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Abstract 

At present, any seismic hazard analyst seeking advice from the literature on how to 

handle uncertainty in magnitude values when calculating activity rates for seismic 

source zones may be alarmed to find two different viewpoints that apparently 

contradict one another, and that papers advocating one approach fail to mention the 

other, and vice versa. Superficially, it appears to be demonstrable that the uncertainty 

in earthquake magnitude either causes an overestimation of the true activity rate, or 

causes an underestimation. In this short note, it will be demonstrated that the 

resolution to the dichotomy depends not only on whether magnitude data have been 

converted, but also on how, a point not previously made. Various authors have 

proposed a correction factor to remedy the effect of uncertainty on activity rate, but if 

this is applied wrongly, the problem may be exacerbated. In practice, actual cases may 

be complex and difficult to resolve. 

Introduction 

One of the routine tasks in probabilistic seismic hazard analysis (PSHA) is calculating 

the activity rate for any seismic source. This value, essentially the number of events 

per year above a threshold magnitude value, serves to anchor the magnitude-

frequency distribution expressed by a slope known as the b value. The method for 

calculating b is most commonly the maximum likelihood estimator, proposed by Aki 

(1965), and developed further by Wiechert (1980). 

Ideally, calculations should take account of the fact that the magnitude values in any 

earthquake catalogue are imprecise. Even when magnitudes are determined from 

good-quality modern instrumental data, one might expect an uncertainty of the order 
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of at least 0.2 magnitude units, and for historical data this is likely to be higher. 

Estimation of the uncertainty, especially for historical events, is a complex issue that 

will not be addressed here. 

So far as the literature is concerned, there is agreement that uncertainty in magnitudes 

does not affect the b value, but does impact on the activity rate. Unfortunately, the 

literature is somewhat confusing, due to a lack of cross-reference between some 

papers. The purpose of this short note is to highlight this issue and indicate an 

additional source of difficulty. 

Magnitude uncertainty 

The issue of uncertainty in magnitudes was first examined in 1985 by Veneziano and 

van Dyke (1985) in the USA, and Tinti and Mulargia (1985) in Italy. More recently, 

these results have been recapitulated by McGuire (2004) and Castellaro et al. (2006) 

and also studied in New Zealand by Rhoades (1996) and Rhoades and Dowrick 

(2000). According to the American authors, magnitude uncertainty principally results 

in an underestimate of activity rates. According to the Italian and New Zealand side, 

magnitude uncertainty principally results in an overestimate of activity rates. Neither 

refers to the other. It is rather important to get the issue right, as if one corrects value 

upwards to account for a perceived underestimate, and the original estimate is actually 

too high, the original error is compounded. 

One can assume that for a given area, a number of earthquakes have occurred in the 

past, such that they could be described as a Gutenberg-Richter power law distribution 

in terms of moment magnitude, Mw, where Mw is assumed to relate directly to 

seismic moment release. For the purposes of PSHA, one wishes to know the number 
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of earthquakes above a threshold magnitude, Mw'. However, in most cases one cannot 

observe Mw directly. One has instead a substitute measure, Mx. In the case of 

McGuire (2004) Mx is epicentral intensity, but it could be log felt area, or a different 

magnitude scale (such as local or surface-wave magnitude). 

McGuire's (2004) argument is roughly as follows: given an equation from which one 

can estimate Mw from Mx, there exists some threshold value Mx', which, when 

converted, yields Mw'. Thus, if one ignores uncertainty, the number of events 

exceeding Mw' is simply the number of events exceeding Mx'. But in reality, some 

events < Mx' are truly > Mw' and vice versa. Therefore the number of events > Mw' is 

equal to the number of events > Mx' plus those < Mx' that are really > Mw', minus 

those events > Mx' that are really < Mw'. However, because of the power law 

distribution of seismicity, there are always more events < Mx' than > Mx' (assuming 

uncertainty to follow a symmetrical distribution). Therefore the additional events that 

are < Mx'/>Mw' are significantly more than the number of events >Mx'/<Mw'. 

Therefore the true number of events >Mw' is significantly higher than just the number 

of events >Mx'. Therefore ignoring uncertainty causes the true activity rate to be 

underestimated. 

The contrary argument runs as follows. Consider an earthquake of given magnitude 

Mw. It is not the case that all earthquakes of the same Mw magnitude will be 

represented in the catalogue by identical values of Mx. In the first case, there will be 

inherent fluctuations in the physical processes that lead from Mw to Mx, and in the 

second case, Mx is subject to measurement error. Thus an event with true magnitude 

< Mw' may be represented in the earthquake catalogue by a value > Mx', and likewise 

an event >Mw' may appear as a value <Mx'. But once again (and again assuming 
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uncertainty to be symmetrical), the power-law distribution ensures that the first case is 

more common than the second, simply because there are more earthquakes <Mw' than 

>Mw'. Therefore there are more small events that are overestimated than large events 

that are underestimated. Therefore ignoring uncertainty causes the true activity rate to 

be overestimated. 

According to Tinti and Mulargia (1985) and Castellaro et al. (2006) the shift in 

activity rate, δa, can be found from 

 δa = ( b2 σm
2 ) / ( 2 log10 e )     (1) 

where σm is the magnitude uncertainty. From this, one can compute a correction factor 

 m' = δa / b       (2) 

as was found by Rhoades and Dowrick (2000). The presentation of these equations 

differs according to whether one uses b or β, where β = b ln (10). As shown by 

simulation results in Rhoades (1996), subtracting this correction factor from the 

magnitude values given in an earthquake catalogue allows the correct activity rate to 

be retrieved. The correction factor proposed by Veneziano and van Dyke (1985) is 

effectively the same value, but with varying sign. They propose that when uncertainty 

arises from direct estimation of Mw (i.e., from seismograms), the correction factor 

should be subtracted, but when Mw is estimated from some other parameter Mx, it 

should be added. This corrected magnitude value is referred to as M*. It should not be 

thought that these corrected M* values are to be published in place of the Mw values; 

they are temporary values used only within the activity rate calculations. 

Assuming for simplicity that 
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 Mx = Mw ± σ      (3) 

one can compute a synthetic catalogue in which the Mw values follow a perfect 

Gutenberg-Richter distribution, and the corresponding Mx values for each event. It 

will readily be found that the number of events exceeding a threshold value of interest 

is significantly higher when one looks at the Mx values compared to the Mw values. 

Therefore, if one knew equation (3), converting back from Mx to Mw would 

overestimate the activity as in equation (1). Since one does not know equation (3),  it 

is necessary to obtain a regression for Mw from Mx, 

 Mw = f [ Mx ]      (4) 

and the effect of the power-law distribution is to bias the regression; the result is that 

the number of events with estimated Mw above the threshold value is now too low, 

and the activity is underestimated as in McGuire (2004). 

There are complications when one attempts to put this scheme into practice. A 

difficulty arises with the Mx to Mw conversion. Typically, one has only a subset of 

events with both Mx and Mw values, and both Mx (observed) and Mw (observed) are 

subject to errors. The result obtained for equation (4) will be affected both by the 

properties of the subset of the catalogue available for regression (for instance, how 

closely the subset follows a power law distribution), and also the regression measures 

employed, as for instance least squares or orthogonal regression.  

Different regression methods for earthquake magnitudes are discussed by Stromeyer 

et al. (2004), Castellaro et al. (2006), Castellaro and Bormann (2007), Gutdeutsch et 

al. (2011) and Lolli and Gasperini (2012) amongst others. The consensus opinion of 

these studies is that general orthogonal regression (GOR) is to be preferred over 
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ordinary least squares regression (OLS) for converting magnitudes. Castellaro et al. 

(2006) argue that least squares regression is only mathematically valid given certain 

assumptions: notably that the errors on the independent variable are at least an order 

of magnitude less than those on the dependent variable, which is manifestly not true 

in the case of earthquake magnitude values. They also show from simulations that 

converting magnitudes using OLS leads to errors in estimating the b value for the 

Gutenberg-Richter relationship for the earthquake population. 

 If the ratio of magnitude variances cannot be computed, simple orthogonal regression 

(SOR) is preferable to OLS (Castellaro and Bormann 2007). Also called particular 

orthogonal regression, it is the case where one assumes the ratio to be 1.0. 

As an example, the authors of the unified catalogue of earthquakes in central, 

northern, and northwestern Europe (CENEC), converted a range of magnitudes to Mw 

using chi-square maximum likelihood regression (CSQ), an approach intended to pay 

special attention to the errors affecting the input data (Grünthal et al., 2009). Lolli and 

Gasperini (2012) have demonstrated that there is little practical difference between 

CSQ and GOR. 

Simulation 

For purposes of demonstration, a large number of synthetic catalogues were 

constructed, each of 100 years, with events in the magnitude range Mw 2.0 to 7.0, 

fitting a perfect Gutenberg-Richter distribution with b value of 1.0 and an activity rate 

set so that on average, each catalogue contains 30 events of Mw 4.0 or above. The 

interest in this analysis is in events of Mw 4.0 and above, but it is necessary to 

simulate lower magnitudes to account for events that scatter across the Mw 4.0 
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threshold in both directions. This is similar to the simulation exercise undertaken by 

Castellaro and Bormann (2007), but here the objective is not to examine the reliability 

of different methods in estimating the slope of the regression line, but to look at the 

effect on estimates of the activity rate obtained from converted magnitudes. 

It is assumed that all events can be measured in terms of Mx, derived from equation 

(3), with σ = 0.4. If one knew equation (3), one could convert to Mw and apply the 

correction factor from equation (2) when calculating the activity rate. The problem, 

again, is that equation (3) is not known, and has to be estimated. It is therefore 

assumed that a value Mw(obs) is also known, which has a measurement error of ±0.2. 

Since both variances are known, GOR can be used. 

A further problem relates to which events are actually available for study. Since this 

exercise is intended to mimic a real situation, it is unlikely that the complete 

simulated data will be available. Initial tests showed that different truncation 

strategies, e.g., taking all events with Mx ≥ 4.0, or all events with Mw(obs) ≥ 4.0, 

biased the regression in different ways. To try and mimic real data sets, the 

assumption was made that all events with both Mx ≥ 4.0 and Mw(obs) ≥ 4.0 would 

definitely be recorded, all events with either Mx ≤ 2.0 or Mw(obs) ≤ 2.0 would 

definitely not be recorded, and other events would have a probability of being 

recorded P, where 

 P = 0.5 * min [ Mx, Mw(obs) ] – 2.0     (5) 

Figure 1 shows an example of such a data set, with the computed conversions from 

Mx to Mw using OLS and GOR. These are: 

 Mw = 0.59 + 0.77 Mx       (6) 
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from OLS and  

 Mw = -0.24 + 1.04 Mx      (7) 

from GOR. In this particular simulation, the true number of earthquakes with Mw ≥ 

4.0 was 27; the estimated number using equation (6) was 19, and the estimated 

number using equation (7) was 40. (It will be noticed in passing that the slope of the 

regression in equation (7) is very close to the true value of 1.0). So for this case, one 

conversion strategy results in estimated Mw values that underestimate the true 

number, while the other strategy results in an overestimation. 

The simulations were repeated 1,000 times. The mean percentage underestimation of 

the number of events with Mw ≥ 4.0 from conversion with OLS was 36.11% ± 

12.67%, whereas the mean overestimation from conversion with GOR was 32.31% ± 

19.34%. The full results are shown in Figures 2 and 3.  

When the M* correction is applied to magnitudes converted using OLS, the results 

improve greatly, and the mean error over 1,000 simulations is an overestimation of 

6.02% ± 15.52 %. But it is clear that applying the same correction to the values 

converted using GOR would produce a gross overestimation of the activity. Equation 

(7) is a good approximation to the inverse of equation (3), hence the true activity rate 

can be recovered by subtracting the conversion factor from equation (2); the mean 

error becomes an underestimate of 8.00% ± 13.96%. The distributions are shown in 

Figures 4 and 5.  
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Discussion 

These results suggest that the effect of uncertainty due to magnitude conversion is 

unstable, and depends on the properties of the data set used for determining the 

equation for converting one magnitude to another and the regression method. In the 

simulations conducted here, following the procedures described by McGuire (2004) 

gives reasonable overall results with conversions using OLS, within the design of this 

experiment (perfect Gutenberg-Richter fit, tapered truncation of sample, etc). When 

GOR was used, the correction factor must be subtracted rather than added, as in cases 

where one is only dealing with uncertainty in native Mw magnitudes. The lesson for 

the hazard analyst is that applying a correction factor by rote, without careful 

consideration of the underlying data sources, is liable to lead to error. 

The more the conversion equation Mx to Mw approximates to the inversion of the 

underlying relationship that determines Mx from Mw (e.g., equation 4 is the inversion 

of equation 3), the more the uncertainty becomes equivalent to the uncertainty on 

directly observed Mw. In such cases, subtracting the correction factor is appropriate, 

even though the uncertainty involves a magnitude conversion. 

The issue is further complicated by the increasingly common use of more complex 

methods of estimating magnitude from macroseismic data, of which Bakun and 

Wentworth (1997) is one example of several. The calibration of such methods is 

complex and far from the simple regression between magnitude and epicentral 

intensity used as an example by McGuire (2004). Although one can obtain an estimate 

of uncertainty in magnitude from such methods, for instance by bootstrapping, it is far 

from clear what the impact of such values really is on the activity rate. There will 
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exist complex cases where magnitudes have been converted more than once, for 

instance, from macroseismic data to ML, and from ML to Mw. 

When working with imported catalogs, for which one does not have a complete 

history of the derivation of each magnitude value, it can be that one knows that the 

values are uncertain, but not whether the activity rates are overestimated or 

underestimated.  

A further problem is that, as can be seen in Figures 2 to 5, the simulations give a wide 

variety of results. In actual practice, one is generally dealing with a single earthquake 

catalog, which may fall  anywhere in the distribution. So while, on balance of 

probability, applying a correction factor improves one’s chances of accurately 

estimating the true activity rate, there is no guarantee that doing so will not result in a 

worse under- or overestimate.  

Conclusions 

1. When calculating earthquake activity rates from data that are an uncertain 

estimator of the desired magnitude measure, the true activity rate may be 

overestimated, or underestimated, depending on whether magnitudes are 

converted from another value, and (importantly) if so, how.  

2. In cases where a single homogenous magnitude measure has been used 

throughout, the true activity rate can be recovered by reducing magnitude 

values before performing the activity rate calculations.  

3. In cases where magnitudes are converted from some other parameter, success 

of the correction, and the direction in which it should be applied, depends on 

exactly how the conversion was performed, and this may be hard to assess. 
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Caution is therefore required in PSHA studies when attempting such 

corrections.  

Data and Resources 

None used. 

Acknowledgements 

This work has been partly supported by the European Commission through the 

project: FP7-ENVIRONMENT-226967 entitled “Seismic Hazard Harmonization in 

Europe”. The author would like to thank Hilmar Bungum, NORSAR, for comments 

and encouragement in writing this paper, Bob Youngs, AMEC Geomatrix, for helpful 

discussion, and David Kerridge, BGS, for reviewing the first draft. This paper is 

published with the permission of the Executive Director of the British Geological 

Survey (NERC). 

 

References 

Aki, K. (1965). Maximum likelihood estimation of b in the formula log N = a - bM and its 

confidence limits. Bull. of the Eq. Res. Inst., Tokyo University 43, 237-239. 

 Castellaro, S., F. Mulargia, and Y. Y. Kagan. (2006). Regression problems for magnitudes. 

Geophys. Jnl. Int. 165, 913-930. 

Castellaro, S., and P. Bormann. (2007). Performance of different regression 

procedures on the magnitude conversion problem. Bull. Seis. Soc. Am. 97, 

1167-1175. 



13 

 

 

Grünthal, G., R. Wahlström, and D. Stromeyer. (2009). The unified catalogue of 

earthquakes in central, northern, and northwestern Europe (CENEC)—updated 

and expanded to the last millennium. Jnl. Seismol. 13 4, 517-541. 

Gutdeutsch, R., S. Castellaro, and D. Kaiser. (2011). The magnitude conversion 

problem: Further insights. Bull. Seis. Soc. Am. 101, 379-384. 

Lolli, B., and P. Gasperini. (2012). A comparison among general orthogonal 

regression methods applied to earthquake magnitude conversions. Geophys. 

Jnl. Int., DOI: 10.1111/j.1365-246X.2012.05530.x. 

McGuire, R. K. (2004). Seismic hazard and risk analysis. Earthquake Engineering Research 

Institute, Oakland CA. 221 pp. 

Rhoades, D. A. (1996). Estimation of the Gutenberg-Richter relation allowing for individual 

earthquake magnitude uncertainties. Tectonophysics 258, 71-83. 

Rhoades, D. A., and D. J. Dowrick. (2000). Effects of magnitude uncertainties on seismic 

hazard estimates. Proc. 12th World Conference on Earthquake Engineering, 30 Jan-

4 Feb 2000, Wellington, NZ. Paper 1179. 

Stromeyer, D., G. Grünthal, and R. Wahlström. (2004). Chi-square regression for 

seismic strength parameter relations, and their uncertainties, with applications 

to an Mw based earthquake catalogue for central, northern and northwestern 

Europe. Jnl. Seismol. 8, 143-153. 



14 

 

Tinti, S., and F. Mulargia. (1985). Effects of magnitude uncertainties on estimating the 

parameters in the Gutenberg-Richter frequency-magnitude law. Bull. Seis. Soc. Am. 

75, 1681-1697. 

Veneziano, D., and J. Van Dyke. (1985). Seismic parameter estimation methods.  in 

EPRI/SOG, ed. Seismic Hazard Methodology for Nuclear Facilities in the Eastern 

United States (Draft 85-1), volume 2, Appendix A. 

Weichert, D. H. (1980). Estimation of the earthquake recurrence parameters for unequal 

observation periods for different magnitudes. Bull. Seis. Soc. Am. 70, 1337-1346. 

 

RMW Musson 

British Geological Survey 

West Mains Road 

Edinburgh EH9 3LA 

UK 

 

rmwm@bgs.ac.uk 

+44 131 650 0205 

  



15 

 

Figure captions 

 

Figure 1 

Example of regression data (from simulation) for deriving an Mx to Mw conversion. 

Both the OLS and GOR linear fits are plotted. 

Figure 2 

Distribution of the percentage overestimation of the actual number of earthquakes 

Mw ≥ 4.0 when Mw is converted from Mx using OLS, over 1,000 simulations (σ Mx 

= 0.4, σMw = 0.2). Underestimation is shown as negative values on the X axis. 

Figure 3 

Distribution of the percentage overestimation of the actual number of earthquakes 

Mw ≥ 4.0 when Mw is converted from Mx using GOR, over 1,000 simulations (σ Mx 

= 0.4, σMw = 0.2). 

Figure 4 

Distribution of the percentage overestimation of the actual number of earthquakes 

Mw ≥ 4.0 when Mw is converted from Mx using OLS and adding a correction factor, 

over 1,000 simulations (σ Mx = 0.4, σMw = 0.2). The distribution shows that while 

the activity rates based on corrected magnitudes are a much better representation of 

the true values than using uncorrected magnitudes as in Figure 2, there is a chance 

that activity rates in an individual case will significantly overestimate the true values. 
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Figure 5 

Distribution of the percentage overestimation of the actual number of earthquakes 

Mw ≥ 4.0 when Mw is converted from Mx using GOR and subtracting a correction 

factor, over 1,000 simulations (σ Mx = 0.4, σMw = 0.2). 
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