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With the decline of the UK’s remaining conventional reserves of natural gas and associated growth of imports,
the lack of adequate storage capacity is a matter of concern for ensuring energy security year-round. In a number
of countries, subsurface caverns for gas storage have been created by solution mining of massive halite deposits
and similar storage facilities are likely to become an important part of the UK’s energy infrastructure. Crucial to
the economic viability of such facilities is the percentage of insoluble material within the halite intervals, which
influences strongly the relationship between cavern sump and working volumes: successful development of these
caverns is dependent upon maximising the efficiency of cavern design and construction.
The purity of a massive halite sequence can only be assessed either by direct means (i.e. coring) or indirectly by
downhole geophysical logs The use of conventional geophysical logs in subsurface exploration is well established
but literature generally relies on a very low resolution tools with a typical vertical logging sample interval of
15 centimetres. This means that such tools provide, at best, a “blurred” view of the sedimentary successions
penetrated by the borehole and that discrete narrow bands of insoluble material will not be identifiable or
distinguishable from zones of “dirtier” halite with disseminated mud materials.
In 2008, Halite-Energy Group (formerly Canatxx Gas Storage Ltd) drilled the Burrows Marsh #1 borehole and
acquired resistivity borehole imaging (FMI) logs through the Triassic Preesall Halite in the Preesall Saltfield, NW
England. In addition to near full circumferal imaging capability, rather than a single measurement per increment,
FMI logs allows millimetre to centimetre scale imaging of sedimentary features, that is one to two orders of
magnitude higher vertical resolution.
After binary segmentation of the FMI images to achieve a simple halite-insoluble (“mud”) separation these were
subject to a filtering process to develop a detailed understanding of the halite sequence’s insoluble content. The
results were then calibrated, post-normalisation, by new laboratory determinations of the insoluble content of
laterally equivalent samples of core from the nearby Arm Hill #1 borehole. The FMI logs provide a greater degree
of resolution when compared to conventional geophysical logs. With the statistical analysis provided by this
process, it further enhances the correlation between the logs and core and ultimately, the assessment of insoluble
content. Despite the obvious increase in resolution, precise statistical quantification of the success of the borehole
imaging technique is somewhat obfuscated by the absence of both FMI logs and continuous core in a single
borehole.
The acquisition parameters for these images are at the limits for the tools and therefore more noisy than those
acquired in other lithologies or logging environments. The optimum acquisition parameters (in particular gain
settings and logging speed), the nature of the filtering required to quantify the insoluble content and the effects of
image noise on those calculations are discussed.
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In several countries caverns have been created for gas storage by solution mining of halite 
deposits. The percentage of insoluble material within the halite is economically crucial as its 
controls the ratio between cavern sump and working volumes. The halite's purity can be 
assessed either directly by coring or indirectly by downhole geophysical logs widely used in 
subsurface exploration. These typically have low vertical resolution (15 cm intervals) so provide 
a “blurred” view of the sediments penetrated. Discrete narrow bands (>50 cm thick) of insoluble 
materials are either not identifiable or their top and bases cannot be accurately delineated and 
are thus indistinguishable from zones of halite containing disseminated mud. 

Figure 2: Location 
map of Preesall 
Halite Boreholes   

Figure 8: Calculating insoluble content from 
boreholes resistivity images
A: Flowchart of image processing procedures including filtering 
B: Post-filtering monochrome image showing halite (white) and 
insolubles (black). Images are made up of horizontal strips of pixels 
with vertical resolution of 4mm
C: Calculation of insoluble content for representative horizontal 

Figure 5: Arm Hill #1 Borehole: 
Correlation between Gamma Ray 

logs (API Units) and calculated 
halite percentage from whole core 

solution experiments 

Figure 6: Burrows Marsh #1 Borehole showing (l-r) correlation 
between Gamma Ray (API Units) log (red curve), image 

calculated halite percentage (black curve), halite content from 

boreholes images.
core solution experiments in Arm Hill #1 (green histogram) 

correlated to this borehole and processed 
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Comparison of using Borehole Resistivity Images compared with conventional geophysical logs 
Advantages
Ÿ Conventional geophysical logs over emphasise the thickness of mudstone units whereas image logs accurately delineate the 

top and bottom surfaces of mudstone layers.
Ÿ Conventional geophysical logs cannot differentiate between thin mudstone interbeds from zones of halite with disseminated 

insoluble particulates.
Together these effects mean that geophysical logs overemphasise two problems in the cavern:

the thickness of ledges and irregularities in the cavern walls and that could represent 
potential migrations pathways for the gas. 
the volume of insoluble material which determines the sump volume required to accommodate this. 

The borehole images also show any physical damage to the borehole wall eg washouts at the top of the halite etc which could 
cause cavern development if not properly assessed at the outset.
Coring is more expensive than acquiring FMI logs so this techniques provides the potential to reduce costs if FMI logs are used 
to characterise halite beds rather than collecting as many cores 

Outstanding Issues
Ÿ Borehole image logs cost more to acquire and take longer to process than conventional geophysical logs.
Ÿ Acquiring borehole image logs in halite requires slow logging speeds and high gain acquisition settings. These increase the 

associated noise in the images therefore making calibrating the images more difficult.
This study area does not have a borehole with both images and core samples of the halite, therefore calibrating the images 
against insoluble content has proven very difficult the samples are correlated with the images using the gamma logs but the 
short sample lengths makes perfect correlations impossible). 
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Figure 9: Comparison of images depending 
on logging speeds and gain setting during 

acquisition. All FMI datafrom 
Left and centre panel showing static and 

dynamic equalisation for slow speed and 
high gain, right panel shows static 

equalisation high speed, low gain data with 
much poorer definition. 
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Figure 3: Left: FMI Tool showing pattern of button electrodes (Schlumberger, 2002).
Centre: Schematic illustration of the projection of planar intersections(bedding and fractures) with 
a borehole and resultant sinusoidal expressions on FMI images (based upon Gaillot et al. 2007).

Right: Example Fracture, Burrows Marsh #1
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Figure 1: Cartoon of the formation of a 
solution-mined gas storage cavern   

Figure 7: Flowchart for conventional borehole 
resistivity image processing to produce static 

and dynamic images for interpretation   

Figure 4: Comparison of Mercia Mudstone 
Group lithostratigraphy across the United 
Kingdom. West Lancashire, including the 

highlighted in green.  Preesall Halite Member 
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Figure 10: Example images comparing FMI and 
core highlighting the image resolution 
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