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INTRODUCTION

The introduction of molecular biology techniques
has revealed a diversity and abundance of organisms
capable of nitrogen fixation (diazotrophy) in the ma-
rine environment (Zehr et al. 2001). In recent years,
significant rates of nitrogen fixation have been re-
ported (e.g. Rees et al. 2006), including by unicellular
organisms whose significance was previously un-
recognised (e.g. Montoya et al. 2004). While the pace
of research has steadily increased, the extent of the
distribution and activity of diazotrophic organisms still
remains largely uncharacterised.

The focus of most research efforts in the marine envi-
ronment has been on the tropical and sub-tropical seas
(e.g. Voss et al. 2004, Langlois et al. 2005). There are
few, if any, reports of nitrogen-fixing activity in tem-
perate, coastal waters with persistent salinity >30.
Langlois et al. (2008) and Needoba et al. (2007) have
reported diazotrophic activity in temperate areas of the
Atlantic and Pacific, respectively; however, these stud-
ies were both associated with waters far-off of the con-

tinental margins. Nitrogen-fixing organisms have
been identified under temperate, coastal conditions
elsewhere, although these have been associated with
estuarine or brackish waters (e.g. Short & Zehr 2007).
Extensive nitrogen fixation takes place in the brackish
Baltic Sea each summer (e.g. Wasmund et al. 2005) and
is also known to occur over environmental extremes
including the Arctic tundra (Zielke et al. 2002), Antarc-
tic freshwater (Davey 1982) and deep sea hydrother-
mal vent fluids (Mehta & Baross 2006). With the exten-
sive range of conditions over which diazotrophs have
been reported to be active, it seems unlikely that bio-
logical nitrogen fixation does not occur in temperate
shelf waters, even if this might only prove significant
during the limited period of summertime nutrient
depletion.

The seasonal pattern of nutrient succession that
takes place in waters of the western English Channel
(WEC) was described by Butler et al. (1979). These
waters are characterised by complete mixing of the
water column during winter and thermal stratification
over the summer months. Dissolved nitrogen species
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are characterised by distinct minima in NO3
– concen-

trations during summer, following removal by phyto-
plankton, and a corresponding increase in dissolved
organic nitrogen (DON), which maintains the balance
of the dissolved nitrogen inventory. Although inor-
ganic nutrients become relatively depleted (NO3

– <
0.5 µmol l–1), these shelf waters remain productive and
support regular algal blooms (Holligan & Harbour
1977) from spring through autumn. Although a num-
ber of algal species are able to utilise DON, the avail-
ability of this material remains largely unknown, and
the manner in which these bloom-forming species ob-
tain their nitrogen is unclear. Holligan et al. (1984) pro-
posed that large summer blooms of Karenia mikimotoi
(formerly Gyrodinium aureolum) might be sustained
by nutrient supply across the thermocline.

An alternative source of nitrogen may come from N2

fixation. Nitrogen release by the diazotrophic cyano-
bacterium Trichodesmium sp. was sufficient to support
a bloom of Karenia brevis in the Gulf of Mexico (Mul-
holland et al. 2006). We hypothesised that biological
nitrogen fixation may contribute to the available nitro-
gen pool in the WEC. We describe observations made
at 2 stations (Fig. 1), one located within (Stn 2), and one
outside (Stn 1) of a mixed bloom of Emiliania huxleyi
and K. mikimotoi that occurred in July 2006.

MATERIALS AND METHODS

15N-N2 fixation. Samples for the determination of
nitrogen fixation rate were collected at each station
from the near surface into 2 acid-cleaned 10 l carboys.
Samples were maintained in the dark at ambient tem-
perature and transported to the shore-based laboratory.
Each carboy was gently agitated to homogenise the
sample, which was then distributed into six 640 ml clear
polycarbonate bottles (Nalgene). Each bottle was
sealed, and air bubbles were excluded, using Teflon-
backed butyl septa inserted into the cap. 15N-N2

(99 atom%; Isotech) was injected into 3 bottles, and
local air was added to the remaining 3 bottles at 2 ml
gas l–1 of seawater (to provide a background value of
15N content, and to ensure there was no 15N contamina-
tion of incubation and filtration equipment). All 6 bot-
tles per station were placed in a laboratory incubator
that was maintained at 19°C and ~100 µmol quanta m–2

s–1 during the light period (8:16 h dark:light). Incuba-
tions were terminated after 24 h by filtering onto 25 mm
GF/F filters (Whatman), which were stored at –20°C.
Particulate nitrogen (PN) and 15N atom% were mea-
sured using continuous-flow stable isotope mass-spec-
trometry (PDZ-Europa 20-20 and GSL). Instrument pre-
cision was better than 0.27% coefficient of variation
based on urea standards (Iso-Analytical) analysed
throughout the run (mean ± 1 SD = 0.3664 atom% ±
0.00098, n = 10) in the range 0.5 to 2.0 µmol-N. Samples
incubated with 14N (air) additions and run in parallel to
15N-amended samples showed no significant deviation
from the expected atom% of 0.366.

DNA/RNA purification and nifH gene amplifica-
tion. Total environmental DNA and RNA was isolated
from samples collected at each site by pre-filtration of
10 l through a 1.6 µm GF/A (Whatman). Filtrate was
collected on a 0.22 µm Sterivex filter (Millipore). Total
nucleic acids were isolated using the method of Neu-
feld et al. (2007). RNA was isolated following extrac-
tion using the RNA-Easy mini prep kit (Qiagen) and
treatment with Turbo DNA-free solution (Ambion).
nifH amplification was performed using the method of
Zehr & McReynolds (1989). Products were cloned into
pGem-T Easy vector (Promega) and sequenced by the
Plymouth Marine Laboratory sequencing facility (ABI
BigDye 3.1 used at 1/8 reaction).

nifH sequence analysis. nifH DNA and expressed
nifH mRNA sequences obtained were quality checked
and trimmed for vector and low quality sequence using
Phred (Ewing & Green 1998) in a pregap4 sequence
pipeline run in Biolinux (Natural Environment Re-
search Council [NERC] Environmental Bioinformatics
Centre, Centre for Ecology and Hydrology [CEH], UK).
Nucleic acid sequences were translated and aligned
against the NCBI protein database using the BLASTp
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Fig. 1. Position of sampling stations (Stns 1 and 2) in the west-
ern English Channel. 15N-atom% enrichment of seawater sam-
ples incubated with 15N-N2 from Stns 1 and 2 is shown (grey
bars) relative to seawater samples incubated with 14N-N2

(black bars). The Plymouth Marine Laboratory long-term 
sampling sites L4 and E1 are also indicated
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alignment tool. Phylogenetic analysis was performed
on mRNA sequences using the neighbour-joining me-
thod with Poisson correction. The inferred phylogeny
was tested with 500 bootstrap replicates. Sequences
were submitted to GenBank under accession numbers
EF470528 to EF470548.

Environmental conditions. Bacterial and cyanobac-
terial numbers were enumerated by analytical flow
cytometry (Wilson et al. 2002), following fixation of
1.8 ml seawater with 90 µl paraformaldehyde. Chloro-
phyll a (chl a) concentration was measured (Welsch-
meyer 1994) following filtration of 100 ml of seawater
through 0.2 µm polycarbonate filters. A Sea-Bird 19+
CTD was deployed at each station for the determina-
tion of seawater temperature and salinity.

RESULTS AND DISCUSSION

This study sampled an extensive mixed phytoplank-
ton bloom that extended over much of the WEC and
was dominated by Emiliania huxleyi and Karenia miki-
motoi (D. Schroeder pers. comm.). Based on remotely
sensed observations from the previous day, Stn 1 was
selected to be in relatively low chlorophyll waters,
whereas Stn 2 was chosen as representative of the area
with highest phytoplankton biomass. Environmental
conditions experienced at each station are summarised
in Table 1, and placed in the context of long-term (2002
to 2006) conditions of nitrate and temperature in Fig. 2.

At both stations, a component of the microbial com-
munity fixed N2 into cellular material (Fig. 1). Seawater
samples were not pre-screened prior to incubation so
that we could assess the activity of the total commu-
nity. Using the equations of Montoya et al. (1996), the
product of 15N enrichment (Fig. 1) and the total PN
observed during this study (Table 1) yielded volumet-
ric rates of 20.0 and 18.9 nmol N l–1d–1 for Stns 1 and 2,
respectively.

Clone libraries were constructed from both DNA and
mRNA. These revealed 8 and 17 nifH clones within the
DNA (not shown), and 6 and 15 nifH clones from
within the mRNA (Fig. 3) for Stns 1 and 2, respectively.

nifH clone sequences from the DNA library for both
stations were derived from Alphaproteobacteria, Beta-
proteobacteria and cyanobacterial groups belonging to
Cluster I of Chien & Zinder (1996). The mRNA library
for both stations also contained sequences from Clus-
ter I, but also from Cluster III and a potentially novel
nifH Cluster V (Table 2, Fig. 3). The higher diversity of
sequences obtained from the mRNA library compared
to the DNA library is not unprecedented, and is com-
parable to observations made by Man-Aharonovich et
al. (2007) for coastal Mediterranean waters.

A number of the sequences observed during the pre-
sent study are previously unreported under similar
environmental conditions. Within Cluster I, the se-
quence EF470531 clustered within a Deltaproteobac-
teria group, with 83.6% amino acid identity to Pelo-
bacter carbinolicus. This group is well represented in
marine nifH studies (e.g. Langlois et al. 2005, Man-
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Surface temp. Salinity MLD Chlorophyll HB Cyano PN N fixation
(°C) (m) (µg l–1) (cells ml–1) (cells ml–1) (µmol l–1) (nmol N l–1d–1)

Stn 1
50.116° N, 04.120° W 18.84 35.230 15 2.1 3.8 × 106 6.9 × 104 4.66 20.0a

Stn 2
49.322° N, 05.145° W 20.1 35.115 20 8.4 1.3 × 106 3.0 × 104 11.53 18.9 ± 0.01

aMean of 2 replicates

Table 1. Station position and environmental conditions during this study of nitrogen fixation in the western English Channel, 
27 July 2006. MLD: mixed layer depth, HB: heterotrophic bacteria, Cyano: cyanobacteria, PN: particulate nitrogen
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Aharonovich et al. 2007), but this is the first report from
a coastal temperate, marine province with a constant
salinity of >30. Similarly, cyanobacterial diazotrophs
were found at both sites, including the group A uni-
cellular cyanobacteria (EF470544, EF470528 and
EF470542) that have previously only been reported in
temperate estuarine, sub-tropical and tropical waters
(e.g. Zehr et al. 2001). Of the Cluster I mRNA se-
quences, 5 from Stn 2 clustered with an unknown soil
bacterium (96.7% amino acid identity), were >98%
identical at the protein level, but also shared >83%
amino acid identity with a soil-derived firmicute,

Helioresitis baculata. The bootstrap
values for this branching are <50%,
and although this taxonomic affiliation
is not persuasive, Man-Aharonovich
et al. (2007) showed a single similar
sequence from a site in the Mediter-
ranean.

Within the mRNA library, 4 se-
quences from Stn 2 were found to group
within the anaerobic nifH Cluster III
(Fig. 3). All 4 sequences had >95%
amino acid identity to each other and
>89% amino acid identity to a Verruco-
microbium, Opitutaceae sp. While the
occurrence of these anaerobic groups
may seem anomalous in surface waters,
similar sequences have been found in
coastal Mediterranean, coral reef lagoon
and estuarine environments (e.g. Man-
Aharonovich et al. 2007). An association
with particles or zooplankton might be
an obvious explanation; however, the
pre-filtration of samples through GF/A
filters precludes this.

One sequence (EF470530) from Stn 2
formed a remote outlying cluster with a
probable nifH sequence from an uncul-
tured Red Sea bacterium (Fig. 3). The
high bootstrap value and depth of
branching for this cluster suggests that
it may be a novel clade of a rare phylo-
type. We call this Cluster V (based on
the convention of Chien & Zinder 1996);
future studies are required to describe
this group.

The diversity of clones at Stn 2 ap-
peared greater than at Stn 1 (Fig. 3,
Table 2), and it is interesting to note
that the community composition was
also different, with Alphaproteobacte-
ria and Betaproteobacteria nifH clus-
ters observed at Stn 1, and Gammapro-
teobacteria sequences at Stn 2 (Fig. 3).

It has been suggested that Alphaproteobacteria and
Betaproteobacteria diazotrophs may be associated
with small invertebrates (e.g. Braun et al. 1999). Dur-
ing the present study, this is countered by the pre-fil-
tration step which removed particles >1.6 µm. It should
be noted that Zehr et al. (2003) reported several poten-
tial PCR reagent contaminants clustering with the
betaproteobacterial Burkholderia species, so the iden-
tification of sequences EF470540 and EF470548 should
be treated with caution.

These results provide the first report to confirm nitro-
gen fixation activity — both from 15N-N2 incorporation
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Fig. 3. Diversity of expressed nifH protein sequences from Stns 1 and 2. Phylo-
genetic relationships were inferred using the neighbour-joining method with
the Poisson correction model. Bootstrap values represent 500 replications; only
values >50% are shown. Clones are named based on their site of isolation and
sequence number. GenBank accession numbers are provided for each sequence
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and the presence and expression of the nifH gene — in
fully marine, mesotrophic, temperate, coastal condi-
tions. Other workers have reported nitrogen fixation
and/or the diversity and expression of nifH genes
under temperate conditions (e.g. Affourtit et al. 2001,
Needoba et al. 2007, Short & Zehr 2007), but these
were in brackish or estuarine waters and off-shelf olig-
otrophic Pacific waters, respectively.

Intense blooms of Karenia mikimotoi (e.g. Holligan et
al. 1984) and Emiliania huxleyi (e.g. Smyth et al. 2002)
often occur in the WEC during periods of strong ther-
mal stratification and nutrient depletion. During sum-
mer in the WEC, concentrations of NO3

– (Fig. 2) rou-
tinely fall to <0.5 µmol l–1; the mean (May to August)
concentration at Stn E1 between 2003 and 2006 was
0.26 ± 0.19 µmol l–1. While nutrient concentrations were
not determined during this study, April 2006 and June
2006 values of 0.07 and 0.18 µmol l–1, respectively, are
indicative of the concentrations expected during July.
There is some contention in previously published litera-
ture regarding the levels of dissolved inorganic nitro-
gen (DIN) at which nitrogen fixation is viable, although
this is very likely to be species dependent. While the
high energy requirement of nitrogenase activity would
appear to infer diazotrophy only during DIN-deplete
conditions, Voss et al. (2004) observed nitrogen fixation
at NO3

– concentrations in the order of 10 µmol l–1. It
would therefore seem that the low nutrient conditions
experienced during summer in the WEC could be con-
ducive to the growth of diazotrophic organisms, though
oligotrophy would appear not to be a prerequisite for
nitrogen fixation. Rather than absolute concentrations
of DIN, it might be the relative concentration of DIN to
other nutrient species that controls the activity of diazo-
trophic organisms. Ratios of DIN and dissolved inor-
ganic phosphorus (DIP) are regularly less than the Red-
field value of 16, and indicate the potential for nitrogen
limitation (Butler et al. 1979, Kelly-Gerreyn et al. 2007).

Nitrogen fixation by Trichodesmium spp. provides a
direct supply of fixed nitrogen and has been shown to
support the growth of Karenia brevis in the Gulf of
Mexico (Mulholland et al. 2006). The present study pro-

vides an initial insight into the potential for nitrogen fix-
ation in temperate shelf seas. However, the small num-
ber of samples does not allow a full assessment of the
potential contribution of nitrogen fixation to the total ni-
trogen budget. We can, however, use our rate estimate
of 20 nmol N l–1 d–1 as a maximum and compare it to
known N fluxes, to provide an initial contextual assess-
ment. Blooms of phytoplankton consume nitrate at sig-
nificant rates. The bloom of K. brevis in the Gulf of
Mexico consumed NO3

– at 26.5 to 44.2 nmol N l–1 h–1

(Mulholland et al. 2006), while a North Sea bloom of
Emiliania huxleyi took up NO3

– at 0.1 to 2.0 nmol N
l–1 h–1 (Rees et al. 2002). Therefore, our maximum nitro-
gen fixation rate would be equivalent to <3.1% of the
NO3

– requirement during the Gulf of Mexico K. brevis
bloom, but between 42 and 833% of the NO3

– uptake
taken up by North Sea coccolithophore bloom. Al-
though this appears significant, both of these blooms
were also supported by the supply of urea, NH4

+ and
amino acids. Consequently our nitrogen fixation rate
appears less important when compared to the total
fixed nitrogen uptake (NO3

–, NH4
+, urea and amino

acids), with relative rates of 0.02 and 1.5% for the Gulf
of Mexico and North Sea, respectively.

From this preliminary investigation, there is clear ev-
idence of nitrogen fixation in mesotrophic waters of the
WEC during summer conditions of thermal stratification
and nutrient depletion; this may contribute in part to the
nitrogen requirement of phytoplankton during nitrogen-
limited conditions. We estimate an upper limit of nitro-
gen fixation of 20 nmol N l–1 d–1 (equivalent to 0.35 mmol
N m–2d–1 for the surface mixed layer) which is compara-
ble to, or greater than, rates measured in the sub-tropical
Atlantic (Voss et al. 2004, A. P. Rees unpubl. data). There
was considerable diversity of nifH transcripts and 21 di-
verse prokaryotic nifH transcripts were found: 15 were
associated with an intense phytoplankton bloom and 6
were from a station outside of the bloom. The occurrence
and activity of these organisms is significant from a bio-
diversity interest and raises a number of questions con-
cerning the process of fixing N2 when there are sources
of fixed nitrogen readily available. While the implication
of coastal, temperate diazotrophs to the global nitrogen
budget remains unknown and requires further temporal
and spatial investigation, our estimated upper limit nitro-
gen fixation rate (0.35 mmol N m–2 d–1) is of the same or-
der as denitrification rates in the North Sea measured
both directly (0.24 to 0.32 mmol m–2 d–1; Lohse et al.
1996) and from nitrogen budgets (0.7 mmol m–2 d–1;
Hydes et al. 1999). Consequently, nitrogen fixation may
effectively counter the losses of fixed N through denitri-
fication in these waters, and thus previous nitrogen bud-
gets of the north Atlantic watersheds that did not include
nitrogen fixation (e.g. Nixon et al. 1996, Brion et al. 2004)
may need to be revised.
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Source No. of clones
Cluster I Cluster III Cluster V

Cyanobacteria Bacteria Bacteria Novel

Stn 1
DNA 4 4 0 0
mRNA 2 4 0 0

Stn 2
DNA 120 3 0 0
mRNA 2 8 4 1

Table 2. Distribution of nifH types between DNA and mRNA 
for Stns 1 and 2
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