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Abstract. A long-term ozone loss time series is necessary to
understand the evolution of ozone in Antarctica. Therefore,
we construct the time series using ground-based, satellite and
bias-corrected multi-sensor reanalysis (MSR) data sets for
the period 1989–2010. The trends in ozone over 1979–2010
are also estimated to further elucidate its evolution in the
wake of decreasing halogen levels in the stratosphere. Our
analysis with ground-based observations shows that the aver-
age ozone loss in the Antarctic is about−33 to−50 % (−90
to −155 DU (Dobson Unit)) in 1989–1992, and then stayed
at around−48 % (−160 DU). The ozone loss in the warmer
winters (e.g. 2002 and 2004) is lower (−37 to−46 %), and
in the very cold winters (e.g. 2003 and 2006) it is higher
(−52 to −55 %). These loss estimates are in good agree-
ment with those estimated from satellite observations, where
the differences are less than±3 %. The ozone trends based
on the equivalent effective Antarctic stratospheric chlorine
(EEASC) and piecewise linear trend (PWLT) functions for
the vortex averaged ground-based, Total Ozone Mapping
Spectrometer/Ozone Monitoring Instrument (TOMS/OMI),
and MSR data averaged over September–November exhibit
about−4.6 DU yr−1 over 1979–1999, corroborating the role
of halogens in the ozone decrease during the period. The
ozone trends computed for the 2000–2010 period are about
+1 DU yr−1 for EEASC and+2.6 DU yr−1 for the PWLT
functions. The larger positive PWLT trends for the 2000–
2010 period indicate the influence of dynamics and other ba-
sis functions on the increase of ozone. The trends in both
periods are significant at 95 % confidence intervals for all
analyses. Therefore, our study suggests that Antarctic ozone
shows a significant positive trend toward its recovery, and
hence, leaves a clear signature of the successful implementa-
tion of the Montreal Protocol.

1 Introduction

Ozone loss in the Antarctic stratosphere has been an issue
of intense research since its discovery in the 1980s (Far-
man et al., 1985). Several estimates of ozone loss are avail-
able for Antarctica since then. However, most of them deal
with the ozone loss analysis for individual winters, mod-
elled or incomplete due to limitations of the analysed ob-
servations (e.g.Austin et al., 2010; Lemmen et al., 2006;
Tilmes et al., 2006; Hoppel et al., 2005), and thus this makes
the inter-annual comparison very difficult. For instance, the
chemistry–climate model (CCM)-based studies are mostly
exploited for the projection of ozone recovery (e.g.Austin
et al., 2010). Although there are many studies using satel-
lite data, a continuous long-term ozone loss analysis is still
not available using these data (Bevilacqua et al., 1997; Hop-
pel et al., 2005; Tilmes et al., 2006). Therefore, we present
a comprehensive ozone loss analysis in the Antarctic using
ground-based and satellite measurements for the 1989–2010
period, similar to that in the Arctic (Goutail et al., 2005). In
this we use the same model, measurements, and method to
construct the whole time series, which makes a continuous,
coherent and comparable long-term analysis. This analysis
can also be regarded as an extension of the study ofHuck et
al. (2007), who presented an ozone loss analysis using the to-
tal column for the 1992–2004 period. The passive technique
is used to derive the ozone loss from observations, in which
the contribution from transport is separated from the photo-
chemical ozone loss. A detailed description of this approach
(e.g.Goutail et al., 1999) and its application to the Antarc-
tic winters 2005–2009 can be found inKuttippurath et al.
(2010).
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Many studies have already discussed the trends of ozone
in the Antarctic stratosphere. For instance, a study by
Yang et al.(2008) discussed the trends in Antarctic ozone us-
ing ground-based and satellite measurements and showed a
trend of around−4.5 DU (Dobson Unit) yr−1 during 1978–
1996 and an insignificant positive trend thereafter. Similar
trends were also estimated byWohltmann et al.(2007), who
applied a multi-variate regression model to the total ozone
measurements. A study byHassler et al.(2011) showed the
stabilisation of ozone loss rates at South Pole over 1991–
2009. A recent work bySalby et al.(2011) reported a sig-
nificant positive trend in the September–November Total
Ozone Mapping Spectrometer/Ozone Monitoring Instrument
(TOMS/OMI) ozone during 1997–2009. However, we here
use two different regression methods to estimate the trends in
ozone during 1979–2010. Furthermore, we consider the mea-
surements inside the vortex and use two additional satellite
data sets to check the robustness of the derived trends. These
data and approach have hitherto not been used for trend stud-
ies for this region, which is the significance of this diagnosis.

The plan of this paper is as follows: the data used for the
analyses and the method applied to the ozone loss derivation
are given in Sect.2. The ozone loss estimates for the Antarc-
tic are presented in Sect.3.1. Section4.1assesses the derived
ozone loss and its inter-annual variability. The ozone trends
in the Antarctic are analysed in Sect.4.3. Section5 concludes
the study with the main findings.

2 Data and methods

2.1 Ground-based observations

We use measurements from 12 ground-based stations de-
ployed in and around the continent, such that they cover the
entire region to provide a representative analysis for Antarc-
tica. Figure1 shows the positions of the stations and Ta-
ble 1 shows further details about them. As the Antarctic
vortex is stable and inter-annual variations in the meteorol-
ogy are small compared to those of the Arctic, the estimated
ozone loss is less dependent on the selection of the stations,
as demonstrated inKuttippurath et al.(2010). The analy-
sis for each year contains data from at least eight stations.
The SAOZ data used are the zenith sky sunrise and sunset
measurements between 86 and 91◦ solar zenith angle (SZA)
(Pommereau and Goutail, 1988) from Dumont d’Urville,
Concordia (Dome C), Faraday/Vernadsky (after 1996) and
Rothera. These measurements in the visible region have the
advantage of early winter observations even inside the polar
circle, which is not possible by most satellite or other ground-
based instruments. The measurements have a random error of
4.7 % and systematic error of 3.6 % (Hendrick et al., 2011)
and different SAOZ slant column measurements are consis-
tent within±3 % (Roscoe et al., 1999). The ozone observa-
tions at Neumayer station are performed by the DOAS, and

the random error of these measurements is about 2 % (Frieß
et al., 2005). In addition, the Dobson measurements (Dob-
son, 1957) performed at Arrival Heights, Faraday/Vernadsky
(prior to 1996), Halley, Marambio, South Pole (Amundsen-
Scott) and Syowa, and the Brewer measurements (Brewer,
1973) from Belgrano (MK IV) and Zhongshan (MK IV) are
also considered. The random error of these observations is
estimated as 1 % or 1 DU and the total error as 3 % (Basher,
1982), but these are subjected to the accuracy of absorption
cross sections and a known significant temperature depen-
dence in the ultraviolet and stray light at high SZAs (Hen-
drick et al., 2011), which were not taken into account for the
retrievals used here. The recent studies indicate that the ran-
dom errors of well-maintained Brewer observations are of
the order of 0.15–0.25 % and the total error of about 2.5 %
(Scarnato et al., 2010; Kerr and McElroy, 1995).

2.2 Satellite observations

To compare with the ozone loss estimates from the ground-
based observations, version 8.5 total column ozone measure-
ments from TOMS onboard Nimbus-7, Meteor-3, and Earth
Probe are used (Bhartia and Wellemeyer, 2002). The uncer-
tainty of the TOMS ozone column data is 3.3 %, and the bias
among ozone products from the different TOMS platforms is
1–2 % (Kroon et al., 2008). Since 2005, the OMI data are
used as the continuation of the TOMS series and the un-
certainty of the OMI ozone column is 2–5 % for SZA<84◦

(Levelt et al., 2006). Therefore, a continuous series compa-
rable to the ground-based series is available from TOMS and
OMI from 1979 to 2010, with the exception of 1994 and
1995. However, as shown byHendrick et al.(2011) there is
still some bias of the order of 2 % between TOMS/OMI and
SAOZ observations at Dumont d’Urville, Antarctica, with a
strong seasonal dependence. As this bias was random, it was
not possible to correct here for the TOMS/OMI data. In ad-
dition, we have used a bias-corrected reanalysed ozone data
set, the Multi-Sensor Reanalysis (MSR), compiled from var-
ious satellite observations during the period 1979–2008. The
Global Ozone Monitoring Experiment 2 (GOME-2) total col-
umn data (Eskes et al., 2005) are used to extend the MSR data
to 2010 for the trend analyses. These data sets have a bias of
about 1±2 % compared to various satellite observations (van
der A et al., 2010). Previous studies have successfully used
these data in various scientific studies (e.g.de Laat and van
Weele, 2011).

2.3 Determining ozone loss inside the vortex

To find the amount of chemical ozone loss inside the vor-
tex, we select the measurements using the vortex edge cri-
terion of Nash et al.(1996) and apply the passive method
(e.g.Kuttippurath et al., 2010; Goutail et al., 1999) to the se-
lected observations. In this method, the chemical ozone loss
is computed as the difference between the measured ozone
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Table 1. Antarctic stations and their latitude (Lat.), longitude
(Long.), type of instrument (Inst.), and observation period (Period)
considered in this study.

Station Lat. Long. Inst. Period

South Pole 89.9◦ S 24.8◦ W Dobson 1979–2010
Belgrano 77.9◦ S 34.6◦ W Brewer 1992–2010
Arrival Heights 77.8◦ S 166.7◦ W Dobson 1988–2010
Halley 75.6◦ S 26.8◦ W Dobson 1979–2010
Concordia 75.1◦ S 123.4◦ E SAOZ 2007–2010
Neumayer 70.7◦ S 8.3◦ W DOAS 1999–2007
Zhongshan 69.4◦ S 76.4◦ E Brewer 1993–2007
Syowa 69.0◦ S 39.6◦ E Dobson 1979–2010
Rothera 67.6◦ S 68.1◦ W SAOZ 1996–2010
Dumont d’Urville 66.7◦ S 140.0◦ E SAOZ 1988–2010
Faraday/Vernadsky 65.3◦ S 64.3◦ W Dobson 1979–2010
Marambio 64.2◦ S 56.7◦ W Dobson 1987–2010

and the passive ozone tracer initialised identically to ozone at
the beginning of each run (i.e. ozone−passive ozone tracer in
DU and [100× (ozone−passive ozone tracer)/passive ozone
tracer] in %). We use the REPROBUS chemical transport
model (CTM) (Lefèvre et al., 1994) to simulate the passive
ozone tracer from 1989 to 2010 for the loss computations.
The model version used in this work has a horizontal resolu-
tion of 2×2◦ on 60 vertical levels from the surface to 0.1 hPa.
Our simulations use the ERA-interim meteorological data to
force the model runs (Dee et al., 2011). The long-term sim-
ulations start in 1989, but we reinitialise the passive ozone
tracer field on every first of June by setting the passive ozone
tracer equal to the actual ozone. Note that, although the satel-
lite measurements are available since 1979, the passive ozone
tracer simulations start in 1989 due to the then availability of
ERA data for our model runs and hence, our ozone loss anal-
yses start in 1989. The ERA-interim ozone data were used
for the initialisation of the model runs for each year. The pas-
sive ozone tracer columns used here are the averages within
100 km of each station.

Figure2 illustrates the ozone loss inside the vortex from all
ground-based measurements for the winter 2006. Generally,
each station shows different timings for the onset, progress
and maximum in the ozone loss, depending on the history of
the exposure of the air parcels observed to contact with polar
stratospheric clouds (PSCs) at sunlit parts of the vortex. The
transport of ozone depleted air masses over the stations can
also affect the onset period (Hassler et al., 2011; Kuttippu-
rath et al., 2010). There are some variations in ozone distri-
bution inside the vortex with two separate air masses – the
edge region, with a latitudinal extent of about 15◦ around the
perimeter of the vortex as identified byRoscoe et al.(2012),
and the vortex core. The behaviour at any one station depends
on which air mass is above it, and many stations do not have
the same air mass above them throughout the ozone hole pe-
riod. Faraday/Vernadsky and Rothera are most often in the
edge region, with occasional excursions between the edge

J. Kuttippurath et al.: Antarctic ozone loss and ozone trends 13

Fig. 1. The stations in the Antarctic from which the measurements
are taken for this study. The stations are represented by their first
three letters and details of which are given in Table 1.

Fig. 1. The stations in the Antarctic from which the measurements
are taken for this study. The stations are represented by their first
three letters, and details are given in Table 1.

and core of the vortex. On the other hand, Dumont d’Urville
is frequently outside the vortex, but occasionally inside the
vortex core, and the stations at 70–90◦ S are most often inside
the vortex core. A detailed discussion of the station positions
and related observational features can be found inKuttippu-
rath et al.(2010). On average (Fig.2 solid line), the ozone
loss in the region starts by mid-June and rapidly increases to
−160 DU or−52 % by the end of September. The maximum
ozone loss of−185 DU or−56 % was observed at the end of
September/early October 2006 in agreement with the mini-
mum ozone period. The loss reduces thereafter with respect
to the meteorological conditions and vortex persistence. The
estimated ozone loss has an uncertainty of about 3–5 % (Kut-
tippurath et al., 2010).

3 Results

3.1 Antarctic ozone loss

Figure 3 shows the average chemical ozone loss estimated
inside the vortex from the ground-based, TOMS/OMI and
MSR data during 1989–2010. This is the average ozone loss
found inside the vortex from all stations, as shown by the
black solid line in Fig.2. No special scaling is performed to
account for the differences in the position of the stations in
the vortex, as we find the average ozone loss inside the whole
vortex. Furthermore, our analysis shows insignificant differ-
ences between the loss estimated using various vortex edge
criteria (inside vortex, vortex core and over the equivalent
latitudes (EqLs) 65–90◦ S). The ozone loss over the whole
season appears to be about the same in the edge region as in

www.atmos-chem-phys.net/13/1625/2013/ Atmos. Chem. Phys., 13, 1625–1635, 2013
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Fig. 2.Chemical O3 loss estimated from observations at 11 ground-
based stations inside the vortex in the winter 2006. The O3 loss is
estimated as the measured O3 minus the modelled passive O3 tracer,
which is initialised on first of June. The average loss estimated from
the observations is shown as a solid line. The dotted lines represent
−50, −150, and−250 DU and−15, −30, −45 and−60 % of O3
loss. The vertical lines represent days 210, 255 and 285.

the core, but it is more rapid in the core and starts later. In
general, the loss starts in mid-June/early July, in agreement
with the appearance of PSCs and heterogeneous chlorine ac-
tivation on the sunlit parts of the vortex (e.g.Solomon, 1999;
Solomon et al., 1986), except during 1989–1990 where it be-
gins in early August. On the same note, the ozone loss onset
in the very cold winters such as in 2003 and 2006 is about
a month earlier, in early June. Similarly, the warm winters
2002 and 1989–1990 show late onset of ozone loss. All years
exhibit a higher loss rate during August–September (about
−1.7 DU day−1 or −0.5 % day−1), and peak loss during the
end of September and early October period. On average,
the maximum loss until mid-October is around−120 DU
or −48 % in 1989–1990, in agreement with the lower abun-
dances of stratospheric halogens during this period (WMO,
2011), and around−160 DU or−48 % thereafter due to sat-
uration of ozone loss (e.g.Solomon, 1999; Solomon et al.,
2005; WMO, 2011), where the very cold winters (2000,
2003 and 2006) show a slightly greater reduction of about
−170 DU or−55 %. As anticipated, the warmer/shorter win-
ters show the opposite pattern of ozone loss, as the−40 %
loss in 2002. The TOMS/OMI and MSR analyses also show
a similar evolution of ozone loss in all winters and the dif-
ferences are mostly within±3 %. However, the advantage of
ground-based observations is that they facilitate early win-
ter (June–August) ozone loss analyses, which cannot be cap-
tured by most satellite observations. Therefore, we have not

shown the MSR data before August, which are made from
various satellite observations.

4 Discussion

4.1 Inter-annual variability of ozone loss

Figure4 shows the inter-annual variations in the vortex aver-
aged cumulative ozone loss deduced from the ground-based
and satellite data averaged from mid-September to mid-
October, and Table2 shows the cumulative ozone loss aver-
aged during the peak loss period: 26 September to 5 October.
The ground-based estimates show a steep increase of ozone
loss from−90 to−155 DU or from−33 to−48 % between
1989 and 1994 in agreement with the increasing stratospheric
chlorine during the period, but it remained around−160 DU
or −48 % thereafter, with the largest loss in 2006, about
−53 %, and lowest loss of about−40 % in 2002. The in-
stantaneous ozone loss rates between 13 August and 2 Octo-
ber, during which most ground-based instruments have mea-
surements, are also given in the table. The loss rates show a
similar time evolution, with the largest loss rates (−0.63 to
−0.67 % day−1) in the very cold winters of 1998 and 2006.
The lower ozone loss rate estimated for 2002 is due to the
early vortex split during the winter, and the exceptional loss
rate in 1992 is due to the additional and faster heterogeneous
ozone loss on the Pinatubo aerosols (e.g.Hofmann et al.,
1992). In agreement with the ozone loss analyses, the ozone
values averaged over the mid-September to mid-October pe-
riod show a reciprocal evolution in each winter. In sum, the
evolution of ozone loss time series is in tune with the in-
creasing stratospheric chlorine levels during the 1989–1999
period and then correlates with the inter-annual variations in
temperature thereafter, as also reported in previous studies
(e.g.Yang et al., 2008; Salby et al., 2011).

4.2 Comparison with other studies

There are two long-term ozone loss studies that can be com-
pared to our analyses: the total column ozone loss analy-
ses byHuck et al.(2007) and the partial column ozone loss
analyses byTilmes et al.(2006). The study byHuck et al.
(2007) uses a parameterised passive ozone tracer for the cal-
culation of the ozone loss, and they found a peak loss of
around−120 DU in most years, with the largest loss of about
−130 DU in 2001 and the lowest loss of about−88 DU in
2002. These estimates are smaller than the loss estimated in
our study, which could be due to the differences in passive
ozone tracers used in the respective calculations. Note that
when we use a passive ozone tracer computed using their
formula to calculate the ozone loss from ground-based mea-
surements, we also find relatively lower ozone loss values
(of up to−50 DU for the maximum loss, depending on year)
than our original loss estimates using the REPROBUS pas-
sive ozone tracer.

Atmos. Chem. Phys., 13, 1625–1635, 2013 www.atmos-chem-phys.net/13/1625/2013/
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Fig. 3. Temporal evolution of the chemical O3 loss estimated from ground-based observations (red) inside the vortex is compared to that
from TOMS/OMI (green) and MSR (blue) in DU (left panel) and in% (right panel) in 1989–2010. The horizontal dotted lines represent−50
and−150 DU of O3 loss (left panel) and−25 and−50 % of O3 loss (right panel), while the vertical lines represent day 181, 225 and 275.

Fig. 3. Temporal evolution of the chemical O3 loss estimated from ground-based observations (red) inside the vortex is compared to that
from TOMS/OMI (green) and MSR (blue) in DU (left panel) and in % (right panel) for 1989–2010. The horizontal dotted lines represent
−50 and−150 DU of O3 loss (left panel) and−25 and−50 % of O3 loss (right panel), while the vertical lines represent day 181, 225 and
275.

Tilmes et al.(2006) have estimated the partial column
ozone loss over 380–550 K using the tracer correlation
method from the satellite ozone profiles for the period 1992–
2004. The peak loss deduced from the available measure-
ments is about−155 DU in 2003, and the lowest is about
−115 DU during 1996–1997. These values are also smaller
than our ozone loss estimates, as they consider a partial col-
umn, which consists of only two-thirds of the total column
ozone loss in the Antarctic (e.g.Kuttippurath et al., 2012).

4.3 Multi-variate regression of vortex averaged ozone

Since it is difficult to accurately estimate trends directly from
ozone observations, we have constructed and applied a multi-
variate regression model to the ground-based, TOMS/OMI
and MSR total column data. Note that the 1994–1995
data gap in TOMS/OMI is filled with corresponding over-
pass analyses using the MSR data. We consider the desea-
sonalised September–November ozone average over 1979–
2010. Apart from using various data sets for the trend anal-
ysis, we have also used various vortex definitions to group
each data set, i.e. the data averaged inside the vortex, vortex

www.atmos-chem-phys.net/13/1625/2013/ Atmos. Chem. Phys., 13, 1625–1635, 2013
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Table 2. The cumulative ozone (O3) loss estimated from 1 June
averaged between 26 September and 5 October. The loss is com-
puted as the ground-based O3 − passive O3 tracer in DU and
100× (ground-based O3 − passive O3 tracer)/passive O3 tracer in
%. The instantaneous ozone loss rates estimated between 13 Au-
gust and 2 October (dates in the year covered by all measurement
stations) from ground-based measurements in the Antarctic are also
shown. The loss rates are given in DU day−1 and % day−1. The
uncertainty of the estimated O3 loss is about 3–5 %.

13 Aug–2 Oct 26 Sep–5 Oct

Year Loss rate Loss rate Loss Loss
DU day−1 % day−1 DU %

1989 −1.96 −0.61 −111 −37
1990 −1.57 −0.51 −112 −37
1991 −1.57 −0.43 −132 −43
1992 −2.35 −0.80 −143 −48
1993 −1.57 −0.45 −158 −49
1994 −1.67 −0.55 −161 −51
1995 −1.76 −0.53 −160 −51
1996 −1.47 −0.45 −122 −41
1997 −1.96 −0.59 −156 −49
1998 −1.96 −0.67 −150 −50
1999 −1.96 −0.61 −152 −48
2000 −1.86 −0.51 −167 −51
2001 −1.86 −0.53 −182 −53
2002 −1.47 −0.26 −167 −40
2003 −1.86 −0.57 −168 −54
2004 −1.67 −0.47 −155 −45
2005 −1.76 −0.51 −154 −50
2006 −2.05 −0.63 −175 −55
2007 −1.96 −0.55 −159 −50
2008 −2.15 −0.55 −168 −53
2009 −1.76 −0.61 −147 −49
2010 −1.96 −0.57 −154 −46

core and over 65–90◦ S EqL to diagnose the robustness of the
derived trends.

4.3.1 Method and model

This model is very similar to that ofWohltmann et al.(2007)
andSteinbrecht et al.(2004), where ozone (Y ) variability is
expressed as:

Y (t) = K (constant)
+C1t1 (linear trend)
+C2t2 (change in trend)
+C3(SF× QBO)(t) (solar flux× QBO)

+C4Aer(t) (aerosol)
+C5HF(t) (heat flux)
+C6AAO(t) (AAO)

+ε(t) (residual)

where t is time period from 1979 to 2010,t1 is the num-
ber of years from 1979 to 2010,t2 is the number of years

Fig. 4. The ground-based O3 (in DU) and cumulative chemical
O3 loss (in DU and %) inside the vortex averaged between mid-
September and mid-October during the Antarctic winters 1989–
2010 compared to those of TOMS/OMI (green) and MSR (blue).
The corresponding vortex averaged temperature (K) at a poten-
tial temperature of 475 K from the ECMWF (European Centre
for Medium-Range Weather Forecasts) operational analyses is also
shown. The equivalent effective Antarctic stratospheric chlorine
(EEASC) data are shown in the inverted scale in the bottom panel.
The horizontal dotted lines represent−100 and−150 DU of O3
loss (top),−40 and−50 % O3 loss (second panel from top), 175
and 220 DU of O3 (third panel from top) and 195 K temperature
(fourth panel from top) in the respective plots.

from 2000 to 2010,K is a constant andC1 to C6 are the
regression coefficients of the respective proxies. This piece-
wise linear trend (PWLT) describes a linear change in ozone
after removing all dynamical proxies and aerosol influence
during the period (e.g.Reinsel et al., 2002, 2005).

To describe the total ozone variability, we use the
planetary wave drive proxy (i.e. heat flux calculated from
the ERA interim analysis at 70 hPa/40–90◦ S, averaged
over August and September as described byKuttippu-
rath and Nikulin, 2012), the Antarctic Oscillation (AAO)
(ftp://ftp.cpc.ncep.noaa.gov/cwlinks/), solar flux (SF) (ftp:
//ftp.ngdc.noaa.gov/STP/SOLARDATA/SOLAR RADIO/
FLUX/PentictonAdjusted/monthly/) at 10.7 cm wave-
length, the quasi-biennial oscillation (QBO) at 40 hPa
(http://www.geo.fu-berlin.de/met/ag/strat/produkte/qbo/),

Atmos. Chem. Phys., 13, 1625–1635, 2013 www.atmos-chem-phys.net/13/1625/2013/
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Fig. 5. The vortex averaged September–November O3 trends estimated using a multi-variate regression model for the ground-based,
TOMS/OMI, and MSR data in 1979–2010. Top to bottom: deseasonalised O3 (MEAS) and the regression model (top panel), the contri-
bution of heat flux – HF (second panel), Antarctic Oscillation – AAO (third panel), solar flux (SF) multiplied by quasi-biennial oscillation
(QBO) at 40 hPa (fourth panel), aerosol (fifth panel), and the equivalent effective Antarctic stratospheric chlorine – EEASC (bottom panel).

and the aerosol optical thickness (http://data.giss.nasa.gov/
modelforce/strataer/) to account for the El Chichon (1982)
and Mount Pinatubo (1991) volcanic aerosol injections.
In order to better explain the variability of ozone, we use
SF× QBO instead of individual solar flux and QBO terms,
as explained byRoscoe and Haigh(2007). All proxies, ex-
cept heat flux, are averaged over the September–November
period to match the mean ozone taken during the same
period. The southern hemispheric aerosol average data,
which are shifted by+6 months to account for the transport
of aerosols to the Antarctic, are considered. The selection of
a 6 month shift of the aerosol data was based on a sensitivity
test using various options (0, 3, 6, and 9 months of shift), for
which a 6 month shift gave the best correlation between the
regression model and ozone.

We have repeated the regression analysis after replacing
the PWLT term (C1t1+C2t2) byC1 EEASC(t), EEASC be-
ing the equivalent effective Antarctic stratospheric chlorine
(e.g.Brunner et al., 2006; Vyushin et al., 2010). Our EEASC
uses the WMO A1-2010 scenario with a mean age of air of
5.5 yr for the polar stratosphere, age of air spectrum width of
2.75 yr (i.e. the half width of the age of air) and the bromine
scaling factor of 60 to account for the greater ozone deple-
tion potential of bromine compared to that of chlorine on
a per atom basis. Further details about the EEASC formu-
lation can be found inNewman et al.(2007). It should be
noted that the trend in EEASC is in pptv yr−1 and the regres-
sion coefficient of EEASC from the model is in DU pptv−1

and hence the trend in ozone is expressed in DU yr−1 (i.e.
DU pptv−1

× pptv yr−1) (e.g. Stolarski et al., 2006). Since
the trends derived from the PWLT model is in DU yr−1 it-
self, the estimated trends from both models can be compared
directly.

4.3.2 Contribution of proxies

Figure5 shows the contribution of explanatory variables and
resulting diagnosis using the EEASC regression for ground-
based, TOMS/OMI and MSR data. Note that we have taken
the turning point (TP) or break point for the PWLT re-
gression as 2000, to coincide with the peak in EEASC.
The regression analyses on all three data sets show simi-
lar evolution of ozone, regressed data, and the explanatory
parameters. The PWLT and EEASC regression models ex-
plain about 88–90 % of the ozone variability as deduced
from the R2 estimate (e.g.Roscoe and Haigh, 2007). The
SF× QBO contributes about+20 DU in 1979, 1989 and
2001 and−10 DU in 1984, 1996 and 2007. The variabil-
ity in ozone columns resulting from the changes in solar
activity is about 2–3 %, (Soukharev and Hood, 2006) and
our results are within the expected range. The aerosol load-
ing due to the eruption of El Chichon and Pinatubo signif-
icantly contribute to the ozone reduction of about−10 DU
in 1983 and−26 DU in 1992, respectively, which reiterates
the key role of aerosols on the heterogeneous ozone loss pro-
cesses (e.g.Hofmann et al., 1992). The heat flux and AAO
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Table 3. Antarctic ozone trends in DU yr−1 estimated from the deseasonalised September–November vortex averaged ground-based,
TOMS/OMI, and MSR data using the PWLT (piecewise linear trend) and EEASC (equivalent effective Antarctic stratospheric chlorine)
regressions. The regression results without considering heat flux are also shown in the bottom panel. The error values represent 95 % confi-
dence intervals. The results are shown for various vortex averaged calculations: inside vortex, over the equivalent latitudes (EqLs) 65–90◦ S
and inside vortex core.

Data Period Inside vortex EqL: 65–90◦ S Vortex core

PWLT EEASC PWLT EEASC PWLT EEASC

Ground-based 1979–1999−4.68± 0.88 −4.18± 0.65 −4.62± 0.87 −4.14± 0.66 −5.02± 0.89 −4.51± 0.65
2000–2010 +2.58± 2.16 +1.03± 0.16 +2.33± 2.13 +1.02± 0.16 +2.59± 2.19 +1.11± 0.16

TOMS/OMI 1979–1999 −5.03± 1.12 −4.50± 0.63 −4.89± 1.00 −4.38± 0.62 −5.24± 1.12 −4.70± 0.66
2000–2010 +2.87± 2.74 +1.11± 0.16 +2.67± 2.47 +1.08± 0.15 +2.84± 2.74 +1.16± 0.16

MSR 1979–1999 −4.81± 1.11 −4.31± 0.62 −4.68± 0.99 −4.19± 0.62 −5.02± 1.11 −4.50± 0.65
2000–2010 +2.91± 2.73 +1.06± 0.15 +2.68± 2.43 +1.03± 0.15 +2.91± 2.73 +1.11± 0.16

Without heat flux

Ground-based 1979–1999−4.53± 1.08 −4.07± 0.80 −4.45± 1.13 −4.01± 0.85 −4.87± 1.10 −4.40± 0.80
2000–2010 +2.77± 2.66 +1.00± 0.20 +2.55± 2.78 +0.99± 0.21 +2.79± 2.70 +1.08± 0.20

TOMS/OMI 1979–1999 −4.87± 1.15 −4.38± 0.80 −4.72± 1.14 −4.25± 0.84 −5.09± 1.12 −4.58± 0.81
2000–2010 +3.08± 2.82 +1.08± 0.20 +2.90± 2.81 +1.05± 0.21 +3.04± 2.75 +1.13± 0.20

MSR 1979–1999 −4.66± 1.22 −4.18± 0.80 −4.51± 1.15 −4.06± 0.84 −4.87± 1.21 −4.38± 0.81
2000–2010 +3.12± 3.00 +1.03± 0.20 +2.91± 2.83 +1.00± 0.21 +3.11± 2.98 +1.08± 0.20

contributions mostly follow the dynamics of each winter,
as both explain wave forcing and meteorology of the win-
ters (Sexton, 2001; Randel et al., 2002). The contribution of
AAO is between−18 DU (e.g. 1985, 2001, 2008 and 2010)
and+20 DU (e.g. 1980, 2000 and 2002). The enhanced wave
activity (heat flux) contributes about+18 DU in 1984, 1993,
and 2005, with the largest contribution of about+38 DU in
2002. Similarly, suppressed planetary wave activity makes
strong vortices, and hence, higher ozone reduction in the very
cold winters of 1987 (−18 DU), 1998 (−12 DU) and 2006
(−10 DU). The analyses with PWLT regression also yield a
very similar contribution of the proxies, which are exempted
from this discussion to avoid repetitions. The regression anal-
ysis shows that the halogen loading (EEASC) dominates the
ozone reduction. The resulting ozone trends computed from
the deseasonalised ozone anomalies after removing the con-
tribution of the explanatory variables are listed in Table3.

4.3.3 Vortex averaged ozone trends during 1979–1999

The regression functions applied to the ground-based mea-
surements show a trend of about−4.1 to −5.2 DU yr−1

from both regressions over 1979–1999 and are significant
at 95 % confidence intervals. As presented in Table3 (top
panel), these results did not change significantly when the
data were analysed with respect to different vortex criteria
(i.e. inside vortex, vortex core, and over the EqLs 65–90◦ S).
The trends derived from ground-based observations are in
very good agreement with those found from TOMS/OMI and
MSR data. The similar trends deduced from both EEASC

and PWLT regressions imply that the ozone decrease over
1979–1999 is dominated by the increase in halogens dur-
ing the period, consistent with the results of previous studies
(e.g.WMO, 2011, and references therein). These trends are
in good agreement with those found byYang et al.(2008),
who estimated a corresponding value (−4.5 to−5 DU yr−1

in 1978–1996) from the ground-based and satellite data using
the cumulative sum method. A very similar trend of around
−4 DU yr−1 was also deduced from an assimilated ozone
data set byBrunner et al.(2006). The slight differences in
the trend values of these studies are within error bars.

4.3.4 Vortex averaged ozone trends during 2000–2010

The results for the 2000–2010 period show a trend of about
+1 DU yr−1 from the EEASC and+2.3 to +2.9 DU yr−1

from PWLT functions and are significant at 95 % confidence
intervals for the ground-based data averaged with respect to
various vortex criteria. These trends are also in very good
agreement with those estimated from TOMS/OMI and MSR
data. The EEASC-based results are consistent with those de-
rived from the CCM/CTM simulations for the 1997–2009 pe-
riod, which exhibit an EEASC-based ozone trend of around
+1 DU yr−1 (Austin et al., 2010; Kiesewetter et al., 2010).
The trends derived from EEASC regression are smaller than
those obtained from PWLT. This implies that the ozone in-
crease during 2000–2010 cannot be explained by the reduc-
tion in ozone depleting substances alone, but there are strong
influences from the dynamics and other parameters. Note
also that similar differences between the PWLT and EEASC-
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based trend values are also reported in previous studies for
mid-latitude (up to 60◦ N/S) ozone (WMO, 2011; Vyushin
et al., 2010). The significant positive trend during the period
reinforces the notion that the Antarctic ozone is recovering,
as reported bySalby et al.(2011).

4.3.5 Influence of inter-annual variation in meteorology

It is well known that the temperature controls the PSC forma-
tion, chlorine and bromine activation, and hence, the spring-
time ozone depletion. Therefore, to test the strength of the
positive trends and to understand the impact of inter-annual
variability of Antarctic meteorology on the derived results
during 2000–2010, we computed the trends without heat
flux in the regression models, which are shown in Table3
(lower panel). The resulting estimates show similar values
for EEASC-based regression, around+1 DU yr−1 using all
data sets, and are significant at 95 % confidence intervals.
The PWLT regressions show slightly higher values,+2.5 to
+3.1 DU yr−1, and are also significant at 95 % confidence
intervals, except for the ground-based measurements aver-
aged over 65–90◦ EqLs. These results, however, show a clear
ozone recovery signal even without subtracting the added
variability induced by dynamics.

5 Conclusions

A comprehensive analysis of chemical ozone loss in the
Antarctic vortex from 1989 to 2010 is presented using total
ozone observations from ground-based Brewer, DOAS, Dob-
son, and SAOZ, and space-borne TOMS/OMI and MSR data.
The passive technique is applied to find the ozone loss at each
station, and then averaged to find the mean loss. The loss
in 1989–1991 and 2002 is about−110 to−140 DU or−33
to −40 %, and during 1992–2010 (except 2002) is around
−160 DU or−48 %. In general, the ozone loss in the Antarc-
tic starts by mid-June and intensifies in August–September,
peaks by the end of September/early October, and ozone re-
covers thereafter, consistent with the results of previous stud-
ies. The ozone loss estimated from TOMS/OMI and MSR
data also exhibits a proportional progress of ozone and ozone
loss as for the ground-based measurements throughout the
period (1989–2010), where the differences with the ground-
based estimates are less than±3 %.

The piecewise and EEASC-based trends estimated from
the September–November vortex averaged ground-based
ozone column show a trend of about−4.1 to−5.2 DU yr−1

for the period 1979–1999 and a trend of around+1 DU yr−1

with EEASC and+2.3 to +2.9 DU yr−1 with PWLT func-
tions during 2000–2010. These trend analyses are significant
at the 95 % confidence levels in both periods for all vortex
averaged data clusters. The ground-based analyses are well
supported by those of the TOMS/OMI and MSR data. In
1979–1999, both piecewise and EEASC-based ozone trends
show very similar values, corroborating the dominance of
stratospheric halogens on the ozone decrease in that period.

However, the larger values derived from the PWLT regres-
sion for the 2000–2010 period suggest the greater influence
of dynamics plus other regression indices not considered here
on the increase of ozone during the period. These results thus
show the first sign of ozone recovery. However, the Antarctic
ozone loss/hole will prevail in much of this century with the
given rate of the estimated positive trend and due to the still
high levels of stratospheric chlorine. It will take another fifty
years to regain the 1980 level of ozone.
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