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 2 MadEx Bloom 

Abstract 1 
The late austral summer (February-April) phytoplankton bloom that occurs east of 2 

Madagascar exhibits significant interannual variability and at its largest extent covers ~1% of 3 

the world’s ocean surface area. The bloom raises many intriguing questions about how it 4 

begins, is sustained, propagates to the east, exports carbon and ends. It has been observed and 5 

studied using satellite ocean color observations, but the lack of in situ data makes it difficult 6 

to address these questions. Here we describe observations that were made serendipitously on 7 

a cruise in February 2005. These show clearly for the first time the simultaneous existence of 8 

a deep chlorophyll maximum at ~70-110 m depths (seen in SeaSoar fluorimeter data) and a 9 

surface chlorophyll signature (seen in SeaWiFS satellite ocean color data). The observations 10 

also show the modulation of biological signature at the surface by the eddy field, but not of 11 

the deep chlorophyll maximum. Trichodesmium dominates the bloom nearer to Madagascar, 12 

while the diatom Rhizosolenia clevei (and its symbiont Richelia intracellularis) dominates 13 

further from the island. The surface bloom seen in the SeaWiFS data is confined to the 14 

shallow (~30 m) mixed layer.  It is hypothesized that the interannual variability in bloom 15 

intensity may be due to variations in coastal upwelling and thus the supply of iron, which is a 16 

micronutrient that can limit diazotroph growth. 17 

18 
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1. Introduction 19 

Longhurst [2001] was the first to describe the seasonal development of a major bloom east of 20 

Madagascar, using ocean color observations from space (from POLDER and SeaWiFS). He 21 

noted that the bloom typically occurred during the period February to April, but was not 22 

present every year. The data showed that blooms had occurred in 1997, 1999 and 2000. 23 

Lacking in situ observations Longhurst [2001] conjectured that the bloom was caused by the 24 

mixed layer deepening, a so-called entrainment bloom, but modulated by the presence of the 25 

eddy field. He speculated that the bloom might consist of nitrogen-fixing diazotrophic 26 

cyanobacteria Trichodesmium, but considered it more likely to be due to larger eukaryotic 27 

algal cells (entrainment hypothesis).  28 

Srokosz et al. [2004] re-examined the bloom, also using ocean color data (OCTS and 29 

SeaWiFS data for September 1996 to March 2004), and found an additional bloom in 2002. 30 

They advanced an explanation for the rapid spread of the bloom to the east away from 31 

Madagascar based on the interplay of plankton growth and diffusion (due to the eddy field), 32 

leading to the propagation of a possible “plankton wave.” Their study was limited to 33 

examining the mechanism for bloom propagation. 34 

Uz [2007] studied the bloom using a combination of ocean color (SeaWiFS and MODIS), sea 35 

surface temperature (SST from AVHRR), in situ (Argo) and meteorological (re-analysis 36 

winds and wind stress curl, plus cyclone tracks) data. He discounted Longhurst’s [2001] 37 

entrainment hypothesis and advanced a new hypothesis based on iron limitation. He 38 

conjectured that tropical cyclones causing heavy rain on Madagascar wash iron-rich 39 

sediments into the coastal waters. These are then spread eastward by eddy diffusion and 40 

trigger a nitrogen-fixing diazotroph bloom when shallow mixed layers form due to heating of 41 

the upper ocean. The interannual variability in the cyclone tracks – whether or not they make 42 
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landfall in Madagascar – is taken to explain the interannual variability of the bloom. Two 43 

criticisms can be made of this hypothesis: first, Uz [2007] invokes the eddy diffusion 44 

mechanism discussed by Srokosz et al. [2004] to explain the spread of iron eastwards. This 45 

misses the key point of that paper; namely, that it is the combination of plankton growth and 46 

eddy diffusion that allows the rapid eastward propagation of the bloom. For iron there is no 47 

growth term and eddy diffusion is insufficient, on its own, to transfer material eastward 48 

sufficiently fast to explain the bloom propagation. Second, the main rivers on Madagascar 49 

drain to the west into the Mozambique Channel (as can be ascertained from an atlas), and 50 

thus do not contribute to the waters within the East Madagascar Current. Furthermore, the 51 

heavy rains associated with tropical cyclones occur mainly in northwest Madagascar and 52 

would affect rivers flowing into the Mozambique Channel [Nassor & Jury, 1997, 1998]. 53 

 54 

In contrast to Uz [2007], Lévy et al. [2007] concluded that the bloom is due to upwelling at 55 

the coast followed by transport to the east by the retroflection of the East Madagascar Current 56 

(EMC; on the possible retroflection of the EMC see Quartly et al. [2006]; Siedler et al. 57 

[2009]). Lévy et al. [2007] and Koné et al. [2009] consider the evolution of the bloom only 58 

briefly, as part of a broader study of blooms in the Indian Ocean using SeaWiFS data and 59 

coupled ocean physics and ecosystem model output. Neither study reproduces the 60 

Madagascar bloom, primarily due to limitations of their biological models, though the spatial 61 

resolutions of the models may also be inadequate, given the bloom is dominated by meso and 62 

sub-mesoscale features, which the models do not resolve. 63 

Wilson & Qiu [2008] have included the Madagascar bloom in their study of the global 64 

distribution of summer chlorophyll blooms in oligotrophic gyres (defined by Wilson et al. 65 

[2008], as chlorophyll > 0.15 mg m-3). They note that this is the only such bloom that exhibits 66 

eastward propagation (with the single exception of the 1997 bloom in the NE Pacific noted 67 
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by Wilson [2003]).  They suggest that the bloom is influenced by “island mass effects,” 68 

developing within the dynamic eddy field and current system emanating off the southern tip 69 

of Madagascar. In particular, they associate it with the existence of the South Indian Ocean 70 

Counter Current (SICC; Palastanga et al. [2007]), which would allow consistent eastward 71 

migration. This is problematical as the link between the currents near Madagascar and the 72 

SICC remains to be established from in situ observations. The paper also suggests that the 73 

bloom occurs at the edges of regions of Trichodesmium occurrence, and in an area of 74 

extremely low dust deposition (thus ruling out aeolian iron fertilization effects; as noted 75 

previously by Srokosz et al. [2004]). No explanation of the pronounced interannual 76 

variability of the Madagascar bloom is offered. 77 

The study by Raj et al. [2010] makes use of satellite, model, re-analysis and hydrographic 78 

data and presents a large number of possible bloom mechanisms. Some of their explanations 79 

appear circular in that they use SeaWiFS data, output from a model that assimilates SeaWiFS 80 

data [Gregg, 2008] and estimates of Trichodesmium derived from SeaWiFS data [Westberry 81 

& Siegel, 2006] to support their view of the bloom. They conclude that Trichodesmium 82 

nitrogen fixers are involved in stimulating the bloom but, while mentioning the observations 83 

of Poulton et al. [2009], fail to note that these show that further to the east of Madagascar the 84 

dominant species is Rhizosolenia clevei (with symbiont Richelia intracellularis), while 85 

Trichodesmium are found mainly nearer to and to the south of Madagascar. They attribute the 86 

interannual variability of the bloom to a combination of upwelling, precipitation, light 87 

limitation and mesoscale eddies. 88 

Most recently, Huhn et al. [2012] have applied Finite-Time Lyapunov Exponent and Finite-89 

Time Zonal Drift analysis to altimetry-derived velocity fields south and east of Madagascar. 90 

Their results indicate the existence of eastward propagating jets, with the main jet at ~25˚S 91 

forming a meridional transport boundary so limiting the spread of the bloom northwards. 92 
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25˚S is a region of enhanced sea surface height variability, with eddy and / or Rossby wave 93 

propagation westward [Quartly et al., 2006]. The jet at 25˚S can potentially transport iron 94 

from south of Madagascar so fertilizing the bloom. The jet exists in non-bloom years and its 95 

interannual variability does not match that of the bloom, so this does not explain the latter 96 

behavior. Huhn et al. [2012] note that the plankton front propagates faster than the transport 97 

velocity of the jet. 98 

Therefore, many outstanding question regarding the East Madagascar bloom remain 99 

unanswered: what are the causes of its significant interannual variability; what processes 100 

allow the bloom to occur in the oligotrophic gyre; and by what mechanisms is it initiated and 101 

terminated? Several hypotheses exist in the literature, as noted above, but there are few data 102 

available to test them. 103 

This paper will not answer all the questions as the observations described below were 104 

obtained serendipitously! Rather, here the first combined physical, chemical and biological in 105 

situ observations of the bloom are reported (an earlier paper Poulton et al. [2009] focused on 106 

biological measurements from the same cruise). These serendipitous observations allow us to 107 

draw some conclusions and answer some questions about the bloom, specifically: 108 

• what, if any, is the link between the surface bloom observed in ocean color data and the 109 

subsurface physics and biology, and how does this relate to the eddy structures? 110 

• how deep does the surface bloom penetrate into the water column? 111 

• how do the subsurface measurements relate to the surface ones of Poulton et al. [2009]? 112 

2. MadEx cruise 113 

From 26 January to 21 February 2005 a cruise (called MadEx) took place on the RRS 114 

Discovery that was aimed at studying the East Madagascar Current and its interaction with 115 
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the eddies to the south of Madagascar (see Figure 2(b) below for cruise region). Details of the 116 

cruise, its objectives and the measurements made can be found in Quartly [2006]. The work 117 

included the deployment of moorings, measurements made using SeaSoar, CTD casts, and 118 

underway biological and chemical sampling from the ship’s non-toxic underway seawater 119 

supply (inlet depth at 5 m; see section 4). During the cruise, due to a medical emergency, it 120 

was necessary to divert RRS Discovery to the island of Réunion. This “lost” 5 days from the 121 

cruise program: 11 to 15 February. However, from satellite data, in particular ocean color 122 

observations (see Figure 1 and section 3 below) that were being received on-board, it was 123 

noted that a bloom to the east of Madagascar was present. Therefore, on the return journey 124 

from Réunion, SeaSoar was deployed on 14 February to make measurements concurrent with 125 

the underway sampling, thus giving the first (to our knowledge) in situ biological and 126 

physical data on the bloom. The need to prepare SeaSoar instruments for deployment meant 127 

that underway sampling from the ship’s non-toxic underway seawater supply began earlier on 128 

the return journey than the SeaSoar measurements. Due to the lost time, there was an urgent 129 

need to return to the work area south of Madagascar and complete the planned cruise 130 

program. This meant that it was not possible to stop and sample the bloom in more detail. 131 

However, it did prove possible, without too much loss of time, to execute slight course 132 

changes to allow the ship to pass through two eddies – one cyclonic and one anticyclonic (see 133 

Figure 1) – as eddies are known to play a key role in the development of the bloom 134 

[Longhurst, 2001]. The SeaSoar data described below cover the period 09.00 on 14 February 135 

to 05.44 on 16 February, ~45 hours. As noted above, the underway biological and chemical 136 

sampling started closer to Réunion and provided data hourly for macronutrients (nitrate, 137 

phosphate, silicate) and chlorophyll-a during this period. Underway sampling for 138 

phytoplankton species was more irregular. 139 
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Initial results for the phytoplankton species found in the surface waters, for the whole cruise, 140 

were published by Poulton et al. [2009]. They found that that the area to the south of 141 

Madagascar was dominated by Trichodesmium, while the bloom area to the east was 142 

dominated by Trichodesmium nearer to Madagascar but by diazotrophic diatoms 143 

(Rhizosolenia clevei with symbiont Richelia intracellularis) further to the east (see Figure 2 144 

in Poulton et al. [2009]). This shows that nitrogen-fixers play an important role in the 145 

southwest Indian Ocean. Here the context of those observations, just for the bloom area, is 146 

examined by using a combination of physical, chemical and biological data from the cruise, 147 

in conjunction with satellite ocean color data. 148 

3. Satellite observations 149 

Figure 1(a) shows an ocean color composite image from SeaWiFS covering the period 14 to 150 

17 February. It was a similar image received on board RRS Discovery that gave the first 151 

indication that that a bloom was present to the east of Madagascar. Overlaid on the image is 152 

that portion of the ship’s track along which in situ observations were made using SeaSoar on 153 

the return from Réunion (see section 4 for the in situ observations). Figure 1(b) shows the 154 

corresponding altimetric absolute dynamic topography and the high and low correspond to 155 

the eddies seen in the SeaWiFS data that the ship passed through. Figure 1(c) shows the SST 156 

in which the warm East Madagascar Current (EMC) flowing to the southwest can be clearly 157 

seen as it leaves the Madagascar coast, and this corresponds to the lower chlorophyll values 158 

in Figure 1(a). The eddies that are evident in the SeaWiFS ocean color data and the absolute 159 

dynamic topography are difficult to discern in the SST (this was also the case when high 160 

resolution GHRSST data were examined – not shown).  Enhanced surface chlorophyll levels 161 

occur around the periphery of both eddies which is consistent with advection away from a 162 

source near Madagascar, but could also be due to submesoscale processes at the periphery of 163 

eddies (cf. Calil & Richards [2010]). 164 
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In Figure 2 the development and decline of the bloom is seen in a sequence of 7-day 165 

composites of SeaWiFS ocean color images, covering the period from 12-18 January to 2-8 166 

March 2005. As noted by Longhurst [2001], the development of the bloom is clearly 167 

modulated by the mesoscale eddy field that exists to the east of Madagascar. The enhanced 168 

chlorophyll on the shelf around Madagascar, as well as the low chlorophyll of the EMC (just 169 

offshore to the east of the island), are both evident. Another striking feature in Figure 2(d)-(h) 170 

is the cyclonic eddy that appears relatively stationary at around 50˚E, 26˚S. This is close to 171 

the location that was previously noted by Quartly et al. [2006] as a “parking place” for 172 

eddies, when their progression westward has halted for some (yet to be explained) reason. 173 

The in situ data were obtained during 14-16 February (see below) which overlaps the periods 174 

corresponding to Figure 2(e)&(f), the later stages of the 2005 bloom. In Figure 2(h) there is 175 

evidence of the spinning up of a cyclonic eddy inshore of the EMC, a phenomenon noted 176 

earlier by Machu et al. [2002]. 177 

As stated in the introduction, the bloom has previously been observed in satellite ocean color 178 

data, here we observed a bloom in 2005 in the in situ data. However, it should be noted that 179 

there is some variation in how different authors assess the existence or absence of the bloom 180 

in specific years. While there is agreement on the years when a strong bloom exists, there is 181 

disagreement as to whether a bloom is weak or does not happen. Uz [2007] gives a numerical 182 

criterion for the existence / non-existence of the bloom; based the ratio of the mean 183 

chlorophyll over the bloom area (defined as 24-33˚S, 48-66˚E) to the mean chlorophyll over 184 

an area further east (defined as 24-33˚S, 70-88˚E; see his Figure 2b). He states that the bloom 185 

was absent in 2005 and only weak filaments were observed. This might seem at odds with the 186 

assessment here, but Wilson & Qiu [2008] describe the bloom in 2005 as “not as well-187 

developed” but their criterion for a late summer bloom is that chlorophyll is greater than 0.15 188 

mg/m3, which differs from that of Uz [2007]. Therefore, at the time of the cruise (February 189 
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2005) it can be concluded that there was a bloom, but it did not develop as far, was not as 190 

strong, and did not persist for as long, as those in strong bloom years (see the sequence of 191 

SeaWiFS images in Figure 10 of Wilson & Qiu [2008]). 192 

One final point to note from Figure 2 is that, while there is some evidence for the eastward 193 

propagation of the bloom in 2005, this appears to happen in two somewhat separated regions. 194 

One region nearer to Madagascar ~47˚-60˚E (Figure 2a-f) and another further away ~65˚-195 

70˚E (Figure 2d-h). It is not clear that the development of the bloom follows an orderly 196 

progression from west to east. 197 

4. In situ observations 198 

The data presented here from the MadEx cruise were obtained using underway sampling, 199 

ADCP (acoustic Doppler current profiler) and SeaSoar. The SeaSoar is a towed undulator 200 

and on this deployment carried standard CTD sensors that measured temperature and salinity, 201 

a fluorimeter that measured chlorophyll fluorescence, and an optical plankton counter (OPC) 202 

that is designed to provide data on the abundance (no. m-3) and biovolume (mm3 m-3) of 203 

meso-zooplankton or particles in the size range 250-2000 µm. Here the data are analyzed in 204 

size classes 250-500, 500-1000, 1000-2000 µm. We present data only for 250-500 and 500-205 

1000 µm, as the measurements get noisier with increasing size class, due to the size of the 206 

OPC aperture (5 cm x 2 cm). SeaSoar was towed at 8 knots (~4 m s-1) making measurements 207 

down to depths of  ~300-350 m. The data were binned and averaged and the results are 208 

presented on an 8 m by 5 km grid (5 km was chosen to ensure one up and down traverse by 209 

SeaSoar is included in each bin). For more details of the instruments and processing see 210 

Quartly [2006]. 211 

Figure 3 shows the sections for density, temperature, salinity, chlorophyll fluorescence, and 212 

biovolume along the return track from Réunion. Note that the fluorescence calibration is that 213 
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provided by the manufacturer and no attempt has been made to calibrate it against in situ 214 

chlorophyll measurements due to the small amount of in situ data available (surface only and 215 

none at depth). Therefore, the fluorescence data are used simply as a qualitative indicator of 216 

chlorophyll. Clearly visible in the fluorescence (Figure 3e) is the deep chlorophyll maximum 217 

(DCM) at around 70-110 m (mean depth ~93 m). At this depth the DCM will not be “seen” 218 

by satellite ocean color sensors due to the attenuation of the signal by the water column 219 

above (see da Silva et al. [2002] and Smith [1981]). Therefore, the signatures visible in the 220 

satellite data (see Figure 1) must be due to very near surface phytoplankton chlorophyll that 221 

the SeaSoar fluorimeter does not detect very well due to the quenching effects of sunlight. 222 

Therefore, here we use the SeaWiFS surface chlorophyll observations rather than the SeaSoar 223 

ones. SeaWiFS surface chlorophyll data along the SeaSoar track are also shown in Figure 224 

3(h). 225 

To examine the DCM more closely and to see whether it has any relationship to the eddies 226 

that clearly modulate the surface chlorophyll (see Figure 1), the SeaSoar fluorescence with 227 

density contours overlaid is plotted in Figure 4. Along the transect the DCM stays at a 228 

relatively constant depth, between ~70-110 m, whereas the isopyncals change depth by as 229 

much as ~150 m across the eddy features. There is also no clear relationship between the 230 

chlorophyll levels in the DCM and the background eddy field. Similar plots for fluorescence 231 

with temperature and salinity contours overlaid (not shown) also do not reveal any clear 232 

relationship with the mesoscale (eddy) structures. This is true for both the intensity and depth 233 

of the DCM. 234 

The OPC biovolume data in size classes 250-500 and 500-1000 µm (Figure 3f & g) suggest 235 

that the highest concentrations of particles are near the surface, in the top ~30 m, not at the 236 

DCM. This could be because the OPC cannot measure microzooplankton (<250 µm) that 237 

may be present in the vicinity of the DCM (it would “see” mesozooplankton >200 µm). By 238 
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examining vertical profiles of density, temperature and salinity (not shown) it was found that 239 

the mixed layer depth is ~30 m along the SeaSoar transect. This suggests that whatever is 240 

causing the signal in the OPC, mesozooplankton or something else (see discussion in section 241 

5 below), is confined by summer stratification to the shallow mixed layer. The depth to which 242 

the increased biovolume and abundance are seen is roughly delimited by the 26.5˚C 243 

temperature contour (see Figure 3f&g). Neither salinity nor density gave such a clear 244 

delimitation of the increased biovolume and abundance. 245 

The RRS Discovery has two hull-mounted ADCP (acoustic Doppler current profiler) 246 

instruments operating at 75 and 150 kHz, which allowed us to make underway measurements 247 

of the currents. Since the 75 kHz ADCP has greater depth penetration (~900 m) we show 248 

results from that instrument (with 16 m vertical and ~0.5 km along-track resolution; the latter 249 

corresponding to 2 minute sampling; see Quartly [2006]). Those obtained from the 150 kHz 250 

ADCP are similar, but only give data for the upper ~350 m of the water column. Figure 1(a) 251 

shows the surface currents, while Figure 3(d) shows the cross-track current component. 252 

These confirm the presence of the mesoscale eddies seen in the satellite data and show that 253 

the maximum velocities at the surface can reach ~1 ms-1. The full-depth 75 kHz ADCP data 254 

(not shown) indicate that velocity structure penetrates down to at least 600 m for the cyclonic 255 

eddy (cf. Donohue & Toole [2003], Figure 10), while it seems to be confined more to the top 256 

200 m for the anticyclonic one. In both cases the velocity structure penetrates much deeper 257 

than the DCM observed in the SeaSoar data.  258 

During the cruise a number of satellite-tracked surface drifters, drogued at 15 m, were 259 

deployed. The tracks of two, one deployed prior to the diversion to Réunion and one 260 

deployed on the return leg, are shown in Figure 1(a) confirming the presence of the cyclonic 261 

and anticyclonic eddies evident in the SeaWiFS chlorophyll images and ADCP currents. 262 
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The cyclonic eddy centered ~(49.5˚E, 25.5˚S) is clearly discernible – doming up of 263 

isopycnals – in the density, temperature and salinity observations at ~49.5-50.5˚E where the 264 

SeaSoar track intersects the eddy (Figure 3). A simple calculation, based on the ADCP data 265 

down to 600 m, shows a transport of 21.7 Sv to the east in the northern half of the eddy, and 266 

17.7 Sv to the west in the southern half. Here, for the purpose of the calculation, the eddy is 267 

delimited 48.8˚-50.6˚E in longitude, with center at 50.2˚E; but defining the edge is 268 

problematical given that it is embedded in a complex flow field. Furthermore, the SeaSoar 269 

track does not pass through the actual center of the eddy. Calculating the transport from 200-270 

600 m gives 12.9 Sv to the east and 12.4 Sv to the west, a more balanced result. As can be 271 

seen from Figures 1 and 3(d), the flow near the surface (approximately the top 200m) is 272 

intensified to the east. 273 

The anticyclonic eddy, centered at ~(47.3˚E, 26.7˚S), is less discernible in the SeaSoar data 274 

as it is more elongated in a southwest direction (Figure 1). This is due to the underlying 275 

bathymetry and because satellite sea surface height data (not shown) suggest that it has 276 

recently separated from a larger anticyclonic feature to the north. The strong currents at one 277 

edge are clearly seen but are confined more to the top 200 m of the water column (Figure 3d). 278 

The doming up and down of isopycnals is suggestive of an intra-thermocline eddy (ITE) as 279 

found in the area previously by Nauw et al. [2006], but centered on a shallower depth ~100m, 280 

rather than ~200 m as found Nauw et al. [2006]. However, the temperature and salinity 281 

properties differ from those of the ITEs observed by Nauw et al. [2006] – here at 100m depth 282 

they are ~23˚ and ~35.2, as compared to ~20˚ and ~35.8 at 200m [Nauw et al., 2006], so 283 

warmer and fresher. 284 

There is a subsurface salinity maximum of ~35.65 at depths of ~270 m at the northern end of 285 

the SeaSoar track, shallowing to ~130 m and the deepening again to  ~200 m at the 286 

southwestern end (Figure 3c). In the cyclonic and anticyclonic eddies, the value of salinity at 287 
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the maximum and the depth of the maximum are similar to those found for cyclonic and 288 

anticyclonic eddies in the Mozambique Basin by de Ruijter et al. [2004]. This indicates that 289 

such eddies can cross the Madagascar Ridge from the east of Madagascar into the 290 

Mozambique Basin (cf. Figure 9 of de Ruijter et al. [2004]). 291 

To further examine the link between the SeaWiFS surface observations and the SeaSoar ones, 292 

along-track surface chlorophyll values were taken from SeaWiFS data that were within 6.7 293 

km of the locations of the gridded SeaSoar data (see Figure 5; given the resolution of the data 294 

the choice of 6.7 km ensures that there will be at least one match up within the search radius). 295 

While a comparison between the SeaWiFS and SeaSoar surface chlorophyll is not 296 

informative, due to surface quenching affecting the SeaSoar fluorimeter data, a surprising 297 

result was found when a comparison was made between SeaWiFS chlorophyll and biovolume 298 

from the OPC. Figures 5 and 6 show that the SeaWiFS chlorophyll is well correlated with the 299 

biovolume in the size classes 250-500 and 500-1000 µm (correlation coefficients of 0.78 and 300 

0.76, respectively), which are also well correlated with each other (0.90). A similar result 301 

holds for OPC abundances (0.79, 0.78, 0.94). These correlations are reminiscent of similar 302 

ones found by Srokosz et al. [2003] during the North Atlantic spring bloom, where they were 303 

indicative of predator-prey dynamics – phytoplankton being grazed by zooplankton and both 304 

being eaten by larger zooplankton. Whether this is the explanation for what is observed here 305 

will be considered further in the discussion below. 306 

The biological and chemical sampling that was carried out on the cruise is fully described by 307 

Poulton et al. [2009], so will only briefly be considered here, with a specific focus on the 308 

samples taken along the SeaSoar transect. For biological and chemical analysis, water 309 

samples were collected from the ship’s non-toxic underway seawater supply (inlet depth 5 m) 310 

every hour for measurements of chlorophyll-a and macronutrients (nitrate, phosphate, 311 

silicate), and every 2–4 hours for large (>50 µm) diazotrophs. Diazotroph abundance was 312 
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measured on large volume (10 liter) water samples, which were slowly concentrated down to 313 

~20 ml by gentle removal of seawater through a 50 µm nylon mesh, and preserved with 2% 314 

acidic Lugol’s solution in 25 ml glass vials. The abundance of Trichodesmium colonies, 315 

individual trichomes and diatom cells (per liter) were determined in the full preserved volume 316 

using a 25 ml Bogorov tray and binocular microscope. Colonies of Trichodesmium were 317 

converted into trichome numbers assuming each colony consisted of 200 trichomes (for more 318 

details see Poulton et al. [2009] and Quartly [2006]). 319 

Figure 5 shows the abundance of Rhizosolenia cells and Trichodesmium trichomes along the 320 

transect. While there is some relationship between the in situ abundances and both the 321 

SeaWiFS chlorophyll and OPC biovolume, there are insufficient numbers of in situ samples 322 

to draw strong conclusions. Nevertheless, the observations are suggestive that SeaWiFS is 323 

seeing the chlorophyll signature of Rhizosolenia, with its symbiont Richelia, and 324 

Trichodesmium. Taken in conjunction with the results of Poulton et al. [2009, Figure 2] there 325 

seems to be an indication that if Trichodesmium is present then Rhizosolenia is not and vice-326 

versa (though there is some overlap around 51˚E on the transect; Figure 5). 327 

Figure 7 shows the SeaWiFS and in situ chlorophyll, together with nutrients (nitrate + nitrite, 328 

silicate, phosphate) at the surface along the SeaSoar track. The SeaWiFS and in situ 329 

chlorophyll show good agreement (mean difference, SeaWiFS minus in situ, of 330 

-0.01 mg m-3). Nitrate + nitrite and phosphate values are low, while silicate ones are not. The 331 

low values of nitrate + nitrite are consistent with the presence of nitrogen fixers. Poulton et 332 

al. (2009) noted that, over the whole cruise, the main areas of Rhizosolenia abundance were 333 

associated with silicate concentrations < 1 µmol kg-1, but Figures 5 and 7 suggest this is not 334 

the case for the section of SeaSoar track studied here. Recollect that their paper presented 335 

results from the whole cruise, whereas here the focus is only on the SeaSoar observations of 336 
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the bloom area, and the high abundances of Rhizosolenia found by Poulton et al. [2009] lie 337 

beyond the end of the SeaSoar track further northeast towards Réunion. 338 

There is a weak negative correlation (-0.50; data not shown) between the SeaWiFS surface 339 

chlorophyll and the fluorescence at the DCM. Increased chlorophyll concentration at the 340 

surface and the associated higher abundance of Trichodesmium or Rhizosolenia could both 341 

lead to less light penetration to depth and so stronger light limitation and less chlorophyll at 342 

the DCM. As the surface values of chlorophyll are low it is unlikely that the chlorophyll on 343 

its own will affect the light levels at depth significantly, but the presence of higher 344 

abundances of Trichodesmium or Rhizosolenia almost certainly will. In similar circumstances 345 

Villareal et al. [2011] found a significant impact of diatoms on their transmissometer 346 

measurements (a point that will recur in the discussion below). 347 

5. Discussion 348 

Having described the observations made during the cruise, we now turn to a consideration of 349 

the possible explanations for what was observed.  350 

5.1 DCM We have made the first observations of a DCM contemporaneous with a surface 351 

Madagascar bloom. The depth of the DCM does vary along the SeaSoar transect (Figure 4) 352 

and is probably set by the availability of light and the depth of the nitracline (recalling from 353 

Figure 7 that the surface waters are depleted of nitrate). Unfortunately, there are no 354 

subsurface nutrient measurements with which to verify this. With regard to light levels, a 355 

simple calculation (following da Silva et al. [2002]), assuming a diffuse attenuation for light 356 

of 0.05 m-1, gives a euphotic (1% of surface light) depth of 92m, which is about the same 357 

value as the mean depth of the DCM. The depth of the nitracline might be weakly modulated 358 

by the presence of eddies (as found by Pidcock et al. [2010]), thus mesoscale structures might 359 

influence the DCM indirectly but such an effect is not clearly seen in Figure 4. The DCM is 360 
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not visible in the OPC data, which suggests that it is dominated by different phytoplankton 361 

species to those forming the surface bloom. However, not having in situ water samples for 362 

the DCM means that it is not possible to be definitive on this point. Output from a global 363 

ecosystem model available at NOC (Yool et al. [2011]), for the location and time of year of 364 

the cruise, reveals the existence of a DCM but no surface bloom. In the model the DCM 365 

exists for most of the year, but seems to be disrupted by deeper mixing during the austral 366 

winter (July to September). The lack of a surface bloom in the model is unsurprising, as the 367 

ecosystem model does not include the nitrogen fixers that were observed on MadEx in the 368 

surface waters. The DCM SeaSoar observations and model results are consistent with what 369 

might be expected in the late summer for an ecosystem in an oligotrophic subtropical gyre, 370 

formed due to the phytoplankton’s requirement for both nutrients and light. 371 

5.2 Surface bloom It is unlikely that the OPC (see Figures 3, 5 and 6) is measuring the 372 

presence of mesozooplankton, as was the case in Srokosz et al’s [2003] observations. As no 373 

zooplankton net sampling was possible, this cannot be proved conclusively. However, the 374 

size class 250-500 µm abundance (no. liter-1; units chosen for ease of comparison with 375 

Poulton et al. [2009]) is in the range 0-12, while for the size class 500-1000 µm it is in the 376 

range 0-3. Poulton et al. [2009] suggest that each Trichodesmium colony contains about 200 377 

trichomes. So from the in situ data in Figure 5 we estimate 0-2.5 Trichodesmium colonies per 378 

liter along with 0-200 diatom cells per liter. Poulton et al. [2009] also note that diatom 379 

dimensions were 200-800 µm by 40-60 µm (mean value 474 µm by 47 µm), so potentially 380 

detectable by the OPC. Given that Trichodesmium colonies can be of significant size O(mm) 381 

and that Rhizosolenia can also form assemblages or associations O(cm) (cf. Villareal et al. 382 

[2011] and references therein), the in situ and OPC estimates of abundance are not dissimilar. 383 

Therefore, most likely the OPC is giving some measure of the abundance of Trichodesmium 384 

and Rhizosolenia in the shallow mixed layer. As the high values of both OPC biovolume and 385 
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abundance are delimited in depth by the 26.5˚C isotherm, this is consistent with optimal 386 

growth conditions for Trichodesmium and Rhizosolenia, as noted by Wilson & Qiu [2008] 387 

and Breitbarth et al. [2007]. These observations show similarity to those of Villareal et al. 388 

[2011]. In studying summer blooms of diatom-diazotroph assemblages (DDAs) in the North 389 

Pacific gyre, they found that these could be seen clearly in transmissometer (optical) data but 390 

did not have strong chlorophyll signatures. They defined a DDA bloom as abundances > 105 391 

cells m-3. Here, in the chlorophyll filaments (Figure 1 and 5) we have Rhizosolenia 392 

abundances of up to 200 cells liter-1 that is 2x105 cells m-3, which meets their criterion, with 393 

even larger values further east (see Figure 2d of Poulton et al. [2009]).  However, some 394 

optical methods for counting colonies or DDAs could be sensitive to the effects of turbulent 395 

flow, such as that which might be encountered at the OPC aperture as it is towed through the 396 

water or in a pumped underway water sampling system. The turbulence could cause the 397 

colonies or DDAs to break up, leading to uncertainty in the estimates of numbers and size. 398 

One way to determine the actual number of colonies or assemblages would be to use an 399 

instrument like the video plankton recorder, as was done in the Atlantic by Davis & 400 

McGillicuddy [2006]. 401 

The observation that Trichodesmium are more abundant closer to Madagascar supports 402 

Westberry & Siegel’s [2006, Figure 3a&d] SeaWiFS (1998-2003) based estimates of how 403 

often such blooms occur globally. Their estimates do not indicate the presence of 404 

Trichodesmium further to the east but mainly to the south of and closer to but east of 405 

Madagascar, consistent with Poulton et al’s [2009] in situ observations. Poulton et al. [2009] 406 

give estimates of the nitrogen fixation rates for the Madagascar bloom and show these are 407 

significant (<0.5 mmol N m-2 day-1 for Trichodesmium, 0.4-2.4 mmol N m-2 day-1 for 408 

diazoptrophic diatoms in the bloom region, comparable with estimates for other ocean 409 

regions). The observations also cohere with the modeling of nitrogen fixers by Monteiro et al. 410 



 19 MadEx Bloom 

[2010, 2011], which show pronounced variability over a year in Trichodesmium and DDA 411 

analogs to the east of Madagascar (Monteiro et al. [2010] Figure 3b&d), with the DDA 412 

analogs showing great variability. Unfortunately, they do not indicate when during the year 413 

that variability occurs, so it may or may not be at the time of the observed Madagascar 414 

bloom. Monteiro et al. [2011, Figure 4 as compared to Figure 1a] show that the total 415 

diazotroph biomass is increased east of Madagascar when they increase iron solubility in 416 

their model. This suggests that iron might play a key role in the actual bloom. Note, however, 417 

that the Monteiro et al. [2010, 2011] global model is of 1˚ x 1˚ spatial resolution so does not 418 

capture the effects of the eddy field. 419 

5.3 Causes of the bloom If the dominant species are nitrogen fixers could the Madagascar 420 

bloom be being stimulated by the input of iron (potentially a limiting micronutrient) as 421 

suggested by Uz(2007)? A recent review of aeolian iron deposition [Mahowald et al., 2009] 422 

would suggest that this is too small in the Madagascar bloom region to significantly impact 423 

phytoplankton growth through iron fertilization (< 0.01 g Fe m-2 yr-1, as compared to Saharan 424 

dust deposition in the Atlantic > 0.2 g Fe m-2 yr-1 which is known to have a fertilizing effect 425 

[Marañón et al., 2010]). A more likely source of iron are the sediments in the shallower 426 

waters on the continental shelf south of Madagascar which, if advected east, could cause the 427 

bloom in a similar way that the blooms around Kerguelen [Blain et al., 2007] and Crozet 428 

[Pollard et al., 2009] are formed. However, the strong interannual intermittency of the bloom 429 

suggests that any release of iron from the sediments and into the surface waters must also be 430 

strongly variable interannually (the Crozet bloom exhibits significant interannual variability 431 

too; Pollard et al. [2007]). To the authors’ knowledge, no data exist on the release of iron 432 

from the sediments around Madagascar. Any release of iron from the sediments into the 433 

surface waters could be related to the upwelling that occurs to the south of Madagascar, 434 

which is thought to be variable interannually [DiMarco et al., 2000; Lutjeharms & Machu, 435 
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2000; Machu et al., 2002]. DiMarco et al. [2000] note that the upwelling depends on both the 436 

wind field and the behavior of the EMC, while Lutjeharms & Machu [2000] and Machu et al. 437 

[2002] show that that cyclonic eddy inshore of the EMC also affects the upwelling. As the 438 

upwelling variability is affected by the winds, the EMC and the eddy at the southern tip of 439 

Madagascar  – none of which are sufficiently well understood individually nor well 440 

characterized by existing observations – their combined effects are even less certain. The 441 

transport of the iron to the east would be also be determined by the behavior of the eddy field 442 

and SICC [Srokosz et al., 2004; Palastanga et al., 2007; Huhn et al., 2012]. 443 

5.4 Eddies and the SICC For the cyclonic eddy there is a near surface (top 200m) 444 

intensification of the transport to the east relative to the west of about 4Sv. This occurs at 445 

about 25˚S, the latitude of the SICC [Palastanga et al., 2007; Huhn et al., 2012]. Nauw et al. 446 

[2008] estimate an SICC transport of 3 to 6Sv, while Huhn et al’s [2012] SICC propagation 447 

speed of 0.14 m s-1 can be transformed into a transport estimate of 2.1 to 5.25Sv by assuming 448 

that the SICC has a width of 100 to 150km over a depth of 150 to 250m (based on Palastanga 449 

et al. [2007] Figure 5). Assuming the strengthening of the westward flow in the upper 200m 450 

of the eddy is caused by the presence of the SICC, the degree of intensification is consistent 451 

with these other estimates of SICC transport. However, this is an instantaneous transport 452 

estimate and the agreement with previous observations may be fortuitous given the 453 

intermittent nature of the SICC flow in a turbulent eddy field. 454 

5.5 What limits the propagation of the bloom? Here the results of Mognin et al. [2009] for 455 

the Kerguelen bloom are suggestive. Essentially, the summer bloom depletes the iron 456 

advected from Kerguelen in the winter, at which point the bloom ceases. A similar scenario 457 

can be envisaged for the Madagascar bloom. Iron is upwelled from sediment near 458 

Madagascar and transported eastwards causing a bloom that lasts until the iron is exhausted. 459 

Interannual variability in the size of the bloom is caused by interannual variability in the 460 
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strength of the upwelling. Note that the advection of the iron would occur prior to the 461 

formation of the bloom and it would then be some other factor that gives the bloom its 462 

apparent eastward propagating behavior. Such an iron advection effect would be consistent 463 

with the results of Srokosz et al. [2004] and Huhn et al. [2012]. The presence of advected 464 

iron together with the shallowing of the mixed layer during the summer could lead to a 465 

bloom, as warm, stably stratified waters allow nitrogen fixers to flourish [Capone et al., 1997; 466 

Wilson & Qiu, 2008]. In 2005 (Figure 2) it is not clear that the bloom propagates eastward, as 467 

it occurs earlier at ~65˚E than at ~60˚E. Thus the bloom may develop by some combination 468 

of mixed layer shallowing and a mechanism that allows eastward propagation. 469 

5.6 A possible scenario Pulling together the results of this and previous studies a potential 470 

scenario for the late summer Madagascar bloom emerges. The bloom is constituted of 471 

Trichodesmium and diatom-diazotroph assemblages, though not necessarily in coexistence. It 472 

may be fertilized by iron carried eastwards from the upwelling region south of Madagascar, 473 

with consumption of the iron ultimately limiting the spread of the bloom. It could be 474 

triggered by the warming and shallowing of the mixed layer in the summer, allowing nitrogen 475 

fixers to bloom. The interannual variability in the strength of the bloom would then be 476 

determined by variations in the strength of the upwelling from year-to-year. An outstanding 477 

challenge is to characterize the variability of the upwelling and see if it displays any 478 

relationship to the interannual intermittency of the bloom. A further challenge would be to 479 

determine whether iron flux from the sediments could support the bloom. 480 

6. Conclusions 481 

The exact mechanisms for the formation, propagation and extinction of the Madagascar 482 

bloom are still unclear, but the in situ observations from the MadEx cruise presented here and 483 

by Poulton et al. [2009] have clarified some aspects of the bloom. The only way to determine 484 
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the behavior of the complex biological, chemical and physical processes affecting the 485 

Madagascar bloom would appear to be to mount a multi-year in situ observational program 486 

that would capture both stronger and weaker bloom events and the beginning and end of the 487 

bloom. It would also need to have a fuller biological, chemical and physical sampling 488 

program than was possible on the cruise in 2005. For example, measurements of iron (in 489 

water and potential aeolian deposition), water samples for phytoplankton species composition 490 

at the surface and at the DCM, vertical zooplankton net hauls (also for species composition) 491 

and direct determination of export flux are among the extra information that is required. 492 

However, the data that were obtained serendipitously on the MadEx cruise allow the 493 

following new insights into the bloom:  494 

• a deep chlorophyll maximum (mean depth ~93 m) and a surface chlorophyll bloom are 495 

found to exist simultaneously.  496 

• the surface biological signature is modulated by the eddy field, but the deep chlorophyll 497 

maximum does not seem to be.  498 

• the surface bloom seen in ocean color data is confined to the shallow (~30 m) mixed layer. 499 

• nitrogen fixers play a key role in the Madagascar blooms visible in satellite ocean color 500 

data. Trichodesmium dominates near to Madagascar, while Rhizosolenia/Richelia dominates 501 

further to the east, and both are detected by the OPC due to their organization into colonies 502 

and assemblages. 503 

• the surface bloom and the DCM are likely composed of different phytoplankton species, as 504 

the OPC detects the former but not the latter. 505 

These observations further our understanding of the bloom but, in agreement with Uz [2007], 506 

we conclude that definitive determination nature of the bloom will require further and more 507 

comprehensive in situ sampling to be carried out. 508 
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Figure 1a Ocean color composite image for 14 to 17 February 2005.  Four daily 9 km 

resolution SeaWiFS datasets are combined using the mean of their logarithms to avoid 

sensitivity to extreme high values. The track of the RRS Discovery is overlaid with its 

75kHz ADCP surface currents (in black), plus the trajectories of two satellite-tracked 

surface drifters (drogued at 15m) deployed during the cruise. The track of the buoy 

deployed in the cyclonic eddy is for 20 days after deployment from the ship, while the 

track for the buoy in the anticyclonic eddy (deployed earlier in the cruise) is from 10 days 

prior to ship’s passage to 20 days afterwards. Black dots mark the start of drifter tracks, 

white dots the end. The scale arrow represents a flow of 1 m s-1. 
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Figure 1b Absolute dynamic height from altimetry, with height contours superimposed 

(every 5cm), for the week centered on the 16th February 2005.  Data used are from 

AVISO's DUACS 0.25˚ "update" product, which uses all altimeter data available for that 

period.  As in a) the 75kHz ADCP surface currents are overlaid (in black), with scale 

arrow representing a flow of 1 m s-1.  
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Figure 1c Level 4 sea surface temperature (SST) interpolated product for 15th February 

2005.  Image shown is the 0.25˚ product from NCDC based on optimal interpolation of 

AVHRR data [Reynolds et al., 2007]. Overlaid are the trajectories of two satellite-tracked 

surface drifters (details as for Figure 1a). 
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Figure 2 Sequence of SeaWiFS 

ocean color images 

(chlorophyll in mg m-3) 

showing development of the 

bloom in 2005 – 7 day , with 

a 3 x 3 median spatial filter 

applied: a) 12-18 Jan; b) 19-

25 Jan; c) 26 Jan – 1 Feb; d) 

2-8 Feb; e) 9-15 Feb; f) 16-

22 Feb; g) 23 Feb -1 Mar; h) 

2-8 Mar. White areas are 

cloud covered. Red box in 

panel (b) denotes the main 

MadEx study region. On 

panels (e) and (f) the purple 

dotted line shows diversion 

to Réunion and the full 

purple line the track during 

SeaSoar deployment on 

return.  The modulation of 

the bloom by the underlying 

mesoscale eddy field is 

clearly visible in the data. Note that the color scale differs from that in Figure 1a as the 

area shown is larger and the range of variability in chlorophyll is consequently greater. 
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Figure 3 SeaSoar sections through bloom plotted against longitude. Top to bottom: a) 

density (kg m-3), b) temperature (˚C), c) salinity, d) cross-track currents from 75 kHz 

ADCP (positive to left of track as ship travels southwest, cm s-1). Note that hull-mounted 

ADCP does not make measurements in the top few meters. Vertical lines mark where the 

ship changes course (see Figure 1). 

 



  MadEx Bloom 

 

 
 
Figure 3 (continued) SeaSoar sections through bloom plotted against longitude. Top to 

bottom: e) chlorophyll fluorescence (mg m-3), f) OPC biovolume in size class 250-500 

µm, g) 500-1000 µm (mm3 m-3), h) SeaWiFS surface chlorophyll (mg m-3). Vertical lines 

mark where the ship changes course (see Figure 1). The yellow contour in f & g is that for 

potential temperature equal to 26.5˚C. Note that chlorophyll fluorescence and OPC 

biovolume data are only shown for top 150 m. Vertical lines mark where the ship changes 

course (see Figure 1). 
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Figure 4 SeaSoar chlorophyll fluorescence data with density (kg m-3) contours overlaid. 

Contours (shallowest to deepest) at 23.8, 24.0, 24.2, 25.0, 25.2, 25.4, 25.6 (kg m-3). 

Vertical lines mark where the ship changes course (see Figure 1).  
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Figure 5 Surface values along SeaSoar transect of (top to bottom): a) SeaWiFS chlorophyll 

(mg m-3), b) OPC biovolume in size class 250-500 µm (mm3 m-3), c) OPC biovolume in 

size class 500-1000 µm (mm3 m-3), d) Rhizosolenia abundance (cells per liter), e) 

Trichodesmium abundance (trichomes per liter).  
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Figure 6 OPC biovolume in size classes 250-500 µm (red circles, mm3 m-3) and 500-1000 

µm (green asterisks, mm3 m-3) plotted against SeaWiFS surface chlorophyll (mg m-3). 
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Figure 7 Surface values along SeaSoar transect of (top to bottom): a) SeaWiFS chlorophyll 

(mg m-3) with in situ chlorophyll (*; mg m-3), b) nitrate + nitrite (µmol kg-1), c) silicate 

(µmol kg-1), d) phosphate (µmol kg-1). 

 
 


