive, where the flood regime is very impacted by even small P 

changes. While some differences in elasticity of streamflow to climate for different 

catchments have been identified in other parts of the world it is often not clear whether 

this is characteristic of general hydrological processes or the result of specific local 

conditions in those catchments. Only a systematic analysis over a large number of 

catchments can identify if similarities in catchment response exist, as shown here for 

floods in Britain and by Köplin et al. (2012) for mean monthly flows in Switzerland 

(where seven response types were identified).  

 The nine sensitivity types identified in Britain do not show any strong geographical 

pattern, although weak north/south and west/east divides are shown for some types. 

This is likely to be related to the strong influence of catchment physical properties, such 

as soil, geology, land use, aspect and geomorphology, and some influence of the climate 

(in particular the seasonal difference between P and PE). While hydrological science 

identified long ago the difference in hydrological processes in catchments with different 

properties, this difference has, until very recently, not been systematically investigated 

regarding how it modifies the rainfall-change-to-flood-change signal. The analysis of 

Köplin et al. (2012) demonstrates the influence of properties including slope and 

altitude on changes in mean monthly flows in Switzerland. An analysis of sensitivity 

types and catchment properties could provide information on the level of influence of 

different properties on flood changes in Britain. 

In the companion paper (Prudhomme et al., submitted) a discriminant analysis is used to 

characterise catchments with similar sensitivity types based on catchment properties. This 

allows any catchment with available catchment property information to be associated with 
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a response surface without the need for a full sensitivity analysis using an impact model. 

This could prove extremely useful in the context of vulnerability. 

The scenario-neutral sensitivity framework applied here uses monthly change factors 

(smoothed by a single-harmonic function) applied to baseline data series, so does not 

change the sub-monthly variability or temporal sequencing of the baseline data. This is 

deliberate as it guarantees that the same set of climate change signals is imposed on all 

catchments, enabling more robust classification (and characterisation - see part 2, 

Prudhomme et al. submitted) of the sensitivity of flood flows to climatic change. Introducing 

sub-monthly changes would add further dimensions to the sensitivity domain and make 

classification and subsequent application more difficult. Similarly, although using a weather 

generator (e.g. Bastola et al. 2011) would introduce changes in variability and temporal 

sequencing, it would also introduce inconsistency (noise) in the response surfaces, 

hampering robust classification. For this first implementation of a generalised scenario-

neutral methodology for climate change impact and vulnerability assessment, the method 

was kept as simple as possible. Despite this, we believe that the information provided by the 

response surfaces is very valuable for understanding catchment behaviour under climate 

change and can be used to inform policy makers. Future work will investigate how best to 

enhance the sensitivity framework methodology, as well as validating the sensitivity type 

classification by modelling further catchments. 
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Tables : 

Table 1. Summary description of changes in RP20 for the nine flood sensitivity types found in Britain 
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Damped-Low (DpL) Slightly 
damped 

Similar or higher Similar or lower Lower or much 
lower 

Decrease 

Damped-High (DpH) Very damped Similar or higher Similar or lower Much lower or 
decrease 

Decrease 

Damped-Extreme 
(DpE) 

Extremely 
damped 

Similar or lower Much lower Much lower or 
decrease 

Decrease 

Enhanced-Low (EnL) Slightly 
enhanced 

Higher Similar or higher Similar or lower Decrease 

Enhanced-Medium 
(EnM) 

Enhanced Much higher Similar or higher Lower or much 
lower 

Decrease 

Enhanced-High 
(EnH) 

Very enhanced Much higher Similar to much 
higher 

Lower to 
decrease 

Decrease 

Sensitive (Sen) Sensitive Much higher Much lower to 
much higher 

Much lower or 
decrease 

Decrease 

Mixed (Mix) Mixed Higher or much 
higher 

Similar or lower Much lower or 
decrease 

Decrease 

Similar – percentage increase in flood peak of similar magnitude to maximum monthly percentage 
increase in P (elasticity of RP20 to January P from 0.8 to 1.2) 
Lower – percentage increase in flood peak lower than maximum monthly percentage increase in 
precipitation (elasticity of RP20 to January P from 0.5 to 0.8) 
Much lower – percentage increase in flood peak much lower than maximum monthly percentage 
increase in precipitation (elasticity of RP20 to January P from 0 to 0.5) 
Higher – percentage increase in flood peak higher than maximum monthly percentage increase in 
precipitation (elasticity of RP20 to January P from 1.2 to 1.5) 
Much higher – percentage increase in flood peak much higher than maximum monthly percentage 
change in precipitation (elasticity of RP20 to January P greater than 1.5) 
Decrease – percentage decrease in flood peak 

Summer – change in at least one month from May to September  
Winter – change in at least one month from November to March 
Change in P derived from single-phase harmonic function with peak in January  
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Figures: 

 

Figure 1. Schematic of climate change impact studies: top-down, scenario-led approach (left) and bottom-

up, scenario-neutral framework (right) 
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Figure 2. Composite flood response surfaces associated with flood sensitivity types of British catchments: (a) 

RP20 change; (b) elasticity of RP20; (c) standard deviation of RP20 change. Graphical representation consists 

of 3-dimensional diagrams with changes in mean annual P (X0) on the y-axis and changes in A (reflecting the 

seasonality of P changes) on the x-axis (see axes diagram, bottom-right), with the third dimension shown by 

the colour gradient (see colour keys, bottom-left). 
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Figure 3. Taylor diagrams comparing, for RP20 change, a) each catchment flood response surface (for the 

Medium Aug T/PE scenario; coloured symbols) with each composite response surface as reference (black 

square); b) each composite response surface with the Damped-Extreme (DpE) composite response 

surface as reference 
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Figure 4. Flood sensitivity types of the study catchments for RP20 
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Supplementary material 

 

Table a. Sensitivity domain for precipitation and temperature changes 
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Figure a. Example of mean monthly changes for single-phase harmonic functions with phase in January and 

mean annual change (X0) and amplitude (A) equal to, respectively: 60 and 100 (solid); 35 and 10 

(dashed); 0 and 60 (dotted) and -40 and 120 (dot-dash). When changes are less than -100%, they are 

taken as -100%. 

   

   

Figure b. Example flood response surfaces displaying the RP20 change (left) and elasticity of RP20 to January 

precipitation (right). Graphical representation consists of 3-dimensional diagrams with changes in mean 

annual P (X0) on the y-axis and changes in A (reflecting the seasonality of P changes) on the x-axis, with 

the third dimension shown by the colour gradient. 
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Figure c. Flood response surfaces for RP20 change (left) and elasticity of RP20 (right) for the Medium Aug 
T/PE scenario (see Table a) 

 

 

Figure d. Schematic of the nine flood sensitivity types found in Britain 
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Figure e. Flood response surfaces for RP20 change associated with each T/PE scenario for catchments 

representative of the nine flood sensitivity types. From left to right: Damped-Extreme (Findhorn at 

Forres 07002); Damped-High (Helmsdale at Kilphedir 02001); Damped-Low (Eden at Kemback 14001); 

Neutral (Yealm at Puslinch 47007); Mixed (Bure at Ingworth 34003); Enhanced-Low (Teme at Tenbury 

54008); Enhanced-Medium (Leet Water at Coldstream 21023); Enhanced-High (Avon at Amesbury 

43005); Sensitive (Mimram At Panshanger Park 38003). Details of the catchments can be found in (Marsh 

and Hannaford, 2008). 
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