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INTRODUCTION AIM - to answer the following questions... METHODS
Q Silver nanoparticles (AgNPs) are one of the SWIFT periphyton assay according to
particles types with the highest production > Effects on microbial freshwater communities at Porsbring et al., 2007
volume. environmentally relevant concentrations? 1) Colonisation of glass discs by natural
| _ B communities of algae and bacteria for 7-10
J Widespread use of AgNPs will lead to > Are there any nano-specific effects? days in a stream.
environmental release and their
beneficial/wanted microbiocidal effect might | 5 Are their differences in the sensitivity of biofilm —| Exposure to the toxicant in the lab for 96
bec_ome problematic in the natural aquatic algae and bacteria? h_ours under controlled semi-static_conditions
environment (light:dark cycle 16:8 hours & ambient
0 Especially algae & bacteria might be put at » Toxicant induced changes in the community temperature).
risk. structure’? 3 Structural analysis of the algal & the bacterial

0 Predicted concentrations of AGNPs in part of the community:

surface water range from 0.1 to 1 nmol/L Catabolic profiling & physiological activity of
(Gottschalk et al. 2009, 2010,Mueller & Nowack 2008). the bacteria using the Ecolog approach = ability

RESULTS to metabolise different carbon sources.

HPLC pigment profiling: Chl a content as a
» Bacteria reacted more sensitive than algae. biomass indicator & changes in pigment
patterns indicating changes in species
composition and interferences with specific
physiological processes.

» Bacterial part (effects based on average well colour development (AWC), Fig. 1):
AgNP NM-300K (20 nm) > 0.5 nM, AgNP TP (20 nm) > 22 nM, AgNO, between 53 nM — 100 nM.

» Algal part (effects based on Chl a content, Fig. 2):

AgNO, effects > 150 nM, AgNP TP (20 nm) > 300 nM and AgNP NM-300K: > 1300 nM. - Analytical verification of the exposures with
_ _ _ | | ICP-MS/ultrafiltration (total and dissolved silver)
» Comparing AgNO, with AgNPs: AgNO,; more toxic for the algae, AQNPs more toxic for the bacteria. & NTA (agglomeration, NP behaviour, size).

» Analytics suggest differences between nominal and real concentrations in terms of total and dissovled silver.
Testing of two different spherical AgQNPs In
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Fig 1: Average well colour (AWC) development in the © . | 100 bacteria.
Ecologplates over time for selected concentrations of conc. nM
a) AgNO3 b) AgNPs TP c) AgNPs NM-300K, x-axis gives | o v' Link of the ecotoxicological and analytical
time in hours, y-axis OD of the colour development at Fig. 2: % Inhibition of the Chlorophyll a (Chl a) content for 5 data (ICP-MS, NTA and MinteQ modelling).
595 nm different concentrations of AgNO,; and AgNPs
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