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Abstract  

Signatories of the Kyoto Protocol are obliged to submit annual accounts of their 

anthropogenic greenhouse gas emissions, which include nitrous oxide (N2O). Emissions 

from the sectors industry (3.8 Gg), energy (14.4 Gg), agriculture (86.8 Gg), waste water 

(4.4 Gg), land use and land use change (2.1 Gg) can be calculated by multiplying 

activity data (i.e. amount of fertiliser applied, animal numbers) with simple emission 

factors (Tier 1 approach), which are generally applied across wide geographical 

regions. The agricultural sector is the largest anthropogenic source of N2O in many 

countries, responsible for 75% of UK N2O emissions.  Microbial N2O production in 

nitrogen fertilised soils (27.6 Gg), nitrogen enriched waters (24.2 Gg) and manure 

storage systems (6.4 Gg) dominate agricultural emission budgets.  

For the agricultural sector, the Tier 1 emission factor approach is too simplistic to 

reflect local variations in climate, ecosystems and management, and is unable to take 

into account some of the mitigation strategies applied. This paper reviews deviations of 

observed emissions from those calculated using the simple emission factor approach for 

all anthropogenic sectors, briefly discusses the need to adopt specific emission factors 
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that reflect regional variability in climate, soil type and management, and explains how 

bottom up emission inventories can be verified by top-down modelling.  
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1  Introduction 

To keep the projected global average temperature increases within 2oC the EU of pre-

industrial levels, developed countries need to reduce their greenhouse gas emissions by 

25-40% below 1990 levels by 2020 (1). The EU-27, responsible for about 10% of the 

global annual greenhouse gas emissions, have agreed to reduce emissions by 20% by 

2020 and by 80% by 2050. They predict that this reduction can be achieved by 

improved efficiency, new low carbon technologies, renewable energy and abatement 

strategies (2). To monitor progress, greenhouse gas emissions are reported annually and 

are submitted to the UNFCCC (United Nations Framework Convention on Climate 

Change) by individual countries and the EU-27. Emissions of CO2, CH4, N2O and the 

fluorinated greenhouse gases are reported for all anthropogenic sources, which fall into 

the categories (a) energy, (b) industrial processes and product use, (c) agriculture, (d) 

forestry and other land use, (e) waste and (f) other sources (this includes indirect 

emissions as a result of atmospheric N deposition). The reporting follows 

internationally agreed protocols often using simple equations, represented by a ‘Tier 1’ 

methodology (1;3) . The UK in common with most Annex one countries uses IPCC’s 

1996 reporting guidelines (3;4), to prepare emission inventories for the first Kyoto 

commitment period (2008-2012). It is likely that there will be a general move to the 

slightly modified 2006 guidelines (5), after the 2012 inventory reporting. 

The basic Tier 1 approach is useful to compare anthropogenic emissions from different 

countries, but does not capture the well documented variations across climate regions 

and in agricultural management or combustion technologies, the potential effects of 
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mitigation practices (e.g. 6)). Specific methodologies, country/regional, technology 

specific emission factors (Tier 2) and a range of simple to complex process-based 

models (Tier 3) have been developed to address this problem (e.g. (7)). The IPCC 

recommends such improved methods to be used alongside the Tier 1 methodologies, as 

long as these methods are transparent and documented. Tier 2 methodology is applied 

to some of the IPCC categories by some EU countries. For example the Netherlands 

apply a country-specific emission factor for CH4 emissions from animal production, 

UK CH4 emission factors are related to animal live weight, milk production and milk 

fat content, and Sweden uses a mixture of default and national emission factors for 

different sub-sources of direct N2O emissions.  

 

Nitrous oxide is one of the main greenhouse gases and contributes 10% (0.16 W m-2) of 

the total global anthropogenic radiative forcing (1). Due to the decline in CFCs and 

HCFCs emissions N2O is also now the most important ozone depleting molecule in the 

stratosphere (8). The annual global N2O budget is currently estimated at 27.8 Tg N2O y-

1 (range 13.4 - 43.5); microbial processes in soils and aquatic systems are responsible 

for 89% of the annual global N2O emissions. Of this total, natural soils and oceans 

make up the largest components (37% and 21%, respectively) (1); and various 

estimates suggest that tropical forest soils are globally the largest natural source of N2O 

(2.11 Tg N2O y-1 (range 1.38 -3.72) (9), due to high turnover rates and the wet, warm 

environment conducive to N2O production. The anthropogenic emissions from 

agricultural soils are the third most important source (15.8%, or 4.4 Tg N2O y-1; range 

2.7-7.5) and those from rivers, estuaries and coastal zones next (9.6%, or 2.7 Tg N2O-N 

y-1; range 0.8 - 4.6).  

 

In the UK and similar densely populated countries in temperate climates, N2O 

emissions are dominated by anthropogenic sources. Biological emissions from the 

agriculture sector are the main anthropogenic source of N2O and in 2008 accounted for 

approximately 75% of the annual N2O emissions, both in the EU-27 (877.0 Gg) and in 

the UK (87.6 Gg) (10). The remaining source categories: energy, industry, LULUCF 

(Land Use, Land-Use Change and Forestry) and waste are similarly proportioned in the 
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UK (13.2%, 6.6%, 1.8%, 3.9%) and the EU-27 (9.5%, 10.9%, 0.9%, 3.8%) (10). 

Overall the UK emits about 1/10th of the EU-27 annual N2O emissions.  

 

Total UK emissions have steadily declined from 210 Gg N2O in 1990 to 111 Gg N2O in 

2009 (Figure 1). This is mainly due to a sharp decline in industrial emissions by 90%, 

and a decline in agricultural emissions by 23% (Table 1). Below we discuss the 

anthropogenic emission inventory in detail, using the UK situation as an example.  

0

50

100

150

200

250

1990 1995 2000 2005 2010

kt
N

2O
 y

-1

year  

Figure 1: Nitrous oxide emission estimates for the UK, calculated by the NAME-Inversion 
model from atmospheric concentration measurements at Mace Head on the west coast of 
Ireland (solid line, dotted lines represent the 5% and 95% uncertainty estimates) and by the 
bottom –up approach using IPCC Tier 1 emission factors (dashed line) (11-Annex 10), (12). 

 

2    Industrial processes 

  Industrial production of nitric acid and adipic acid contributed 37% (79 Gg) to the 

UK’s annual N2O emissions in 1990, but since then have declined by 90% and now 

only contribute 3% (3.8 Gg) of the total UK annual N2O emission. This reduction was 

achieved by lowering production rates and removing N2O from adipic acid production 

by thermal decomposition, and by lowering the temperature during nitric acid 

production. Similar reductions were achieved by other EU countries (13) . Currently 

nitric acid is manufactured at two locations in the UK and adipic acid production in the 

UK stopped in April 2009 (11). Industrial emissions are monitored by the producers 

and Environment Agency before being reported to the Pollution Inventory. The 

emission factor uncertainty for adipic acid production is 15% and for nitric acid 

production 230% (11-Annex 7). 
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 3 Fuel combustion 

The energy sector (stationary and mobile fuel combustion) contributed 13% of the total 

UK N2O emissions in 2009, and has declined by 28% since 1990 due to effective 

abatement measures and improved combustion efficiencies. Emissions are calculated 

from fuel combustion statistics and emission factors. The emission factor uncertainty 

ranges from 33 to 170% for fuel combustion processes and 195% for other combustion 

processes (11-Annex 7).  

 

4 Biological sources 

Microbial production in soils and aquatic systems (including waste waters) primarily 

via nitrification and denitrification processes is the largest source of N2O. These 

processes are ubiquitous and many microbial species have the necessary suite of 

enzymes to produce N2O (14) . The rate of N2O production and emission to the 

atmosphere depends on climate (rainfall and temperature), soil type, availability of 

mineral nitrogen, the redox potential and pH of the soil/aquatic environment and for 

denitrifiers and heterotrophic nitrifiers the availability of simple carbon compounds 

((15;16;17). The combined requirements of the above variables results in highly 

variable emissions, both in space and time. Consequently biological emissions 

calculated by the IPCC Tier 1 methodology are very uncertain  The combined 

uncertainty range as a percentage of source category is 424% for agricultural soils, 

414% for manure handling and 401% for waste water handling  (11-Annex 8). 

 

4.1 Waste water handling 

Waste water handling (i.e. sewage treatment plants) contributes 4% of the UK N2O 

emissions, produced in activated sludge by nitrification and denitrification processes as 

discussed in detail by (18). Emissions are calculated from per capita protein 

consumption, using the assumption that 1% of sewage N produced is emitted as N2O 

(3), but measurements from treatment plants have shown that emission factors range 

from 0 to 15% (15). Nitrous oxide emissions can be minimised by maintaining high O2 

and small nitrite concentrations during the aerobic part of the waste water treatment, 
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and by maintaining a high C/N ratio during the anaerobic stage (15). N2O emissions 

also occur when sewage sludge is applied to land (11). The emission factor uncertainty 

for waste water handling is 401% (11-Annex 7). 

Table 1: The UK N2O emission inventory in 1990 and 2009 (Gg N2O) (11) 

2009 
Non biological sources 

Industrial processes 79.52 3.82 
Fuel combustion inc. waste incineration1 19.89 14.35 

Biological sources 
Waste water handling  4.04 4.44 

Agriculture: direct emissions 
Manure storage 8.67 6.44 
Agricultural soils:   
Synthetic fertilisers 28.89 18.98 
Animal manure & sewage sludge applied to 9.41 8.65 
Pasture range and paddock manure 16.07 13.29 
Crop residue  7.17 8.46 
N-fixing crops 0.85 0.92 
Cultivation of histosols 0.49 0.49 
Improved grassland 0.54 0.58 

Agriculture: indirect emissions 
Atmospheric deposition 6.42 4.77 
N leaching and runoff 33.69 24.21 
LULUCF   
Forests  0.02 0.01 
Land use change to cropland2 2.54 2.05 
Total 218 3 1123. 

1 waste incineration = 0.14 & 0.15 Gt in 2009 & 1990; 2 for 1990 this included 0.02 Gt land use change to wetland and settlement; 3 the 
overall estimate has been rounded to avoid unjustifiable precision. 

 

4.2 Agricultural activities 

Since the decline in industrial emissions the agricultural sector has been the largest 

source of N2O in the UK and is responsible for more than ¾ of the total annual 

emissions (78% in 2009) (11). The main agricultural sources are fertiliser and manure 

application to soils (23%) and indirect emissions to the atmosphere of NH3 and NOx, 

and to waters of NO3
-, which downstream or when redeposited can be nitrified or 

denitrified and produce N2O (26%). Nitrogen excretion onto pasture, range and 
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paddocks accounted for 12%, crop residue incorporation for 8% and manure storage 

systems for 6% of the UK’s N2O emissions in 2009 (Table 1).  The spatial distribution 

of N2O emissions across the UK clearly shows largest emissions in regions dominated 

by livestock production, the grazed grassland regions in the high rainfall areas in the 

west of GB and  in Ireland, beef production in northeast Scotland and   intensive poultry 

and pig production in eastern England (Yorkshire, Lincolnshire and East Anglia)  

(Figure 2).  Overall agricultural emissions have decreased steadily by ~23% since 1990, 

mainly due to reduced N fertiliser application rates and a decrease in livestock numbers 

(19).  

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: UK N2O emissions from 
agriculture (soils, direct and indirect 
emissions, and manure management), 
calculated for every 5 km2 using the IPCC 
Tier 1 methodology and using 2009 activity 
data (20). 
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4.2.1 Agricultural soils: direct emissions  

Nitrous oxide emissions as a result of mineral fertiliser, animal manure and sewage 

sludge applied to soils, incorporated crop residues, biological N fixation in legumes and 

improved grassland are calculated assuming that 1% of the N applied, incorporated or 

fixed is emitted as N2O) (3). Only the organic rich histosols have a much larger 

emission factor of 8%. In these, high mineralisation rates provide a constant supply of 

mineral N and carbon ideal for denitrification. However, only a small area of histosols is 

farmed in the UK and emissions from these accounted for less than 1% of the total N2O 

emissions in 2009.  

Under optimal conditions, fertiliser application stimulates a rapid rise in N2O emissions, 

which usually only lasts for 1 - 3 weeks (21) (Figure 3). However, in addition to 

fertiliser rate, which is the only factor accounted for by the Tier 1 emission inventory, 

the onset, magnitude and length of fertiliser induced emissions depends on rainfall, 

particularly the timing of fertiliser application in relation to rainfall and temperature, 

soil type, organic matter content in mineral soils, drainage and fertiliser type 

((16;22;23), . Consequently N2O emissions show large seasonal and interannual 

variations (6;24). An example of such variations is reported here from long-term 

monitoring of greenhouse gases from an intensively managed, mostly sheep grazed, 

grassland (25;26). The grassland was fertilised three times during spring/early summer, 

each time with 50 – 70 kg NH4NO3-N ha y-1. Weekly N2O fluxes were measured using 

static chambers throughout the year, with daily measurements immediately after 

fertiliser application, between August 2006 - November 2010 (26). Results for 2007 are 

shown in Figure 3.   
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Figure 3: N2O fluxes from a sheep grazed grassland in SE Scotland. Data are median emissions from 8 
chambers. The fertiliser induced emission peaks are identified by grey bars, the start of these bars mark 
the addition of NH4NO3 (69, 52, 52 kg N ha-1 y-1 on Julian days 73 (14th March), 136 (16th May), and 192 
(11th July), respectively) (Jones & Skiba, unpublished data). 
 

Fertiliser induced emissions were short-lived (< 15 days) and varied in magnitude. 

Collectively the three emission events were responsible for 52% of the total annual 

emission (7.5% (14-30 March) + 16.3% (16-31 May) + 30% (11-23 July) of the total 

annual emissions. In 2008, fertiliser induced emission peaks accounted for 65% and in 

2009 for 27% of the annual flux. For 2007-2009 these seasonal and interannual 

variations could be modelled reasonable well by variations in the rainfall amount from 5 

days before fertilisation until the end of the fertiliser induced emission peak, plus the 

average air temperature during the emission period (Figure 4).  
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Figure 4: The dependence of the magnitude of the N2O emission peaks induced by N fertiliser application 
(FI N2O emissions) on the synergistic influence of rainfall (cumulative rainfall (mm) 5 days before and 
during the fertilised induced N2O emission peaks) and temperature (average air temperature during the 
fertilised induced N2O emission peaks), calculated using a multi-linear regression model (% of total 
annual flux = - 8.81 + 3.18 ln rain + 0.983 temp, r2 = 55.9%, p < 0.05) (x-axis). The data are from weekly 
flux measurements, 2007-2009, at the sheep grazed grassland (see  Figure 3) (Jones & Skiba, unpublished 
data).  
 

The IPCC Tier 1 emission factor approach assumes a linear relationship between N 

fertiliser application rate and emissions, but there is good evidence to suggest that this is 

not the case, with emissions rising more steeply beyond optimum fertiliser application 

rates (22;27;28). A better understanding of this relationship will allow us to determine 

the difference between the currently applied economic optimum fertiliser rate and 

environmentally optimum rates. In some circumstances it may be more appropriate to 

report emissions on a unit yield basis rather than unit area. (29). It is also apparent that 

the chemical form of fertiliser N (28) and crop type (7) can influence emissions. The 

latter study used smaller emission factors for NH4
+ compared to NO3

- based fertilisers, 

and smaller emission factors for arable land compared to grassland to calculate N2O 

emissions for European agricultural land. 

 

4.2.2 Agricultural soils: application of slurry, sewage sludge and manure  

 Most of the N2O generated from the manure management continuum (viz; livestock 

buildings, manure stores, manure treatment and land spreading) occurs after it has been 

spread onto soils (30). Resulting emissions depend on the soil and environmental factors 

discussed previously, but also on the C and N content and N forms of the manure, 

especially the decomposability of the organic material and the ratio of ammonium to 

total N. These factors vary, depending on the origin of the manure, storage conditions, 

treatment process that the manure may be subjected to, and the climate conditions 

during storage (31). The Tier 1 IPCC methodology uses the same N2O emission factor 

for manure spreading as for mineral fertilisers: 1% of the N content of manure is 

emitted as N2O (3). This approach does not reflect the large differences in the manure’s 

chemical composition, its C/N ratio and method of application.  For example, the 

emission factor from pig slurry (7-14%) was larger than from cattle slurry (2-3%) (32). 

This was a result of the larger content of ammoniacal N in the pig manure. Comparing 

N2O emission factors from mineral fertilisers with those from animal manures has 
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provided contrasting results. For example, (33) has shown that N2O emissions from a 

clay loam soil cropped with potatoes were significantly smaller (by 23%) when 

fertilised with pig than with urea. However, (34) reported no conclusive differences 

when applications of cattle slurry with and without calcium nitrate to grasslands on 

sandy soils were compared.  

 

4.2.3 Manure management: storage of animal waste   

Part of the livestock manures require containment and storage prior to spreading, to 

ensure they can be spread when there is a crop demand for the nutrients they contain. 

This is especially important in those areas designated in the UK as Nitrate Vulnerable 

Zones (NVZs). Liquid livestock manure, i.e. slurries, is stored in lagoons or tanks, 

whilst solid manures are stacked in heaps prior to spreading. The anaerobic conditions 

and high C and N concentrations of lagoons, slurry tanks and dung heaps provide 

perfect conditions for methanogenesis and denitrification of a suitable N source (35;36). 

In the UK, manure storage systems are responsible for 15% of the total agricultural CH4 

emissions, but only for 6% (6.4 Gg y-1) of agricultural N2O emissions (11). Nitrous 

oxide emissions are very variable (37) and depend on the C and N composition of the 

manure (which itself depends on the animal species and diet), the temperature and 

storage method and length of storage. The IPCC emission inventory assumes no N2O 

emissions from slurry based livestock buildings and slurry stores, because the slurry 

remains in an anaerobic state and there is little opportunity for NH4
+ to be nitrified 

(untreated slurry contains no or very little NO3
-) (30). However, as reviewed by 

Chadwick(30), crust development can provide a zone of nitrification and hence a source 

of NO3
- which can subsequently by denitrified, so the crust may be a source of N2O 

(38). Amon(35) reported the effects of cattle slurry treatment on N2O emissions during 

storage. Untreated slurry emitted 24 g N2O m-3 slurry, anaerobically digested slurry 

emitted 31.2 g N2O m-3 and aerated slurry 54.2 g N2O m-3.   

The IPCC  emission factor for solid storage systems is 0.02 kg N2O/kg N in the manure 

(3). In reality emissions from solid manure stores are very variable. Typical emissions 

range between 1% and 4.3% of the total N stored in cattle and pig farmyard manure 

heaps were reported by Chadwick(30). Emissions depend on the C/N ratio, dry matter 

content at the start of storage (39) and storage conditions (31;40;41). Although solid 
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manure stores are only a small component of the total agricultural N2O emission budget, 

they are N2O hotspots in the landscape, easily detectable by fast response high 

resolution laser systems (42).  

 

5. 1 Indirect N2O emissions: atmospheric deposition 

The rise in rates of atmospheric N deposition is directly linked to the rise in population 

growth and demand for food and industrialisation (43). Over the last century a total of 

29 Mt of N was deposited to the UK, which is an equivalent of 1.2 t N deposited to 

every ha in the UK (44). Recent deposition rates were about 400 Gg N y-1 in 2006 with 

approximately 50% each of reduced (NHx) and oxidised (NHx) N (45). Agriculture is by 

far the largest source of NHx, predominately as NH3 and NH4
+ emitted from livestock, 

manure storage and N fertilisers. Combustion processes are the main source of NOx and 

10-20% of the global total is emitted from microbial nitrification in soils (46). These 

gases are deposited downwind of the original source as a gas, aerosol (dry deposition) 

or through precipitation (wet deposition) and unintentionally fertilise ‘natural’ 

ecosystems. Consequences are changes in species composition (47) and increased rates 

of NO and N2O emissions (48;49) .  

Agriculture related indirect N2O emissions from atmospheric deposition are calculated 

by the IPCC Tier 1 methodology assuming that 10% (range 3 – 30%) of mineral 

fertiliser and 20% (range 5 – 50%) of the organic N fertiliser or excreta from grazing 

livestock are volatilised and 1% (range 0.2 – 5%)  of the deposited N is emitted as N2O 

(3). In the UK this sector accounts for 4.8 Gg N2O in 2009 (11). Indirect emissions due 

to NOx and NH3 emissions from non-agricultural sources do not need to be included in 

national inventories, but can be calculated assuming that 1% of the NOx-N and NH3-N 

emitted is deposited as N2O (3). This is likely to overestimate this source as only a third 

of the UK’s NOy emissions (580 Gg in 2005) are deposited to the UK (45); the rest is 

deposited to other countries and the seas. The more accurate approach would be to 

calculate N deposition induced N2O emissions directly from atmospheric N deposition 

rates. 

Soil microbes do not distinguish between N applied via fertilisation or atmospheric 

deposition so one can assume that the emission factor applied to calculate fertiliser 
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induced emissions is applicable also to atmospheric deposited N. Thus 1% of the 400 

Gg N annually deposited (4 Gg N) is emitted as N2O-N (6.3 Gg N2O). Similar to 

fertilised soils, there are large variations in emissions in relation to atmospheric 

deposition due to variations in soil type, vegetation, climate and rate of N deposition; 

the relationship may not be linear (Figure 5), and should be further investigated.  
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Figure 5: The relationship between N2O and N deposition from forests, heather and grass 
moorlands on mineral soil in Great Britain. Locations with N deposition rates > 40 kg N ha-1 y-1 
were close to NH3 emitting livestock farms. These measurements were made by CEH between 
1991 and 1997 (48;49). 

 

5. 2 Indirect N2O emissions: NO3
- leaching and runoff  

A proportion of fertiliser, manure, sewage sludge and excreta N is lost through leaching 

and surface runoff to groundwater, rivers and estuaries, where N2O is produced via 

nitrification and denitrification in sediments and the water columns ((50)(51) . Nitrous 

oxide is highly soluble in water (0.15 g/100 ml (15 °C), and often supersaturated by 

several orders of magnitude of ambient atmospheric N2O concentrations. Emissions to 

the atmosphere are highly variable and depend on the solubility, the water to air 

pressure difference and transfer velocity (which increases with windspeed and 

turbulence).  For example maximum N2O emissions were measured where field drains 

feed into a river (52). In general, N2O emissions from aqueous systems are directly 
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related to N concentrations in the water (53). The Tier 1 IPCC approach assumes that 

30% (range 10-80%) of the fertiliser or manure N applied to soils is lost to the water 

bodies when rainfall > 0.5* pan evaporation (616 Gg in 2009) and that 0.75% (range 

0.05 -2.5%) of the leached N is emitted as N2O, 0.25% each from groundwater and 

surface drainage, rivers and estuaries (3). The IPCC has reduced the emission factor for 

these sources from 2.5%, based on experimental evidence (50). However, (54) et al 

(2011) estimated that 0.75% (range 0-0.9%) of the dissolved inorganic nitrogen input to 

rivers is emitted as N2O, based on measurements in the USA. The UK still uses the 

IPCC 1996 default value of 2.5% and N2O emissions due to leaching and runoff amount 

to 24.2 Gg y-1 (Table 1). The new IPCC 2006 emission factor (0.75%) calculates 

indirect N2O emissions of aqueous bodies as only 4.6 Gg y-1 (2009), with 1.5 Gg 

emitted from each the groundwaters, rivers and estuaries. Studies are needed to identify 

the most appropriate emission factor for the UK. An annual emission of 1.5 Gg N2O 

from estuaries, calculated  with the newer 0.75% emission factor is in good agreement 

with a recent measurement based estimate by (51) (1.9 ± 1.2 Gg N2O y-1; the 

uncertainty is 64%).   

 

6 Land use and Land use change (LULUCF)  

Nitrous oxide and CH4 emissions from forests, and land use change from and to forests, 

have only very recently been included in the LULUCF inventory. Annual emissions 

from the LULUCF sector are very small (<2% of UK 2009 emissions). Anthropogenic 

activities leading to N2O emissions considered are N fertilisation to newly planted forest 

and emissions due to soil drainage, but reporting on this latter activity is currently not 

mandatory. Direct fertiliser-induced N2O emissions from forests are calculated using the 

same emission factor as used for fertilised agricultural soils. Fertiliser is rarely applied 

to forests, and so far the annual inventory has been set at zero. Emissions due to forest 

management, such as felling and thinning are not considered, although these activities 

could potentially change N2O emission rates by altering the soil water content due to the 

absence of trees (felling) or reduction of shading (thinning). Indirect emissions due to 

atmospheric N deposition is not included either, in spite of observations that deposition 

rates to forests can be 2 to 3 fold larger than to shorter vegetation (44) and can be 

especially large to small forests in intensively managed agricultural areas  (48;49).  
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Conversion of one land use to another invariably requires ploughing and perhaps 

drainage, and forest converted to cropland or grassland needs to be clear felled. These 

activities stimulate soil organic matter mineralization and increase soil mineral N 

concentrations. In the absence of plants there is no competition for this newly available 

N, thereby maximising substrate availability for microbial nitrification and 

denitrification and release of N2O. The few studies on the effect of clear-felling on 

greenhouse gas fluxes revealed that clear-felling resulted in a pulse of N2O, NO and 

CO2 emissions (55;56;57) Morison et al. (58) have compiled the data relevant to the 

UK, which demonstrates that N2O emissions from forests are influenced by soil type 

and that clear-felling may increase N2O emissions in the short term (Figure 6).   
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Figure 6: Comparison of N2O emissions from British forests (F) grown on different soil types. 
Average and standard error of the mean for F-min = 7 forests/woodland plantations on mineral 
soil, F-org-min = 5 forests on peaty podzols and peaty gleys, F-org-min, felled = 2 clear-felled 
plantations, F-peat = 3 plantations on peat (58)(Morison et al.  2011). 

 

Growing interest in perennial bioenergy crops is likely to increase areas undergoing 

land use change. Perennial bioenergy crops are favoured over annual crops because 

they sequester carbon over 15-20 year periods and have very low N fertiliser 

requirements, thus much lower N2O emissions (59;60). However, they are 

economically productive for a finite period only, at the end of which they will be 

removed. Removal by clear-felling is one option, but as shown in Figure 6, there are 

too few studies to predict the rate and length of increased emissions of N2O and other 

greenhouse gases triggered by clear-felling. There is urgent need to understand clear-
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felling effects on greenhouse gas emissions, and account for these in life cycle analyses 

(60). 

The total area in the UK converted to wetlands is restricted to small insignificant areas 

of newly created riparian zones, along rivers in NVZs, or reinstating peat wetlands. 

This activity has a potential to decrease N2O emissions if the soil water-filled pore 

space can be maintained above 90% (16). Under such conditions anaerobic conditions 

and accumulation of soil organic matter content will favour denitrification to proceed to 

N2 rather than stop at N2O production, which is generally the case in more aerobic soils. 

The uncertainty of this source is very high, and depends on maintaining a high water 

table. In spite of lack of data to calculate N2O emissions from the LULUCF sector, 

surprising small levels of uncertainty of 20% were calculated for all LULUCF 

categories, except for the conversion to croplands, which have an uncertainty of 50% 

(11-Annex 7)  

 

7 Natural emissions 

Nitrous oxide emissions from ‘natural’ ecosystems are not included in the UK’s 

anthropogenic emission inventory. Nitrogen inputs and losses, including N2O to and 

from ‘natural’ environments tend to be small (26). For a country like the UK, where 

only about 20% of the land area is not used for agriculture or settlements (12% is in 

forest, the rest are heaths, moorlands, bogs and montane ecosystems) it is difficult to 

separate natural emissions from those resulting from enhanced N deposition rates. In a 

review of greenhouse gas fluxes from natural ecosystems Dalal and Allen(61) 

calculated average emissions of 1.57 kg N2O ha-1 y-1 for temperate forests and 0.55 kg 

N2O ha-1 y-1 for temperate grasslands. Based on the above mentioned emission rates 

natural emissions in the UK may contribute an extra 5.8 Gg of N2O to the 

anthropogenic emission inventory.  

 

8 Developing Tier 2 emission factors for the UK for agriculture 

The current largely Tier 1 based N2O inventory methodology used in the UK is a fairly 

blunt tool. For the main N2O source, the  agricultural sector, there is now a requirement 
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to produce a reporting tool that better reflects the climatic and soil variability and 

production systems (including N management) throughout the UK. Importantly, any 

new approach should explicitly account for mitigation practices so that their uptake is 

fully reflected in emission estimates. An improved inventory approach will not only be 

used for reporting UK agricultural N2O emissions to the UNFCCC, but will also allow 

the UK Government to track progress against the challenging targets it has published in 

its low carbon transition plan, i.e. an 80% reduction in greenhouse gas emissions (CO2 

equivalents) by 2050 (2), and assist the agricultural industry to monitor progress against 

the sector roadmaps. Tier 2, country specific emission factors will need to be generated 

through a carefully co-ordinated approach to modelling, reviews of existing literature 

and experiments. These activities will provide temporally and spatially disaggregated 

direct and indirect N2O emissions factors for the major sources of N (fertiliser, dung 

and urine, and livestock manure applications to land). The efficacy of key potential 

mitigation methods will need to be tested and introduced into the new inventory 

structure, e.g. use of nitrification inhibitors. The complexity of the new inventory will, 

by necessity, be increased, not only through the increased level of disaggregation, but 

also through our growing level of understanding of the controls on N2O emissions, and 

how these are influenced by on-farm management decisions.  

The development of Tier 2 emission factors is an interesting scientific endeavour per 

se, but represents only one part of the inventory calculation. Activity data, e.g. livestock 

numbers, annual N excretion by different livestock, knowledge of the grazing season 

length, application rates of different N fertiliser forms etc., are just as important in 

determining the total source of N2O from any region and at any point in time. Thus, a 

hugely important component of the development of a Tier 2 approach is to ensure that 

this information is available at the most suitable level of disaggregation (in both time 

and space). Indeed, the spatial and temporal availability of appropriate activity data is 

the limiting factors in the ability to generate robust estimates of N2O emissions at a 

given spatial scale.  

Given the increased complexity of producing a reporting tool that better reflects the 

range of soil, climate and farming systems in the UK (that a Tier 2 approach requires), 

it is not necessarily the case that the overall uncertainty value for the annual UK 

agricultural N2O emission total will be less than the current Tier 1 estimate, i.e. +-

250%, although it is very much hoped that it will. What is of key importance, is that the 
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revised approach will allow the uncertainty to be apportioned to the different steps and 

parts of the inventory, allowing us to focus future resources on research (perhaps 

improved emission factors or /and improved spatial and temporal activity data) to 

reduce those uncertainties. Section 9 describes how the new (bottom up) inventory 

could be verified, by a top down modelling approach.  

 

9 Verification of the UK N2O emission inventory 

In order to provide verification of the UK greenhouse gas inventory the UK 

government maintains a high-quality remote observation station at Mace Head on the 

west coast of Ireland. Mace Head reports high-frequency concentrations of the key 

greenhouse gases (62). A Lagrangian dispersion model NAME (Numerical 

Atmospheric dispersion Modelling Environment) (63;64) driven by three-dimensional 

modelled meteorology is used to interpret the observations. NAME determines the 

history of the air arriving at Mace Head at the time of each observation. Deviation from 

the baseline is used to estimate the N2O source strength of the UK and regions of NW 

Europe. This NAME-inversion methodology uses an iterative best-fit technique which 

searches a set of random emission maps to determine the one that most accurately 

mimics the Mace Head observations (65). The ‘top-down’ NAME-inversion estimates 

of UK emissions 1990-2010 are compared to the ‘bottom-up’ greenhouse gas inventory 

estimates and are shown in Figure 1. The median NAME-inversion estimates are 

approximately 30-40 kt lower than the greenhouse gas inventory estimates throughout 

the whole time period. The trends in the time-series are in good agreement with both 

showing declining UK totals. The  greenhouse gas inventory estimates show a sharp 

decline (40 Gg) between 1998 and 1999 in line with the introduction of the clean 

technology at an adipic acid plant in Wilton, north east England. The NAME-inversion 

estimates, with a longer averaging period, show a more gradual decline from 1998 to 

2003 but the overall reduction is similar.  

More direct measurements of N2O and other greenhouse gas emissions from aircraft 

have also used inversion methods to deduce the UK source strength and its spatial 

distribution (66). Improved validation of the UK greenhouse gas emission inventories 

could be provided by a network of tall towers monitoring greenhouse gas 

concentrations across the UK and aircraft measurements.  
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10 Conclusions 

The above account of the deviations of observed N2O emissions from those calculated 

using the Tier 1 emission factor approach clearly shows that this methodology is too 

simplistic to reflect regional variations of biologically produced N2O emissions or 

provide the best estimate of the UK source strengths. The reasonably good agreement 

of the bottom-up emission factor and top down inverse modelling approaches imply 

that total UK N2O emissions may be accounted for adequately, but the attribution to 

individual sources using the bottom up methodology within the agricultural sector 

needs to be refined taking into consideration regional variations in climate, soil 

properties and seasonal agricultural management. Developing a methodology that can 

account for such variations is not a trivial task. In spite of the wealth of N2O emission 

measurements made in the last 20 years, there are still not enough long-term data sets to 

provide the information needed to develop emission factors for the range of 

combinations of different climate zones or soil types and N sources. Modelling is 

required to aid the interpolation between measured scenarios.Adopting Tier 2 

methodologies requires detailed knowledge of variations of emissions in relation to 

easily measureable activity data. All sectors (energy, industry, wastewater, agriculture, 

LULUCF) would benefit from adopting Tier 2 emission accounting. But in the first 

instance, Tier 2 methods need to be developed for the largest N2O emitter, the 

agricultural sector. A Tier 2 approach should provide a more transparent and accurate 

picture of N2O emissions, capable of reflecting changes in soil and N management and 

take explicit account of mitigation strategies. Improved verification of the new 

approach to inventory reporting could be obtained by monitoring atmospheric N2O 

concentrations from a more extensive tower network across the UK.  
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