
THE BRITISH GEOLOGICAL SURVEY’S NEW GEOMAGNETIC DATA
WEB SERVICE

E Dawson
1
*, J Lowndes

1
, and P Reddy

2

1
British Geological Survey, West Mains Road, Edinburgh EH3 9LA, United Kingdom

*Email: ewan@bgs.ac.uk
2
School of Computing, Robert Gordon University, Schoolhill, Aberdeen AB10 1FR, United Kingdom

ABSTRACT

Increasing demand within the geomagnetism community for high quality real-time or near-real-time observatory
data means there is a requirement for data producers to have a robust and scalable data processing
infrastructure capable of delivering geomagnetic data products over the Internet in a variety of formats. We
describe a new software system, developed at BGS, which will allow access to our geomagnetic data products
both within our organisation’s intranet and over the Internet. We demonstrate how the system is designed to
afford easy access to the data by a wide range of software clients and allow rapid development of software
utilizing our observatory data.

Keywords: Web Services, REST, Geomagnetism, Data Visualisation, Java, Restlet

1 INTRODUCTION

The British Geological Survey (BGS) operates a network of observatories that continuously measure the
geomagnetic field at eight locations around the world. Each of our geomagnetic observatories has one or more
GDAS (Geomagnetic Data Acquisition Systems) instruments that sample the field at a rate of 1Hz. These data
are transmitted to our data processing centre in Edinburgh over the Internet in near-real-time. The data are stored
on our Storage Area Network (SAN) in fixed-width format plain-text files in a hierarchical file system.

These continuous 1Hz time-series data comprise our raw base data, but our primary data product is a time-series
of one-minute mean values for each observatory. As well as our primary data product, we also generate a
number of derivative data products for use by the public, academics, and industry. In addition, we also create
other derivative data products for the purpose of detecting environmental interference and other issues in the
data as part of our quality control procedures. These derivative data products are also stored in text files on our
SAN.

Definitive data from geomagnetic observatories are available from third-party archives such as
INTERMAGNET (http://www.intermagnet.org) and the World Data Centres for Geomagnetism (for example,
http://www.wdc.bgs.ac.uk). However, due to the post-processing involved in deriving definitive geomagnetic
field values from the observatory data (see Macmillan, 2007 for details), these definitive data only become
available many months after recording. Some preliminary or quasi-definitive data (as defined in Peltier &
Chulliat, 2010) are available much sooner from the BGS public website although this is quite limited in terms of
the range of data available and is not easily accessible in a standard format.

In 2010, we started to look into using web services technology to facilitate easier access to our data products for
both external and internal users. The result, which we describe here, is a web service providing timely access to
a wide range of BGS geomagnetic observatory data products.

2 WEB SERVICE REQUIREMENTS

The web service will be used by both internal and external users who require access to our geomagnetic
observatory data products. It will also be used within BGS to provide data for visualisation tools to assist in
observatory quality control procedures and to display observatory magnetograms on our public website. From
these use-cases, we derived a number of requirements that the web service must satisfy. These are summarised
below.

Data Science Journal, Volume 12, 27 February 2013

WDS75

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NERC Open Research Archive

https://core.ac.uk/display/9703779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.intermagnet.org/
http://www.wdc.bgs.ac.uk/

The web service should:

1. Allow the user to retrieve a time-series of geomagnetic field mean values and derivative data products
using criteria such as: observatory, interval (start and end date of time-series), and cadence (second,
minute, or hour).

2. Allow the user to specify the format in which the data should be returned. Supported formats should
include:

 XML - for easy integration with third-party tools
 JSON - to allow easy integration with browser-based web applications
 IAGA-2002 - a plain-text data exchange format commonly used in the geomagnetism

community (see McLean, 2011)
3. Respond to common queries in less than one second; the service must perform fast enough to be used

by observatory operations staff in interactive data processing applications.
4. Be easily accessible by human users and programmatic clients alike.
5. Allow for easy integration with a wide range of commonly used tools, such as web-browsers,

MATLAB, R, Excel, etc.
6. Allow for users to be authenticated and restrict access to certain datasets depending on authorisation.

3 WEB SERVICE DESIGN

3.1 Data transfer protocol

There are a large number of protocols currently used in web services of one kind or another, each with its own
pros, cons, and common use cases. However, the only protocol that can be considered truly ubiquitous (and
therefore meeting criteria requirement 5 above) is HTTP (Hypertext Transfer Protocol), the protocol which
forms the basis of the World Wide Web. HTTP has well-defined semantics for retrieving and updating data over
the Internet (see Fielding et al., 1999 for details). It has client and server implementations available for almost
all programming languages and operating systems, the most familiar examples being web browsers on the client
side and the Apache httpd web server on the server side.

3.2 Identification and representation of data

The HTTP protocol also offers a convenient way for us to identify our datasets in the form of URLs. The various
parameters that together identify the dataset are encoded within the URL itself, according to a defined schema.
For example, if the parameters are observatory, start date, end date, and cadence, a suitable URL schema would
be:

http://geomag.bgs.ac.uk/webservice/obsdata/{observatory}/{cadence}/data?sta

rt={start date}&end={end date}

Using this URL schema, the one-minute-mean data for the first hour of January 31st, 2012 from Lerwick
observatory would be identified by and retrieved using the URL:

http://geomag.bgs.ac.uk/webservice/obsdata/ler/minute/data?start=2012-01-31

T00:00&end=2012-01-31T01:00

According to our requirements, we must also provide a way for the user to specify the format in which the data
should be returned. The HTTP protocol defines a number of headers that may be sent as part of an HTTP
message. One of these is the ‘Accept’ header, which allows the client to specify the preferred data format (or
‘media type’, in the language of the HTTP specification). Thus the user can specify the format by setting the
‘Accept’ header to the appropriate value, such as ‘application/xml’, ‘application/json’, or
‘application/x-iaga2002’. With some HTTP clients, for example web browsers, it is difficult to modify the HTTP
request headers. To allow users to specify the required data format using such clients, we also allow the format
to be specified as an additional URL parameter, for example, by appending &format=xml to the URL.

Data Science Journal, Volume 12, 27 February 2013

WDS76

3.3 Authentication and Authorisation

Some datasets, for example the derived data products used in our quality control procedures, should only be
accessible to observatory operations staff. In order to satisfy this requirement, we need a way to authenticate
(identify) the user and authorise each request according to our data access rules. There are a number of
authentication protocols in use on the web, but the simplest and most widely supported are the HTTP-Basic and
HTTP-Digest authentication protocols that are part of the HTTP specification (see Franks et al., 1999). Both
protocols require the client to send a username and password along with each request, which the web service can
then use to establish the identity of the user. Once authenticated, the web service can then decide whether to
allow or to deny access to the requested resource based upon the data access rules of the organisation.

4 IMPLEMENTATION

At BGS we already have the IT infrastructure and skills required to deploy web applications based on Java
Servlet technology. Therefore when evaluating potential web service technologies, we restricted ourselves to
those that would be compatible with our existing infrastructure. Out of the various Java-based frameworks
suitable for developing this kind of web service, we decided to use the Restlet (http://www.restlet.org)
framework. Restlet is a popular open-source framework designed as an implementation of the “Representational

State Transfer” (REST) style of information system architecture (for more details, see chapter 5 of Fielding,
2000). The design of our web service broadly conforms to the architectural constraints of REST1, so the Restlet
framework is a good fit. Restlet is mature, well documented, and has an active user community - all important
considerations when deciding on the adoption of an open-source technology. The main benefit of using a
framework such as this is that many of the components required to build the web service are provided by the
framework, significantly reducing development time.

The architecture of the web service comprises two main layers (see Figure 1).
The data access layer sits between the SAN data store and the web application
layer. At the bottom, the data access layer is responsible for the low level
interaction with the file system. It provides an interface to the web application
layer, allowing access to the data without other parts of the system having to
know anything about how the data are stored. This de-coupling of the
application logic and the data access logic promotes resilience to change in the
system; if we want to change our data storage system, for example by
switching from using plain text files to using a relational database, then we
need only provide a new implementation of the data access layer. No changes
need be made to any other part of the system, and the change of data store will
be transparent to the application logic.

The application layer, which is implemented using components provided by
Restlet, encapsulates all of the application-level logic, such as authentication
and authorisation, parsing of request parameters, content-negotiation
(determining in which format to return the data), and preparing the response.

The web service is packaged as a standard Java WAR package and deployed in
an Apache Tomcat web application container. The web service runs on a 64-bit
server with an 8-core CPU running at 2.8GHz and 16GB of RAM. This
hardware allows us to service a very large number of concurrent requests; the
software will also run satisfactorily in a less demanding environment on a
standard consumer laptop computer with only 2GB of RAM.

1 One of the constraints that define the REST architectural style is the ‘hypertext constraint’: that is, all state transitions (including locating

and navigating between resources) must be afforded via hypertext links. In our case, since we use a fixed URL schema to allow users to
construct their own URLs rather than having them follow links from the web service root, our web service breaks the hypertext constraint.

Figure 1. Architecture of the
web service, showing the
relationship between the major
components. Some example
clients are shown at the top.

Data Science Journal, Volume 12, 27 February 2013

WDS77

http://www.restlet.org/

4.1 Improving performance

There are a number of steps involved in a typical request-response cycle between the client and the web service.
The client sends a request to the web service, which is then processed by the application layer. The application
layer requests the data required to fulfil the request from the data access layer. These data may be spread across
a number of files, each of which must be read into memory and parsed by the data access layer. The parsed data
are then passed back to the application layer, where they must be re-serialized into the format requested by the
client. Finally, the response containing the serialized data is then sent back across the network to the client.

Each of these steps adds to the amount of time taken to process the request. In particular, the reading and parsing
of data from the disk and the transmission of the data across the network are the most time-consuming steps,
with the time taken increasing approximately linearly with the amount of data requested. In order to meet our
performance requirement, we have implemented a number of strategies to minimize the latency of the typical
request-response cycle. These optimisations are discussed briefly in the following sections.

4.1.1 Data access layer disk cache

The most time-consuming part of servicing a request for data is in reading and parsing the data from disk. To
mitigate this, we added caching functionality to the data access layer (see Figure 1). The cache stores
frequently-requested data in RAM so that subsequent requests for the same data may be serviced without having
to access the disk at all (assuming the data on disk hasn’t been modified in the interim). The caching technology
used is Ehcache (http://ehcache.org), a caching solution implemented entirely in Java. The cache is configured to
use 8GB of the web server’s RAM, which is enough to hold approximately 50,000 observatory daily time-series
files. This form of caching decreases the time taken to respond to requests for commonly-accessed data by a
factor of more than 100.

4.1.2 Compression of response

Even when data can be retrieved from the cache rather than disk, they must still be sent over the network to the
client. The amount of data to be transferred can be quite large, especially since data formats such as XML are
rather verbose. For example, three hours of one-second resolution data from one of our observatories translates
to over 1MB of XML data.

We can reduce the amount of data to be transferred using a compressed encoding, such as GZIP. GZIP encoding
is widely supported among HTTP clients and is often handled completely transparently to the user. HTTP clients
that can handle GZIP encoding indicate this capability to the web service by adding the ‘accept-encoding: gzip’
header to the request. The compressed response is typically 95% smaller, thus decreasing response transmission
time by a factor of 20. Response compression incurs its own performance penalty though; it takes time for the
server to compress the data and for the client to decompress it before it can be used. Although we did not
measure the additional time taken for data compression/decompression, estimates based on user feedback
indicate that response times decreased around ten-fold after compression was enabled on the server. This
improvement was observed on a high-speed LAN; when accessing the web service over the Internet, the
improvement observed should be greater still.

4.1.3 HTTP caching

The best optimisation is to avoid having to request the data in the first place. The HTTP protocol has a number
of features that allow the web service to instruct the client as to which data may be cached (either locally or by
an intermediary server) and how to ask the web service if cached data is still fresh or should be replaced (see
Fielding et al, 1999). HTTP caching is fully supported by the Restlet framework and is widely supported in
HTTP clients, such as web browsers. This makes HTTP caching particularly useful in increasing the
performance of interactive browser-based tools that make use of the web-service, such as the data visualization
tool discussed later in Section 5.2.

By implementing disk caching, response compression, and HTTP caching, we have been able to increase the
performance of the web service to meet the requirement that common requests are handled in less than a second.

Data Science Journal, Volume 12, 27 February 2013

WDS78

http://ehcache.org/

In fact, with these enhancements in place, the majority of requests to the web service are handled in around a
tenth of a second.

5 USING THE WEB SERVICE

5.1 Accessing the data via various HTTP-compatible clients

Because the web service operates using plain HTTP, any client capable of making an HTTP request can retrieve
data using the web service. Since HTTP is one of the fundamental protocols of the Internet, many modern
software applications and tools are capable of retrieving data over HTTP. However in order to use the data, the
application must not only be able to communicate with the web service, it must also understand the format in
which the data are returned. Our web service exposes data in three formats: XML, which is one of the most
commonly-used data exchange formats; JSON, which is rapidly becoming the de-facto data exchange format for
web browser-based applications (see Crockford, 2006); and IAGA-2002, which is a standard data exchange
format in the geomagnetism community (see McLean, 2011).

Examples of software packages that can easily consume data from our web-service are MATLAB, R,
Mathematica, and Microsoft Excel, all of which are capable of retrieving and parsing XML data from a URL.

In addition, almost all programming languages either have an HTTP client and XML parsing software included
or have them readily available as a third-party extension. This means it is easy to develop new software tools
that make use of our latest geomagnetic observatory data in real-time.

5.2 Developing a browser-based data visualisation tool

In addition to providing external users with access to our data
products, the web service also allows tools for internal use to be
developed much more quickly than would be the case if the
developer had to work directly with the data on the file system. The
simple interface to the data provided by the web service frees the
developer to concentrate on implementing the functionality of the
tool.

We have developed a browser-based data visualization tool (see
Figure 2), which uses the data provided by the web service to give
a convenient overview of the data being recorded at each
observatory and assists observatory operations staff in carrying
out daily quality control checks on the data. The interface allows
the user to browse plots of observatory data as well as various
derived data products used to monitor the data quality. The tool
was developed using the JavaScript language and uses the jQuery
(http://jquery.com) and flot (http://code.google.com/p/flot)
libraries for the user interface and magnetogram plotting,
respectively.

The simple HTTP interface provided by the web service, coupled
with the fact that the data can be delivered in the JavaScript-native
JSON format, makes building this kind of interactive web
application relatively straightforward. Furthermore, because the
client is not tightly coupled to the server – the client depending
only on the semantics of the HTTP protocol and the URL schema
we defined – we were able to make extensive modifications to the
web service during its development with no impact to the client.

Figure 2. Screenshot of the data visualization
web application, plotting geomagnetic
observatory data obtained in real-time from
the web service.

Data Science Journal, Volume 12, 27 February 2013

WDS79

http://jquery.com/
http://code.google.com/p/flot

6 SUMMARY AND FUTURE DEVELOPEMENTS

Our new geomagnetic data web service provides a number of benefits to users, both within and outside the
organization, who wish to make use of our observatory data products:

 Ease of access: software clients need only know how to access a URL and parse the response; no
knowledge of how the data are stored in the repository is required.

 Reduction of code duplication: low level data access code is isolated in the web-service software –
client software need not duplicate this code. This leads to faster and more reliable software
development.

 Increased resilience to change: since the low-level data access details are abstracted away by the web
service, changes to the way the data are stored (location, storage format, structure) need only be
reflected in a single place – the data access layer of the web service – while clients using the data are
unaffected.

 Interoperability: the web service can provide data in a variety of standard formats, reducing the need
for client-side format translation and making it easier to integrate BGS geomagnetism data with
existing software and systems.

Currently, our geomagnetism data web service is only available to users within BGS. However, we will make
the web service publicly available in the near future, giving academics and the public unprecedented access to
BGS geomagnetic data products.

7 ACKNOWLEDGEMENTS

This paper is published with the permission of the Director of the British Geological Survey (Natural
Environment Research Council).

8 REFERENCES

Crockford, D. (2006) RFC 4627: The application/json Media Type for JavaScript Object Notation (JSON).
Retrieved December 15, 2011 from the World Wide Web: http://www.ietf.org/rfc/rfc4627.txt

Fielding, R. T., Gettys, J., Mogul, J. C., Nielsen, H. F., Masinter, L., Leach, P. J., & Berners-Lee, T. (1999) RFC
2616: Hypertext Transfer Protocol -- HTTP/1.1. Retrieved December 15, 2011 from the World Wide Web:
http://tools.ietf.org/html/rfc261

Fielding, R. T. (2000) Architectural Styles and the Design of Network-based Software Architectures, Doctoral
dissertation, University of California, Irvine, USA.

Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A., Sink, E., & Stewart, L. (1999)
RFC 2617: HTTP Authentication: Basic and Digest Access Authentication. Retrieved December 15, 2011 from
the World Wide Web: http://tools.ietf.org/html/rfc2617

Macmillan, S. (2007) Observatories: an overview. In: Gubbins, D.; Herrero-Bervera, E., (eds.) Encyclopedia of
Geomagnetism and Paleomagnetism. Netherlands, Springer, pp 708-711(Encyclopedia of Earth Sciences).

McLean, S. (2011) IAGA2002 Data Exchange Format. Retrieved December 15, 2011 from the World Wide
Web: http://www.ngdc.noaa.gov/IAGA/vdat/iagaformat.html

Peltier, A. & Chulliat, A. (2010) On the feasibility of promptly producing quasi-definitive magnetic observatory
data. Earth Planets Space, 62(2):e5-e8, doi:10.5047/eps.2010.02.002

 (Article history: Available online 17 February 2013)

Data Science Journal, Volume 12, 27 February 2013

WDS80

http://www.ietf.org/rfc/rfc4627.txt
http://tools.ietf.org/html/rfc261
http://tools.ietf.org/html/rfc2617
http://www.ngdc.noaa.gov/IAGA/vdat/iagaformat.html

