NERC Open Research Archive



# Article (refereed) - postprint

Grünhage, Ludger; Pleijel, Håkan; Mills, Gina; Bender, Jürgen; Danielsson, Helena; Lehmann, Yvonne; Castell, Jean-Francois; Bethenod, Olivier. 2012 Updated stomatal flux and flux-effect models for wheat for quantifying effects of ozone on grain yield, grain mass and protein yield. *Environmental Pollution*, 165. 147-157.

10.1016/j.envpol.2012.02.026

© 2012 Elsevier Ltd.

This version available <a href="http://nora.nerc.ac.uk/21008/">http://nora.nerc.ac.uk/21008/</a>

NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at <u>http://nora.nerc.ac.uk/policies.html#access</u>

NOTICE: this is the author's version of a work that was accepted for publication in *Environmental Pollution*. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in *Environmental Pollution*, 165. 147-157. 10.1016/j.envpol.2012.02.026

www.elsevier.com/

Contact CEH NORA team at <u>noraceh@ceh.ac.uk</u>

The NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.

- 1 Updated stomatal flux and flux-effect models for wheat for
- 2 quantifying effects of ozone on grain yield, grain mass and protein
- 3 yield
- 4
- 5 Ludger Grünhage<sup>a,</sup>\*, Håkan Pleijel<sup>b</sup>, Gina Mills<sup>c</sup>, Jürgen Bender<sup>d</sup>, Helena Danielsson<sup>e</sup>, Yvonne
- 6 Lehmann<sup>a</sup>, Jean-Francois Castell<sup>f</sup>, Olivier Bethenod<sup>g</sup>
- 7
- 8 <sup>a</sup> Department of Plant Ecology, Justus-Liebig University, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
- <sup>9</sup> <sup>b</sup> Department of Plant and Environmental Sciences, University of Gothenburg, P.O. Box 461, SE-405 30 Gothenburg,
- 10 Sweden
- 11 <sup>c</sup> Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, UK, LL57 2UW
- <sup>12</sup> <sup>d</sup> Institute of Biodiversity, Johann Heinrich von Thünen-Institute (vTI), Federal Research Institute for Rural Areas,
- 13 Forestry and Fisheries, Bundesallee 50, D-38116 Braunschweig, Germany
- <sup>e</sup> IVL Swedish Environmental Research Institute Ltd., P.O. Box 5302, SE-400 14 Gothenburg, Sweden
- 15 <sup>f</sup> AgroParisTech, UMR 1091 EGC, F-78850 Thiverval-Grignon, France
- 16 <sup>g</sup> INRA, UMR 1091 EGC, F-78850 Thiverval-Grignon, France
- 17
- 18
- 19
- 20 \* Corresponding author:
- 21 Ludger Grünhage
- 22 Department of Plant Ecology, Justus-Liebig University, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
- 23 Tel.: +49 641 99 35314; fax: +49 641 99 19907.
- 24 E-mail address: Ludger.Gruenhage@bot2.bio.uni-giessen.de
- 25
- 26
- 27

## 1 ABSTRACT

2 Field measurements and open-top chamber experiments using nine current European winter wheat 3 cultivars provided a data set that was used to revise and improve the parameterisation of a stomatal 4 conductance model for wheat, including a revised value for maximum stomatal conductance and 5 new functions for phenology and soil moisture. For the calculation of stomatal conductance for 6 ozone a diffusivity ratio between O<sub>3</sub> and H<sub>2</sub>O in air of 0.663 was applied, based on a critical review 7 of the literature. By applying the improved parameterisation for stomatal conductance, new fluxeffect relationships for grain yield, grain mass and protein yield were developed for use in ozone 8 9 risk assessments including effects on food security. An example of application of the flux model at 10 the local scale in Germany shows that negative effects of ozone on wheat grain yield were likely 11 each year and on protein yield in most years since the mid 1980s.

12

13 *Keywords*: Ozone, diffusivity ratio, stomatal flux, flux-effect models, wheat, food security

14

15 <u>Capsule</u>

16 Improved parameterizations of ozone stomatal conductance model for wheat and new ozone flux-17 effect relationships for risk assessments.

- 18
- 19
- 20

21

## 1 1. Introduction

2 Tropospheric ozone  $(O_3)$  is regarded as the most important gaseous air pollutant affecting vegetation. During the last 100-150 years, the background O<sub>3</sub> concentration has increased by a 3 factor up to five and is predicted to continue to increase (e.g. Marenco et al., 1994; Lelieveld and 4 5 Dentener, 2000; Vingarzan, 2004). Since the mid 1980s, ground-level O<sub>3</sub> and its impact on human health and vegetation have increasingly come into focus within the LRTAP Convention<sup>1</sup> of the 6 UNECE<sup>2</sup> and the European Union (EU). There is evidence of widespread adverse effects of  $O_3$  on 7 8 crops and (semi-)natural vegetation in Europe (Hayes et al., 2007; Mills et al., 2011a). As for all 9 gaseous pollutants, the risk assessment methods for ozone to estimate effects on vegetation used by the LRTAP Convention are based on the exceedance of critical levels (CLs), defined as "the 10 11 concentration, cumulative exposure or cumulative stomatal flux of atmospheric pollutants above 12 which direct adverse effects on sensitive vegetation may occur according to present knowledge" 13 (LRTAP Convention, 2010).

14 In the 1990s, exposure-response functions, mainly derived from experimental work in open-top chambers, were used to determine concentration-based CLs for ozone in Europe (based on 15 16  $AOT40^3$ ). However, one of the basic rules of toxicology is that dose-response relationships can only 17 be established if the effective dose (flux) at the target site (e.g. membranes) or at least the absorbed 18 dose (flux) of the stressor is known (Dämmgen et al., 1993; Grünhage and Jäger, 1996; Dämmgen 19 and Grünhage, 1998; Musselman and Massman, 1999; Massman et al., 2000). Research over the 20 last 10 years has led to significant developments in the methods for estimation of  $O_3$  uptake by plants, modelled as the flux of O<sub>3</sub> from the atmosphere through the stomata ( $F_{st}$ ; [nmol·m<sup>-2</sup>·s<sup>-1</sup>]). It 21 has been shown that the cumulative O<sub>3</sub> uptake (*POD*<sub>Y</sub>, Phytotoxic Ozone Dose; [mmol·m<sup>-2</sup> PLA]) 22 above a constant threshold flux of Y nmol  $m^{-2}$  PLA s<sup>-1</sup> (PLA, projected leaf area, i.e. one-sided leaf 23 area index) accumulated over a stated time period during daylight hours (global radiation > 5024 25  $W \cdot m^{-2}$ ),

26 
$$POD_{Y} = \sum_{i=1}^{n} \left[ \max(F_{st} - Y, 0) \cdot \Delta t \right]_{i}$$
 (1)

27 provides stronger relationships with effects than external exposure indices such as AOT40 (Pleijel 28 et al., 2004) and that flux-based risk maps provide a better fit to effects found in the field than 29 AOT40-based risk maps (Mills et al. 2011a).  $POD_Y$  is calculated from hourly values of  $F_{st}$  so n 30 denotes the number of hours included in the calculation and  $\Delta t = 1$ h. On the basis of these and other 31 results, the LRTAP Convention has recommended that flux-based methods are considered for use in

<sup>&</sup>lt;sup>1</sup> Convention on Long-Range Transboundary Air Pollution

<sup>&</sup>lt;sup>2</sup> United Nations Economic Commission for Europe

<sup>&</sup>lt;sup>3</sup> Accumulated ozone exposure over a threshold of 40 ppb, calculated from the hourly mean ozone concentrations at canopy height during daylight hours.

the revision of the Convention's Gothenburg Protocol to protect against effects of acidification,
 eutrophication and ground level ozone (Executive Body of LRTAP, 2009).

3 Recent progress in the development of a toxicologically appropriate dose metric to protect 4 sensitive vegetation (crops, forest trees, (semi-)natural vegetation) was reviewed at LRTAP Convention workshops held in Ispra, Italy (2009) and as part of the 23<sup>rd</sup> ICP Vegetation<sup>4</sup> Task 5 Force Meeting in Tervuren, Belgium (2010). At the latter meeting cumulative stomatal flux-based 6 7 CLs were revised or derived for ten indicators, including effects on the yield of wheat, potato and 8 tomato (LRTAP Convention, 2010 [updated Modelling and Mapping Manual], with critical level 9 values also included in Mills et al., 2011b). For wheat, the revised/new CLs are based on the stomatal uptake by the flag leaf, which provides "an estimate of the critical amount of ozone 10 11 entering through the stomata and reaching the sites of action inside the plant" (LRTAP Convention, 12 2010). The statistically derived constant flux threshold Y is interpreted as a provisional estimate of 13 a detoxification threshold, below which it is assumed that O<sub>3</sub> molecules absorbed by the plant will 14 be detoxified in the apoplast before reaching a target site (e.g. membranes).

The stomatal flux algorithm for wheat is based on the assumption that the O<sub>3</sub> concentration at the top of the canopy ( $c_{O3}(z_h)$ ; [nmol·m<sup>-3</sup>]) provides a reasonable estimate of the O<sub>3</sub> concentration at the upper surface boundary of the laminar boundary layer near the flag leaf, if the roughness sub-layer near the canopy is not taken into account (LRTAP Convention, 2010):

19 
$$F_{\rm st} = c_{\rm O3}(z_{\rm h}) \cdot g_{\rm sto} \cdot \frac{1/(g_{\rm sto} + g_{\rm ext})}{R_{\rm b} + 1/(g_{\rm sto} + g_{\rm ext})}$$
 (2)

where  $g_{\text{sto}}$  represents the actual O<sub>3</sub> stomatal conductance of, in this case, the flag leaf of wheat [m·s<sup>-1</sup>],  $g_{\text{ext}}$  the conductance of the external leaf surface for O<sub>3</sub> [m·s<sup>-1</sup>] and  $R_{\text{b}}$  the resistance of the flag leaf laminar layer for O<sub>3</sub> [s·m<sup>-1</sup>]. There is evidence from flux measurements that deposition of O<sub>3</sub> on e.g. external leaf surfaces exhibits diurnal variation (e.g. Gerosa et al., 2004). While work on models for non-stomatal O<sub>3</sub> deposition is in progress,  $g_{\text{ext}}$  has been provisionally set constant to 0.0004 m·s<sup>-1</sup>.

26 The resistance of the flag leaf laminar layer for  $O_3$  is given by:

$$27 \qquad R_{\rm b} = 1.3 \cdot 150 \cdot \sqrt{\frac{L_{\rm leaf}}{u(z_{\rm h})}} \tag{3}$$

with  $L_{\text{leaf}}$  the characteristic crosswind leaf dimension (in the case of the flag leaf 0.02 m) and  $u(z_h)$ the horizontal wind velocity at canopy height [m·s<sup>-1</sup>]. The constant 150 has the dimension s<sup>0.5</sup>·m<sup>-1</sup>, while the factor 1.3 accounts for the differences in diffusivity between sensible heat and ozone (Massman, 1998, 1999).

<sup>&</sup>lt;sup>4</sup> International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops, reporting to the LRTAP Convention.

1 The dependency of the flag leaf stomatal conductance on solar radiation, temperature and water 2 budgets of the atmosphere and soil as well as on the influence of phenology and  $O_3$  is described 3 according to a multiplicative Jarvis-Stewart approach (Jarvis, 1976; Stewart, 1988; Emberson et al., 4 2000a,b, Pleijel et al., 2007):

5 
$$g_{\text{sto}} = g_{\text{max}} \cdot \left[ \min(f_{\text{phen}}, f_{\text{O3}}) \right] \cdot f_{\text{light}} \cdot \max\left\{ f_{\min}, (f_{\text{temp}} \cdot f_{\text{VPD}} \cdot f_{\text{PAW}}) \right\}$$
 (4)

6 where  $g_{max}$  represents the maximum value of the flag leaf stomatal conductance for ozone and the 7 weighting factors  $f_x$  take values between 0 and 1 as a proportion of  $g_{max}$  (relative g). The  $g_{max}$  value 8 described in Pleijel et al., (2007) was based on published data for six spring wheat cultivars 9 (Kolibri, Astral, Boulmiche, Cadensa, Turbo and Dragon) and one durum wheat cultivar (Janus).

10 Even though it was generally accepted that the flux approach provided a better indicator of risk 11 than the exposure-based CLs, the flux approach in its previous form (Pleijel et al., 2007) had a number of uncertainties. One uncertainty was associated with the fact that the dose-response 12 13 relationship as well as the maximum value of stomatal conductance were derived from 14 measurements performed in the past on wheat cultivars, most of which are currently not in use in 15 agricultural practice: The cultivars Drabant and Satu (used in the dose-response relationship) as well as Kolibri, Boulmiche, Cadensa, Turbo and Janus (used in the derivation of  $g_{max}$ ) have not 16 been registered in the EU common catalogue of varieties (EU, 2009) for at least the last five years. 17 18 Additionally, the relationships were based on spring wheat and durum wheat data, whilst in many 19 parts of Europe winter wheat is the commercially-dominant cereal crop. Other uncertainties in the 20 use of the multiplicative model for regional risk assessments are related to the parameterisation of 21 phenology and soil water potential.

Because  $g_{\text{max}}$  of ozone is related to that of water vapour or carbon dioxide by the ratio of the respective molecular diffusivities, the value of  $g_{\text{max}}$  depends on an appropriate estimate of the molecular diffusivities. Although no new data were available for improving and validating the wheat dose-response relationship, new data for improvement of the parameterisation of the stomatal flux approach for wheat described by Pleijel at al. (2007) were available from field measurements and open-top chamber experiments on nine winter wheat cultivars that are currently in use commercially.

In this paper we describe an update of the Pleijel et al. (2007) model by incorporation of (1) a revised derivation of maximum stomatal conductance for wheat including re-consideration of molecular diffusivity for  $O_3$ ; (2) revised Jarvis-Stewart functions for soil moisture conditions and phenology, including re-consideration of the toxicologically relevant accumulation period for stomatal uptake; (3) a revised dose-response function for effects on yield quantity and new response functions for effects on yield quality (protein yield and grain mass); and (4) by providing examples of the application of the flux-effect relationships for wheat in risk evaluations on a local scale. 1 Thus, the paper describes the progress made in improving the stomatal uptake-effect 2 methodology in order to improve the accuracy of estimates of the risk of ozone pollution effects on 3 wheat yield quantity and quality.

4

#### 5 2. Material and methods

#### 6 2.1. Stomatal conductance measurements

7 To improve the derivation of a maximum stomatal conductance for wheat, data from four sites 8 were used: open-top chamber experiments performed in 2006 at Braunschweig, Germany and in 9 2003 from Vårgårda, 60 km northeast of Göteborg, Sweden, and measurements made in 2009 on 10 wheat growing near Giessen and Braunschweig, Germany, and Grignon, near Paris, France. The 11 2006 study in Braunschweig was for the winter wheat cultivars Astron and Pegassos (cf. Schrader et 12 al., 2009), n = 1031, whilst that for Sweden was for the spring wheat cultivar Vinjett (Uddling and 13 Pleijel, 2006), n=120. In the 2009 studies, stomatal conductance was measured on field grown winter wheat cultivars (Opus, Manager, Carenius and Limes (n = 446) in Linden near Giessen, 14 Cubus (n = 254) in Braunschweig, and Soissons (n = 206) and Premio (n = 224) in Grignon. The 15 16 measurements performed in 2009 in Linden and Braunschweig as well as in 2003 in Vårgårda were 17 used for the revision of the Jarvis-Stewart function for phenology and of the toxicologically relevant 18 accumulation period for stomatal uptake. The measurement performed in Grignon in 2009 on the 19 cultivars Soissons and Premio were used for validation.

The following measurements devices were used: in 2006 in Braunschweig and Sweden a portable photosynthesis system (LI-6400, LI-COR, Lincoln, Nebraska USA), in 2009 in Linden/Giessen and Braunschweig a leaf porometer (SC-1, Decagon Devices, Pullman, Washington USA) and in France in 2009 a portable photosynthesis system (CIRAS-2, PP Systems International, Amesbury, Maryland USA). Instruments were calibrated according to manufacturer's instructions.

25

## 26 2.2. Molecular diffusivity for ozone

27 While in the scientific literature consistent values for the molecular diffusivity constant for water 28 vapour in air have been published, a range of values have been used for  $O_3$ . Based on the review of 29 Massman (1998), a literature survey was conducted to clarify the scientific basis for the different 30 diffusivity ratios and to determine the most appropriate one for the ozone flux model (see Appendix 31 A).

32

### 33 2.3. Yield response functions

The dose response functions for the effects of  $O_3$  on grain yield, grain mass and protein yield were derived using data sets described by Pleijel et al. (2007) and Piikki et al. (2008). These data were from thirteen experiments performed during 1987 to 1999 with field-grown crops with five cultivars (spring wheat: Minaret, Dragon, Drabant, Satu; durum wheat: Duilio) exposed to different  $O_3$  levels in open-top chambers in four countries (Belgium, Finland, Italy and Sweden).

6 The regression of yield with  $POD_6$  (Phytotoxic Ozone Dose above a flux threshold of 6 7 nmol m<sup>-2</sup> s<sup>-1</sup> projected leaf area) was based on the approach described by Fuhrer (1994), i.e. for 8 each data set yield was calculated for zero  $POD_6$ . Thus, zero  $POD_6$  was always associated with no 9 effect at the individual experiment level, and relative yield from different experiments became 10 comparable on a common, relative scale.

11

#### 12 2.4. Modelled versus measured stomatal conductances

A first validation experiment was performed at a winter wheat field in Braunschweig in 2009. Canopy stomatal conductances derived from measurements with a portable gas exchange chamber system (Burkart et al., 2007) were compared with modelled stomatal conductances at leaf level which were upscaled to canopy level applying an improved version of de Pury and Farquhar (1997) sun-shade model (Grünhage et al., 2011).

18

## 19 2.5. Local risk evaluation

20 A local risk evaluation was performed applying the SVAT model CRO<sub>3</sub>PS (Grünhage et al., 21 2011) based on the big-leaf model PLATIN (PLant-ATmosphere INteraction; Grünhage and 22 Haenel, 1997, 2008) incorporating the revised flux model described here. Risk assessments were 23 conducted with O<sub>3</sub> and meteorological data from the Environmental Monitoring and Climate Impact 24 Research Station Linden near Giessen (www.uni-giessen.de/cms/ukl-en) and using the O<sub>3</sub> data from 25 the monitoring station Radebeul-Wahnsdorf provided by Saxon State Agency for Environment, Agriculture and Geology (LfULG) and the meteorological data of the nearby station Dresden-26 27 Klotzsche of the German Weather Service. The calculations were conducted in four steps: (1) 28 upscaling the stomatal conductance of the flag leaf to canopy level, (2) modelling total O<sub>3</sub> flux and 29 calculation of  $O_3$  concentration at canopy top, (3) calculation of flag leaf stomatal uptake and 30 Phytotoxic Ozone Dose  $POD_6$ , and (4) calculation of potential yield loss.

31

### 32 **3. Results and discussion**

## 33 *3.1. Derivation of flag leaf maximum stomatal conductance*

1 According to the stomatal flux approach briefly described in the introduction, stomatal uptake 2 estimations depend on the maximum stomatal conductance value for  $O_3$  which can not be measured 3 directly. Generally, the stomatal conductance for  $O_3$  is related to that of water vapour or carbon 4 dioxide by the ratio of the respective molecular diffusivities *D*:

5 
$$g_{\text{sto},\text{O3}} = g_{\text{sto},\text{H2O}} \cdot \frac{D_{\text{O3}}}{D_{\text{H2O}}}$$
 or  $g_{\text{sto},\text{O3}} = g_{\text{sto},\text{CO2}} \cdot \frac{D_{\text{O3}}}{D_{\text{CO2}}}$  (5)

Because the diffusivity of O<sub>3</sub> in air has never been measured, it must be derived from the known
diffusivity of another gas or its characteristic properties.

8 The diffusivity ratios published in the literature (Table B1, Appendix B) show a variation of 9 approx. 10 % and are derived applying the model of Chen and Othmer (1962), the model of 10 Gilliland (1934) or Graham's law of diffusion (cf. Mason and Kronstadt, 1967).

The mean maximum stomatal conductance for  $O_3$  of 450 mmol m<sup>-2</sup> PLA s<sup>-1</sup> derived in Pleijel et 11 al. (2007) from 7 studies published between 1989 and 2003 was based on a diffusivity ratio 12  $D_{O3}/D_{H2O}$  of 0.613, a value which was derived by applying Graham's law of diffusion. As stated by 13 14 Massman (1998) in his review on molecular diffusivities of trace gases, the application of Graham's 15 law of diffusion for deriving molecular diffusivities from measured ones in air "is in opposition to 16 all theoretical results". Appendix A has been included since Massman's proposed values have been 17 largely ignored by the O<sub>3</sub> flux-effect community. It explains that the Massman diffusivity values at standard temperature and pressure (273.15 K, 1013.25 hPa) are based on a sounder concept. 18 Massman's recommended molecular diffusivity for water vapour of  $0.2178 \text{ cm}^2 \text{ s}^{-1}$  agreed well with 19 the value of  $0.219 \pm 0.004$  cm<sup>2</sup> s<sup>-1</sup> derived by an independent literature survey of Grünhage and 20 21 Haenel (1997). Massman's recommended value for the molecular diffusivity of O<sub>3</sub> is 0.1444 cm<sup>2</sup> s<sup>-1</sup>. Based on the findings described in Appendix A, the ratios  $D_{\text{H2O, air}}/D_{\text{O3, air}}=1.51$  and 22 23  $D_{O3, air}/D_{H2O, air} = 0.663$  were selected. The change to a diffusivity ratio of 0.663 has implications for 24 several scientific areas including: (1) the paramaterisation for total  $O_3$  flux densities in soil-25 vegetation-atmosphere-transfer models needs to be adapted, (2) the ratio of stomatal and nonstomatal  $O_3$  flux will change, and (3) dose-response functions have to be updated. 26

27 The results from measurements on 9 winter wheat cultivars currently in use commercially performed in Linden, Braunschweig and Grignon are summarized in Figure 1 and compared with 28 values in Pleijel et al. (2007). All  $g_{\text{max}}$  values for O<sub>3</sub> are based on the diffusivity ratio  $D_{\text{O3, air}}/D_{\text{H2O, air}}$ 29 of 0.663. Overall, the variation in the range of  $g_{max}$  values is somewhat lower in the "modern" wheat 30 31 cultivars, i.e. cultivars currently in use, compared to the "older" ones, i.e. cultivars no longer grown but used in the derivation of  $g_{max}$  by Pleijel et al. (2007). The average of all  $g_{max}$  values, which are 32 summarized in Table B2 (Appendix B), is 497 mmol  $O_3 \text{ m}^{-2} \text{ s}^{-1}$  (median: 492 mmol  $O_3 \text{ m}^{-2} \text{ s}^{-1}$ ). 33 For modelling purposes, a mean value of 500 mmol  $O_3 \text{ m}^{-2} \text{ s}^{-1}$  is recommended. 34

Obviously, the value of  $g_{\text{max}}$  is the most important factor in stomatal uptake calculations (cf. eq. 4). As illustrated in Fig. 1  $g_{\text{max}}$  can vary to some extent from one wheat cultivar to another. For the evaluation of potential yield losses,  $g_{\text{max}}$  for the derivation of the stomatal uptake-effect relationships, and the  $g_{\text{max}}$  used in any specific crop loss assessment, must be identical. While the improved risk assessment methodology presented in this paper produces more realistic crop loss estimations, these may differ from the actual economic losses due to O<sub>3</sub> for a specific cultivar and a specific site.

8

## 9 3.2. Update of the Jarvis-Stewart functions

10 The stomatal conductance measurements performed on "modern" winter wheat cultivars were in 11 agreement with the parameterizations for  $f_{\text{light}}$  and  $f_{\text{temp}}$  described by Pleijel et al (2007) (data not 12 shown) while the functions for phenology and soil moisture needed updating. As a consequence of 13 changing the diffusivity ratio  $D_{\text{O3, air}}/D_{\text{H2O, air}}$  from 0.613 to 0.663 the coefficients of the Jarvis-14 Stewart function for O<sub>3</sub> were adjusted. The revised parameterisations of the functions for 15 phenology, soil moisture and ozone are described below; the derivation of the unchanged functions 16 ( $f_{\text{light}}, f_{\text{temp}}$ ) are described Pleijel et al. (2007).

17

## 18 *3.2.1. Phenology and toxicologically relevant accumulation period*

The influence of phenology on flag leaf stomatal conductance  $(f_{phen})$  is parameterised based on temperature sums (LRTAP Convention, 2010). In Pleijel et al. (2007) it was assumed that  $g_{max}$ occurred at mid-anthesis and the function shape was defined via two basic values, the start ( $A_{start}$ ) and the end ( $A_{end}$ ) of the accumulation period (linear increase of relative *g* from 0.8 to 1 between  $A_{start}$  and day of mid-anthesis ( $A_{mid-anthesis}$ ), and a linear decrease of relative *g* from 1 to 0.2 between the day of mid-anthesis and  $A_{end}$ . The basis of this parameterisation was stomatal conductance measurements performed in Östad, Sweden, in 1996 and 1999.

The stomatal conductance measurements performed on the nine "modern" winter wheat cultivars and one spring wheat cultivar are summarized in Figure 2. Obviously, a decline of relative g from mid-anthesis to A<sub>start</sub> could not be verified by the new data. Additionally, a linear decrease of relative g after mid-anthesis as assumed in the previous version of the Mapping Manual (LRTAP Convention, 2009) does not fit the new data.

Based on these new data sets, the following revised  $f_{phen}$  parameterisation based on thermal time accumulation (base temperature 0°C) is proposed. A<sub>start</sub> will be equal to 200 degree days before A<sub>mid-anthesis</sub> and A<sub>end</sub> to 700 degree days after A<sub>mid-anthesis</sub>. Accordingly, stomatal uptake is now accumulated over a time period of 900 degree days which is slightly shorter than the period of 970 degree days used by Pleijel et al. (2007). As described in LRTAP Convention (2010), in the absence of observations from phenological networks, the timing of mid-anthesis can be estimated using a temperature sum of 1075 °C days calculated from plant emergence for spring wheat and after 1 January for winter wheat. This value is supported by the observations in the 2009 experiment in Grignon: mid-anthesis occurred 1089 °C days after 1 January for the winter wheat cultivar Soissons and 1102 °C days for the cultivar Premio.

Start and end of the integration period are expressed via temperature sums before  $(f_{phen_e})$  and after  $(f_{phen_i})$  mid-anthesis  $(A_{mid-anthesis}; f_{phen_f})$  with the denotation of  $f_{phen}$  taken from LRTAP Convention (2010) and illustrated in Figure 2. The parameters  $f_{phen_a}$  and  $f_{phen_b}$  denote fractions of  $g_{max}$  that  $g_{sto}$  takes at specific development stages after mid-anthesis defined by  $f_{phen_g}$  and  $f_{phen_h}$ , if all other modifying factors are unity. Thus, the parameterization of  $f_{phen}$  is given by:

12 when 
$$(f_{\text{phen}_f} - f_{\text{phen}_e}) \le \text{tt} \le (f_{\text{phen}_f} + f_{\text{phen}_g})$$
  
13  $f_{\text{phen}} = 1$  (6a)

14 when  $(f_{\text{phen}_f} + f_{\text{phen}_g}) < \text{tt} \le (f_{\text{phen}_f} + f_{\text{phen}_h})$ 

15 
$$f_{\text{phen}} = 1 - \left(\frac{f_{\text{phen}\_a}}{f_{\text{phen}\_b} - f_{\text{phen}\_g}}\right) (\text{tt} - f_{\text{phen}\_g})$$
(6b)

16 when  $(f_{\text{phen}_f} + f_{\text{phen}_h}) < \text{tt} \le f_{\text{phen}_i}$ 

17 
$$f_{\text{phen}} = f_{\text{phen}\_b} - \left(\frac{f_{\text{phen}\_b}}{f_{\text{phen}\_i} - f_{\text{phen}\_h}}\right) (\text{tt} - f_{\text{phen}\_h})$$
(6c)

where tt is the effective temperature sum in degree days using a base temperature of 0 °C. By boundary line analysis  $f_{phen_a}$  is 0.3,  $f_{phen_b} = 0.7$ .  $f_{phen_e} = 200$ ,  $f_{phen_f} = 0$ ,  $f_{phen_g} = 100$ ,  $f_{phen_h} = 525$ and  $f_{phen_i} = 700$  °C days.

As illustrated in Fig. 2a, the form of the revised phenology function (boundary line) fits to the measured conductances. Conductance measurements performed in Grignon, France, in 2009 support the new  $f_{\text{phen}}$  parameterisation (Fig. 2b). However, in comparison with the phenology relationship vs. °C days in CERES-Wheat (Ritchie and Otter, 1983), the revised phenology function shows a slightly delayed progress in senescence.

26

## 27 *3.2.2. Soil moisture*

In the previous versions of LRTAP Convention (2010), a Jarvis-Stewart function describing the effect of soil moisture on stomatal aperture based on soil water potential was used. This function was derived from data published in the peer-reviewed literature. Field evidence suggested that this function did not adequately represent stomatal conductance during periods of drought if the mean soil water potential of the rooted soil layer is used (data not presented), and alternative approaches were evaluated. A conceptual change from a function based on soil water potential to one based on available plant soil water content (*PAW*; range of soil water in the rooted zone between field capacity (*PAW* = 100%) and permanent wilting point (*PAW* = 0%)) was applied.

5 There is evidence from field studies (Burkart et al. 2004, Grünhage et al. 2010, 2011) that 6 stomatal conductance responds to *PAW* below a threshold of 50%. For the revised parameterisation 7 of stomatal response to soil moisture content of wheat, the function according to Sadras and Milroy 8 (1996) was selected:

$$f_{PAW} = 1 \qquad \text{if} \quad PAW_{t} \le PAW \le 100 \%$$

$$f_{PAW} = 1 + \frac{PAW - PAW_{t}}{PAW_{t}} \qquad \text{if} \quad PAW < PAW_{t} \qquad (7)$$

10 where PAW is the actual plant available water content of the rooted zone [%] and  $PAW_t$  is the 11 threshold PAW of 50 % above which relative stomatal conductance is at maximum, i.e. unity. 12 Because the threshold may be depend on soil type, for risk assessments at a specific field site it is 13 recommended to adapt the  $PAW_t$  value for the specific soil conditions.

14

9

#### 15 *3.2.3. Ozone*

Based on observations of the onset of early senescence due to  $O_3$  (Gelang et al., 2000; Pleijel et al., 1997), Pleijel et al. (2002) and Danielsson et al. (2003) included a Jarvis-Stewart function ( $f_{O3}$ ) in  $g_{sto}$  parameterisation to allow for the influence of  $O_3$  on stomatal conductance. The application of the updated diffusivity ratio required an adjustment of the coefficients used in Pleijel et al. (2007). The recalculated  $O_3$  function is

21 
$$f_{O3} = \left(1 + \left(\frac{POD_0}{14}\right)^8\right)^{-1}$$
 (8)

22 where  $POD_0$  is the Phytotoxic Ozone Dose accumulated from  $A_{\text{start}}$  without any threshold.

23

3.3. Updated stomatal flux-based response functions for effects on grain yield, grain mass and
 protein yield

Based on the updated parameterisation of the flag leaf stomatal conductance model described here, the stomatal uptake-effect relationships for effects on wheat were revised and new ones were derived (Figure 3):

relative grain yield =  $1.00 - 0.038 \cdot POD_6$ 

1 relative grain mass =  $1.00 - 0.033 \cdot POD_6$ 

2 relative protein yield =  $1.01 - 0.025 \cdot POD_6$ 

with  $POD_6$  in mmol·m<sup>-2</sup> PLA (PLA is the projected leaf area). The strongest correlations 3 between relative yield (grain yield, grain mass, protein yield) and stomatal flux of O<sub>3</sub> to the flag leaf 4 5 accumulated in the toxicologically relevant period during daylight hours (POD, Phytotoxic Ozone Dose) were obtained using an  $O_3$  flux threshold of 6 nmol  $O_3$  m<sup>-2</sup> PLA s<sup>-1</sup> (Pleijel et al., 2007). In 6 7 comparison with Pleijel et al., (2007), the slope of the regression for effects on grain yield declines because the new stomatal uptake parameterization allows for larger stomatal flux. Because the  $R^2$ 8 9 values are similar to the earlier ones (grain yield:  $0.83 \rightarrow 0.84$ , grain mass:  $0.75 \rightarrow 0.71$ , protein yield:  $0.59 \rightarrow 0.63$ ) it can be concluded that the model system used is robust. The new flux-effect 10 11 relationships for relative grain mass (often expressed as "1000-grain weight" in an agronomic 12 context) and relative protein yield (Figure 3b and c) provide comprehensive quality-based functions, particularly relevant in a of food security context. 13

The response functions shown in Figure 3 were used to derive new flux-based critical levels, above which direct adverse effects may occur (see Mills et al., 2011b for further details). The relationships described in Figure 3 are suitable for quantifying impacts of  $O_3$  and assessing economic losses.

18

#### 19 *3.4. Modelled versus measured stomatal conductances*

20 As illustrated in Figure 4, stomatal conductances calculated according to the new 21 parameterization and upscaled to canopy level fit with canopy stomatal conductances derived from 22 measurements with a portable gas exchange chamber system (Burkart et al., 2007) performed at a 23 winter wheat field in Braunschweig in 2009. The modelled stomatal conductances at leaf level were 24 upscaled to canopy level applying an improved version of de Pury and Farquhar (1997) sun-shade 25 model; for details see Grünhage et al. (2011). T<sub>min</sub> was adjusted to 10 °C based on site-specific 26 observations. The experiment in Braunschweig provides the first validation of the new stomatal 27 conductance parameterization at field level.

28

## 29 *3.5. Examples of the application of the revised flux-effect models at the local scale*

According to the European Council Directive on ambient air quality and cleaner air for Europe (Council Directive 2008/50/EC) local risk assessments for ozone have to be based on the parameters routinely measured by the European air quality monitoring networks. Recently, a SVAT model named CRO<sub>3</sub>PS was published (Grünhage et al., 2011) which provides a validated methodology for a local risk evaluation for winter wheat based on the critical level concept
 described here.

3 A risk evaluation performed for the fields at the Environmental Monitoring and Climate Impact 4 Research Station Linden, Germany, illustrates the potentially strong influence of soil moisture on 5 stomatal O<sub>3</sub> uptake and potential grain yield losses by including and excluding the influence of soil moisture in the rooted zone (Fig. 5). Assuming no soil water limitation on stomatal behaviour, i.e. 6  $f_{PAW} = 1$ , annual POD<sub>6</sub> values are 2 to 5 times higher than the *critical level* of 1 mmol m<sup>-2</sup>. Such an 7 analysis can be interpreted as a worst-case assessment for potential yield losses due to O<sub>3</sub>, which 8 provides the maximum potential yield loss. Depending on soil moisture conditions,  $POD_6$  can be 9 significantly reduced. The differences between both cases can be interpreted as the range of 10 11 potential yield loss due to  $O_3$  at a given site for a particular growing season. The extent of this range 12 is likely to vary with the climatic conditions of the site, more humid sites having a smaller range.

A worst-case  $O_3$  risk evaluation ( $f_{Paw} = 1$ ) over 37 years for relative grain and protein yield is provided in Figure 6 for the monitoring station Radebeul-Wahnsdorf of the air quality monitoring network in Saxony, Germany. This monitoring station exhibits the longest  $O_3$  time series in Germany (since 1974; Fig. 7). The effect of soil moisture could not be considered for this site, because hourly precipitation data are not available.

Annual POD<sub>6</sub> values increased gradually until the mid 1990s reaching more or less constant values of 4 to 5 mmol m<sup>-2</sup> (Fig. 6). From the mid 1980s onwards the critical level of 1 mmol m<sup>-2</sup> for relative wheat grain yield was exceeded every year up to a factor of 5 and the critical levels of 2 mmol m<sup>-2</sup> for grain mass and protein yield were exceeded up to a factor of 2.5. Relative grain yield losses between 15 and 20 % were estimated since 1995 (Fig. 6a); between 9 and 12 % were predicted for relative protein yield losses (Fig. 6b).

24

### **4. Conclusions**

26 The improvement of the stomatal conductance model for wheat described in this paper is based 27 on conductance measurements made on nine different European winter wheat cultivars currently in 28 use commercially and on a literature survey regarding the appropriate value for the molecular 29 diffusivity for O<sub>3</sub>. As a result of the new parameterisations of  $g_{\text{sto, max}}$ ,  $f_{\text{phen}}$  and  $f_{\text{PAW}}$ , the modelled 30 stomatal conductances agree well with upscaled conductances from measurements on winter wheat 31 in Braunschweig. The slope of the regression between relative grain yield and  $POD_6$  to the flag leaf as described in Pleijel et al. (2007) changed slightly, with a small improvement in  $R^2$  from 0.83 to 32 0.84. Based on the data set described in Piikki et al. (2008), additional flux-effect relationships for 33 34 relative grain mass and relative protein yield were derived for the first time for use in risk

1 assessment. Although the stomatal conductance model has been improved using data from currently 2 grown cultivars of wheat, no new data sets are currently available to validate the above mentioned 3 flux-effect relationships. Thus, the dose-response relationships are based on open-top chamber experiments with spring and durum wheat cultivars grown in the late 1980s and 1990s (cf. Pleijel et 4 al., 2007). New exposure experiments, specifically designed to derive and test flux-effect 5 relationships using the most recent cultivars, are required. However, the sensitivity of the response 6 7 functions to the changes in the calibration of the conductance model was small, which indicates that 8 the current response functions are robust.

9 Further improvements would include parameterisation of the dynamics of the O<sub>3</sub> detoxification capacity of the plants. Currently, the statistically derived constant flux threshold of 6 nmol  $m^{-2}$  PLA 10  $s^{-1}$  is removed from the calculated hourly stomatal flux during the accumulation period to account 11 12 for detoxification. Obviously, this constant threshold flux does not reflect any temporal variation 13 (diurnal or through the growing season) of the plant defence capacity. Despite these limitations, the 14 improvements and validation of the parameterisations described here have provided robust flux-15 response relationships using data derived from four European countries with contrasting climates 16 that are applicable for quantifying the growing threat from air pollution to both yield quantity and quality. 17

18 Using the flux-effect relationship described here, significant potential economic losses have been 19 predicted for a large area of Europe including central European countries such as Germany and 20 France, Mediterranean countries such as Italy, and northern countries such as the UK, Denmark and 21 southern areas of Sweden assuming no soil water limitation on stomatal behaviour (i.e. worst-case 22 assessment; Mills and Harmens, 2011). The improvements described in this paper have thus 23 provided a risk assessment method that has been updated for modern cultivars and can be applied at 24 a range of scales from local to regional to assess the growing threat from ozone pollution to the 25 security of food supplies.

- 26
- 27

### 28 Acknowledgements

We thank the Hessian Agency for the Environment and Geology and the German Weather Service for providing the ozone and phenological data, respectively, and Carina Trenkler and Sybille Faust for field work assistance. The work by Håkan Pleijel and Helena Danielsson was supported by the Swedish Environment Protection Agency. Gina Mills thanks Defra (contracts AQ0810, AQ0816 and AQ0601), the LRTAP Convention and NERC for financial support of the coordination of the

- 1 ICP Vegetation. The work by Jean-François Castell and Olivier Bethenod was supported by the
- 2 French National Research Agency, ANR, Vulnoz project.
- 3

4

- 1 References
- Burkart, S., Manderscheid, R., Weigel, H.-J., 2004. Interactive effects of elevated atmospheric CO<sub>2</sub>
   concentrations and plant available water content on canopy evapotranspiration and conductance
   of spring wheat. European Journal of Agronomy 21, 401-417.
- Burkart, S., Manderscheid, R., Weigel, H.-J., 2007. Design and performance of a portable gas
  exchange chamber system for CO<sub>2</sub>- and H<sub>2</sub>O-flux measurements in crop canopies.
  Environmental and Experimental Botany 61, 25-34.
- 8 Chen, N.H., Othmer, D.F., 1962. New generalized equation for gas diffusion coefficient. Journal of
  9 Chemical and Engineering 7, 37-41.
- Council Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on
   ambient air quality and cleaner air for Europe. Official Journal of the European Union L 152,
- 12 11/06/2008, p. 1-44.
- Dämmgen, U., Grünhage, L., 1998. Response of a grassland ecosystem to air pollutants. V. A
   toxicological model for the assessment of dose-response relationships for air pollutants and
   ecosystems. Environmental Pollution 101, 375-380.
- Dämmgen, U., Grünhage, L., Haenel, H.-D., Jäger, H.-J., 1993. Climate and stress in ecotoxicology.
  A coherent system of definitions and terms. Angewandte Botanik 67, 157-162.
- Danielsson, H., Karlsson, G.P., Karlsson, P.E., Pleijel, H., 2003. Ozone uptake modelling and flux response relationships an assessment of ozone-induced yield loss in spring wheat. Atmospheric
   Environment 37, 475-485.
- de Pury, D.G.G., Farquhar, G.D., 1997. Simple scaling of photosynthesis from leaves to canopies
  without the errors of big-leaf models. Plant, Cell and Environment 20, 537-557.
- Emberson, L.D., Ashmore, M.R., Cambridge, H.M., Simpson, D., Tuovinen, J.-P., 2000a.
   Modelling stomatal ozone flux across Europe. Environmental Pollution 109, 403-413.
- Emberson, L.D., Simpson, D., Tuovinen, J.-P., Ashmore, M.R., Cambridge, H.M., 2000b. Towards
   a model of ozone deposition and stomatal uptake. EMEP MSC-W Note 6/00. Oslo:
   Norwegian Meteorological Institute.
- Erisman, J.W., van Pul, A., Wyers, P., 1994. Parameterization of surface resistance for the
  quantification of atmospheric deposition of acidifying pollutants and ozone. Atmospheric
  Environment 28, 2595-2607.
- EU, 2009. Information from European Union Instructions and Bodies Commission. Common
   catalogue of Varieties of agricultural plant species. 28th complete edition. Official Journal of the
   European Union C 302 A/01, 1-639.
- Executive Body for LRTAP, 2009. ECE.EB.AIR/96. Report of the Executive Body on its twenty sixth session held in Geneva from 15 to 18 December 2008. (available at <a href="http://www.unece.org/env/lrtap/ExecutiveBody/welcome.26.html">http://www.unece.org/env/lrtap/ExecutiveBody/welcome.26.html</a>)

- Fuhrer, J., 1994. The critical level for ozone to protect agricultural crops an assessment of data
   from European open-top chamber experiments. In: Fuhrer, J., Achermann, B. (Eds.), Critical
   Levels for Ozone a UN-ECE workshop report. FAC Schriftenreihe (Eidgenössische
   Forschungsanstalt für Agrikulturchemie und Umwelthygiene, Bern) Nr. 16, pp. 42-57.
- Gelang, J., Pleijel, H., Sild, E., Danielsson, H., Younis, S., Selldén, G., 2000. Rate and duration of
  grain filling in relation to flag leaf senescence and grain yield in spring wheat (Triticum
  aestivum) exposed to different concentrations of ozone. Physiologia Plantarum 110, 366-375.
- Gerosa, G., Marzuoli, R., Cieslik, S., Ballarin-Denti, A., 2004. Stomatal ozone fluxes over a barley
  field in Italy. "Effective exposure" as a possible link between exposure- and flux-based
  approaches. Atmospheric Environment 38, 2421-2432.
- Gilliland, E.R., 1934. Diffusion coefficients in gaseous systems. Industrial and Engineering
  Chemistry 26, 681-685.
- Grünhage, L., Braden, H., Bender, J., Burkart, S., Lehmann, Y., Schröder, M., 2011: Evaluation of
   the ozone-related risk for winter wheat at local scale with the CRO<sub>3</sub>PS model. Gefahrstoffe Reinhaltung der Luft 71, 90-97. (available at http://www.uni-giessen.de/cms/CRO3PS)
- Grünhage, L., Haenel, H.-D., 1997. PLATIN (PLant-ATmosphere INteraction) I: a model of plant atmosphere interaction for estimating absorbed doses of gaseous air pollutants. Environmental
   Pollution 98, 37-50.
- Grünhage, L., Haenel, H.-D., 2008. Detailed documentation of the PLATIN (PLant-ATmosphere
   INteraction) model. Landbauforschung Völkenrode, special issue 319, 1-85. (available at
   http://www.uni-giessen.de/cms/ukl-en/PLATIN)
- Grünhage, L., Jäger, H.-J., 1996. Critical levels for ozone, ozone exposure potentials of the
  atmosphere or critical absorbed doses for ozone: a general discussion. In: Kärenlampi, L.,
  Skärby, L. (Eds.), Critical levels for ozone in Europe: testing and finalizing the concepts. UNECE workshop report. University of Kuopio, Department of Ecology and Environmental
  Science, Kuopio, pp. 151-168.
- Grünhage, L., Lehmann, Y., Schröder, M., Braden, H., Bender, J., Burkart, S., Hanewald, K., 2010.
  CRO<sub>3</sub>PS an ozone risk evaluation model for winter wheat at local scale. In: Wuyts, K., Samson,
  R., de Maerschalck, B., Kardel, F., Janssen, S., Engelen, M. (Eds.): Proceedings of the
  international conference on Local Air Quality and its Interactions with Vegetation. January 21-
- 31 22, 2010, Antwerp, Belgium. VITO & University of Antwerp, within the framework of the
- 32 CLIMAQS project (IWT-SBO), Antwerp, pp. 43-48.
- Hayes, F., Mills, G., Harmens, H., Norris, D., 2007. Evidence of widespread ozone damage to
   vegetation in Europe. Bangor, UK: ICP Vegetation Programme Coordination Centre, Centre
   for Ecology & Hydrology. (available at http://icpvegetation.ceh.ac.uk)

- Hodgman, C.D., Weast, R.C., Selby, S.M., 1956. Handbook of chemistry and physics, ed. 37.
   Chemical Rubber Publ. Co., Cleveland, Ohio.
- Jarvis, P.G., 1976. The interpretation of the variations in leaf water potential and stomatal
   conductance found in canopies in the field. Philosophical Transactions of the Royal Society of
   London Series B Biological Sciences 273, 593-610.
- Laisk, A., Kull, O., Moldau, H., 1989. Ozone concentration in leaf intercellular air spaces is close to
  zero. Plant Physiology 90, 1163-1167.
- 8 Lelieveld, J., Dentener, F.J., 2000. What controls tropospheric ozone? Journal of Geophysical
  9 Research Atmosphere 105, 3531-3551.
- Lide, D.R., 1992: CRC handbook of chemistry and physics, ed. 73. CRC Press, Boca Raton,
  Florida.
- LRTAP Convention, 2009. Mapping Manual 2004. Manual on methodologies and criteria for
   modelling and mapping critical loads & levels and air pollution effects, risk and trends. Chapter
   Mapping critical levels for vegetation. 2009 revision.
- LRTAP Convention, 2010. Mapping Manual 2004. Manual on methodologies and criteria for
   modelling and mapping critical loads & levels and air pollution effects, risk and trends. Chapter
- 17 3. Mapping critical levels for vegetation. 2010 revision. (available at http://icpvegetation.ceh.ac.uk)
- Marenco, A., Gouget, H., Nédélec, P., Pagés, J.-P., Karcher, F., 1994. Evidence of a long-term
   increase in tropospheric ozone from Pic du Midi data series: Consequences: Positive radiative
   forcing. Journal of Geophysical Research Atmosphere 99, 16617-16632.

22 Mason, E.A., 1971. Diffusion in gases. In: Sherwood, J.N., Chadwick, A.V., Muir, W.M., Swinton,

- F.L. (Eds.): Diffusion processes. Proceedings of the Thomas Graham Memorial Symposium,
  University of Strathclyde, Vol. 1. Gordon and Breach, London, pp. 3-27.
- Mason, E.A., Evans, R.B., 1969. Graham's Laws: Simple demonstrations of gases in motion.
  Journal of Chemical Education 46, 358-364.
- Mason, E.A., Kronstadt, B., 1967. Graham's Laws of diffusion and effusion. Journal of Chemical
  Education 44, 740-744.
- Massman, W.J., 1998. A review of the molecular diffusivities of H<sub>2</sub>O, CO<sub>2</sub>, CH<sub>4</sub>, CO, O<sub>3</sub>, SO<sub>2</sub>,
  NH<sub>3</sub>, N<sub>2</sub>O, NO, and NO<sub>2</sub> in air, O<sub>2</sub> and N<sub>2</sub> near STP. Atmospheric Environment 32, 1111-1127.
- 31 Massman, W.J., 1999. Molecular diffusivities of Hg vapor in air,  $O_2$  and  $N_2$  near STP and the
- kinematic viscosity and thermal diffusivity of air near STP. Atmospheric Environment 33, 453457.
- Massman, W.J., Musselman, R.C., Lefohn, A.S., 2000. A conceptual ozone dose-response model to
   develop a standard to protect vegetation. Atmospheric Environment 34, 745-759.

- Mills, G., Hayes, F., Simpson, D., Emberson, L., Norris, D., Harmens, H., Büker, P., 2011a.
   Evidence of widespread effects of ozone on crops and (semi-)natural vegetation in Europe
   (1990-2006) in relation to AOT40- and flux-based risk maps. Global Change Biology 17, 592-
- 4 613.
- Mills, G., Pleijel, H., Braun, S., Büker, P., Bermejo, V., Calvo, E., Danielsson, H., Emberson, L.,
  González Fernández, I., Grünhage, L., Harmens, H., Hayes, F., Karlsson, P.-E., Simpson, D.,
  2011b. New stomatal flux-based critical levels for ozone effects on vegetation. Atmospheric
  Environment, 45, 5064 5068.
- Mills, G., Harmens, H. (eds). 2011. Ozone pollution: A hidden threat to food security. Programme
   Coordination Centre for the ICP Vegetation, Centre for Ecology and Hydrology, Bangor, UK.
   ISBN 978-1-906698-27-0. (available at http://icpvegetation.ceh.ac.uk)
- Musselman, R.C., Massman, W.J., 1999. Ozone flux to vegetation and its relationship to plant
   response and ambient air quality standards. Atmospheric Environment 33, 65-73.
- 14 Perry, J.H., 1950. Chemical engineers handbook. 3rd ed. New York: McGraw-Hill.
- 15 Piikki, K., De Temmerman, L., Ojanperä, K., Danielsson, H., Pleijel, H., 2008. The grain quality of
- spring wheat (*Triticum aestivum* L.) in relation to elevated ozone uptake and carbon dioxide
  exposure. European Journal of Agronomy 28, 245-254.
- Pleijel, H., Danielsson, H., Emberson, L., Ashmore, M., Mills, G., 2007. Ozone risk assessment for
  agricultural crops in Europe: Further development of stomatal flux and flux-response
  relationships for European wheat and potato. Atmospheric Environment 41, 3022-3040.
- Pleijel, H., Danielsson, H., Ojanperä, K., De Temmerman, L., Högy, P., Badiani, M., Karlsson,
  P.E., 2004. Relationships between ozone exposure and yield loss in European wheat and
  potato a comparison of concentration- and flux-based exposure indices. Atmospheric
  Environment 38, 2259-2269.
- Pleijel, H., Danielsson, H., Vandermeiren, K., Blum, C., Colls, J., Ojanperä, K., 2002. Stomatal
  conductance and ozone exposure in relation to potato tuber yield results from the European
  CHIP programme. European Journal of Agronomy 17, 303-317.
- Pleijel, H., Ojanperä, K., Danielsson, H., Sild, E., Gelang, J., Wallin, G., Skärby, L., Selldén, G.,
  1997. Effects of ozone on leaf senescence in spring wheat possible consequences for grain
  yield. Phyton (Horn, Austria) 37, 227-232.
- Ritchie, J.T., Otter, S., 1983. Description and performance of CERES-Wheat: A user-oriented
   wheat yield model. USDA-ARS, Grassland Soil and Water Laboratory, Temple, Texas.
- Sadras, V.O., Milroy, S.P., 1996. Soil-water thresholds for the responses of leaf expansion and gas
   exchange: A review. Field Crops Research 47, 253-266.
- 35 Schrader, S., Bender, J., Weigel, H.J., 2009. Ozone exposure of field-grown winter wheat affects
- 36 the diversity of soil mesofauna in the rhizosphere. Environmental Pollution 157, 3357-3362.

- Simpson, D., Fagerli, H., Jonson, J.E., Tsyro, S., Wind, P., Tuovinen, J.-P., 2003. Transboundary
   acidification, eutrophication and ground level ozone in Europe. EMEP Status Report 1, Part I:
- 3 Unified EMEP model description. Norwegian Meteorological Institute, Oslo.
- 4 Stewart, J.B., 1988. Modelling surface conductance of pine forest. Agricultural and Forest
  5 Meteorology 43, 19-35.
- 6 Uddling, J., Pleijel, H., 2006. Changes in stomatal conductance and net photosynthesis during
  7 phenological development in spring wheat: implications for gas exchange modelling.
  8 International Journal of Biometeorology 51, 37-48.
- 9 Vingarzan, R., 2004. A review of surface ozone background levels and trends. Atmospheric
  10 Environment 38, 3431-3442.
- Weast, R.C., Astle, M.J., 1983. Handbook of chemistry and physics, ed. 63. CRC Press, Boca
  Raton, Florida.
- Wesely, M.L., 1989. Parameterization of surface resistances to gaseous dry deposition in regional scale numerical models. Atmospheric Environment 23, 1293-1304.
- Wesely, M.L., Eastman, J.A., Stedman, D.H., Yalvac, E.D., 1982. An eddy-correlation
   measurement of NO<sub>2</sub> flux to vegetation and comparison to O<sub>3</sub> flux. Atmospheric Environment
   16, 815-820.
- 18
- 19

## 1 Appendix A: Derivation of molecular diffusivity for O<sub>3</sub>

As mentioned in section 4.1, the diffusivity ratios summarized in Table B1 (Appendix B) are
derived applying three different concepts:

- the model of Chen and Othmer (1962),
  - the model of Gilliland (1934)
- 6 or

5

7

• Graham's law of diffusion (cf. Mason and Kronstadt, 1967).

8 Laisk et al. (1989) and Massman (1998) calculated  $D_{O3}$  [cm<sup>2</sup>·s<sup>-1</sup>] applying the Chen-Othmer model:

9 
$$D(T,p) = \frac{2.616 \cdot \sqrt{\frac{1}{M_{i}} + \frac{1}{M_{j}}} \cdot (\frac{T}{T_{0}})^{1.81}}{\left(\frac{Tc_{i} \cdot Tc_{j}}{10^{4}}\right)^{0.1405} \cdot \left[\left(\frac{Vc_{i}}{100}\right)^{0.4} + \left(\frac{Vc_{j}}{100}\right)^{0.4}\right]^{2}}$$
 (A1)

10 where *T* is the temperature exposed in K and *p* the standard pressure of 1 atmosphere. The 11 subscripts "i" and "j" refer to the specific gases under consideration,  $M_i$  and  $M_j$  are their respective 12 molecular masses [g mol<sup>-1</sup>],  $Tc_i$  and  $Tc_j$  are their respective critical temperature [K] and  $Vc_i$  and  $Vc_j$ 13 are their respective critical volumes [cm<sup>3</sup> mol<sup>-1</sup>]. The three characteristic parameters were extracted 14 by Laisk et al. (1989) as well as by Massman (1998) from the "CRC Handbook of Chemistry and 15 Physics", while Massman (1998) refer to edition no. 73 (Lide, 1992) and Laisk et al. (1989) to the 16 older ones no. 37 (Hodgman et al., 1956) and no. 63 (Weast and Astle, 1983).

17 Massman (1998) calculates  $D_{O3}$  in  $O_2$  and  $N_2$ . Applying Blanc's law yields for  $D_{O3, air}$ :

18 
$$D_{\text{O3,air}}(T,p) = \left[\frac{0.79}{D_{\text{O3,N2}}(T,p)} + \frac{0.21}{D_{\text{O3,O2}}(T,p)}\right]^{-1}$$
 (A2)

19 The ratio  $D_{\text{H2O}}/D_{\text{O3}}$  from Erisman et al. (1994) was derived applying the model of Gilliland (1934) 20 and the values given in Perry (1950):

21 
$$D = 0.0043 \cdot \frac{T^{3/2}}{p \cdot (V_i^{1/3} + V_j^{1/3})^2} \cdot \sqrt{\frac{1}{M_i} + \frac{1}{M_j}}$$
 (A3)

with *T* is the temperature [K], *p* the atmospheric pressure [atm], the subscripts "i" and "j" refer to the specific gases under consideration,  $M_i$  and  $M_j$  are their respective molecular masses [g mol<sup>-1</sup>] and  $V_i$  and  $V_j$  are their molecular volumes at the normal boiling points [cm<sup>2</sup>/g.mole]. The ratio given in Erisman et al. (1994) results if gas i is O<sub>3</sub> and gas j is H<sub>2</sub>O.

The other values given in Table B1 (Appendix B) are based on Graham's law of diffusion. It can be stated as follows: "*when two gases interdiffuse at uniform pressure, their fluxes are in the inverse*  *ratio of the square roots of their molecular weights*" (Mason and Kronstadt, 1967; Mason and
 Evans 1969; Mason 1971):

$$3 \qquad -\frac{J_{\rm i}}{J_{\rm j}} = \sqrt{\frac{M_{\rm j}}{M_{\rm i}}} \tag{A4}$$

As cited in Mason and Kronstadt (1967), the assumption that "*the diffusion coefficients of gases 2*(identical to gas i in eqs. above) *and 3* (identical to gas j in eqs. above) *into a reference gas 1 should vary inversely as the square roots of the molecular weights of 2 and 3*",

7 
$$-\frac{J_2}{J_3} = \frac{D_{12}}{D_{13}} \approx \sqrt{\frac{M_3}{M_2}}$$
 (A5)

8 is "only a crude approximation for most systems, although it is correct in the limiting case that the 9 reference gas 1 has molecules which are infinitely large and heavy compared to molecules of 2 and 10 3". Obviously, this precondition is not met by air as reference gas 1 and is the explanation for the 11 different values for  $D_{O3, air}/D_{H2O, air}$  given in Table B1 (Appendix B).

12 Massman (1998) stated that "the misapplication of Graham's law" according to

13 
$$\frac{D_{\text{O3,air}}}{D_{\text{H2O,air}}} = \frac{D_{\text{x,air}} \cdot \sqrt{\frac{M_{\text{x}}}{M_{\text{O3}}}}}{D_{\text{H2O,air}}}$$
 (A6)

14 "*is in opposition to all theoretical results*". The coincidence of the ratios of Massman (1998) and 15 Grünhage and Haenel (1997, 2008) can be explained by the choice of  $O_2$  as gas "x" and the applied 16 value of  $D_{O2}$ .

17

## 1 Appendix B

# 2

# Table B1

Diffusivity (D) ratios of different gases in air published in the literature. M is molar mass.

| $D_{\rm H2O}/D_{\rm O3}$                                                                                                                                              | $D_{\rm O3}/D_{\rm H2O}$ | Publication                                                   |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------|--|--|--|
| ACCORDING TO CHEN & OTHMER (1962), CF. APPENDIX A                                                                                                                     |                          |                                                               |  |  |  |
| 1.67                                                                                                                                                                  | 0.599                    | Laisk et al. (1989)                                           |  |  |  |
| 1.51                                                                                                                                                                  | 0.663                    | calculated according to diffusivities cited in Massman (1998) |  |  |  |
| ACCORDING TO GILLILAND (1934) AND PERRY (1950), CF. APPENDIX A                                                                                                        |                          |                                                               |  |  |  |
| 1.5                                                                                                                                                                   | 0.667                    | Erisman et al. (1994)                                         |  |  |  |
| ACCORDING TO GRAHAM'S LAW OF DIFFUSION (CF. MASON & KRONSTADT 1967), CF. APPENDIX A                                                                                   |                          |                                                               |  |  |  |
| $D_{\rm O3} = D_{\rm H2O} \cdot \sqrt{(M_{\rm H2O}/M_{\rm O3})}$                                                                                                      |                          |                                                               |  |  |  |
| 1.63                                                                                                                                                                  | 0.613                    | recalculated from values given in Pleijel et al. (2007)       |  |  |  |
| 1.6                                                                                                                                                                   | 0.625                    | Simpson et al. (2003) after Wesely (1989)                     |  |  |  |
| 1.67                                                                                                                                                                  | 0.6                      | Emberson et al. (2000b)                                       |  |  |  |
| 1.64                                                                                                                                                                  | 0.61                     | Wesely et al. (1982)                                          |  |  |  |
| 1.6                                                                                                                                                                   | 0.625                    | Wesely (1989)                                                 |  |  |  |
| $D_{\rm O3} = D_{\rm O2} \cdot \sqrt{(M_{\rm O2}/M_{\rm O3})} = 0.145 \text{ cm}^2 \text{ s}^{-1}$ with $D_{\rm O2} = 0.178 \text{ cm}^2 \text{ s}^{-1}$              |                          |                                                               |  |  |  |
| and $D_{\rm H2O} = 0.219 \pm 0.004 \cdot \rm{cm}^2 \ \rm{s}^{-1}$                                                                                                     |                          |                                                               |  |  |  |
| 1.51                                                                                                                                                                  | 0.662                    | Grünhage & Haenel (1997)                                      |  |  |  |
| $D_{\rm O3} = D_{\rm CO2} \cdot \sqrt{(M_{\rm CO2}/M_{\rm O3})} = 0.131 \text{ cm}^2 \text{ s}^{-1}$ with $D_{\rm CO2} = 0.137 \pm 0.004 \text{ cm}^2 \text{ s}^{-1}$ |                          |                                                               |  |  |  |
| and $D_{\rm H2O} = 0.219 \pm 0.004 \cdot \rm{cm}^2  \rm{s}^{-1}$                                                                                                      |                          |                                                               |  |  |  |
| 1.67                                                                                                                                                                  | 0.598                    | calculated from values given in Grünhage and Haenel (1997)    |  |  |  |

3 4

## **Appendix B**

## Table B2

)

Derivation of mean flag leaf maximum stomatal conductance for ozone  $(D_{O3, air}/D_{H2O, air} = 0.663)$ 

| Wheat type<br>and cultivar    | Country | Growing conditions   | Measuring<br>apparatus         | Time of day           | Time of year              | g <sub>max</sub> derivation                                               | g <sub>max</sub><br>[mmol O <sub>3</sub><br>m <sup>-2</sup> s <sup>-1</sup> PLA] |
|-------------------------------|---------|----------------------|--------------------------------|-----------------------|---------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Spring wheat,<br>Kolibri      | Spain   | Field                | LI-COR 1600                    | 9 to 13 hrs           | 14 March<br>to 21 May     | cf. LRTAP Convention (2009)                                               | 435                                                                              |
| Spring wheat,<br>Astral       | Spain   | Field                | LI-COR 1600                    | 9 to 13 hrs           | 14 March<br>to 21 May     | cf. LRTAP Convention (2009)                                               | 376                                                                              |
| Spring wheat,<br>Boulmiche    | Spain   | Field                | LI-COR 1600                    | 9 to 13 hrs           | 14 March<br>to 21 May     | cf. LRTAP Convention (2009)                                               | 366                                                                              |
| Spring wheat,<br>Cadensa      | Denmark | Field<br>Lysimeter   | LI-COR 6200                    | (Assumed mid-day)     | August                    | cf. LRTAP Convention (2009)                                               | 660                                                                              |
| Spring wheat,<br>Turbo        | Germany | Field                | LI-COR 1600                    | 11 to 12 hrs          | 17 June to<br>7 August    | cf. LRTAP Convention (2009)                                               | 525                                                                              |
| Spring wheat,<br>Dragon       | Sweden  | Field<br>OTC &<br>AA | LI-COR 6200                    | 13 hrs                | 13 August<br>1996 (AA)    | cf. LRTAP Convention (2009)                                               | 548                                                                              |
| Durum wheat,<br>Janus         | Austria | Field                | Ventilated diffusion porometer | -                     | -                         | cf. LRTAP Convention (2009)                                               | 492                                                                              |
| Winter wheat,<br>Astron       | Germany | OTC (NF)             | LI-COR 6400                    | measured<br>at 10 hrs | 24 May to<br>14 June 2006 | $653 \ mmol \ H_2O \ m^{-2} \ s^{-1}$                                     | 433                                                                              |
| Winter wheat,<br>Pegassos     | Germany | OTC (NF)             | LI-COR 6400                    | measured at 10 CET    | 24 May to<br>14 June 2006 | $650 \ mmol \ H_2O \ m^{-2} \ s^{-1}$                                     | 431                                                                              |
| Winter wheat,<br>Opus         | Germany | Field                | Decagon<br>SC-1                | measured at 11 CET    | 26 May to 02 June 2009    | 839 mmol $H_2O m^{-2} s^{-1}$<br>(adaxial=524, abaxial=315)               | 556                                                                              |
| Winter wheat,<br>Manager - *) | Germany | Field                | Decagon<br>SC-1                | measured at 10 CET    | 26 May to 02 June 2009    | 770 mmol $H_2O m^{-2} s^{-1}$<br>(adaxial=439, abaxial=331)               | 511                                                                              |
| Winter wheat,<br>Carenius     | Germany | Field                | Decagon<br>SC-1                | measured at 13 CET    | 26 May to 02 June 2009    | 729 mmol $H_2O m^{-2} s^{-1}$<br>(adaxial=451, abaxial=278)               | 483                                                                              |
| Winter wheat,<br>Manager + *) | Germany | Field                | Decagon<br>SC-1                | measured at 11:30 CET | 26 May to 02 June 2009    | 849 mmol $H_2O m^{-2} s^{-1}$<br>(adaxial=485, abaxial=364)               | 563                                                                              |
| Winter wheat,<br>Limes        | Germany | Field                | Decagon<br>SC-1                | measured at 11:30 CET | 26 May to 02 June 2009    | 766 mmol $H_2O m^{-2} s^{-1}$<br>(adaxial=510, abaxial=256)               | 508                                                                              |
| Winter wheat,<br>Cubus        | Germany | Field                | Decagon SC-1                   | measured at 11:30 CET | 20 May to<br>02 June 2009 | 894 mmol $H_2O m^{-2} s^{-1}$<br>(adaxial=595, abaxial=299)               | 593                                                                              |
| Winter wheat,<br>Soissons     | France  | Field                | PP systems<br>CIRAS-2          | 11 to 16 CET          | 6 to 27 May<br>2009       | $714.4 \pm 42.1 \text{ mmol } H_2 \text{O } \text{m}^{-2} \text{ s}^{-1}$ | 474                                                                              |
| Winter wheat,<br>Premio       | France  | Field                | PP systems<br>CIRAS-2          | 11 to 16 CET          | 6 to 27 May<br>2009       | $741.6 \pm 72.8 \text{ mmol } H_2 O \text{ m}^{-2} \text{ s}^{-1}$        | 492                                                                              |

\*) Manager - : cultivar Manager grown at a field with non-optimal soil water conditions due to soil texture Manager + : cultivar Manager grown at a field with optimal soil water conditions due to soil texture

Note: Data from LRTAP Convention (2009) can be found in Pleijel et al. (2007)

Figure captions Click here to download Figure: Figure captions.doc

| 1        | Figure captions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3        | <b>Fig. 1.</b> Maximum stomatal conductance for wheat $(D_{O3, air}/D_{H2O, air} = 0.663)$ in a range of different                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4        | cultivars. (dots: $g_{\text{max}}$ values described in the previous version of the LRTAP Convention's Mapping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5        | Manual; diamonds: $g_{\text{max}}$ values derived from measurements on winter wheat cultivars currently in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6        | use commercially)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| /        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8        | <b>P</b> '- <b>2</b> Deleting standard and been demained by the set of the se |
| 9<br>10  | <b>Fig. 2a.</b> Relative stomatal conductance and boundary line for the modifying influence of phenology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10       | on stomatal conductance vs. thermal time from day of find-anthesis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11       | <b>Fig. 2b.</b> Relative stomatal conductance and boundary line for the modifying influence of phenology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12       | on stomatal conductance vs. thermal time from day of mid-anthesis. Validation data set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14       | on stomatal conductance vs. thermal time from day of find antifesis. Validation data set.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 15       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 16       | <b>Fig. 3.</b> The relationship between relative yield of wheat and Phytotoxic Ozone Dose above a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 17       | threshold flux of 6 nmol m <sup>-2</sup> s <sup>-1</sup> (POD <sub>4</sub> ) for the flag leaf based on five wheat cultivars from three or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18       | four European countries (BE: Belgium, EI: Finland, IT: Italy, SE: Sweden) using effective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 19       | temperature sum to describe phenology: a) relative grain yield, b) relative grain mass, and c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 20       | relative protein vield. The dashed lines indicate the 95%-confidence intervals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 21       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 22       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 23       | Fig. 4. Modelled leaf level stomatal conductance upscaled to canopy level vs. measured canopy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 24       | stomatal conductance. Comparison period: 2009-06-06 to 2009-06-17, 11 am to 4 pm CET.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 26       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 27       | Fig. 5. Phytotoxic Ozone Dose $(POD_6)$ and potential grain yield loss for Linden, Hesse, Germany.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 28       | Risk evaluation according to the LRTAP Convention's Mapping Manual (LRTAP Convention,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 29       | 2010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 30       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 31       | - "black and white" for the printed version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 32       | - "coloured" for the Web                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 33       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 34       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 35       | <b>Fig. 6a.</b> Phytotoxic Ozone Dose $(POD_6)$ and potential grain yield loss for Radebeul-Wahnsdorf,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 36<br>37 | Saxony. Worst-case risk evaluation according to the LRTAP Convention's Mapping Manual (LRTAP Convention 2010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 38       | data source: $O_3$ concentration - air quality monitoring network Saxony, meteorological data - monitoring station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 39       | Dresden-Klotzsche of the German Weather Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 40       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 41       | - "black and white" for the printed version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 42       | - "coloured" for the Web                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 43       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 44       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

- 1 Fig. 6b. Phytotoxic Ozone Dose (*POD*<sub>6</sub>) and potential protein yield loss for Radebeul-Wahnsdorf,
- Saxony. Worst-case risk evaluation according to the LRTAP Convention's Mapping Manual
   (LRTAP Convention, 2010)
- 4 data source: O<sub>3</sub> concentration air quality monitoring network Saxony, meteorological data monitoring station
- 5 Dresden-Klotzsche of the German Weather Service
- 6
- 7 "black and white" for the printed version
- 8 "coloured" for the Web
- 9
- 10
- 11 **Fig. 7.** Time series of mean  $O_3$  concentration at the air quality monitoring station Radebeul-12 Wahnsdorf, Germany
- 13
- 14 "black and white" for the printed version
- 15 "coloured" for the Web
- 16



Figure 2a Click here to download high resolution image











# grain yield







grain yield



# grain yield





# protein yield







