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Abstract 

It is increasingly recognised that viruses are a significant active component of oceanic 

plankton ecosystems. They play an important role in biogeochemical cycles as well as 

being implicated in observed patterns of species abundance and diversity. The 

influence of viral infection in plankton ecosystems is not fully understood. Here we 

use a number of well-founded mathematical models to investigate the interplay of the 

ecological and epidemiological interactions of plankton and viruses in the sea. Of 

particular interest is the role of nutrient on the population dynamics. Nutrient forcing 

has been suggested as a means of absorbing excess anthropogenic atmospheric carbon 

dioxide by stimulating increased phytoplankton primary productivity. Here we show 

that enriching nutrient levels in the sea may decrease the amount of infected 

phytoplankton thereby additionally enhancing the efficiency of the biological pump, a 

means by which carbon is transferred from the atmosphere to the deep ocean. 
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1. Introduction 

 

Viruses are the most abundant organism in the world‟s oceans, and it is thought that 

all phytoplankton species are susceptible to infection (Bergh et al., 1989; Bratbak et 

al., 1990; Suttle et al., 1990; Fuhrman, 1999; Evans et al., 2003; Suttle, 2005). 

Developing an understanding of the role of viruses in oceanic ecosystems is important 

because the action of viral lysis converts phytoplankton into more viruses and cellular 

debris, resulting in elevated levels of particulate and dissolved organic matter in the 

surface regions where the phytoplankton are predominantly found. This process 

“short-circuits” the transfer of carbon to organisms at higher trophic levels thereby 

preventing the subsequent transport of carbon (and other inorganic nutrients) to depth 

as detritus – a process known as the “biological pump”. Moreover, the enhanced 

particulate organic matter in the euphotic zone can be photo-oxidised by sunlight 

resulting in transfer of carbon from the ocean to the atmosphere (Suttle, 2005).  

 

These processes result in differences in how carbon is exchanged between the sea and 

the atmosphere when virus is either present or absent, and this has consequences for 

carbon cycle modelling and climate change estimates (Sabine et al., 2004). From an 

ecological perspective, phytoplankton are the base species of most oceanic food 

chains, so they significantly influence the population dynamics and community 

structure of many higher organisms (Kaiser et al., 2005). Of significant topical 

interest, oceanic sequestration of excess atmospheric carbon dioxide from 

anthropogenic sources has been proposed as a means of reducing the rate of global 

warming (Lampitt et al., 2008). One suggestion is that fertilizing areas of low surface 

nutrient concentrations will boost phytoplankton growth and increase the flux of 

carbon to the deep sea (Lampitt et al., 2008; Lovelock and Rapley, 2007). 

Understanding the responses of plankton ecosystems to exogenous nutrient forcing is, 

therefore, an essential pre-requisite to implementing large-scale open ocean geo-

engineering schemes (Chisholm, 2001).    

 

Phytoplankton populations are subject to numerous regulating constraints which, in 

combination, determine their observed population density at a given time. Whilst 

viruses are believed to play a significant role in regulating phytoplankton numbers, an 

additional important constraint on phytoplankton growth is the availability of nutrient. 
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This often takes the form of trace quantities of nitrogen (predominantly in nitrate 

form), though phosphorous and iron concentrations also influence growth (Arrigo, 

2005). The abundance of nutrient is variable in both space and time. Nutrient can be 

brought to the euphotic region, where there is sufficient light to allow photosynthesis, 

from deeper down by a number of physical processes including upwelling and small-

scale mixing. Lateral advection of nutrients into a region may also occur. In 

particular, rivers can provide a large flux of nutrients near coastal regions. The control 

of phytoplankton growth by nutrient availability is referred to as „bottom-up‟ control. 

‟Top-down‟ control, predation by higher organisms (from zooplankton to pelagic 

fishes), is also a major determinant of phytoplankton numbers.  

 

Therefore, it would appear to be the case that phytoplankton (and zooplankton) 

abundance is strongly determined by both ecological and epidemiological constraints. 

Here we use biologically well-founded models of varying complexity to investigate 

how these two constraints influence the observed plankton population dynamics. 

Ecological modelling and epidemiological modelling have long and rich histories, 

whereas the subject of “eco-epidemic” modelling, where the effects of ecology and 

disease epidemiology mutually interact, is somewhat less developed (Anderson and 

May, 1986; Chattopadhyay and Arino, 1999; Xiao and Chen, 2001; Chattopadhyay 

and Pal, 2002; Hudson et al., 2002; Greenhalgh and Haque, 2007, Siekmann et al., 

2008). However, enlarging our understanding of the observed patterns of 

phytoplankton and zooplankton population dynamics provides a strong motivation for 

investigating the properties of eco-epidemic models. Of particular interest in what 

follows is the role of nutrient on the various constituent populations in the models. It 

was Rosenzweig (1971, 1972) who, as a consequence of a study on the stability of 

enriched ecosystems, first drew attention to the possibility that increasing the supply 

of limiting nutrients to a prey species could lead to a strong increase in predator 

biomass whilst the prey abundance remained relatively unaffected. Here, we too focus 

attention on the effects that are caused by changes in the availability of nutrient, 

though we use combined ecological-epidemic models.  

 

Experience with a single species ecological model with a fatal infectious pathogen, 

but lacking grazing of phytoplankton by zooplankton (Appendix A), indicates that 

increasing the nutrient level will also increase the density of infection. We investigate 
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three different models of a plankton ecosystem subject to fatal viral infection in the 

phytoplankton, but with explicit representation of zooplankton and grazing. The 

sequence of three models is chosen so as to give confidence in the robustness of the 

particular phenomenon reported here. Specifically we show that in all the models the 

abundance of infected phytoplankton drops with increasing nutrient level. Moreover, 

in all the models there is a critical level of nutrient above which the infected 

phytoplankton (and virus) is completely eliminated from the system. This is a 

somewhat unexpected result. It suggests there might be a negative correlation between 

observed ambient nutrient level and viral abundance and that very high levels of 

nutrient might eliminate virus altogether. The motivation for this paper is to present 

results that should stimulate more experimental work on this issue. Given the 

importance of phytoplankton in the oceanic ecosystem and the global carbon cycle, 

understanding the role of nutrient is important particularly if actions are taken to 

deliberately manipulate ambient ocean nutrient levels as a means of mitigating 

anthropogenic global warming (Chisholm, 2000, 2001; Lovelock and Rapley, 2007; 

Lampitt et al., 2008). 

 

In Section 2 we describe the three models in turn, and in Section 3 we present some 

supporting evidence from at-sea measurements conducted during a phytoplankton 

bloom. Conclusions based on the analysis and numerical work are summarised in 

Section 4. Additional analysis of the models is presented in Appendices. 

 

 

 

2. Eco-epidemic models  

 

The effects of communicable disease on organisms that are part of a wider ecosystem 

have been most frequently studied in the context of wildlife diseases. Often these are 

terrestrial ecosystems involving micro- and macro-parasitic diseases in mammals or 

invertebrates. Illustrative of this approach are the collected papers in Grenfell and 

Dobson (1995) or, more recently, Hudson et al. (2002). By contrast, though there is 

increasing recognition of the role played by viruses in the sea, representative models 

of virally infected plankton ecosystems have been less fully elaborated. Studies of the 
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effect of phytoplankton virus in planktonic ecologies include those of Beltrami and 

Carroll (1994), Chattopadhyay and Pal (2002), Chattopadhyay et al. (2003), Thyraug 

et al. (2003), Singh et al. (2004), Malchow et al. (2004), Malchow et al. (2005), 

Hilker and Malchow (2006) and Siekmann et al. (2008). More recently Rhodes, 

Truscott and Martin (2008) extended the ecological models of Truscott and Brindley 

(1994), Oschlies and Garçon (1999) and Martin et al. (2002) to investigate the effect 

of virus infection in transient plankton blooms and pelagic plankton.  

In what follows we extend our recent work to study the effect of eutrophication of 

plankton ecosystems using density dependent disease transmission terms in a virally 

infected phytoplankton population that is also subject to predation. Specifically, we 

assume a lytic viral transmission mechanism. We do so for two reasons. First, there is 

evidence that it is more common in marine phytoplankton than lysogenic transmission 

(Fuhrman, 1999). Second, lysis of cells releases their component carbon, nitrogen, 

iron and phosphorous back into the ambient pool. This potentially has a major effect 

on global biogeochemical cycles as it means that the transport of carbon to depth 

away from the atmosphere via sinking organic material is reduced. 

The models of Beltrami and Carroll (1994), Malchow et al. (2004), Malchow et al. 

(2005) and Hilker and Malchow (2006) use a frequency dependent transmission term 

(and sometimes assume lysogenis). There is currently insufficient empirical evidence 

to determine which of frequency or density dependent transmission is most 

appropriate in a model. Therefore, we invoke Occam‟s razor and have chosen density 

dependent transmission, where the rate of acquisition of new infection is proportional 

to the product of the densities of infected and uninfected phytoplankton, as this 

requires fewer assumptions about the dynamics of transmission.  

Predation of the phytoplankton is a significant determinant of observed population 

densities. We assume that zooplankton is unable to discriminate the disease status of 

the phytoplankton, and so they predate the infected and uninfected phytoplankton to 

the same degree. By contrast, in Chattopadhyay and Pal (2002) only the uninfected 

prey are predated, and in Chattopadhyay et al. (2003) there is no predation of 

phytoplankton by organisms at higher trophic levels.  
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A further key assumption concerns the growth of phytoplankton. We assume that 

infected phytoplankton do not influence the growth rate of uninfected phytoplankton. 

Following viral infection it is assumed that the infected phytoplankton simply act as 

sources of fresh virus and as food for zooplankton. This differs from the assumption 

made by Singh et al. (2004) where the infected phytoplankton does influence the 

growth rate of uninfected phytoplankton. Furthermore, we specify that infected 

phytoplankton do not reproduce and that phytoplankton population growth comes 

only from uninfected organisms.            

 

The coupling of ecological models with epidemiological ones can lead to quite large 

and complex models with many associated parameters. This can make it challenging 

to determine whether observed behaviours are robust features of such systems or 

rather the result of some particular combination of the chosen functional 

parameterisations (of predation or infection, for example) and model parameters. 

Recalling that our focus here is on the effects caused by nutrient enrichment we 

analyse a sequence of increasingly elaborate eco-epidemic models. The first model 

uses a minimal representation of the ecological-epidemiological interaction in a 

plankton-virus system. The subsequent models use more complex predation functions 

and a different zooplankton mortality function. There are currently insufficient data to 

constrain species-specific models, so the models presented here represent “generic” 

species. In reality there will be greater complexity, including perhaps inter-specific 

competition between multiple phytoplankton species that are themselves subject to 

predation and viral attack, and possibly multiple virus strains. The strategy adopted 

here of using several models with differing structural forms is intended to reinforce 

confidence in any conclusions that are drawn.   

 

 

2.1 Model 1 

 

In the absence of predation or infection we assume that the phytoplankton population 

growth is a logistic process with a growth rate, a, and a carrying-capacity, K. When 

viral infection is present the phytoplankton population will be partitioned into 

“susceptible” (i.e. uninfected) and “infected” classes. The simplest representations of 
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predation and infection are bilinear forms. A set of dynamical equations for the 

evolution of the susceptible phytoplankton,
sP , the infected phytoplankton, 

iP , and the 

zooplankton, Z, is given by: 

 

 1s s
s m s s i

dP P
aP R ZP P P

dt K


 
    

 
 (1) 

 

 i
s i m i i

dP
P P R ZP P

dt
     (2) 

 

  m s i

dZ
R Z P P Z

dt
     (3) 

 

It is assumed that only the uninfected phytoplankton reproduce and increase in 

number but that both infected and susceptible phytoplankton are predated with equal 

vigour by the zooplankton, and that conversion of susceptible and infected 

phytoplankton biomass to zooplankton biomass is commensurable (as zooplankton 

recognise no difference between infected and uninfected phytoplankton) but is not 

100% efficient, occurring at a level determined by . Infected phytoplankton does not 

reproduce. Zooplankton mortality is assumed linear in density Z, at a rate  . The viral 

transmission mechanism is taken to be a density dependent form with a transmission 

parameter  , and infected phytoplankton is assumed to die at a rate set by . In order 

to keep the model simple it is assumed that the viruses that are shed by the lysis of 

infected phytoplankton are in equilibrium with the creation of infected phytoplankton. 

Consequently, the rate of acquisition of newly infected cells is proportional to the 

density of infected phytoplankton thereby obviating the need for a further equation 

describing the time evolution of the free virus population. Model 1 is structurally 

similar to one of the variants of equation 27 first presented in Anderson and May 

(1986). We use a logistic growth term for the prey population. Furthermore, we 

enforce identical predation of infected and susceptible prey.  
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2.1.1 Analysis of Model 1 – Ecosystem component 

 

Assuming that there is no virus present, or that the transmissibility is too low to 

sustain endemic infection, the model reverts to a basic predator-prey model for the 

phytoplankton-zooplankton interaction. In this case the non-trivial equilibrium values 

of the phytoplankton and zooplankton populations are  

*

mP R  and * 1
m m

a
Z

R K R





 
  

 
. It can be seen that as K becomes larger (a 

proxy for the increase of nutrient input), so the zooplankton population density is 

increased whereas the phytoplankton population remains unaffected. This is an 

observation originally made in the context of nutrient enriched ecosystems by 

Rosenzweig (1971). However, as nutrient input becomes large  K  the steady 

state populations remain stable, so strong enrichment of the ecosystem component 

does not lead to destabilisation.  Appendix B outlines a stability analysis of this 

model. 

 

 

2.1.2 Analysis of Model 1 – Full Model 

 

If we now permit a finite   it becomes possible for virus to exist in the eco-

epidemiological system. First, we find the non-trivial equilibrium solutions of 

equations 1 – 3. This gives 
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Note that the total phytoplankton biomass * *

s i mP P R   , which is independent of 

nutrient input, K, or viral transmissibility,. Hence, instead of discussing absolute 

abundance for this model, we can instead focus unambiguously on prevalence, the 

total fraction of phytoplankton that is infected. (This is also true for Model 2 but the 

variation of total phytoplankton abundance with K for Model 3 precludes this.) If we 

insist on * 0iP  (a finite density of infected phytoplankton at an equilibrium level, i.e. 

stable endemic infection) (5) can be used to show that for this to happen 

 

  mR a
a

K


 


    (7) 

 

This gives a critical value for the virus transmission parameter above which there will 

be persistent viral infection and below which the virus cannot exist indefinitely in 

phytoplankton. What is apparent from equation 7 is that as the carrying capacity K 

increases (a proxy for rising nutrient input), so it becomes necessary for the virus to 

be increasingly transmissible (larger ) in order for it to maintain its presence at a 

given level in the ecosystem. This suggests that enrichment of the oceanic ecosystem 

as represented by this model reduces the prevalence of viral infection in the 

phytoplankton population, whilst having no effect on overall phytoplankton 

biomass  s iP P . 

 

By differentiating equation 5 it is possible to see how the prevalence of viral infection 

in the phytoplankton depends on K. If 

 

 1
ma R a

 



 
  

 
 (8) 

 

then * 0iP K   corresponding to a decreasing density of infected phytoplankton 

with increasing K. The inequalities in equations 7 and 8 when taken together specify 

the extent of the interval in which the viral transmissibility  must sit in order for 

viral prevalence to decrease with increasing nutrient, namely  
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    m mR Ra
a a

K

 
  

 
      (9) 

 

As nutrient enrichment progresses (K increases) the interval of transmissibility over 

which * 0iP K    (of width a K ) gets narrower. 

 

However, the upper threshold is an over-estimate as a bifurcation at a lower value of  

 c leads to loss of the stable steady state with a non-zero zooplankton population, 

and the ecosystem collapses to a purely epidemiological one, consisting of uninfected 

and infected phytoplankton and virus only. The details of this are presented in 

Appendix C, and it suggests that a transition from a state 

   * * * * *, , , ,0s i s iP P Z P P occurs before the upper critical threshold of transmissibility 

is passed. 

 

Figure 1 shows of the behaviour of the basic eco-epidemic model as a function of 

viral transmissibility . For values of  that are too small to support endemic viral 

infection, the system is purely ecological with phytoplankton and zooplankton co-

existing in stable equilibrium. This occurs to the left of the left-hand vertical dashed 

line and in this region there is no change in phytoplankton density as nutrient is 

altered, i.e. 0P K   . Here P denotes the total phytoplankton density, 

because 0iP  . As   increases a threshold to endemic viral infection, above which 

virus can persist in the planktonic ecosystem, is crossed, and the prevalence of 

infected phytoplankton increases with increasing transmissibility as expected. 

However, if nutrient enrichment occurs in this region there will be a resulting decline 

in the prevalence of infected phytoplankton. The region where this occurs is 

represented by the interval to the right of the left-hand vertical dashed line up to the 

right hand dashed line. For sufficiently high transmissibility  c  zooplankton is 

eliminated and the system becomes an epidemiological one consisting of uninfected 

and infected phytoplankton only. This occurs to the right of the vertical solid line. In 

this region, any enrichment of the system results in increasing prevalence of infected 
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phytoplankton (Appendix C, equation C5). The vertical dashed line indicates the 

upper limit in Equation 9. 

 

Consequently, there may be a declining prevalence of virally infected phytoplankton 

in nutrient enriched planktonic-viral ecosystems when zooplankton is present. The 

right hand vertical dashed line is the upper limit in equation 9. From equation C4, the 

width of the interval between zooplankton being extinguished, 
c , and this line is 

/[K(1+/a)]. The width of the interval of   that permits * 0iP K   is therefore 

a/K-/[K(1+/a)]. It is only possible to increase the proportion of total phytoplankton 

that is infected by nutrient enrichment when zooplankton has been eliminated from 

the ecosystem, i.e. in the region to the right of c . This situation generally does not 

arise in the ocean where zooplankton, phytoplankton and virus co-exist.    

 

From equation 5 it is possible to derive a critical value of K (Kc) above which the 

infectious phytoplankton will be eliminated. Choosing a viral transmissibility that 

enables virus to co-exist with phytoplankton and zooplankton, a progressive increase 

in nutrient decreases the prevalence of infected phytoplankton, until at some critical 

value of nutrient, they are eliminated altogether leaving only a phytoplankton and 

zooplankton ecosystem. The critical value of nutrient at which this happens is given 

by  

 

 

1

m
c

m

R
K

a R a

 

 




 
  

 

 (10) 

 

Figure 2a shows how the eco-epidemiological system behaves as the nutrient level is 

increased. For increasing  cK K the proportion of infected phytoplankton declines 

until it is eliminated for nutrient levels cK . The dots show the zooplankton biomass 

increases with nutrient level, whereas the overall phytoplankton density remains 

constant. Figure 2b indicates how the density of infected phytoplankton varies with K 

and β. The contour lines clearly show the decline in infection as K increases.  
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2.1.3 Summary of Model 1 

 

From the analysis of this basic eco-epidemic model it is apparent that the ecosystem 

component of the model conforms to Rosenzweig‟s result (1971, 1972) that additional 

nutrient will get sequestrated in the predator population (in this case zooplankton) 

rather than in the prey population (here the phytoplankton). It is noted that this effect 

is maintained in the presence of viral infection in the prey population. Furthermore, 

when viral infection is introduced into the planktonic ecosystem there is a critical 

threshold value of transmissibility above which the virus can persist indefinitely in the 

phytoplankton population and below which it will go to extinction. As the nutrient 

level is increased the prevalence of a virus of a given transmissibility will decline 

until, for sufficiently large K  cK it will be eliminated. Note that the total density of 

phytoplankton  s iP P is unaffected by the nutrient level and is independent of the 

value of transmissibility  ; rather, it is the relative proportion of uninfected and 

infected phytoplankton that is affected by the nutrient level. Therefore, nutrient 

enrichment has the perhaps surprising result of decreasing the prevalence of infected 

phytoplankton relative to the uninfected phytoplankton. (Enrichment of a non-

predated infected species undergoing logistic growth leads to increased prevalence of 

infected prey - Appendix A).   

 

 

2.2 Model 2 

 

In order to test the generality of the conclusions we have reached using Model 1, we 

now introduce a more sophisticated functional form for the predation of the 

phytoplankton by zooplankton. In practice it takes time for a zooplankton to identify, 

capture and consume its phytoplankton prey. Following Holling, this leads to a 

saturating limit for the rate of prey consumption (Holling, 1959, Begon et al., 2005). 

Using a Holling Type II functional form we now have 
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All parameters are as before, though now g is the half-saturation constant for grazing 

and  is the maximum zooplankton grazing rate. This model is an extension of Model 

1 to include Type II predation with all other biological assumptions remaining the 

same.  

 

The objective here is to determine whether the characteristic behaviour that relates to 

Model 1 also appear in this model with its more refined representation of predation. 

 

 

2.2.1 Analysis of Model 2 – Ecosystem Component 

 

In the absence of virus the system is a purely ecological one consisting of zooplankton 

and their prey phytoplankton. The stable fixed point of these populations is at  

 

 * g
P



 



 (14) 

And 

 

 * 1 g a g
Z g a

K

 

    

  
    

   
 (15) 

 

As in Model 1, following Rosenzweig (1971), if K increases as nutrient input is 

enhanced, then the equilibrium biomass of zooplankton is increased, whereas the 
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phytoplankton remains unaffected. Appendix D outlines a stability analysis of this 

solution.  

 

 

2.2.2 Analysis of Model 2 – Full Model 

 

The non-trivial equilibrium solutions of equations 11 – 13 are as follows: 
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K g
P K

a




 

 
   

 
 (14) 

 

 *  i

g K g
P K

a

 


   

   
      

    
 (15) 

 

 
*

* sPg
Z g

 

  

   
    

  
 (16) 

 

 assuming 0   . Note that  * *

s iP P g      implying that the overall 

density of phytoplankton is independent of nutrient level and viral transmissibility. 

For virus to be endemic in the system we require * 0iP  . For this to be true, the 

critical viral transmissibility must be 
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As above, for   1 1g a a     we find that * 0iP K   . So, the constraint 

on the viral transmissibility (equivalent to equation 9) is 
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As nutrient enrichment progresses (K increases) the interval of transmissibility over 

which * 0iP K    (of width a K ) gets narrower, in the same way as Model 1. 

 

As  passes through the upper threshold, ~(-)(a+)/(g), (getting larger) the 

zooplankton population is eliminated and there is a transition to a purely 

epidemiological model consisting of only infected and uninfected phytoplankton 

(Appendix E). Consequently, it is only possible to observe * 0iP K   in the model 

when all populations  , ,s iP P Z  are co-existent. The width of the interval of   over 

which * 0iP K   is given by  1a K K a   , as for Model 1.  

 

Figure 3 shows the behaviour of Model 2 as a function of virus transmissibility . As 

we found in Model 1 above, declining prevalence of infected phytoplankton is the 

observed behaviour in nutrient enriched ecosystems when zooplankton is present. The 

vertical dashed line indicates the upper limit in Equation 18.    

 

From equation 15 it is possible to derive a critical value of Kc above which the 

infectious phytoplankton will be eliminated. The critical value of nutrient input at 

which this happens in Model 2 is given by  

 

 

1
( )

c

g
K

g

a a

  

 

 



 
  

 

 (19) 

 

Figure 4a shows how the eco-epidemiological system represented by Model 2 

behaves as the nutrient level is increased. Figure 4b shows how the density of infected 

phytoplankton varies with K and β.  
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2.2.3 Summary of Model 2 

 

Model 2 was introduced to investigate the effect of a more realistic saturating 

predation function for the zooplankton and phytoplankton interaction. In most 

respects the behaviour of Model 2 is very similar to the behaviour of Model 1. In the 

reduced ecosystem-only version of the model, when virus is stably co-existent with 

zooplankton and phytoplankton, increasing the nutrient level suppresses the 

prevalence of infected phytoplankton, as described in relation to Model 1. It should be 

noted that the conclusions arising from Models 1 and 2 are dependent on the specific 

choice of trophic closure that is made in equations 3 and 13. This point has been 

highlighted in other plankton modelling studies (Steele and Henderson 1992; Edwards 

and Brindley 1999), as the choice of trophic closure is essentially a statement of the 

assumed ecological mechanism governing zooplankton mortality. For simplicity, 

equations 3 and 13 use a linear term. An alternative that has been used by other 

researchers is a quadratic term. In this case if K (or a) is increased, iP  increases for 

small values of K but then saturates so the effect of decreasing iP  is absent. Of the use 

of the linear closure term Steel and Henderson (1992) have stated “There can be a 

strong empirical basis for this approach if nothing is known (or can be known) about 

the actual ecological context”. Alternatively, it could be argued that a more general 

closure term might be given by  2Z C Z   where C is a constant and we make the 

assumption that predators of the zooplankton are proportional to them in abundance. 

Consequently, at low concentrations of zooplankton the closure will be quadratic in Z, 

whereas at higher Z (i.e. at higher nutrient levels), the mortality becomes linear in Z. 

This functional form is more defensible than a simple quadratic as the latter allows an 

indefinitely increasing specific grazing rate with increasing Z. The former has an 

upper limit for the specific rate, as would be expected given the physiological 

constraints on the rate at which a predator can catch, handle and consume prey. Our 

results are appropriate to the higher Z limit of this more realistic functional form and 

therefore applicable to the case of increasing nutrient input.  

 

Model 2 is also capable of exhibiting limit cycle behaviour for different parameter 

choices. When this occurs, eutrophication of the phytoplankton causes an increase in 

the mean density of infected prey. However, there is no strong evidence that in situ 
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oceanic plankton populations are intrinsically oscillatory. Cyclic behaviours are a 

feature of phytoplankton population dynamics but these are generally attributed to 

known seasonal effects rather than intrinsic dynamics. Consequently, we do not focus 

attention on this phase of model behaviour.  

 

 

 

2.3 Model 3 

 

Although simple models are very good for testing hypotheses care should always be 

exercised to ensure that any phenomena observed are not model dependent. For this 

reason we now repeat our analysis using a more sophisticated representation of 

phytoplankton ecology. Recently, a model was introduced to investigate the role of 

viral infection in regulating a plankton ecosystem over a seasonal cycle in the North 

Atlantic (Rhodes et al. 2008). The model, hereafter Model 3, explicitly includes a 

nutrient state variable that represents the concentration of dissolved nitrate. Explicit 

state variables for the amount of free virus, V, and detritus, D, are also represented. 

The only change made to the model relative to that used in Rhodes et al. (2008) is that 

the zooplankton mortality term is replaced with a linear formulation (rather than a 

quadratic one) for the argument given in Section 2.2.3. 

 

The model is given by the following equations 
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g P P w DdD
Z P P Z D

dt hg P P


    



 
       

   

 (25) 

 

The variables in this model are nutrient (nitrate) N, uninfected phytoplankton sP , 

infected phytoplankton
iP , virus V, zooplankton, Z and detrital material D. The nitrate 

pool is partly replenished by re-cycling of dead and excreted material that originates 

in the zooplankton and phytoplankton. It is possible that decaying material of viral 

origin could also serve to increase nutrient levels but we have not included that 

possibility here. Note that, in order to be consistent with Models 1 and 2, we do not 

allow Pi to compete with Ps for nutrients. The assumption underlying this is that once 

phytoplankton become infected they do not reproduce and they do not grow in size. In 

summary, we assume that nutrient uptake ceases once a cell becomes infected. We 

revisit this assumption in the Discussion. We further assume that all nitrogen 

contained in an infected cell becomes part of a virus on lysis so that =Pi. Other 

model parameters are as used in Rhodes et al. (2008) to describe the North Atlantic 

(all parameters held constant throughout the paper are given in Table 1) except for  

which is discussed below, and Z for which a value of 0.15 day
-1

 was used.  Note that 

although the underlying ecological model has been well-used and studied previously, 

investigations into plankton viruses are still in their early stages. Consequently, the 

viral parameters used may vary due to uncertainties in observations and also between 

species studied. For this reason critical thresholds, of infectivity and nutrient supply, 

should be treated more qualitatively than quantitatively. The phenomenon is the main 

focus for now, not the precise parameter values for which it occurs. Model 3 is a more 
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complex eco-epidemiological model than has been considered heretofore, so the 

remaining analysis uses numerical solution of equations 20-25. 

 

As in Models 1 and 2, a virus must be of sufficiently high transmissibility in order to 

persist in stable equilibrium with the plankton populations. When this is the case, it is 

possible to investigate the effect that changing nutrient input has on the equilibrium 

populations of plankton. Using the parameters in Table 1 it turns out that the critical 

viral transmissibility for stable co-existent persistence crit~3.9 (mmol N m
-3

)
-1

 day
-1

. 

Therefore, choosing =4.3 (mmol N m
-3

)
-1

 day
-1

 it is possible to investigate the effect 

of nutrient input on the eco-epidemiological system. Note that  in Model 3 is not 

directly comparable quantitatively to  in Models 1 and 2 because of the explicit 

representation of the viral population in Model 3. (It must be stressed that other 

parameter choices are possible for Model 3 but we use those in Table 1 to maintain 

consistency with the analysis of Rhodes et al. 2008. We do not seek to do an 

exhaustive search of parameter space. Rather we seek to demonstrate the existence of 

a phenomenon, robust across a range of models). In this model we use N0 to set the 

rate of nutrient input. (We could alternatively use s, and, when doing this, similar 

results are obtained).  The first term on the right hand side of equation 20 can be 

interpreted as maintaining nitrate input by relaxing its concentration to a value N0. 

Hence, by increasing N0 we increase the nitrate input to the system. 

 

Figure 5a shows the response of the equilibrium levels of uninfected and infected 

phytoplankton to increasing nutrient input, as set by 0N . Although nutrient enrichment 

starting from low levels does lead to an increase in the total phytoplankton biomass, 

the increase in zooplankton abundance is much larger and more rapid. At low nutrient 

levels, enrichment leads to a slight enhancement in the density of infected 

phytoplankton, but as enrichment continues to increase, there is a levelling-off 

followed by a decline in the density of infected phytoplankton. As was seen in the 

previous two models, there is a critical level of nutrient above which there is complete 

elimination of the virus and infection from the phytoplankton population. Also, as 

nutrient level increases the total phytoplankton concentration saturates remaining 

constant at higher nutrient inputs, similar to Models 1 and 2. 
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Figure 5b shows the proportions of infected and uninfected in the total phytoplankton 

population for a given nutrient level. For low nutrient levels the proportion of infected 

phytoplankton increases slightly relative to the uninfected phytoplankton, whereas for 

higher nutrient enrichment the proportion of the total phytoplankton that are infected 

declines. 

 

To explore the behaviour of Model 3 further, it is of interest to investigate the effect 

that increasing viral transmissibility has on the response to nutrient enrichment. 

Figure 6 (a-d) shows equivalent calculations to that in Figure 5a, though now for 

larger values of β. For increasingly transmissible virus the qualitative behaviour of the 

infected phytoplankton is preserved, i.e. at low nutrient levels eutrophication 

increases the density of infected phytoplankton, but for high levels the density begins 

to decrease, ultimately, leading to elimination. The stable fixed point bifurcates to 

limit cycle behaviour (~6.5) and represents a highly virulent virus. At typical levels 

of nutrient (extreme left hand side of Figure 6d) the infected phytoplankton density is 

around 50% of the total phytoplankton population, which is rather higher than would 

be observed in practice. The reason for this behaviour is apparent from Model 1 

equation 10; for sufficiently large transmissibility (β) in that model the threshold 

value of K becomes ever larger.     

 

 

 

2.4 Summary of Model 3 

 

Model 3 was introduced as a more sophisticated model of plankton dynamics in an 

open ocean setting. In contrast to Model 1 and 2, at low nutrient input levels it is 

possible to see the density of infectious phytoplankton increasing with increasing 

nutrient level over a small range. However, further enhancement of nutrient input 

inevitably leads to a decline in the density of infected phytoplankton, both in absolute 

terms and as a proportion of the total phytoplankton biomass. Moreover, there is once 

again a critical nutrient level above which infected phytoplankton is completely 

eliminated from the system.  These are robust features of the behaviour of Model 3. 

They are preserved when there is a change of trophic closure from 2ZZ ZZ    and 
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also when the re-cycling of detritus and zooplankton excreta is 

excluded  20 and 0D   .       

 

Although it may not be readily apparent, Model 3 is not as different from Models 1 

and 2 as it appears, so the insights gained from Models 1 and 2 are applicable in the 

more complex model. It is possible to remove virus from Model 3 by replacing V with 

a term proportional to Pi from the steady state solution to equation 23. Furthermore, as 

we state above, it is possible to turn off recycling of detritus and zooplankton waste 

products without affecting the phenomenon. Hence the sensitivity analyses we discuss 

also effectively remove D from the model. This leaves N, Ps, Pi and Z. As we consider 

nutrient enrichment, nutrients will generally be non-limiting so N plays virtually no 

role in the dynamics and can also be ignored. Finally by comparing, term-by-term, 

Model 3 with V, D and N removed with Model 1 or 2 it will be seen that the only 

differences are: the linear mortality of Ps in Model 3 compared to the effective 

quadratic loss terms in Models 1 and 2; the Holling III grazing term in Model 3 

compared to Holling I and II in models 1 and 2 respectively. Hence, it is only the 

choice of these two functional forms that effectively separates Model 3 from Models 

1 and 2..  

 

 

3. Experimental Observations 

 

The analysis of our eco-epidemiological models leads to two predictions that could be 

tested: i) in the case of single strains of virus the prevalence of the strain will decrease 

in its host phytoplankton species as sustained nutrient input increases, and ii) in the 

case of multi-strain viruses, viral diversity will decline with increasing nutrient as less 

transmissible strains are sequentially eliminated. 

 

Given the counter-intuitive nature of the results shown by all the three models, it is 

important that attempts are first made to verify the prediction that increased nutrient 

input can reduce viral lysis. Only limited observations are currently available and 

none relate exactly to the equilibrium systems we investigate. Figure 7 shows 

observations taken in situ over the course of two months in the North Sea as the 
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ecosystem shifted from a state of high nitrate concentrations to one of low values. 

This experiment was configured to quantify the contributions to phytoplankton 

mortality from grazing and viral lysis. What is shown in Figure 7 is the phytoplankton 

mortality resulting from viral infection (i.e. the virally-induced mortality). The higher 

the virally-induced mortality the greater the proportion of phytoplankton that are 

dying due to infection. The corresponding shift from low to high virally-induced 

mortality is consistent with our modelling results. In the models described above, as 

nutrient levels fall a given phytoplankton is more likely to die as a result of viral 

infection. Unfortunately the time series is not long enough to gauge the longer term 

behaviour of the viral lysis rates which may be more representative of behaviour at 

equilibrium. Several other studies have traced phytoplankton and viral abundance 

across the transient responses of spring blooms or in mesoscosms subjected to nutrient 

„spikes‟ (Brussard et al. 2005; Bratbak et al., 1993). Similar behaviour to that shown 

in Figure 7 has been observed though in some cases, in mesocosm studies, viral attack 

increased during an induced phytoplankton bloom even when nutrients remained non-

limiting (Bratbak et al. 1993). It will be difficult observationally to separate the 

phenomenon reported here from the expected increase in viral infection due to 

burgeoning populations decreasing the distance between potential hosts, particularly 

during transient events.  

 

 

4. Conclusions 

 

It is becoming increasingly recognised that the abundant and ubiquitous virus 

populations in the world‟s oceans are playing a significant role in regulating plankton 

dynamics and, by implication, the dynamics of populations of species at higher 

trophic levels. Given the paucity of knowledge relating to phytoplankton 

epidemiology, much can be learnt from studying basic models that capture the most 

significant biological processes. In particular, models allow us to develop and frame 

hypotheses to direct future field and laboratory work. 

 

Here we have investigated the role of nutrient supply as a determinant of 

phytoplankton dynamics using a sequence of increasingly complex models. This is 

motivated in part by the suggestion that nutrient enrichment of the seas could serve to 
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mitigate the effects of anthropogenic carbon emissions (for a review see Lampitt et 

al., 2008). Despite their differences, the models have common features. Specifically, 

there is a pronounced tendency to decreasing phytoplankton infection as nutrient is 

increased.  

 

It is possible to construct a simple hypothesis that might explain this phenomenon. 

There are two asymmetries in the model. First, although both susceptible and infected 

phytoplankton are grazed equally by zooplankton, only susceptible phytoplankton 

populations increase directly when K is increased. (This is also true if one increases 

the maximum phytoplankton growth rate a, leaving K constant - see equation 5). This 

asymmetry can only give rise to the observed phenomenon if the increased flux of 

material into Ps is preferentially diverted to Z rather than to Pi – otherwise Pi may still 

increase in population size. Second, zooplankton benefit from the increased influx of 

material whether it is from ingestion of susceptible or infected phytoplankton, but 

infected phytoplankton only benefit from the fraction of susceptible phytoplankton 

they can win in competition with zooplankton and further suffer increased losses as a 

result of increased zooplankton grazing if they lose that competition.  

 

The work reported here assumes that infected phytoplankton do not take up nutrients. 

At present it is unclear to what extent infected phytoplankton can do. There is some 

experimental evidence that they may be able to do so and potentially can even 

increase cellular uptake (Mann et al., 2003). We have carried out further sensitivity 

analyses to explore this: if Model 3 is modified to allow Pi to remove nutrient from 

the pool but not to use it to reproduce then the phenomenon of increased nutrient 

loading leading to viral extinction remains (if this is tried with Models 1 or 2 there are 

no stable equilibrium solutions); at the extreme of allowing infected phytoplankton to 

uptake nutrient and reproduce identically to uninfected phytoplankton then the 

phenomenon is not present. It should be remembered that lytic transmission means 

that no infected cell will reproduce, however. It is not clear how the most realistic 

scenario of continued uptake of nutrient purely for creation of viruses within an 

infected cell can be convincingly modelled in the continuous framework used here. 

Such work may provide an interesting study for individual-based modelling. 
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The work presented here focuses on steady state populations. In situ, populations will 

experience periods of considerable change in nutrient input both on seasonal 

timescales and shorter ones associated with more ephemeral localised processes. 

Clearly future work must investigate if the results presented here are modified when 

the nutrient forcing varies with time. Provided that the system equilibrates as fast as 

the forcing changes, our results should still be applicable. It is generally thought that 

increased population density of organisms leads to increased infection at the 

termination of blooms. Given that the end of a bloom is often coincident with a 

reduction to low nutrient concentrations, our results suggest that there may be an 

additional contributory process.  

 

The phenomenon of increased nutrient input leading to reduced viral infection of 

phytoplankton might have desirable consequences from a human perspective.  The 

reduction or removal of infection would mean that carbon in the phytoplankton is 

more likely to be consumed by higher organisms and, therefore, ultimately end up at 

depth rather than re-circulating in surface waters where it could be returned to the 

atmosphere. Also there are less cellular fragments generated by lysis that could be 

photo-oxidised by the sun or respired by bacteria. Future experimental and field work 

should seek to test the results of these models in oceanic or laboratory systems. 
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Tables 

 

 

Parameter Units Value  

s day
-1 

0.00648 Vertical mixing rate 

N0 mmol N m
-3 

Variable Deep NO3 concentration 

kN mmol N m
-3

 0.5 Half-saturation for NO3 uptake 

λmax day
-1

 0.66 P maximum growth rate 

sP  day
-1

 0.03 Natural mortality rate for P 

g day
-1

 2.0 Maximum grazing rate 

  (mmol N m
-3

)
-2

 day
-1 

1.0 Slope of grazing function 

1   0.75 Assimilation efficiency 

2  day
-1

 0.03 Excretion rate 

Z  (mmol N m
-3

)
-1

 day
-1

 0.15 Z mortality rate 

D  day
-1

 0.05 Remineralisation rate 

sw  m day
-1

  5.0 Sinking rate 

h m 25.0 Mixed layer depth 

iP  day
-1

 0.16 Infected P mortality rate 

  day
-1

 0.16 Rate of viral production 

V  day
-1

 1.23 Viral mortality rate 

 

Table 1: List of ecosystem and epidemiological parameters used in Model 3. 



 26 

Appendix A 

 

 

A simple ecological model of a population P subject to logistic growth (growth rate a 

and carrying capacity K) and a fatal infectious disease (with transmissibility   and 

with the lifetime of the infected organism set by 1  ) is given by 

 

 1s s
s s i

dP P
aP P P

dt K


 
   

 
 (A1) 

 

 i
s i i

dP
P P P

dt
    (A2) 

 

where the non-infected and infected individuals are partitioned into two compartments 

sP and iP . The model has three steady states    * *

,1 ,1, 0,0s iP P  ,    * *

,2 ,2, ,0s iP P K  

and      * *

,3 ,3, , 1s iP P a K      . As nutrient input, set by K, rises, the 

density of infected individuals, iP , increases. 

 

For steady state 3, the Jacobian is 

 

 

1 0

a

K
J

a
K










 
 

 
  

  
  

 (A3) 

 

From A3, trace(J)<0 for all parameter values.  

Likewise, determinant (J)   *

,31 ia K P       which is >0. So steady state 3 is a 

stable spiral or stable node.  
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Appendix B 

 

 

Analysis of Model 1. 

 

The ecological component of Model 1 is given by 

 

 1 m

dP P
aP R ZP

dt K

 
   

 
 (B1) 

 

 m

dZ
R ZP Z

dt
    (B2) 

 

and has three steady states    * *

1 1, 0,0P Z  ,    * *

2 2, ,0P Z K  and 

     * *

3 3, , 1m m mP Z R a R K R     . 

 

For steady state 3, the Jacobian is 

 

 

1 0

m

m

a

K R
J

a
K R

 

 






  
 
 
  

   
  

 (B3) 

 

From B3, trace(J)<0 for all parameter values.  

Likewise, determinant (J)   *

31 m ma K R R Z       which is >0. So steady state 3 

is a stable spiral or stable node. 

 

As K increases, the steady state 3 fixed point does not change its characteristics 

because the trace and determinant remain <0 and >0 respectively. Note also 

that *

3 0P K   , indicating that phytoplankton density is independent of nutrient level 

in the absence of virus. 



 28 

Appendix C 

 

As viral transmissibility increases further above     mR a a K    , the 

zooplankton population declines and eventually becomes small. In fact, the 

zooplankton population is eliminated for a sufficiently large    c . To find this 

value set equation 6 to zero, i.e. 

 

 * 1 0
m m m

K
Z

R R a a R

   



 
     

 
 (C1) 

 

This is satisfied for  

 

 2 1 0
mR a a K

  
 



 
    
 

 (C2) 

 

which has two real roots, the largest of which is 

 

 

1/ 2
2

2
1 1 2 4

2 2 2

m m
c

m

R a R a

a a a R aK

    


  

  
       

   
 (C3) 

 

(The other root gives a solution which lies in the region where virus is absent, but for 

small K there is the possibility that the lower bound in equation 9 might need to be 

replaced by the small second root of equation C2). 

 

We can show that c is always lower than the upper limit given in equation 9. 

Dividing equation C3 by the upper limit in equation 9 gives  
1/ 2

1 X where 

 
2

2 mX a R K a     which because X is positive means the ratio is always < 1. 
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Alternatively for large K equation C3 can be approximated by  

 

  
 

2.... ( )
1

m
c

R
a O K

a K

 
 

 

   


 (C4) 

 

Hence, there is no interval in which * 0iP K   is observable and with zooplankton, 

phytoplankton and virus co-existing. 
c is shown by the solid vertical line in Figure 1. 

 

For c  the system consists only of infected and uninfected phytoplankton (but no 

zooplankton) given by 

 

 * 1i

a
P

K



 

 
  

 
 (C5) 

And 

 

 *

sP



  (C6) 
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Appendix D 

 

Analysis of Model 2. 

 

The ecological component of Model 2 is given by 

 

 1
dP P ZP

aP
dt K g P

 
   

 
 (D1) 

 

 
dZ ZP

Z
dt g P


 


 (D2) 

 

has three steady states    * *

1 1, 0,0P Z  ,    * *

2 2, ,0P Z K  and 

        * *

3 3, ( ) , 1 1 ( )P Z g ag g K               . 

 

The Jacobian for Model 2 is given by 

 

 
   

   

* * *

2 **

* *

2 **

2aP g Z P
a

K g Pg P
J

Z g P

g Pg P

 

 


 
   

 
  
 
  
 

 (D3) 

 

At  * *

3 3,P Z the term in the lower right of the Jacobian is zero. Therefore, 

0DetJ  because all the terms in the top right and bottom left entries are always 

positive at steady state 3. Consequently, the trace of the Jacobian at this steady state is  

 

 

 

* *

3 3

2
*

3

2aP g Z
TrJ a

K g P


  


 (D4) 

 

For stable fixed point behaviour 0TrJ  , and for this to be the case 
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33
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3

12
1

1

P KP

K P g


 


 (D5) 

 

The second term in equation D5 is typically small, so for stable fixed points at 

stationary state 3 requires 

 

 
 
2

1
g

K



 



 (D6) 

 

 

  

 

 

 

 

 

 

 

 

 

 

 



 32 

Appendix E 

 

From equation 16 it is possible to find for Model 2 the critical value of   c above 

which the zooplankton population is eliminated. Repeating the analysis of Appendix 

C with this equation, we find 

 

 
  

 
 2..

1
c

a
O K

g K a

   


 


 

  


 (E1) 

 

Therefore, for all viruses that stably co-exist with the phytoplankton and zooplankton, 

any increase in nutrient leads to declining prevalence of infected phytoplankton. c is 

shown by the solid vertical line in Figure 3. 
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Figure Captions 

 

Figure 1: The equilibrium value of *

iP   /gN l is plotted as a function of viral 

transmissibility  
1

/gN l


day
-1 

for Model 1. The model parameter values used in 

this plot are illustrative and more specifically take the following values 

-1 1 -1 -1 -10.3 day ,  108 / , 0.05 ( / ) day , 0.05, 0.012 day , 0.16 daya K gN l Rm gN l         

. For insufficiently transmissible virus (to the left of the l.h.s. vertical dashed line) the 

virus is unable to establish itself in the phytoplankton population, denoted by P. In the 

region bounded by the l.h.s. vertical dashed line and the vertical solid line is where 

nutrient enrichment will reduce the prevalence of infected phytoplankton. Note that 

Model 1 biomass units are  /gN l for consistency with Truscott and Brindley 

(1994) and Rhodes et al. (2008). 

 

 

Figure 2a: The infected and uninfected phytoplankton biomass  /gN l  is plotted 

one above the other for Model 1 to show how the proportions change as nutrient 

increases. Infected phytoplankton is eliminated for a nutrient level cK . For higher 

nutrient levels, the system is purely ecological with phytoplankton ,P, and 

zooplankton, Z, only. Zooplankton biomass  /gN l  is represented by the black 

dots. In this plot the parameters of the model are the same as in Figure 1, but with a 

fixed 0.094   
1

/gN l


day
-1

.   

Figure 2b: Plot showing the variation of infected phytoplankton biomass  /gN l  as 

a function of nutrient input K and disease transmissibility β. The parameter region 

shown is 190 130K    /gN l  and 0.0925 0.0955   
1

/gN l


day
-1

.    

 

 

Figure 3: Repeat of Figure 1 using Model 2 with the following parameters: 

-1 -1 -1 -10.3 day , 108 / , 0.3 day , 15 / , 0.05, 0.012 day , 0.16 daya K gN l g gN l           
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Figure 4a: Repeat of Figure 2 using Model 2 with a fixed 0.006   
1

/gN l


day
-1

. 

The other model parameters are the same as used in Figure 3. 

Figure 4b: Plot showing the variation of infected phytoplankton biomass  /gN l  as 

a function of nutrient input K and disease transmissibility β. The parameter region 

shown is 190 130K    /gN l  and 0.0045 0.0075   
1

/gN l


day
-1

.  

 

 

Figure 5a: The uninfected and infected biomass (mmol N m
-3

) as a function of 

ambient nutrient level (mmol N m
-3

) for Model 3. Also shown is the zooplankton 

biomass (black dots). Parameter values can be found in Table 1. Note that Model 3 

biomass units are mmol N m
-3

 for consistency with Rhodes et al. (2008). 

Figure 5b: The uninfected and infected plankton biomass (mmol N m
-3

) proportions as 

a function of the total phytoplankton biomass. Parameter values can be found in Table 

1.  

 

 

Figure 6a: The uninfected and infected phytoplankton biomass (mmol N m
-3

) as a 

function of ambient nutrient level (mmol N m
-3

); Model 3 for =4.5 mmol N m
-3

 day
-

1
. Other parameter values can be found in Table 1. 

Figure 6b: same calculation as Figure 6a, for=5.0 mmol N m
-3

 day
-1

. Other 

parameter values can be found in Table 1. 

Figure 6c: same calculation as Figure 6a, for=5.5 mmol N m
-3

 day
-1

. Other 

parameter values can be found in Table 1. 

Figure 6d: same calculation as Figure 6a, for=6.0 mmol N m
-3

 day
-1

. Other 

parameter values can be found in Table 1. 

For each plot the abundance of the infected and uninfected phytoplankton are stacked 

one on top of the other, so the total height of the bars represents the total 

phytoplankton abundance ( s iP P ). Zooplankton population density increases 

monotonically with increasing nutrient enrichment, as in Figure 5a. 

 

Figure 7: Time series of nitrate levels (mmol N m
-3

) and viral-induced mortality 

(days
-1

) in the phytoplankton Phaeocystis globosa. Data is taken from Baudoux et al. 
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(2006), using seawater samples collected from the southern North Sea from March to 

May. At high nitrate levels viral-induced mortality of phytoplankton is minimal, 

whereas at low nitrate levels viral-induced mortality is much higher. 
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