
Split-domain calibration of an ecosystem

model using satellite ocean colour data

John C. P. Hemmings ∗, Meric A. Srokosz, Peter Challenor,

Michael J. R. Fasham

Southampton Oceanography Centre, European Way, Southampton SO14 3ZH, UK

Abstract

The application of satellite ocean colour data to the calibration of plankton ecosys-
tem models for large geographic domains, over which their ideal parameters cannot
be assumed to be invariant, is investigated. A method is presented for seeking the
number and geographic scope of parameter sets which allows the best fit to vali-
dation data to be achieved. These are independent data not used in the parameter
estimation process. The goodness-of-fit of the optimally calibrated model to the
validation data is an objective measure of merit for the model, together with its ex-
ternal forcing data. Importantly, this is a statistic which can be used for comparative
evaluation of different models. The method makes use of observations from multiple
locations, referred to as stations, distributed across the geographic domain. It relies
on a technique for finding groups of stations which can be aggregated for parameter
estimation purposes with minimal increase in the resulting misfit between model
and observations.

The results of testing this split-domain calibration method for a simple zero-
dimensional model, using observations from 30 stations in the North Atlantic, are
presented. The stations are divided into separate calibration and validation sets.
One year of ocean colour data from each station were used in conjunction with a
climatological estimate of the station’s annual nitrate maximum. The results demon-
strate the practical utility of the method and imply that an optimal fit of the model
to the validation data would be given by two parameter sets. The corresponding
division of the North Atlantic domain into two provinces allows a misfit-based cost
to be achieved which is 25% lower than that for the single parameter set obtained
using all of the calibration stations. In general, parameters are poorly constrained,
contributing to a high degree of uncertainty in model output for unobserved vari-
ables. This suggests that limited progress towards a definitive model calibration can
be made without including other types of observations.
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1 Introduction

An ability to predict the response of the pelagic ecosystem to physical changes
in the environment is a prerequisite for quantifying potentially important cli-
mate feedbacks involving the marine carbon cycle. Progress in this area re-
quires the development of ecosystem models which can be used to extrapolate
reliable biological predictions from external forcing data describing physical
variability. These models can be coupled with basin-scale or global-scale gen-
eral circulation models. Useful preliminary results have already been obtained
in this way with some specific ecosystem models (e.g. Sarmiento et al., 1993;
Oschlies and Garçon, 1998; Oschlies et al., 2000; Sarmiento et al., 2000; Gregg,
2001; Oschlies, 2001; Palmer and Totterdell, 2001; Christian et al., 2002).
However, a wide range of candidate ecosystem models are available, varying
in complexity and employing many different structures and functional forms.
Evaluating their relative merits in an objective way poses a major challenge.

All of the candidate models contain a large number of parameters, many of
which are poorly known or represent quantities which, in nature, are highly
variable in time and space and across taxa. Parameter uncertainty acts as a
barrier to the evaluation of one model against another. The models need first
to be calibrated against observational data. This has been done for a number of
models using time series data collected at various sites. The Bermuda Atlantic
Time-series Study (BATS 32◦N 64◦W) site has received particular attention
(Hurtt and Armstrong, 1996, 1999; Spitz et al., 1998; Fennel et al., 2001; Spitz
et al., 2001; Schartau et al., 2001). Calibrations have also been performed for
Ocean Weather Station Papa (50◦N 145◦W) in the Pacific (Matear, 1995;
Prunet et al., 1996a,b), the North Atlantic Bloom Experiment site at 47◦N,
20◦W (Fasham and Evans, 1995; Evans, 1999) and at the Tropical Atmosphere
Ocean mooring at 140◦W in the equatorial Pacific (Friedrichs, 2002). Hurtt
and Armstrong (1999) calibrated a model using BATS data and observations
from Ocean Weather Station India (OWSI 59◦N 20◦W) simultaneously. These
studies are all based on in situ data although satellite ocean colour measure-
ments, now routinely available from SeaWiFS (McClain et al., 1998) and other
sensors, are now beginning to be used to improve the coverage of the annual
cycle (Friedrichs, 2002).

Model parameters are estimated by first defining either a cost function or a
likelihood function, based on the misfit between the model output and obser-
vations. This is a function of the model’s parameter set, defined by a vector
in the model’s parameter space. An optimization technique is then applied to
search the parameter space for values which minimize the cost or maximize
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the likelihood. In a number of cases the calibration studies are supported by
identical twin experiments in which simulated observations, sometimes includ-
ing stochastic errors, are assimilated in an attempt to recover the parameter
set of the model from which they were generated (Spitz et al., 1998; Fennel
et al., 2001; Spitz et al., 2001; Schartau et al., 2001; Friedrichs, 2001). These
experiments provide important information on the robustness of the optimiza-
tion methods and the ability of different numbers and types of observations
to constrain parameter values independently, under the assumption that the
model is a perfect description of reality. However, as pointed out by Schar-
tau et al. (2001) inferences from twin experiments are only strictly applicable
to optimization results for real observations if the reference parameter values
used to generate the simulated observations are close to the optimum values
sought for describing the real data.

While an important goal in climate modelling is to develop models which
can be applied globally, virtually all of the calibrations performed so far are
based on observations at single locations. The geographic scope over which
they can be usefully applied has yet to be properly assessed, although Hurtt
and Armstrong (1999) did examine the performance of their model, calibrated
using Atlantic observations, at the Hawaii Ocean Time-series site in the Pa-
cific. Formal validation of model output against independent data not used in
the parameter estimation process, whether this be local data for a different
time period or data from another location, is important for quantifying the
predictive skill of a model. The calibrated models of Prunet et al. (1996a,b)
and Friedrichs (2002) were tested against independent local data. However,
in general, this aspect of model evaluation has so far received relatively little
attention. Satellite ocean colour measurements provide estimates of surface
chlorophyll concentration over multiple annual cycles throughout most of the
world ocean. They are therefore an invaluable resource for calibrating and val-
idating models and for analysing the geographic scope of models which have
been calibrated for specific locations.

Although ocean colour measurements give information relating to phytoplank-
ton components of the ecosystem only, their use in model calibration in con-
junction with other observations should lead to more widely applicable param-
eter vectors. The exploitation of these data for such purposes is just beginning.
Losa et al. (submitted) have recently used ocean colour data to examine the
variability in model parameters arising from local calibrations over the North
Atlantic basin, while Hemmings et al. (2003) attempted to retrieve parameter
vectors applicable over a wide range of different environmental conditions by
fitting a model simultaneously at multiple stations. The present study builds
on the latter work, seeking the most effective way of using ocean colour data
in model calibration and validation.

When calibrating a model using data from multiple locations simultaneously
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it is implicitly assumed that the same parameter vector is appropriate for all
locations and that spatial variability is purely a result of the different environ-
mental conditions described by the model’s external forcing data. However,
as demonstrated for the North Atlantic (Hemmings et al., 2003), assuming a

priori that a single parameter vector is appropriate for a large domain can
lead to a sub-optimal calibration. Differences may exist between ecosystems
in different regions which are independent of factors represented in the forc-
ing data, but can be reproduced by different parameter vectors. The most
obvious example is differences in the taxonomic composition of the plankton.
It is therefore desirable to investigate whether better results can be obtained
by splitting the geographic domain into provinces and calibrating the model
separately for each. This immediately introduces the problem of how best to
split the domain. One possible approach is to use the biogeochemical provinces
defined by Longhurst (1998), which are based on observed spatial variation
in the characteristics of the annual phytoplankton cycle, combined with our
knowledge of the relevant physical features of ocean regions. However, the
extent to which the observed differences in the annual cycle imply significant
differences in the ecosystem response to physical forcing, as opposed to simply
reflecting the variability in that forcing, is unclear. We present here a more
flexible approach, which does not require any prior assumptions about the
geographic scope of individual parameter vectors. The utility of the method
is tested by applying it to a simple candidate model.

A major problem in model calibration is the difficulty of locating the global
minimum of a cost function in parameter space. The effects of different pa-
rameters on model output are often correlated, potentially making the inverse
problem underdetermined, even in identical twin experiments where the model
is perfect and there is no observational error. In real applications, model inad-
equacy, observation error and poor data availability compound the problem.
Observational constraints on parameter values are normally weak and the
existence of a single global minimum which is significant in the presence of
observational error is unlikely. Fortunately though, to objectively choose be-
tween models we do not actually need to locate the cost function minimum
for each in the parameter space, provided we can estimate its value. There-
fore, in contrast with previous work, the emphasis here is on estimating the
minimum cost obtainable for the given model, together with the associated
posterior parameter probability distribution(s), rather than on finding a single
optimal parameter vector for each province. While it is unnecessary for the
parameters to be independently constrained by the observations to estimate
the minimum cost, the extent to which they can be constrained does have
important implications for the uncertainty associated with model predictions.
The uncertainty in model output associated with the posterior parameter dis-
tributions is therefore examined.

The calibration method is first described generically in Section 2. Section 3
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then describes how the method was tested by using it to evaluate the candidate
model for the North Atlantic. The results of the test are presented in Section
4 and the utility of the method is discussed in Section 5.

2 The calibration method

2.1 Overview

The calibration procedure involves minimizing a cost based on the misfit be-
tween model output and observations at multiple locations in the model do-
main, referred to as stations. These stations are divided into two sets. One
is a calibration set, from which stations are combined in different calibration
groups to obtain parameter vector estimates. The other is a validation set.
Data from these stations are not used in the parameter estimation process.
Instead they are used to evaluate alternative model calibrations, each specified
either by one parameter vector for the whole domain or a number of provin-
cial parameter vectors which together cover the domain. These independent
validation data are vital for assessing the generality of the calibrated model
and thereby its value for prediction.

The division of stations between the calibration and validation sets is done
in such a way that the data in each set are statistically similar, constituting
independent samples from the same population. In order that calibrations in-
volving multiple parameter vectors can be tested, it is important that each set
provides similar coverage of any given geographic region. We expect similar
results whichever set is chosen as the calibration set. This assumed robust-
ness to sampling error is supported by the results of Hemmings et al. (2003).
They showed that compatible parameter estimates could be obtained by fit-
ting a model to 3 independent basin-wide calibration sets, provided each set
was similarly distributed over the range of different environmental conditions
present.

The split-domain calibration method is applied to a given model with the
aim of finding the number and geographic scope of parameter vectors which
allow the lowest possible cost of the calibrated model, with respect to the sta-
tions in the validation set, to be obtained. This validation cost can be seen as
an objective ‘measure of merit’ for the model. Because it reflects the model’s
behaviour with optimal parameter vectors, rather than with arbitrary parame-
ters or parameters based on calibrations for arbitrary provinces, it can be used
for comparative evaluation of different models. The use of independent vali-
dation data means that models of different complexity and different numbers
of free parameters can be directly compared.
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The algorithm for finding the optimal calibration is to first seek the best single-
parameter vector calibration for the domain and then investigate whether a
better calibration can be obtained by splitting the domain into two geographic
provinces. If one or more ways of splitting the domain are found which lead to
improved calibrations, then the best domain division is accepted and the algo-
rithm is recursively applied to each province until either there is no decrease
in the validation cost or no practical geographic split is possible.

It is not assumed that the best single-parameter vector calibration for a do-
main is the one that uses all the calibration stations. There may be good
reason to exclude atypical stations to prevent them adversely affecting the
calibration result. Such atypical stations might exist due to real but local ef-
fects, poor forcing data or differences in the type or number of observations
available. Instead a novel method of aggregating stations into ‘natural’ cali-
bration groups is employed. This allows groups comprising different numbers
of stations to be identified, each of which is the group of a particular size best
satisfied by a single parameter vector. No account is taken of the station posi-
tions prior to aggregation, but the geographic distribution of stations in each
of the emerging groups is examined. Large groups with good coverage of the
domain provide alternative calibration groups for the undivided domain. In
addition, any of the smaller groups in which stations are geographically clus-
tered indicates a natural province within the domain, on the basis of which a
trial split-domain calibration can be performed.

The calibration algorithm is implemented by a hierarchy of procedures which
are described in the following sub-sections, starting from the lowest level. The
most fundamental of these, the ‘parameter optimization procedure’ is invoked
by the ‘station aggregation procedure’ which is in turn invoked by two higher-
level procedures to identify optimal provinces and calibration groups. Finally
Section 2.5 describes important modifications to the basic method which allow
observation error to be taken into account. For reference, a list of standard
terms and symbols used in the description is given in Table 1.

2.2 Parameter optimization

The parameter optimization procedure searches for parameter vectors which
minimize a cost based on the model misfit to observations. The variation of
the misfit cost in parameter space is defined by a cost function J(~p), which is
some function of the misfit between the output of the model with parameter
vector ~p and observations at one or more stations. The actual cost function
used is application dependent but is subject to the requirement, imposed by
the station aggregation procedure, that it can be evaluated at each station
independently. The aggregation procedure allows for variability in cost be-
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Table 1
Standard notation for the split-domain calibration method

Item Symbol or function Equation

Domains

Primary province A

Complementary province B

Potential primary province Apot

Potential complementary province Bpot

Station sets

Calibration set D

Validation set V

Group of size n H
n

True optimal group of size n H
n
OPT

Size n group best satisfied by parameter vector ~p H
n
BEST(~p)

Size n aggregation group G
n

Calibration group C

Parameter vectors

Locally optimal parameter vectors found for group H P good(H)

Optimal parameter vector found for group H ~pBEST(H)

Parameter vector search set P

Costs

Misfit for parameter vector ~p to observation from set X M(~p,X) 4

Cost for parameter vector ~p and group H J(~p,H)

Cost function minimum found for group H JBEST(H)

Baseline cost for station s JBEST(s)

Cost deviation for parameter vector ~p at station s (no observation error) ∆J(~p, s) 1

Group max. cost deviation for vector ~p over group H (no observation error) ∆JMAX(~p,H) 2

Aggregation penalty for group H (no observation error) ∆JMAX {~pBEST(H),H} 2

Split-domain validation cost for provincial parameter vectors ~pA and ~pB JSPLIT(~pA,V A, ~pB,V B)

Misfit probability distribution M(~p,X) 6

Cost probability distribution J(~p,H)

Cost probability distribution estimate Ĵ(~p,H)

Baseline cost distribution estimate for station s Ĵ(~pBEST(s), s)

Cost deviation (observation error present) U(~p,H)

Group maximum cost deviation (observation error present) UMAX(~p,H) 7

Aggregation penalty (observation error present) UMAX {~pBEST(H),H} 7

Split-domain validation cost distribution estimate Ĵ
SPLIT

(~pA,V A, ~pB ,V B)

tween stations arising from factors other than the suitability of the parameter
vector. However, cost function design choices which increase this variability
unnecessarily should be avoided. In particular, a cost function based on a mean
observation misfit is preferable to one based on a total misfit because of its
reduced sensitivity to differences in the number of observations at each sta-
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tion. In other work, the cost function has sometimes included a penalty term
based on parameter deviations from their a priori estimated values (Fasham
and Evans, 1995; Matear, 1995; Schartau et al., 2001). Such additional terms
should ideally be made independent of model design so that different models
can be compared.

Given a group of one or more stations H , the parameter optimization pro-
cedure explores the group’s cost function J(~p, H) and provides an estimate
JBEST(H) of its minimum value. Cost function minima are located in parame-
ter space using an optimizing routine. Powell’s conjugate direction set method
(Press et al., 1992) was used in the present study to search a finite parameter
space, the bounds for each parameter being prescribed in the model definition.
The cost function minimum found by a single application of the optimizer is
dependent on its starting point in parameter space and may only be a local
minimum. The global minimum can be estimated with some degree of con-
fidence, albeit difficult to quantify, by running an ensemble of optimizations
with different initial parameter vectors and selecting the smallest of all the
minima found. The positions in parameter space of all the minima found de-
fine a set of locally optimal parameter vectors P good(H). The ‘best’ parameter
vector ~pBEST(H) is defined as the parameter vector in P good(H) associated
with the lowest minimum JBEST(H) such that JBEST(H) = J(~pBEST(H), H).
The ensemble approach has been used, in combination with the variational ad-
joint optimization method, by Friedrichs (2002) and by Schartau et al. (2001).

In the present study, the initial parameter vectors were drawn from a prior,
joint normal probability distribution, scaled asymmetrically about a priori

expected values such that displacements of 3 standard deviations correspond
to the prescribed bounds. Parameter covariances in the prior distribution are
zero. Choice of ensemble size is necessarily a compromise between coverage of
the parameter space and computational load. A size of 100 was chosen here,
compared with the 50 initial points used by Friedrichs (2002) and 600 initial
points used by Schartau et al. (2001). Efficient coverage of the multivariate
space was achieved using Latin hypercube sampling (McKay et al., 1979). This
technique involves forming a grid which divides the prior distribution along
each dimension into a number of intervals of equal probability, the number
being equal to the sample size. The sample is then drawn randomly from
the grid boxes in such a way that each interval in each dimension is sampled
once only, ensuring that all intervals in all dimensions are represented. In
the absence of a parameter penalty term in the cost function, the parameter
bounds were applied by use of a mapping function which distorts the infinite
space seen by the optimizer, such that displacements made when approaching
the bounds translate to infinitesimally small steps in the actual parameter
space. The mapping function employed takes the same form as the parameter
penalty term of Fasham and Evans (1995).
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2.3 Station aggregation

In a broad sense, the station aggregation procedure might be classified as a
form of cluster analysis. Its role is to identify a series of station groups, com-
prising different numbers of stations from the calibration set, each of which is
the group of a particular size best satisfied by its optimal parameter vector.
Combining stations for parameter optimization purposes improves the gener-
ality of the model and, potentially, its ability to describe independent data.
However, the improvement normally comes at the expense of degrading the
fit to the calibration data. This is because cost function minima for individual
stations in a calibration group are unlikely to be coincident in the parameter
space and, if they are not, the group’s cost function minimum will be greater
than the minima for each of the individual stations. This will be true for
any sensible cost function formula by which the misfits for different stations
are combined. The principle behind the station aggregation procedure is to
group stations in such a way as to keep a carefully chosen measure of the cost
penalty incurred as small as possible. We refer to this measure as the group’s
aggregation penalty.

The group of size n best satisfied by any given parameter vector ~p must be
formed from the n stations which are individually best satisfied. Stations must
therefore be compared on the basis of how well their data are satisfied by ~p.
The degree to which a station s is satisfied by the parameter vector ~p is
quantified by the cost deviation

∆J(~p, s) = J(~p, s) − JBEST(s), (1)

which is the difference between the misfit cost for the model with parameter
vector ~p at station s and a baseline cost determined by optimizing the model
for station s only. The cost deviation from the baseline is zero for ~p = ~pBEST(s)
and increases as ~p becomes less suitable for that station.

The aggregation penalty for a group of n stations H
n = {s1, ..., sn} is defined

as the group maximum cost deviation for the group’s optimal parameter vector
~pBEST(Hn), given by

∆JMAX {~pBEST(Hn), Hn} =
n

max
i=1

{∆J(~pBEST(Hn), si)} . (2)

For a given parameter vector ~p, the group maximum cost deviation ∆JMAX(~p, Hn)
is minimized for a calibration set D simply by selecting the n stations from
D with the lowest individual cost deviations. This forms the optimal group
for parameter vector ~p, denoted H

n
BEST(~p). Finding the group of size n which

minimizes the aggregation penalty, denoted H
n
OPT, is less straightforward be-
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cause the group’s optimal parameter vector ~pBEST(Hn
OPT) is not known in

advance.

Ideally the parameter optimization procedure would be applied to every pos-
sible group of the required size to allow direct comparison of the aggregation
penalties for all groups. However, this approach quickly becomes infeasible
as the number of stations in the calibration set increases. To select the best
group of size n from a calibration set of size N , the number of parameter
optimizations required would be

NCn =
N !

n!(N − n)!
. (3)

Instead, the group selected by the aggregation procedure is that which gives
the minimum value of the group maximum cost deviation over a finite set
of promising parameter vectors, referred to as the search set P . The set is
assumed to contain at least one parameter vector ~p for which the optimum
group’s group maximum cost deviation is close to its aggregation penalty.
i.e. ∆JMAX(~p, Hn

OPT) ≈ ∆JMAX {~pBEST(Hn
OPT), Hn

OPT}. The selected group is
referred to as the size n aggregation group.

Station aggregation is performed by the following stepwise procedure, in which
the parameter vector search set for each step is obtained by optimizing for a
smaller group of stations already aggregated. The procedure identifies a series
of aggregation groups G

2, ..., GN−1.

P = P init, n = 1
While n less than size of D

For each ~p ∈ P

For each s ∈ D

Evaluate ∆J(~p, s)
Form H

n+1
BEST(~p)

Evaluate ∆JMAX{~p, H
n+1
BEST(~p)}

G
n+1 = H

n+1
BEST with lowest ∆JMAX

n = n + 1
P = P good(G

n)

At the nth step, a new aggregation group G
n+1 is identified by selecting,

from all possible groups of size n + 1 in the calibration set D, the group
with the lowest group maximum cost deviation for a parameter vector in the
search set P . The new group G

n+1 has one more station than the previous
aggregation group G

n. It does not have to include all of the stations in G
n.

Such a restriction is unnecessary and could cause the selection of a non-optimal
group. The model is then optimized for the new group to obtain a new set of
parameter vectors and the process is repeated until all but one of the stations
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in the calibration set are included.

The behaviour of the station aggregation procedure at the nth step is illus-
trated in Fig. 1 for a simple case where the model has only one parameter. The
figure shows how the procedure chooses between two groups H

n+1
1 and H

n+1
2 .

The group which we aim to select is that with the lowest aggregation penalty,
defined with reference to the group’s cost function minimum. Comparison of
the aggregation penalties shows that H

n+1
1 is the true optimal group. How-

ever, in practice the aggregation penalties are unknown because minimization
of the cost function for all possible groups is too expensive. In the absence
of information regarding the location of each group’s cost function minimum,
the group maximum cost deviation, designed for selecting between groups, has
the additional function of acting as a proxy for the cost function in parameter
space. While its variation in parameter space is broadly similar to that of the
cost function, there are differences because it is sensitive to different model
output: the group maximum cost deviation is sensitive to output at the station
least favoured for inclusion in the group, whereas the cost function might be
particularly sensitive to output at another station, such as the station with the
most reliable observations. The implications of this are discussed in Appendix
A.

The main limitation is that it is only possible to evaluate the group maxi-
mum cost deviation at a relatively small number of points in the parameter
space. The set of sample points in parameter space, the search set P , is de-
termined with reference to the cost function for the optimal group of size n,
G

n. The underlying assumption is that the set P good(G
n) is, by virtue of its

pre-conditioning, sufficiently representative of the most promising areas of pa-
rameter space for a similar but slightly larger group to allow the best such
group to be selected. For the example in Fig. 1, there are three parameter
values in P within the region of interest, p1, p2 and p3. The lowest point sam-
pled on either of the group maximum cost deviation curves lies on that for
group H

n+1
1 at p2. The selection is therefore successful. Examples are given

in Appendix A where this is not the case, to illustrate the limitations of the
method.

To start the procedure, rather than choosing an arbitrary station s and re-
stricting the initial set of parameter vectors P init to P good(s), we aim for a
more robust result by pooling the sets of parameter vectors obtained by opti-
mizing for all stations individually. This increases the initial number of trial
parameter vectors by a factor equal to the number of stations in the calibration
set.

The effectiveness of the aggregation penalty as a criteria for evaluating station
groups relies on the assumption that variation of the cost deviation between
stations for a given parameter vector is dominated by variation in the suitabil-
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Fig. 1. Behaviour of the station aggregation procedure at step n for a single pa-
rameter model. The group with the lower aggregation penalty H

n+1
1 is successfully

identified as a result of sampling the cost deviation curves for the two groups at p1,
p2 and p3.

ity of that parameter vector. However, other potential sources of variation in
cost exist. The limitations of the model structure and/or the functional forms
it uses to describe biogeochemical processes may make the model itself less
compatible with observations at one station than another, irrespective of how
optimal its parameter vector is. Likewise, the quality of the external forcing
data may vary between stations. Also, because the model is imperfect, we
should expect a tendency for the mean misfit to increase with the number and
type of independent observations, so the availability of observations at each
station acts as another source of variation. Using the deviation from the sta-
tion’s baseline cost, in place of the absolute cost, removes much of the variance
associated with these factors but some residual variance may remain. A more
robust measure of the cost deviation, which takes into account observation
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error, is introduced in Section 2.5.

2.4 Identification of provinces and calibration groups

The calibration algorithm is implemented by two fundamental procedures,
both of which invoke the station aggregation procedure. The first of these is
the ‘whole-domain calibration procedure’, which seeks the optimum group of
stations for a single-parameter vector calibration of a given geographic domain.
The second is the ‘split-domain calibration procedure’, which seeks optimal
station groups for a two-parameter vector calibration of the domain. Any
aggregation group which shows good geographic coverage of some province
within the domain can serve as a starting point for this procedure. Such groups
are referred to as province indicator groups. Each aggregation group of suit-
able size identified during the application of the whole-domain calibration
procedure to the domain is a potential candidate. These candidate groups are
assessed with regard to the geographic distribution of their member stations,
ignoring any with less than 3 stations or any which leave less than 3 stations
remaining in the domain’s calibration set. A single province can include mul-
tiple regions of the domain, each represented by at least 3 stations, allowing
for the possibility that geographically separated regions might share similar
ecological responses to environmental forcing.

For any given domain, one application of the whole-domain calibration pro-
cedure is required, followed by zero or more applications of the split-domain
calibration procedure, depending on the number of province indicator groups
found. The split-domain calibrations are evaluated against each other and
against the whole-domain calibration by comparing the costs of the calibrated
model with respect to the domain’s validation data. If the best calibration is a
split-domain calibration then the associated provinces define two new domains
to which the calibration algorithm is applied recursively.

2.4.1 Whole-domain calibration procedure

In the whole-domain calibration procedure, a trial optimization is first done
using all stations in the domain’s calibration set D. The best parameter vector
thus obtained ~pBEST(D) is evaluated by running the model at all stations in the
validation set V to obtain the validation cost J{~pBEST(D), V }. The station
aggregation procedure is then applied to the stations in D, giving a series
of alternative calibration groups G

i, of increasing size i, The validation cost
J{~pBEST(Gi), V } is determined for each of these groups. All of the validation
costs are compared and the group with the lowest cost becomes the domain’s
final calibration group C. This is either the full calibration set (C = D) or one
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of the aggregation groups (C = G
i for some i). The validation cost for the

whole-domain calibration is J{~pBEST(C), V }. The set of province indicator
groups is formed from all suitable aggregation groups.

2.4.2 Split-domain calibration procedure

The split-domain calibration procedure splits the domain into two provinces
using, as a starting point, a specific province indicator group GA (GA = G

i

for some i). The associated province is referred to as the primary province A.
The remainder of the domain is referred to as the complementary province B.
Any single stations or pairs of stations which are geographically isolated by
the province indicator group GA cannot be considered indicative of a separate
region. They are therefore considered to be atypical stations in province A
rather than province B stations.

Geographic borders are established between the two provinces, allowing the
validation set V to be split into separate sub-sets V A and V B for each
province. The full calibration set D is likewise split into sub-sets DA and
DB. In the present study, lines of latitude were used where possible and,
where calibration stations at the same latitude fell in different provinces, in-
tervening validation stations were assigned such that there was at least one
validation station at the same latitude in each province if possible.

Calibration groups CA and CB are identified by applying the whole-domain
calibration procedure to each of the provincial calibration sets DA and DB.
For province B, this involves another application of the station aggregation
procedure. For province A, the previous aggregation results can be used. How-
ever, if there are stations in the calibration set DA which are not in the group
GA, the aggregation procedure must be repeated, starting from GA, to check
whether the series of aggregation groups can be extended within province A.
This may now be possible as a consequence of the exclusion of stations outside
A from the calibration set. The validation cost for the split-domain calibration

JSPLIT {~pBEST(CA), V A, ~pBEST(CB), V B}

is determined by running the model with the best parameter vector from the
appropriate calibration at each validation station in V . That is ~pBEST(CA) in
V A and ~pBEST(CB) in V B.
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2.5 Allowing for observation error

Estimates of observation error provide valuable information for any data as-
similation scheme, their principal use being to weight the model misfit to
individual observations such that higher precision observations have a greater
influence on the model. Taking observation error into account also allows sta-
tistical significance to be associated with differences in the misfit cost between
different model integrations. This allows the cost deviation for a station to be
redefined in terms of a statistic for significance testing. It also allows the
significance of differences in validation cost to be taken into account when
comparing alternative model calibrations for a domain.

2.5.1 Model misfit

The misfit is defined here in terms of the squared deviation of the model from
the observation, weighted according to the observation variance. While this is
a useful definition which is consistent with previous work, other definitions of
model misfit could be used. The misfit of the model with parameter vector ~p
with respect to the ith observation from the set X at the jth station is given
by

Mij(~p, X) =
{xijMODEL(~p) − xijOBS}

2

var(xijOBS)
(4)

where the subscripts ‘MODEL’ and ‘OBS’ denote model predictions and ob-
served values of x (x ∈ X) respectively. Each observation xijOBS is the ex-
pected value of X, for a particular time and location, derived from obser-
vational data. This is the estimated mean of a population of possible values
affected by both measurement and sampling error. The population variance
quantifies the observation error due to the combined effect of these sources.
Division by an estimate of the variance var(xijOBS) non-dimensionalizes the
misfit so that a misfit of unity or less implies a model deviation not exceeding
the observation error.

2.5.2 Cost function probability distribution

The cost function used in the parameter optimization procedure is a function
of the model misfit to the expected observation values Mij . (A specific exam-
ple is given in Section 3.2). It returns a single value for a particular parameter
vector and station group. To allow for observation error in cost comparisons,
it is necessary to replace this value with an estimate of the cost function’s
probability distribution, as a function of the probability distribution of the
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observations. Observational uncertainty is represented by a joint probability
distribution in a multi-dimensional space having one dimension for each avail-
able observation. For any group of stations, the cost distribution is defined
by the application of the cost function to the appropriate lower-dimensional
subset of this observation distribution.

To derive an estimate Ĵ of a particular cost distribution J , the cost function
is applied to a sample of observation vectors drawn from a probability distri-
bution Ω: a model of the observation probability distribution. Its multivariate
mean is the vector of expected observation values xijOBS, while its variance
structure is chosen to be consistent with the estimated observation error. The
observation error at each time and location is assumed to have a normal dis-
tribution with zero mean and variance equal to the estimate var(xijOBS). Error
covariances between stations are assumed to be zero. This is implicit in the
method because it must be possible to evaluate costs at stations individually.
In the present work, the errors are also assumed to be temporally independent
so that all error covariances are zero. The univariate observation distribution
for the ith observation from the data set X at the jth station is therefore
given by

Ωij(X) = xijOBS + E

√

var(xijOBS) (5)

where E is the normal distribution with zero mean and unit variance. Ωij is
substituted for the expected observation value in the misfit expression from
Eq. (4) to give a misfit probability distribution

M ij(~p, X) =
{xijMODEL(~p) − Ωij(X)}2

var(xijOBS)
(6)

This is substituted for the misfit Mij in the cost function to define the cost
probability distribution J .

In the present study, the sample of observation vectors from Ω for the required
cost distribution estimates was drawn using Latin hypercube sampling, with
a sample size of 100. In general, cost distributions are not well approximated
by a normal distribution and cost distribution estimates should therefore be
compared using a non-parametric test. The robust rank-order test (Siegel and
Castellan, 1988) was used here. The test provides a statistic from which the
statistical significance of the differences between the distribution estimates is
deduced. The lowest of two cost distributions is taken to be that with the
lowest median. The median is used in preference to the mean because of its
reduced sensitivity to the shape of the probability distribution.
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2.5.3 Modification of the station aggregation procedure

The new cost deviation for a parameter vector ~p at station s, taking into
account observation error, is the test statistic U(~p, s) derived by comparing the
cost distribution estimate Ĵ(~p, s) with the station’s baseline cost distribution
estimate Ĵ(~pBEST(s), s). Substituting for the cost deviation ∆J in Eq. 2 gives
the new aggregation penalty for a group H

n

UMAX {~pBEST(Hn), Hn} =
n

max
i=1

{U(~pBEST(Hn), si)} . (7)

The station aggregation procedure, defined in Section 2.3, is modified by re-
placing the old cost deviation ∆J(~p, s) with U(~p, s) and the old group max-
imum cost deviation ∆JMAX{~p, H

n+1
BEST(~p)} with UMAX{~p, H

n+1
BEST(~p)}. Unfor-

tunately, a complication arises because infinite values of the cost deviation
U(~p, s) occur if there is no overlap between the two cost distribution esti-
mates. In that case, the parameter vector ~p has no measurable merit with
respect to the station s data and the station is considered to be ‘not satisfied’
by the parameter vector. The existence of such stations introduces an ad-
ditional termination condition for the station aggregation procedure. It may
now terminate, at any step n, if no group of the required size n+1 is satisfied
by any of the available parameter vectors in the current search set P . That
is if, for all ~p ∈ P , there are less than n + 1 stations s (s ∈ D) with finite
U(~p, s), so that the group H

n+1
BEST(~p) cannot be formed. Early termination of

the station aggregation procedure saves on computation time and could be
introduced with the original cost deviation definition for this purpose, by set-
ting an upper limit to ∆J . However, it does introduce a complication which
must be allowed for in the split-domain calibration procedure as described in
the next section.

2.5.4 Modification of the calibration algorithm

In the calibration algorithm, shown in its final form in Fig. 2, comparisons be-
tween alternative model calibrations are now made with reference to the me-
dian values of their validation cost distribution estimates and the split-domain
calibration procedure is modified to allow for provinces with incomplete sta-
tion aggregation.

Given a set of calibration stations D and a corresponding set of validation
stations V , a whole-domain calibration is first carried out to obtain a cali-
bration group C with validation cost distribution estimate Ĵ{~pBEST(C), V }.
In the new whole-domain calibration procedure, the group G

i with the lowest
median validation cost Ĵ{~pBEST(Gi), V } is favoured over the full calibration
set D only if its validation cost is significantly lower than Ĵ{~pBEST(D), V },
at a probability of 95%. Split-domain calibrations are then performed for each
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Fig. 2. The calibration algorithm used to identify the optimum calibration for a
given domain having the set of calibration stations D. (See text for details.)

province indicator group identified. The jth such group is denoted GA[j] and
the calibration groups obtained are CA[j] and CB[j]. The validation sets for
each province in the jth split-domain calibration are V A[j] and V B[j]. The
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split-domain cost distribution estimate

Ĵ
SPLIT {

~pBEST(CA[j]), V A[j], ~pBEST(CB[j]), V B[j]

}

with the lowest median is identified and compared with the whole-domain
cost distribution estimate. If it is significantly lower, at a probability of 95%,
then the split-domain calibration is accepted. Otherwise the whole-domain
calibration is accepted.

The requirement for modifying the split-domain calibration procedure arises
because, for symmetry, the geographic border or borders between the two
provinces A and B should be drawn between two aggregation groups. We
cannot now assume that all stations in the complementary province B will
aggregate. If they do not, there may be a gap between the aggregation groups
and an adjustment may need to be made to the border so that it bisects this
unrepresented area or otherwise divides it in a sensible way.

The modified split-domain calibration procedure is shown in Figure 3. Prior
to any border adjustment, the provinces are now referred to as the poten-
tial primary province Apot and the potential complementary province Bpot .
The station aggregation procedure is applied to the set of calibration stations
within Bpot , denoted DBpot . Unless forced to terminate early, the aggregation
procedure normally terminates when the group G

N−1 is found, where N is
the size of the calibration set. However, in this case, there is a requirement to
know whether the full calibration set DBpot is also an aggregation group. The
procedure is therefore extended to test whether the final station would aggre-
gate. That is, whether it is satisfied by a parameter vector in the search set
P good(G

N−1). The largest aggregation group obtained GB is used, together
with GA, to define the border or borders between the final provinces A and B.
The whole-domain calibration procedure is then applied to A and B as before.
For province B, this now only involves determining the validation costs. For
province A, extension of the series of aggregation groups beyond GA may also
be required.

3 Testing the method

The split-domain calibration method described in the previous section was ap-
plied to evaluate a simple ecosystem model, constructed with sufficient realism
to demonstrate the method’s practical utility. The present study is restricted
to the North Atlantic but, to cover a wide range of physical and nutrient
regimes, the chosen stations are widely distributed over the basin on a 5 de-
gree grid, from 27.5◦N to 67.5◦N. Stations on this grid were screened to remove
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Fig. 3. The procedure for obtaining the optimum split-domain calibration based on
a given province indicator group GA. (See text for details.)

any at which there were obvious problems with the model’s external forcing
data. Only about half were used. These 30 remaining stations are divided into
calibration and validation sets of 15 stations each.

The normal application of the calibration method involves continuing the sta-
tion aggregation procedure at step 2 with the most promising pair of stations
identified in step 1. However, other pairs can have group maximum cost devia-
tion values which are only slightly higher. The actual pair of stations selected
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depends on the finite sample of parameter vectors available from the individual
station optimizations and alternative samples could result in the selection of
different pairs. To test the robustness of the results to the selection of the ini-
tial pair, additional aggregation experiments were performed with alternative
pairs.

3.1 Observations

The observed variables used in this test are from two data sets: log C, where C

is the set of chlorophyll a concentrations, and the set of annual nitrate concen-
tration maxima N . Although the surface layer chlorophyll data derived from
satellite ocean colour are invaluable because of their good spatial and tempo-
ral coverage, they provide information relating to one ecosystem component
only and this is recognized as a major limitation. Climatological estimates of
the annual maximum nitrate concentration in the upper mixed layer therefore
provided a useful additional constraint. Seasonal estimates of mixed layer ni-
trate concentration are available but were not used in the present study. This
is partly because they are much less reliable than the annual maxima, being
especially prone to sampling error associated with interannual variability, but
also because their comparison with the output available from the candidate
model is not straightforward. The latter problem is explained in Section 3.3.
Observational nitrate estimates are the only relevant in situ data presently
available for the whole basin. Other in situ data are only available at isolated
locations and were not used.

The resolution of the data should reflect the application for which the model
is to be evaluated. We envisage a hypothetical target application requiring
field predictions down to time scales of the order of 1 day and space scales of
200 km. The observed mean and variance estimates of log C and N required
for the cost function are therefore those describing data distributions over
a 200 km length scale. This is considered to be sufficiently large to prevent
major problems with aliasing due to mesoscale eddy activity. Any observation
within 100 km of a station is treated as a possible realization of the true
value at the station location. Chlorophyll data from a specific year were used,
in preference to climatological values, to avoid the potentially serious loss of
information which can result from combining multiple annual cycles in which
phytoplankton blooms are out of phase.

All chlorophyll a estimates within 100 km of the nominal station positions
were extracted from daily SeaWiFS 9 km Standard Mapped Image data for
1998, this being the first complete calendar year of data available. log C was
calculated for each valid pixel and its mean and variance were estimated from
the sample of all valid pixels within 100 km radius of the station position,

21



pixels being weighted by area to allow for meridional variation. The variance
quantifies the observation error, which is a combination of the measurement er-
ror associated with the SeaWiFS Chlorophyll estimates (±35%) and sampling
error associated with mesoscale variability. To avoid bias due to poor cover-
age, samples of less than 10 pixels and samples with a standard deviation in
meridional or zonal position of less than 30 km were not used. A sample giving
complete coverage has a standard deviation of 50 km. The log transformation
is required to give a pseudo-normal distribution. This was tested by examining
combined probability density functions for C and log C for observations at all
times and all stations. It is also supported by theoretical considerations and
other empirical data (Campbell, 1995).

The nitrate maximum normally occurs in late winter as a result of deep winter-
time mixing. Observed values of N were estimated, following the method of
Glover and Brewer (1988), by interpolating vertical nitrate profiles, extracted
from World Ocean Atlas (WOA) 1◦ analyzed annual mean fields (Conkright et
al., 1998), to the average depth of the mixed layer over the period February-
April. Where this depth is greater than 500 m, the concentration at 500
m was used. The average mixed layer depth was estimated from averaging
monthly data on a 1◦ grid. The mixed layer depth estimates of Levitus et al.
(1982) based on a density difference criterion (∆σt = 0.125) were used as these
are readily available. The processing differs slightly from that of Glover and
Brewer (1988) who averaged winter-time hydrographic profiles (Levitus et al.,
1982) over the 3 month period before calculating mixed layer depth using a
variable σt criterion. Their criterion was equivalent to a 0.5◦C temperature
criterion in the absence of salinity stratification. Despite these differences in
processing, the resulting winter-time mixed layer depth fields are very similar,
with the exception of a few northern regions above 55◦N where the use of the
fixed σt criterion gives some exceptionally high values. The cut off at 500 m
means that this has little effect on the nitrate maximum estimates. Nitrate
values obtained where the winter-time mixed layer depth is less than 100 m
are considered unreliable because of the likelihood of strong seasonal bias in
the nitrate concentrations observed above this depth. These were therefore
omitted.

The estimated annual nitrate maximum field is shown in Fig. 4, together
with the calibration and validation stations. For ease of reference, stations
are numbered according to their grid position in the format YYXX. They are
assigned alternately to calibration and validation sets in numerical order. To
obtain the estimates of the 200 km scale mean for the cost function, the winter-
time nitrate field was averaged over 3◦ boxes centred on station locations. This
was to reduce contamination by smaller scale features which, given the sparse
nature of the original nitrate sampling and the sensitivity of the method to
error in mixed layer depth, are more likely to be due to estimation errors than
real spatial patterns. Any 3◦ means based on less than 5 values (56% coverage)
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Fig. 4. Estimated annual maximum nitrate concentration in the mixed layer (mmol
m−3) and distribution of calibration and validation stations. Each station is iden-
tified by a four digit station number of the form YYXX, formed by concatenating
the 2 digit meridional and zonal position numbers shown on the grid.

were discarded. In the absence of information about the variance of the nitrate
maximum at the 200 km scale it’s standard deviation was somewhat arbitrarily
set to 1 mmol m−3 for all stations.

Five of the stations have no nitrate observation. These are 0606 (27.5◦N
72.5◦W), 0711 (32.5◦N 47.5◦W), 0911 (42.5◦N 47.5◦W), 1313 (62.5◦N 37.5◦W)
and 1416 (67.5◦N 22.5◦W). Two of these stations are in the calibration set.
Including these stations in the analysis was experimental, allowing the effects
of missing data to be examined.
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3.2 Cost function

The cost function returns the sum of the misfit costs for each of the observed
variables

J = Jchl + Jnit (8)

The chlorophyll misfit cost for parameter vector ~p and group H is the mean
misfit for log C over all stations and observation times. So

Jchl(~p, H) =

∑n
j=1

∑nj

i=1 Mij(~p, log C)
∑n

j=1 nj

(9)

where n is the number of stations in H and nj is the number of chlorophyll
observations for the jth station, which varies largely due to cloud cover. The
nitrate misfit cost is the mean misfit for N over all stations

Jnit(~p, H) =
1

n

n
∑

j=1

Mj(~p, N ) (10)

For the purposes of constructing the simulated observation probability distri-
bution Ω, log C and N were treated as a single data set. Each observation
vector in the sample drawn from Ω for the cost distribution estimates com-
prises N nitrate values and

∑N
j=1 nj chlorophyll values, where N is the total

number of stations in the calibration and validation sets. i.e. N = 30.

3.3 Model

The specific model used to test the method is of relatively minor importance
as the aim of the study is to find an effective method for evaluating any candi-
date model. However, a certain level of realism is required to properly demon-
strate the method’s utility for the intended application. A phytoplankton-
zooplankton-nutrient (PZN) model of nitrogen flow with 12 free parameters,
based on the 7 compartment model of Fasham et al. (1990), was chosen largely
for its simplicity. The model equations are given in Appendix B. It is run in
a zero-dimensional context to describe the plankton ecosystem in the upper
ocean mixed layer. This is in keeping with the previous work, excepting that
of Prunet et al. (1996a,b) who used a 1-dimensional model. Keeping the spa-
tial dimension of the model low is important because of the longer integration
time for higher dimensional models, combined with the iterative nature of the
optimization process which requires a large number of integrations.
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The model’s external forcing data includes spatially varying annual cycles of
day length, photosynthetically available radiation (PAR), mixed layer depth
and phytoplankton maximum growth rate modelled as a function of tempera-
ture. These are augmented by spatially varying annual mean nitrate profiles,
which define the sub-surface nitrate at the base of the mixed layer. While there
are no explicit horizontal fluxes, keeping the sub-surface nitrate profiles con-
stant implicitly includes the effect of horizontal nitrate fluxes on time scales
longer than a year.

Year-specific satellite data for 1998 were used to define the PAR and tem-
perature cycles but were not available for mixed layer depth and nitrate. Cli-
matological mixed layer depth and nitrate fields were therefore substituted.
A consequential limitation of the model is that the temporal resolution of its
mixed layer depth forcing data is inconsistent with the requirements of the hy-
pothetical target application for which it is being evaluated. Mixed layer depth
data from a climatological integration of a 3-dimensional general circulation
model (see Appendix B) were used in preference to observational estimates.
Use of model data is prudent because the observational estimates available
do not sufficiently resolve the rapid shoaling of the mixed layer in the spring.
To minimize problems due to incorrect timing of spring shoaling in the sim-
ulation, surface layer temperature cycles from the simulation were screened
against the 1998 temperature observations and stations where the model and
observations appeared to be out of phase were excluded. For the remaining
stations, the mean winter-time (February-April) mixed layer depth from the
simulation is compared with the observational estimate used to determine the
annual nitrate maximum (Fig. 5). With the exception of some of the northern
values, where the observational estimate is high as a result of the fixed σt cri-
terion, there is generally good agreement between the two estimates, although
the simulated values do show a high bias. Full details of the model’s external
forcing data are given in Appendix B.

The outputs required for the cost function are not explicitly modelled as state
variables. Model chlorophyll concentration is derived from phytoplankton con-
centration using a spatially and temporally constant chlorophyll to nitrogen
ratio which is one of the model’s free parameters. The annual nitrate maxi-
mum is assumed to be equal to the annual nutrient maximum. In addition,
the nutrient concentration immediately below the mixed layer is assumed to
be equal to the nitrate concentration at the same depth, thereby allowing the
amount of nutrient entrained into the mixed layer from below to be deter-
mined from the forcing data. In both cases, the concentrations are relatively
high. The assumption would be more difficult to justify for surface nitrate
observations in spring and summer when ammonium and other labile forms
of dissolved nitrogen become important as nitrate is depleted.
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Fig. 5. Mean simulated mixed layer depth for the period February-April from the
general circulation model compared with observational estimates for the same pe-
riod. The latter are derived from the 1◦ monthly data of Levitus et al. (1982), based
on a density difference criterion ∆σt = 0.125. The 1:1 line is shown for reference.

4 Results

The results of applying the split-domain calibration method as defined in
Section 2 to the PZN model are described here. The results of the robustness
experiment are given in Appendix C.

4.1 Calibration domains

The results of applying the calibration algorithm to the North Atlantic do-
main are summarized in Table 2. Results are tabulated for the whole-domain
calibration and each of the split-domain calibrations. The median validation
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Table 2
Summary of calibration results for the North Atlantic domain

Median
validation

cost

r.m.s. residuals

r(log C) r(N )

Domain or
province
latitude

range (◦N)

No. of
stations in
calibration

set

Maximum
coverage by

station
aggregation

Calibration
group

coverage (if
different)

Calibration 1A 13.13 2.88 1.70 25-70 15 9(60%) 15(100%)

Calibration 2A 9.84* 2.37 1.51 25-45
45-70

6
9

5(83%)
9(100%)

4(67%)
–

Calibration 2B 10.66* 2.40 1.69 25-40
40-70

5
10

3(60%)
10(100%)

–
–

Calibration 2C 11.69* 2.72 1.52 25-70
50-60

11
4

9(82%)
4(100%)

–
–

Validation costs for split-domain calibrations which are significantly lower (at
95%) than that for the whole-domain calibration (Calibration 1A) are marked
*. Coverage of the domain or province is expressed in terms of the number of
calibration stations and, in brackets, the proportion of the domain or province this
represents.

costs are the medians of the distributions

Ĵ {~pBEST(C), V }

and

Ĵ
SPLIT {

~pBEST(CA[i]), V A[i], ~pBEST(CB[i]), V B[i]

}

for the whole-domain calibration and the ith split-domain calibration respec-
tively. The root mean square residuals for the chlorophyll and nitrate valida-
tion data are also shown. These are the residuals with respect to the observa-
tion means, given by:

r(log C) =

√

√

√

√

∑n
j=1

∑nj

i=1 Mij(~pj , log C)
∑n

j=1 nj

(11)

and

r(N ) =

√

√

√

√

1

n

n
∑

j=1

Mj(~pj, N ) (12)

where n is the number of stations in the validation set V , nj is the number
of chlorophyll observations for the jth station and ~pj is the parameter vector
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applicable to the jth station. The residual values are dimensionless, each refer-
ring to a number of standard deviations of the error distribution estimate for
the observation. However, for nitrate, a constant observation error estimate
with a standard deviation of 1 mmol m−3 is used throughout the domain, so
the values are equivalent to concentrations expressed in mmol m−3.

Latitude ranges are given in the table for each domain or province. The provin-
cial latitude ranges are for identification purposes and do not constitute com-
plete province descriptions. The actual geographical extent of each province is
shown in Fig. 6. The maximum coverage of the domain or province by station
aggregation indicates how representative the largest aggregation group from
the applicable whole-domain calibration is of the full calibration set. A cover-
age of 100% implies that the largest aggregation group is effectively the full
calibration set. This means that the station aggregation procedure completed
successfully and that the single remaining station is satisfied by a parameter
vector in the final search set. The omission of a small proportion of the calibra-
tion set’s stations is acceptable: the omitted stations are considered atypical.
However, in some cases the coverage is as low as 60%, calling into question the
applicability of the aggregation result to the whole domain or province. The
calibration group referred to in the table is usually the largest aggregation
group. However, as indicated in Section 2.4.1, it can be one of the smaller
groups if the optimal parameter vector for that group gives a lower validation
cost. It can also be the full calibration set, irrespective of whether this qual-
ifies as an aggregation group. Where the calibration group is not the largest
aggregation group, its coverage is given as a separate entry in the table.

The whole-domain calibration result for the North Atlantic domain is referred
to as Calibration 1A, where 1 denotes the number of parameter vectors re-
quired to cover the domain. This is based on the full 15 station calibration
set. When the station aggregation procedure was applied, the maximum num-
ber of stations aggregated was only 9 out of 15. The calibration based on the
9 station group gives a median validation cost of 14.34, which is lower than
those for the smaller groups but higher than that for the full calibration set.

Three different ways of splitting the domain into two were identified by choos-
ing province indicator groups of different sizes. The resulting provinces are
shown in Fig. 6, in order of the median validation costs of the associated cal-
ibrations. All three of these divisions produce calibrations which are signifi-
cantly better (at 95%) than Calibration 1A. The best of these split-domain cal-
ibrations, Calibration 2A, has a median validation cost 25% less. Application of
the calibration algorithm to each of the southern and northern provinces iden-
tified in Calibration 2A did not reveal any sensible geographic sub-divisions of
these provinces as no province indicator groups were found. Calibration 2A is
therefore the accepted calibration. It is encouraging to note that the two cal-
ibration stations without nitrate observations, Station 0606 (27.5◦N 72.5◦W)
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Fig. 6. Province extents for (a) Calibration 2A, (b) Calibration 2B and (c) Calibra-
tion 2C. The two provinces for each calibration are shown by light and dark shading.
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and Station 0711 (32.5◦N 47.5◦W), are excluded from the calibration groups in
all of the split-domain calibration results. This demonstrates that the method
is able to allow for atypical stations.

Shown for reference in Fig. 6 are the divisions between the oceanic biogeo-
chemical provinces defined by Longhurst (1998). In Calibration 2A, the divi-
sion between the provinces is coincident with the boundary between the North
Atlantic Drift Province and the North Atlantic Subtropical Gyral Province.
This is consistent with the idea that model parameters should at least be
invariant within the pre-defined biogeochemical provinces. The second best
split-domain calibration, Calibration 2B, is very similar to the first and al-
though the division is slightly further south it too coincides with pre-defined
biogeochemical province boundaries. In the last split-domain calibration, Cal-
ibration 2C, one of the provinces is geographically divided such that northern
and southern regions share the same parameter vector, while a mid-latitude
region forms the alternate province. There is no clear relationship between
these provinces and the pre-defined biogeochemical provinces.

Although there are obvious advantages in combining stations when calibrat-
ing a model for application to a wide area, the benefits are less clear for
local studies in which a model is required to produce time-series estimates
for a single location. In that case, we might expect local calibrations to have
greater relevance. It is therefore informative to compare the calibrated model’s
goodness-of-fit at the validation stations with that obtained by extrapolating
individual station calibrations locally.

Local calibrations were tested at each of the 15 validation stations in the
domain by applying the optimal parameter vector for the nearest calibration
station at the same latitude. Where stations were equally close geographically,
that with the closest nitrate observation value was chosen. Stations with no
nitrate data were ignored. The median validation cost for the North Atlantic
domain based on these local, single-station calibrations is 12.92. While the
median cost for the whole-domain calibration (Calibration 1A) is higher than
this, the costs for all 3 of the split-domain calibrations (2A, 2B and 2C) are
significantly lower (at 95%), with reductions of up to 24% (Calibration 2A).

The cost distributions for Calibration 2A were also compared with the local
calibration costs at each validation station individually. Calibration 2A gives
significantly lower costs at 8 of the stations (at 95%), while giving significantly
higher costs at only 5 stations. The lower local calibration costs at the latter
stations suggests the existence of regions, smaller than the Calibration 2A
provinces, over which multiple parameter vectors might be required to best
reproduce the spatial variability in the validation data. However, they could
also be a consequence of the validation data not providing a truly indepen-
dent test. Although it seems reasonable to assume that observation error is
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uncorrelated between adjacent stations, so that the observations at each can
be treated as independent samples of the annual chlorophyll cycle, the cycles
themselves tend to be correlated between stations. The power of the validation
data to test the generality of the calibrated model is to some extent compro-
mised by this. In general, correlation between observations at validation and
calibration stations will tend to introduce an unwanted bias towards the selec-
tion of smaller provinces, since a combination of the model’s descriptive and
predictive abilities are tested, rather than purely its predictive skill. It is there-
fore not possible to determine whether the favourable local parameter vectors
reflect true local biogeochemical characteristics or are simply compensating
for deficiencies in the model. In general, the single-station calibrations seem
unreliable and the results presented here clearly demonstrate the advantage
of combining multiple stations for local as well as basin-scale applications.

4.2 Spatial distribution of model error

The spatial distribution of the model misfits are summarized by maps of the
station r.m.s. model residual for chlorophyll, defined at the jth station by

rj(log C) =

√

√

√

√

1

nj

nj
∑

i=1

Mij(~pj , log C) (13)

and the nitrate residual

εj(N ) = νjMODEL(~pj) − νjOBS (14)

where ν ∈ N . These are presented here (Fig. 7 and 8) for the whole-domain
calibration (Calibration 1A) and for each of the split-domain calibrations (Cal-
ibrations 2A, 2B and 2C).

The chlorophyll error map for the whole-domain calibration (Fig. 7a) shows an
approximate r.m.s. residual of between 2 and 4 observational standard devia-
tions, representing a rather poor fit throughout the domain. The correspond-
ing map for nitrate (Fig. 8a) shows that the winter-time nitrate maximum is
underestimated everywhere by the model with the exception of Station 1319
(62.5◦N 7.5◦W). The magnitude of the error is 2 mmol m−3 or less almost
everywhere though, which is relatively small compared with the chlorophyll
error, based on the assumption implicit in the cost function of a 1 mmol m−3

error in the observational nitrate estimate.

In contrast with the whole-domain calibration, the split-domain calibrations
all show some stations with chlorophyll r.m.s. errors of less than 2 standard
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Fig. 7. Approximate station r.m.s. residual for chlorophyll rj(log C), in number of
standard deviations, for (a) Calibration 1A, (b) Calibration 2A, (c) Calibration
2B and (d) Calibration 2C. Circled stations are the calibration stations used. The
extent of each province is indicated by the shading.

deviations (Fig. 7b-d). In Calibration 2A, there is some tendency for chloro-
phyll errors to be lower in the northern province than in the south. Almost
everywhere in this northern province the fit to chlorophyll is better than in
Calibration 1A, while the nitrate errors (Fig. 8b) are very similar.

The association between the chlorophyll errors and the different provinces in
Calibration 2A is interesting. A clear association is also evident in Calibration
2C, where lower errors (Fig. 7d) are associated with the smaller mid-latitude
domain (Fig. 6c). Association of lower errors with a particular province sug-
gests that the model may be better suited to that province. With regard to
Calibration 2A, it is possible that the relationship between the observed vari-
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Fig. 8. Approximate nitrate residual εj(N ) (mmol m−3) for (a) Calibration 1A, (b)
Calibration 2A, (c) Calibration 2B and (d) Calibration 2C. Circled stations are the
calibration stations used. The extent of each province is indicated by the shading.

ability in chlorophyll and the environmental variability represented by the
forcing data is stronger in the north than in the south, making the model bet-
ter suited to the northern province. Certainly the fact that further divisions of
the relatively large northern province do not improve the calibration implies
that the forcing data provide at least part of the required spatial variability.
This result is obtained despite the potential bias towards small province se-
lection due to unwanted correlation between validation and calibration data.
Because the northern province contains a much larger set of calibration data
than the southern province, covering a wider range of environmental condi-
tions, the northern province parameter estimates should be statistically more
robust and more generic. Importantly, as discussed by Fennel et al. (2001),
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the presence of larger blooms and more pronounced seasonal variation allow
the functions describing the processes in the model to be sensibly constrained
over a greater dynamic range.

4.3 Parameters

Unless parameters are well constrained by the observations, cost values which
are only slightly higher than the lowest found JBEST can occur over large
areas of the parameter space. In many cases, an optimization result is therefore
better represented in the form of a joint probability distribution for the optimal
parameter values, rather than by a single vector. This posterior parameter
distribution contains information about the degree of parameter constraint
achieved as well as the correlation between different parameters. An estimate
of the posterior parameter distribution can be derived from P good by removing
outliers associated with unacceptably high costs, as done by Schartau et al.
(2001). However, the definition of an unacceptably high cost is somewhat
arbitrary. Accepting a wide range of costs increases the likelihood of including
sub-optimal parameter vectors, while restricting the range reduces the size
of the sample so that it becomes less representative of the distribution in
parameter space of possible global minima. Schartau et al. (2001) defined costs
within 25% of JBEST as acceptable. A statistical approach is used here, which
takes into account the observation error by making use of cost probability
distribution estimates determined for each parameter vector, in place of single
cost values. An unacceptably high cost distribution is defined as one which
differs significantly from that with the lowest median at a chosen level of
probability.

The accepted calibration result, Calibration 2A, implies that the model should
have two regional parameter vectors. Estimates of the two posterior parameter
joint probability distributions for Calibration 2A were determined from the pa-
rameter optimization results for the two calibration groups: for each province,
a low cost subset of parameter vectors was selected from the set P good based
on 100 different starting points in parameter space. The parameter vectors
excluded were those with calibration cost distributions greater than that that
with the lowest median at a significance level of 99.99%. The joint parameter
distribution represented by the remaining subset shows the area of parameter
space to which the model is constrained with a probability of 99.99% by the
observations. The rejection level was chosen pragmatically so that the samples
retained for both provinces were large enough to provide useful estimates. To
investigate the constraint achieved at a lower probability level would require a
larger ensemble size. The median calibration costs associated with the south-
ern province parameter distribution, represented by a sample of 11 parameter
vectors, range from 8.54 to 9.29. The corresponding range for the northern
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province sample of 13 parameter vectors is 7.78 to 8.25. The upper costs for
southern and northern provinces are 9% and 6% higher than the lowest costs
respectively. These cost ranges are small compared with the 25% cost differ-
ence considered acceptable by Schartau et al. (2001). However, relatively small
cost differences are highly significant here as a consequence of averaging over
a large number of observations.

The univariate posterior parameter distribution estimates for the accepted cal-
ibration are shown in Fig. 9. These are the projections of the joint probability
distribution estimates onto the parameter axes. In the case of both southern
and northern calibrations, most parameters appear poorly constrained. There
is evidence (not presented here) to suggest that some parameters may be much
better constrained by the observations at a probability of 95%. However, this
is based on sample sizes of just 3 for each province and cannot therefore be
considered very reliable.

In some cases, parameters can be difficult to constrain because their optimal
values are not independent. This is reflected by non-zero covariances in the pos-
terior probability distributions. Parameter dependencies were investigated by
calculating the Pearson correlation coefficients for all possible parameter pairs
in each sample. In contrast with techniques used by other workers (Matear,
1995; Fennel et al., 2001), which are based on analysis of the Hessian matrix
of the cost function at its minimum, our statistical approach is global with
respect to the parameter space, allowing for the existence of multiple minima
within the acceptable cost range.

Large positive and negative correlation coefficients were found for a number
of the parameter pairs, the most notable of which are consistent between the
independent results for southern and northern provinces. These are the two
largest negative correlations and the largest positive correlation found in each
case. The correlated parameters are the zooplankton ingestion half-saturation
constant kG and the chlorophyll to nitrogen ratio χ (correlation coefficients
of -0.76 and -0.74 for the southern and northern provinces respectively), the
zooplankton excretion rate µ and the chlorophyll to nitrogen ratio (-0.70 and -
0.63) and the zooplankton excretion rate and the cross-pycnocline mixing rate
m (+0.84 and +0.63). It is difficult to see any clear reasons for these parameter
pairs to be correlated in reality and the relationships may be a consequence
of unrealistic constraints imposed by the model design and/or forcing data.

Despite the uncertainty in parameter values, the posterior parameter distri-
butions show some interesting patterns. Estimates of phytoplankton specific
mortality φP are consistently low, suggesting that phytoplankton mortality is
not an important process in the model. With the exception of some southern
domain results, the initial slope of the photosynthesis versus irradiance (P-I)
curve α tends to be high, indicating a weaker light limitation effect than ex-
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Fig. 9. Univariate posterior parameter distribution estimates for the accepted cali-
bration (Calibration 2A), showing prior ‘expected’ values (see Table B.1). In each
case the abcissa corresponds to the prescribed range over which the parameter is
allowed to vary. Parameter values are interpreted with reference to the model equa-
tions given in Appendix B.
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pected. The weak light limitation is compensated for at high phytoplankton
concentrations by exceptionally high values of the chlorophyll light attenua-
tion coefficient kchl. The half-saturation coefficient for nutrient kN tends to be
higher than expected, implying that nutrient limitation is still important at
relatively high nutrient concentrations. The zooplankton maximum ingestion
rate g, assimilation efficiency β, excretion rate µ and mortality parameter φZ

all tend to be high, producing a faster turnover of material by the zooplank-
ton than the prior parameter values. Grazing pressure on the phytoplankton
is high, but the high values for the zooplankton ingestion half-saturation con-
stant kG compensate for this by reducing the grazing at low phytoplankton
concentrations.

We should note here that the prescribed bounds do in some cases allow pa-
rameters to vary over rather wider ranges than those that might be consistent
with a perfect model structure. This can help to expose weaknesses of the
model. The high values of the P-I slope α, for example, seem unrealistic. Most
of the values obtained, often greater than 0.3 d−1 (W m−2)−1, are certainly not
consistent with seasonal averages for the provinces of the Polar and Westerlies
biomes presented by Sathyendranath et al. (1995), although the comparison is
not straightforward. Their values, derived from in situ observations, are based
on growth expressed in units of carbon per unit chlorophyll and, in addition,
are only directly comparable with the model values in the absence of nutrient
limitation. The values remaining after removal of the low summer and autumn
values for the Westerlies provinces, where nutrient depletion is an important
factor, vary over a very small range from 0.09 to 0.11 mg C (mg Chl)−1 h−1

(W m−2)−1. When combined with the range of chlorophyll to nitrogen ratios
suggested by our optimization results (about 0.5 to 1.5 g mol−1) and the Red-
field carbon to nitrogen ratio (6.625) this gives a range of values from 0.014 to
0.050 d−1 (W m−2)−1. Fig. 9 shows only a relatively small proportion of the
parameter values within this range, all of which are for the southern province.

The most obvious differences in parameter distributions between the southern
and northern provinces are a tendency in the north for higher cross-pycnocline
mixing rates m, higher P-I slopes α and higher zooplankton ingestion half-
saturation constants kG. In the case of the half-saturation constant, the pattern
is consistent with that found by Losa et al. (submitted) for a similar model
calibrated locally. However their results for the P-I slope indicate a reverse
pattern, with the highest values of the P-I slope occurring in the south. Higher
mixing rates in the north, where the stratification tends to be weaker, are
consistent with expectations.
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4.4 Model output and uncertainty analysis

Fig. 10 shows the modelled annual cycle of chlorophyll for the accepted cal-
ibration at each of the validation stations. To demonstrate the uncertainty
associated with the lack of parameter constraint, the annual cycles for the
best parameter vector are shown together with those for all other parameter
vectors in the posterior distribution. Examples of the corresponding cycles of
the state variables are shown in Fig. 11 for a low latitude station close to
the BATS site (Station 0708 at 32.5◦N 62.5◦W) and a high latitude station
close to OWSI (Station 1217 at 57.5◦N 17.5◦W). The variance in the posterior
parameter distributions causes only a small amount of variability in the ob-
served variables (Fig. 10 and Fig. 11c) but there is much greater uncertainty in
phytoplankton and zooplankton biomass and in summer nutrient levels (Fig.
11).

A further concern is that the model does not appear to represent the tempo-
ral variability in chlorophyll very well. It captures almost none of the seasonal
evolution in the south, where the observations show a clear bloom in spring
(with the exception of Station 0708 and Station 0710) followed by a steady
decline in summer and a rise again in the autumn. The model does show a
similar bloom response at about the right time but this takes the form of a
damped oscillation about a steady state rather than following the subsequent
variation in the observations. In the north, the model does capture the ele-
vated chlorophyll levels in spring and summer but fails to capture the strong
variation at time-scales of weeks to months which is superimposed on top of
this at some stations; most notably the spring and autumn bloom pattern at
Station 1217.

Examination of the chlorophyll output at the calibration stations (Fig. 12)
shows immediately that the problem is not just a symptom of applying the
calibrated model to independent data. In addition, the individual station re-
sults in this figure show that the problem cannot be wholly attributed to the
parameter compromises made during station aggregation. The shorter time-
scale features are poorly represented by the locally optimized model for at
least 6 of the 15 stations (stations 0709, 0810, 0912, 1013, 1216 and 1218).
The problem therefore appears to be inherent in the model and/or the forcing
data. With the exception of Station 1216, the output at all of these 6 sta-
tions shows very strong oscillations. There are particular problems with the
southern province calibration. In fact, when the two stations without nitrate
observations (Stations 0606 and 0711) are excluded, the model only shows
an annual cycle consistent with observations at one of the four remaining
southern stations (Station 0812, 37.5◦N 42.5◦W). At the two stations with-
out nitrate observations, the locally optimized model actually reproduces the
chlorophyll record extremely well. However, this contrast with the results for
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Fig. 10. Model annual cycles of chlorophyll at each of the validation stations in (a)
the accepted southern province and (b) the accepted northern province. Chlorophyll
observations are shown for reference with error bars at 1 standard deviation. At
each station, the model output for each of the parameter vectors in the posterior
distribution arising from the accepted calibration (Calibration 2A) is shown. The
output for the parameter vector ~pBEST is highlighted.

the other stations seems suspicious, serving only to underline the importance
of the additional constraint provided by the nitrate observations.

In general, the model appears to be smoothing out blooms, perhaps because
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Fig. 11. Model annual cycles of (a) phytoplankton, (b) zooplankton and (c) nutrient
at a southern province validation station and a northern province validation sta-
tion. The observed annual nitrate maximum νOBS is shown for reference in (c). At
each station, the model output for each of the parameter vectors in the posterior
distribution arising from the accepted calibration (Calibration 2A) is shown. The
output for the parameter vector ~pBEST is highlighted.

of deficiencies in the forcing data which prevent it reproducing the temporal
structure in detail. In particular, mixed layer depth is taken from the output of
a climatologically forced general circulation model, while a significant part of
the observed variability in chlorophyll may be due to year-specific variability
in mixed layer depth, including weather events on time scales of days to weeks.
The problem might be alleviated in future work by using an independently
validated mixed layer depth field from a general circulation model run with
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Fig. 12. Model annual cycles of chlorophyll at each of the calibration stations in (a)
the accepted southern province and (b) the accepted northern province. Chlorophyll
observations are shown for reference with error bars at 1 standard deviation. At each
station, the model output given by the parameter vector ~pBEST from the accepted
calibration (Calibration 2A) is shown, together with that given by ~pBEST for the
local, single station calibration.
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year-specific meteorological forcing. However, there may of course be limita-
tions of the ecosystem model itself which prevent it responding realistically to
the forcing data provided.

The inability of the model to reproduce the temporal structure leads to the
smoother fit which explains a number of features of the parameter distri-
butions: the high chlorophyll attenuation coefficients kchl and high grazing
rates g reduce the peak phytoplankton concentrations, as does the high cross-
pycnocline mixing rate m. However, these values do not prevent the initial
spring increase in phytoplankton because of the effect of other parameters:
the high values for the zooplankton ingestion half-saturation constant kG re-
duce the grazing pressure when phytoplankton concentrations are low and the
P-I slope α, having high values in the north, reduces light limitation in regions
where low surface PAR and deep mixed layers might otherwise prevent early
accumulation of biomass. The north-south differences in these two parameters
may be a consequence of a requirement for increased damping in the north to
cope with the stronger physical forcing, the requirement being met by high
mixing rates. Certainly, given the rather unsatisfactory performance of the
model, great care should be taken to avoid over-interpretation of its poste-
rior parameter distributions. Likewise, limited ecological significance should
be ascribed to the provinces identified.

5 Discussion

The split-domain calibration method has been shown to be a practical method
for estimating the best model fit to validation data over a large domain, while
avoiding prior assumptions about the geographic scope of individual parameter
vectors. Such assumptions are undesirable because they could lead to sub-
optimal calibrations. The method allows us to obtain a measure of merit for
a given model, together with its forcing data, which can be used to compare
different models or different forcing data sets. For the present model and
forcing data, this measure, the median validation cost for the best calibration
found, is 25% lower than the equivalent cost for the calibration based on the
full set of 15 stations. It is also 24% lower than the cost obtained when the
model was calibrated locally, using individual stations. These results clearly
demonstrate the utility of the method. However, it is recognised that the
possible existence of a better solution to the calibration problem cannot be
disproved.

Further developments of the method could be considered which would increase
confidence in the result, albeit at the expense of a higher computational load.
The simplest of these would be to increase the ensemble size in the parameter
optimization procedure to allow the station aggregation procedure to explore
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more of the parameter space. Another development to consider relates to how
the hierarchy of calibration solutions with different numbers of provinces is ex-
plored. In the method described here, a split-domain calibration result which
does not produce an improvement over the corresponding whole-domain cal-
ibration is rejected without exploring the consequences of possible domain
divisions further down in the hierarchy. A more thorough approach would be
to explore all possible branches. In that case the recursion would be terminated
only when no province indicator groups were found.

For the present model, the best representation of the observed spatial variabil-
ity across the basin is achieved by introducing spatial variation in parameters
as well as forcing data. For the purposes of making predictions of biological
responses to physical change, a more useful model would be one with a single
parameter vector in which the spatial variability was determined purely by
the forcing. The work of Hurtt and Armstrong (1999) suggests this might be
feasible for the North Atlantic. Their model was able to fit data from BATS
and OWSI simultaneously when they included multiple size classes of phy-
toplankton and detritus and a variable chlorophyll to nitrogen ratio for the
phytoplankton. The latter was modelled as a function of the model’s state
variables and its forcing data. Advantages might therefore be gained from re-
placing the chlorophyll to nitrogen ratio in the present model by a similar func-
tion. Other parameters might also be replaced by functions of internal and/or
external variables. The cross-pycnocline mixing rate, for example, could per-
haps be expressed as some empirical function of the available forcing data.
The possibility should be explored for the remaining biological parameters as
well. However, as pointed out by Longhurst (1998), we should not necessarily
expect to find ecological continuity in the plankton response to environmental
forcing, because biological responses are often species dependent and are fur-
ther complicated by species succession. The use of different model parameter
vectors, with some form of smooth transition over domain boundaries, might
therefore be the only sensible way of representing some regional variations.

The high levels of uncertainty in the aspects of model output which are not di-
rectly constrained by the observations demonstrate clearly the potential value
of augmenting the data used in this study with other types of observations.
Improving the forcing data and/or the model might lead to better constrained
parameter vectors, but it seems unlikely that it would be possible to derive a
single parameter vector which can be used with confidence in an application
without taking into account other observations. Whether the additional data
are observations of different variables or at different times of year, careful con-
sideration must be given to their spatial distribution because differences in
the type of constraints imposed at different stations can impact on the way a
domain is divided. The potential for this is shown by the fact that the station
aggregation procedure distinguishes between stations with and without a ni-
trate observation. In this study, because there were only two stations without
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nitrate, these were treated as atypical and had no impact on the result. In
general though, it is clear that the spatial distribution of different observation
types needs to be as uniform as possible.

In the absence of other types of observations, parameter constraints can be
improved by reducing the number of free parameters or including parameter
penalties or other criteria in the cost function. However, unless such con-
straints can be properly justified, the associated reduction in uncertainty is
misleading. While a model with fewer free parameters might be easier to con-
strain with the available observations, the advantage is gained at the expense
of introducing arbitrary constraints in the form of fixed parameter values. The
same problem applies to the issue of model complexity in general. The model
tested here has many built-in constraints which simplify its design but are
difficult to justify on theoretical grounds. More complex models generally im-
pose fewer arbitrary constraints but, as a consequence, their parameters are
more difficult to constrain by data assimilation. Ignoring the practical limits
to model complexity, it can be argued that an ideal model is one constrained
only by observations and well-established theory. If we move closer to such
a model we expect the uncertainty in model output to increase, even allow-
ing for improvements in the observation set. Although this presents practical
problems, it does better represent the limits to our understanding of the real
system. For some applications it may be desirable to accept the uncertainty
and monitor its effects, rather than try to remove it artificially.

The need for stations to be treated independently in the split-domain cali-
bration method, combined with the iterative nature of the optimization tech-
niques, restrict the practical application of the method to models with low
spatial dimension. Evans (1999) showed that the potential errors in parameter
estimates associated with using a zero-dimensional model, with a homogenous
surface layer and zero biomass concentrations below, are serious. Considera-
tion should therefore be given to resolving the water column more explicitly,
within the constraints of available computing power. One approach is that of
Friedrichs (2002) who fixed the form of the vertical profile for each of the state
variables, allowing only its magnitude to vary. Alternatively, given sufficient
computing power, a 1-dimensional model might be employed as in the work
of Prunet et al. (1996a,b). The issue of horizontal fluxes, especially advection,
must also be addressed. A useful framework for this which avoids the need for
repeated runs of an expensive 3-dimensional ecosystem model was presented
by Gunson et al. (1999). Their approach involves the application of an ecosys-
tem model to Lagrangian water columns following surface water trajectories
extracted from a general circulation model. The length scale of such trajecto-
ries, over the integration time of the model, would of course impose limitations
on the resolution to which province boundaries could be defined.

The calibration method demonstrated here for a marine ecosystem model can
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be applied to other fields of research where model run-time is not prohibitive.
It has potential value in any situation where it cannot be assumed that a single
parameter vector is appropriate for the whole model domain. In the example
here observation records are associated with geographic locations, but they
could be associated with points in any ordinal space.
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A Limitations of the station aggregation procedure

The station aggregation procedure seeks groups which have the minimum
aggregation penalty for their size. There are two limitations which can prevent
it from consistently identifying the correct group. The principal limitation
arises from inadequate sampling of the parameter space when evaluating the
group maximum cost deviation for the candidate groups. The other, secondary
limitation is a consequence of the differences between the variation of the cost
function and the group maximum cost deviation in parameter space.

The area of parameter space sampled, the search set P , depends on the anal-
ysis of the cost function for a smaller aggregation group G

n, performed by the
parameter optimization procedure (P = P good(G

n)). The sampling problem
can be addressed in part by increasing the ensemble size used in this analysis,
thus increasing the probability that all relevant minima are found. However,
the procedure still relies on there being a broad similarity between the smaller
group’s cost function and the variation in parameter space of the cost devi-
ation for the optimum group sought. If this is not the case then the wrong
group may be selected. This is illustrated in Fig. A.1, where the location of
the minimum in the cost function for G

n is much closer to that of group max-
imum cost deviation curve for the non-optimal group H

n+1
2 than that for the

optimal group H
n+1
1 . The lowest group maximum cost deviation sampled is
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Fig. A.1. Failure of the station aggregation procedure to select the optimal group
H

n+1
1 due to poor representation of the parameter space in the region of its lowest

group maximum cost deviation. The lowest group maximum cost deviation found
is that for H

n+1
2 at p1.

on the curve for H
n+1
2 at p1. In general, there is a bias towards selection of

groups which are similar to those already aggregated. This is likely to be more
of a problem when groups are small due to the large relative increase in size
at one step of the aggregation procedure and the minimal pre-conditioning of
the search set P .

The secondary limitation means that perfect representation of the parameter
space, such that the set of sample points includes the optimal parameter vec-
tor for the group sought (i.e. ~pBEST(Hn+1

OPT) ∈ P ), does not guarantee success.
This is because the lowest value of the group maximum cost deviation for a
group can be smaller than its aggregation penalty. This is a potential problem
for groups with similar aggregation penalties as shown in Fig. A.2. Here the
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Fig. A.2. Failure of the station aggregation procedure to select the optimal group
H

n+1
1 due to the presence of a lower group maximum cost deviation for a

non-optimal group H
n+1
3 at p2 in the search space defined by p1, p2 and p3.

non-optimal group H
n+1
3 has a group maximum cost deviation curve which

dips below the aggregation penalty for the optimal group H
n+1
1 . In this exam-

ple, the sampling is such that the wrong group is selected. The lowest group
maximum cost deviation is on the H

n+1
3 curve at p2.

Avoidance of this problem relies firstly on the correlation between the aggrega-
tion penalty and the minimum value of the group maximum cost deviation over
different groups and secondly on the greater likelihood of the correct group
being sampled in the region of its minimum as a result of the pre-conditioning.
The correct group H

n+1
OPT is selected if at least one of the parameter vectors

in P good(G
n) gives a group maximum cost deviation for H

n+1
OPT sufficiently

close to or less than its aggregation penalty ∆JMAX{~pBEST(Hn+1
OPT), Hn+1

OPT} to
be lower than the group maximum cost deviation ∆JMAX{~p, H

n+1
BEST(~p)} for

competing groups, for all ~p in P good(G
n).
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B Test model definition

B.1 External forcing data

The ecosystem model’s external forcing data consists of spatially varying an-
nual cycles of day length d(t), daily mean photosynthetically available radia-
tion (PAR) I(t), mixed layer depth M(t) and phytoplankton maximum growth
rate VP(t) and spatially varying annual mean vertical nitrate profiles Ns(z).
The maximum growth rate is modelled as a function of water temperature
T (t) using the empirical relationship derived by Eppley (1972):

VP = 0.6(1.066T ) (B.1)

Observed sea surface temperature (SST) for the same year as the chlorophyll
observations, 1998, was used to derive T (t). The SST measurements are 8
day mean Advanced Very High-Resolution Radiometer (AVHRR) data at a
resolution of 18 km, averaged over a circle of 100 km radius about each station
to match the length scale of the chlorophyll observations.

The PAR forcing I(t) was derived from SeaWiFS 8 day mean PAR Standard
Mapped Image data for 1998 at a resolution of 9 km. This is an estimate
of the downwelling irradiance reaching the sea surface. Again the data are
averaged over a 100 km radius about each station. For times at which observed
PAR is available that value was used. To define PAR at other times a simple
transmission model of the form introduced by Evans and Parslow (1985) was
employed. This is

I = a(1 − bC)IS (B.2)

where IS is the daily mean solar radiation at the top of the atmosphere,
integrated over all wavelengths, as a function of time and latitude. This is
determined using standard formulae (e.g. Brock, 1981). The variable C is
the fractional cloudiness and a and b are constants. An ‘effective’ cloudiness
time series was derived which satisfies the transmission model at the times
when PAR is defined by the observations. This was then linearly interpolated
between observation times. Where gaps between observations are more than
8 days the missing data was first filled in by linearly interpolating a 3 point
running mean of the effective cloudiness. The values of a and b, 0.38 and 0.45
respectively, were determined by fitting the model to observational data from
36 stations distributed across the North Atlantic. The PAR data used were the
1998 SeaWiFS values. The cloudiness data were extracted from climatological
fields produced by Bishop et al. (1994) using International Satellite Cloud
Climatology Project (ISSCP) data (Rossow and Schiffer, 1991).
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Mixed layer depth time series M(t) were extracted from the output of a cli-
matologically forced general circulation model. The general circulation model
was an implementation of the Miami Isopycnic Co-ordinate Ocean Model (MI-
COM) (Bleck et al., 1992) for the North Atlantic, described by Jia (2000). The
time series were extracted from the final year of a 16 year integration of the
coarse resolution (4/3◦) version. The mixed layer in this model is of the verti-
cally homogenous Kraus-Turner formulation (Kraus and Turner, 1967). Mixed
layer model parameters for this particular run (Jia, personal communication
1997) had been tuned to data collected during a subduction experiment con-
ducted in an area of the North Atlantic from 18-33◦N and 22-34◦W (Moyer
and Weller, 1997). The distribution of the layer densities differs slightly from
those in Jia (2000), giving higher resolution over part of the lower density
range. MICOM output data were averaged over 5◦ boxes centred on station
locations to remove aliasing associated with the discrete density layers.

The annual mean nitrate profiles were determined by fitting profiles of the
form

Ns = aN ln(bNz + 1) (B.3)

to World Ocean Atlas annual mean 1◦ analyzed nitrate data (Conkright et al.,
1998) at each station. Only data between depths of 100 m and the mixed layer
depth forcing maximum were used. Data above 100 m are considered unreliable
due to seasonal variations in the observations. Extrapolation of the observed
profile into shallower depths is justified to some extent because water below
100 m shows a partial signature of near surface nitrate depletion, becoming
weaker with depth, as a result of vertical mixing. Although each model profile
is forced through the origin, it is assumed that entrainment of nitrate in the
model is suppressed when the sub-surface nitrate concentration is less than
that in the mixed layer, so in areas where nitrate is not used up in the summer
the upper part of the profile has little influence on the model results.

B.2 Ecosystem model equations

The model’s state variables are the concentrations of nitrogen in phytoplank-
ton (P ), zooplankton (Z) and nutrient (N) pools. The nitrate and ammonium
pools modelled separately by Fasham et al. (1990) are combined into a single
pool and the detritus pool and the pools associated with the microbial loop
are absent. Detrital material such as dead plankton or faecal pellets is imme-
diately exported from the system as it is produced. New nitrogen enters the
system from below the mixed layer as a result of nutrient entrainment during
mixed layer deepening and by diffusive mixing across the mixed layer base,
parameterized by a constant mixing rate m. Plankton concentrations are zero
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below the mixed layer.

The rate of change of the phytoplankton concentration is given by

dP

dt
= PJQ − GP − φPP −

(m + h+)P

M
(B.4)

where h+ = max( dM/ dt, 0). The factor J is the daily mean light limited
specific growth rate which is a function of PAR, mixed layer depth and the
self-shading effect of phytoplankton biomass. Q is a nutrient limitation factor
given by

Q =
N

kN + N
(B.5)

where kN is the Michaelis-Menten half-saturation constant for nutrient. The
loss term GP is the zooplankton grazing rate given by

GP =
gZP

kG + P
(B.6)

where g is the maximum ingestion rate and kG is the half-saturation constant
for zooplankton ingestion. The remaining loss terms are exports from the
system. These are the phytoplankton mortality, parameterized by a constant
specific mortality rate φP, and the physical flux due to dilution as a result of
vertical mixing processes.

Following Fasham et al. (1990), the light limited growth rate J at a given
depth and time is defined by

J =
VPαIz

√

V 2
P + α2I2

z

(B.7)

where α is the initial slope of the photosynthesis versus irradiance (P-I) curve
and Iz is the underwater light field. The light field is modelled in terms of the
PAR directly below the sea surface I0, the attenuation of PAR due to water
kw (0.04 m−1) and the specific attenuation of PAR due to chlorophyll kchl, the
model taking the simple Beer’s law form

Iz = I0 exp {−(kw + kchlχP )z} (B.8)

For the purposes of integrating over the day, the time since sunrise tD is treated
independently of the time of year t. The variation of I0 with time of day is
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modelled as a triangular function

I0 = 2
I

d
fD(tD) (B.9)

where fD increases linearly from 0 to 1 between tD = 0 and tD = d/2 and
decreases linearly from 1 to 0 between tD = d/2 and tD = d. This ensures that
the daily mean light limited growth rate in the mixed layer

J =
1

M

d
∫

0

M
∫

0

J dz dtD (B.10)

has an analytical solution (Evans and Parslow, 1985).

The zooplankton equation is

dZ

dt
= βGP − µZ − φZZ

2 −
(m + h+)Z

M
(B.11)

where β is the assimilation efficiency, µ is the zooplankton specific excretion
rate and φZ is the zooplankton specific mortality parameter. The zooplankton
excretion term represents a nitrogen flow from the zooplankton to nutrient
pools. Nitrogen associated with zooplankton mortality is exported. Zooplank-
ton faecal material (the fraction not assimilated) is divided between labile
material, which is transferred to the nutrient pool, and refractory material,
which is exported.

The nutrient equation is

dN

dt
=−PJQ + µZ + (1 − ε)(1 − β)GP

+
m + h+

M
max {Ns(M) − N, 0} (B.12)

where ε is the exported fraction of zooplankton faecal material and Ns is
the nutrient concentration immediately below the base of the mixed layer.
Because the nutrient profile does not vary temporally, sub-surface nutrient
concentrations can be less than those in the mixed layer when the mixed layer
first shoals in the spring. This can cause negative fluxes which are simply an
artefact of the model. Such fluxes are suppressed, as indicated in Eq. (B.12),
on the assumption that the concentration below the mixed layer is always in
reality at least as high as that within the mixed layer.
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Table B.1
Model parameters

Parameter Symbol Unit Prior value Lower bound Upper bound

cross-pycnocline mixing rate m m d−1 0.5 0 10

phytoplankton chlorophyll:N ratio χ g mol−1 1 0.3 3

chlorophyll light attenuation coefficient kchl m2 mg−1 0.03 0 0.1

initial slope of P-I curve α d−1 (W m−2)−1 0.1 0 0.41

nutrient uptake half-saturation constant kN mmol N m−3 0.5 0.05 1

phytoplankton mortality rate φP d−1 0.05 0 0.3

zooplankton maximum ingestion rate g d−1 1 0 3

zooplankton ingestion half-saturation constant kG mmol N m−3 1 0.05 3

zooplankton assimilation efficiency β 0.75 0 1

zooplankton excretion rate µ d−1 0.1 0 0.5

zooplankton mortality parameter φZ (mmol N m−3 d)−1 0.2 0 0.3

export fraction of zooplankton faeces ε 0.33 0 1

The prior ‘expected’ values and prescribed ranges used for the 12 free pa-
rameters are given Table B.1. Initial concentrations are N = 1 mmol N m−3,
P = 0.02 mmol N m−3 and Z = 0.002 mmol N m−3. All predicted values used
in the cost function are taken from the second year of the model integration.
The sensitivity of this model output to initial concentrations is considered to
be negligible in the context of this study.

C Robustness to choice of initial station pair

A series of experiments were performed, testing the robustness of the results
to differences in the initial station pair during station aggregation. Alternative
pairs were selected from the set of station pairs best satisfied by parameter
vectors in the initial search set. These are the pairs H

2
BEST(~p) for all ~p in the

initial search set which give finite cost deviations for more than one station.
In each experiment, only independent alternative station pairs were selected
as these were considered most likely to produce different aggregation results.

In the present study, three applications of the calibration algorithm were re-
quired: one to the North Atlantic domain in its entirety and one to each of
the provinces in the accepted split-domain calibration. Normally, each ap-
plication of the calibration algorithm requires one application of the station
aggregation procedure to the whole domain and another to each of the po-
tential complementary provinces identified. The latter applications occur as
the split-domain calibration procedure is invoked for each province indicator
group. The robustness experiments involved two extra applications of the ag-
gregation procedure, from step 2 onwards, in all instances where it was invoked,
except in cases where there were less than 3 independent pairs available. The
independent station pairs with the 2nd and 3rd lowest group maximum cost
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Table C.1
Summary of calibration results for the North Atlantic domain

Median
validation

cost

r.m.s. residuals

r(log C) r(N )

Domain or
province
latitude

range (◦N)

No. of
stations in
calibration

set

Maximum
coverage by

station
aggregation

Calibration
group

coverage (if
different)

Calibration 1A 13.13 2.88 1.70 25-70 15 9(60%) or
11(73%)

15(100%)

Calibration 1B 12.77 2.80 1.72 25-70 15 13(87%) –

Calibration 2A 9.84* 2.37 1.51 25-45
45-70

6
9

5(83%)
9(100%)

4(67%)
–

Calibration 2B 10.66* 2.40 1.69 25-40
40-70

5
10

3(60%)
10(100%)

–
–

Calibration 2C 11.69* 2.72 1.52 25-70
50-60

11
4

9(82%)
4(100%)

–
–

Calibration 2D 12.14* 2.82 1.48 30-70
45-60

9
6

7(78%)
6(100%)

–
–

Calibration 2E 12.96 2.89 1.61 25-60
30-70

6
9

5(83%)
8(89%)

–
–

Calibration 2F 11.98* 2.74 1.55 25-70
45-60

11
4

9(82%)
4(100%)

–
–

Calibration 2G 11.51* 2.67 1.55 25-45
30-70

4
11

4(100%)
10(91%)

3(75%)
–

Calibration 2H 10.97* 2.34 1.91 30-70
45-60

9
6

7(78%)
6(100%)

3(33%)
–

The validation cost for Calibration 1B is significantly lower (at 95%) than the full
15 station calibration (Calibration 1A). Validation costs for split-domain calibra-
tions which are significantly lower (at 95%) than that for the best whole-domain
calibration (Calibration 1B) are marked *. Coverage of the domain or province
is expressed in terms of the number of calibration stations and, in brackets, the
proportion of the domain or province this represents. The two alternative values
for the maximum coverage by station aggregation for Calibration 1A are associated
with different initial station pairs which produce the same final calibration result.

deviations were chosen.

The full set of whole-domain and split-domain calibration results obtained by
applying the calibration algorithm to the North Atlantic domain is summa-
rized in Table C.1. This includes the results for all of the alternative initial
station pairs; those for the station pairs with the lowest group maximum cost

53



Table C.2
Robustness experiments for the North Atlantic domain

Rank Station pair Agg.
penalty

Whole-
domain
calibra-

tion

Size of
province
indicator

group
GA

Size of
calibra-
tion set
DBpot

Rank
in

DBpot

Staion pair Agg.
penalty

Split-
domain
calibra-

tion

1 0711, 0812 62.5 1A 3 10 1
2
3

1113, 1419
1013, 1218
1116, 1318

6.1
10.5
5.2

2B
2B
2B

4 9 1
2
3







as above

2A
2A
2A

9 4 1
2

1113, 1116
1214, 1216

6.6
9.5

2C
2C

2 1113,1419 6.1 1B 8 7 1
2
3

0711, 0812
0709, 0810
0912, 1013

62.5
7.0
15.1

2A
2A
2A

3 1013, 1218 10.5 1A 4 11 1
2
3

0711, 0812
1113, 1419
0709, 1318

62.5
6.1
10.0

2D
2F
2H

7 8 1
2
3

0711, 0812
1113, 1214
0709, 0810

62.5
7.3
7.0

2A
2A
2A

8 7 1
2

1113, 1214
0709, 0812

7.3
7.0

2E
2G

4 1116,1318 5.2 1B – – – – – –

5 0709, 0810 7.0 1B – – – – – –

Province indicator groups were not analyzed for the 4th and 5th station pairs.

deviations, shown in Table 2, are duplicated here for completeness. Table C.2
shows the experiments from which the calibration results were obtained. Each
application of the station aggregation procedure was repeated from step 2
with the alternative initial station pairs. These are ranked in increasing or-
der of their group maximum cost deviations UMAX(~p, H2

BEST(~p)). Inspection
of the pairs’ aggregation penalties, determined after they were selected, shows
that ranking by aggregation penalties would be different. If the rank is in-
tended to reflect the degree to which the station pairs are satisfied by their
own optimal parameter vectors, then this discrepancy implies a ranking er-
ror. Ranking error should be less likely for groups of more than two stations
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because these larger groups are selected using parameter vector search sets
with more pre-conditioning. However, an analysis of aggregation penalties for
alternative groups of larger size is beyond the scope of this paper.

For each alternative station pair, the result of the applying the whole-domain
calibration procedure is tabulated, followed by the results of applying the
split-domain calibration procedure for each of the emerging province indicator
groups, using each alternative station pair in the potential complementary
province. The province indicator groups are distinguished by the number of
stations aggregated. The size of the potential complementary province for each
is then given in terms of the number of stations in its calibration set, to which
the station aggregation procedure is applied.

Each of the 3 alternative station pairs in the whole-domain aggregation for the
North Atlantic domain produced different results in terms of province indicator
groups, giving a total of 7 such groups. When only the highest ranked pair in
the potential complementary province’s calibration set was chosen, this led to
5 different split-domain calibration results, of which 2 were not identified in
the standard application of the method (Calibration 2D and Calibration 2E).
However, for all 3 North Atlantic domain pairs, the split-domain calibration
for at least one of the province indicator groups produced Calibration 2A and
none of the other results improved on this. Calibration 2A therefore appears
to be a robust result.

The use of alternative station pairs in the potential complementary province
aggregation affected the results in only 2 out of the 8 split-domain calibrations.
This did produce 3 additional calibration results, but again all have higher
costs than Calibration 2A. One of these results, Calibration 2H, is the same
as Calibration 2D in terms of the geographical extent of its provinces but
has a different calibration group. The new group gives a lower validation cost
despite its low coverage of 33%.

Although the accepted calibration remained the same throughout, the experi-
ments did reveal an improved whole-domain calibration for the North Atlantic
domain. This calibration, referred to as Calibration 1B (Table C.1), included
13 out of the 15 calibration stations. The excluded stations are Station 0606
(27.5◦N 72.5◦W) and Station 0711 (32.5◦N 47.5◦W): the two stations for which
no winter-time nitrate estimates are available. The median cost for Calibra-
tion 2A is 23% lower than that for Calibration 1B, compared with the 25%
improvement it represents over Calibration 1A, the result based on the full
calibration set. To follow up this result and explore the robustness of the
whole-domain calibration more fully, two more independent station pairs were
tried: those with the 4th and 5th lowest group maximum cost deviations. 3
out of the 5 alternative station pairs produced Calibration 1B. These were also
the 3 pairs with the lowest aggregation penalties. The other 2 pairs produced
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Table C.3
Summary of calibration results for the accepted northern province

Median
validation

cost

r.m.s. residuals

r(log C) r(N )

Domain or
province
latitude

range (◦N)

No. of
stations in
calibration

set

Maximum
coverage by

station
aggregation

Calibration
group

coverage (if
different)

Calibration 2A 9.70 2.16 1.74 45-70 9 9(100%) –

Calibration 3A 10.36 2.31 1.76 45-60
50-70

4
5

4(100%)
5(100%)

–
–

Calibration 3B 9.46 2.16 1.72 45-65
50-70

6
3

6(100%)
3(100%)

–
–

Calibration 3C 9.49 2.21 1.62 45-60
50-70

3
6

3(100%)
6(100%)

–
–

None of the split-domain calibrations have validation costs significantly lower (at
95%) than that for the whole-domain calibration (Calibration 2A). Coverage of the
domain or province is expressed in terms of the number of calibration stations and,
in brackets, the proportion of the domain or province this represents.

Table C.4
Robustness experiments for the accepted northern province

Rank Station pair Agg.
penalty

Whole-
domain
calibra-

tion

Size of
province
indicator

group
GA

Size of
calibra-
tion set
DBpot

Rank
in

DBpot

Staion pair Agg.
penalty

Split-
domain
calibra-

tion

1 1113, 1419 6.1 2A no
groups
found

– – – – –

2 1013, 1218 10.5 2A 4 5 1
2

1113, 1419
1318, 1320

6.1
4.7

3A
3A

6 3 1 1113, 1419 6.1 3B

3 1116, 1318 5.2 2A 4 4 1
2

1113, 1419
1013, 1214

6.1
10.5

3B
3B

5 3 1 1113, 1214 7.3 3C

results which did not significantly improve on that for the full calibration set.
In both cases, the maximum coverage of the domain by station aggregation
was rather low (60% and 73%).

Application of the calibration algorithm to the accepted northern province,
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with 3 alternative station pairs, also produced different results in terms of po-
tential calibration groups for each pair (Tables C.3 and C.4). Whereas the best
station pair had not produced any province indicator groups, the extra pairs
gave a total of 4 between them, leading to 3 different split-domain calibration
results. However, none of these significantly improved on Calibration 2A. The
same 3 parameter vector result, Calibration 3B, was obtained in both of the
experiments where one or more province indicator groups were found. This is
the lowest cost 3 parameter vector calibration. Alternative station pairs were
tried in 2 of the 4 potential complementary province aggregations with no
effect on the results. The calibration algorithm was applied to the accepted
southern province with 2 alternative station pairs. Again, use of the additional
pair did not affect the southern province result, which was that no province
indicator groups for sub-provinces were identified.

In conclusion, the results appear fairly robust to the choice of initial station
pair in the station aggregation procedure, although they may be less so for
larger domains. The best calibration result obtained was not dependent on the
choice of the initial pair. However, the best whole-domain calibration result
was: an improved calibration result was obtained when lower ranked initial sta-
tion pairs were used. This may simply be due to the poor coverage achieved by
aggregation when starting from the highest ranked pair. The results suggest
that the overhead of investigating alternative pairs may be justified, partic-
ularly when coverage is poor. A practical approach might be to pool sets of
parameter vectors optimized for multiple pairs, for the purposes of seeking
the best 3 station group, in the same way that individual station optimization
results were pooled to get the initial search set for seeking the best station
pair.
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