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Abstract 22 

PBDE contamination in terrestrial biota is relatively poorly characterised and robust 23 

data on temporal trends are scarce. We determined long term (1985 – 2007) trends in the UK 24 

terrestrial environment by measuring PBDE concentrations in the eggs of a sentinel species, 25 

the sparrowhawk (Accipiter nisus).  Five BDEs were the most abundant (BDE 99> 47>153> 26 

100> 154) and their concentrations, and that of the sum PBDEs (ΣPBDE), increased from the 27 

mid-1980s, peaking in the mid-late 1990s at levels that were sustained until the end of the 28 

study. This, and the predominance of BDE99, contrast with patterns in piscivorous species 29 

and suggest sparrowhawks, and perhaps terrestrial species more widely, may be relatively 30 

poor metabolisers of penta-BDEs.  BDE 196, 197, 201 and 203 concentrations increased 31 

linearly through the study, indicating ongoing, increasing contamination, possibly from the 32 

presence of these congeners in, and/or debromination of, deca-BDE formulations.  Overall, 33 

ΣPBDE concentrations in eggs (34 - 2281 ng/g wet weight) were some of the highest ever 34 

reported in birds from Europe.  We found no relationship between ΣPBDE concentrations 35 

and eggshell thickness but 18% of the sparrowhawk eggs collected between 1994 and 2007 36 

had concentrations >1000 ng/g, a threshold concentration associated with adverse 37 

reproductive effects in other raptors.    38 

 39 

 40 

 41 

 42 

 43 
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INTRODUCTION 44 

Polybrominated diphenyl ethers (PBDEs) are flame retardants added to plastics, 45 

textiles, foams and other materials to enhance their fire resistive properties (1).   They have 46 

been used globally since the 1970s (2) in three technical formulations, Penta- (PeBDE), Octa- 47 

(OBDE) and Deca- (DeBDE).  Although legislation has led to the phasing out or banning of 48 

PeBDE and OBDE mixtures in the EU and North America, in-use products act as 49 

contemporary sources with dust and vapour releases a significant pathway (3).  Levels in 50 

environmental matrices and biota are enhanced in and around urban areas and industrial 51 

conurbations (4, 5).  DeBDE it is currently unrestricted for non-electronic/electrical uses, 52 

which made up the bulk of its applications (6), and may be a source of lower brominated 53 

congeners.  Several studies have demonstrated degradation of BDE209, the primary 54 

component of DeBDE, in biotic and abiotic systems (7, 8).  55 

In some countries, such as the UK, the cessation of use of PeBDE and OBDE 56 

technical mixtures has resulted in a subsequent decline in soil and air concentrations of some 57 

of the BDEs associated with these technical mixtures (9, 10, 11). Analysis of sediment cores 58 

from the UK coast also indicate that concentrations of some lighter congeners have decreased 59 

(12, 13).  Similar temporal trends have been observed in Swiss lake sediments (3).  Studies of 60 

temporal changes in PBDEs concentrations in biota from the European Union have largely 61 

focussed on aquatic species (12, 14-16) although only four have reported temporal trends in 62 

any detail (14, 17-19).  Generally, levels of PBDEs in aquatic organisms mirror the 63 

legislatively-mediated reductions in environmental inputs and concentrations. 64 

PBDE contamination has been less widely studied in terrestrial wildlife (20) and 65 

studies have often focussed primarily on spatial rather than temporal variation in 66 

contamination (4, 21). Trends in DeBDE concentrations in terrestrial raptors from the UK 67 

and Sweden have been reported (22)  and there have been two detailed time-trend studies of 68 
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wider PBDE contamination from mainland Europe, one in tawny owl (Strix aluco) eggs (23) 69 

and the other in peregrine falcon (Falco peregrinus) eggs (24).  Detected PBDEs declined in 70 

concentration over time in tawny owl eggs, but only significantly for BDEs 47 and 153.  71 

PBDEs concentrations in peregrine eggs rose and then subsequently declined, a pattern 72 

similar to that in aquatic fauna, and it is unclear to what extent the peregrines may have fed 73 

on seabirds rather than, or as well as, terrestrial prey.  The differences in temporal PBDE 74 

trends between these studies, and the scant availability of data overall, suggest there is no 75 

clear general temporal pattern for PBDE contamination in the eggs of terrestrial birds.  There 76 

are no long-term data on PBDE concentrations in terrestrial species in Britain.   77 

The sparrowhawk, an apex terrestrial predator that preys on small passerine birds, 78 

nests largely in rural woodland but also in urban areas where the opportunity arises (25).  79 

They have been used as a sentinel species for monitoring trends in environmental 80 

contamination with organochlorine pesticides (26), polychlorinated biphenyls and mercury 81 

(27). Our overall aim in the present study was to determine temporal and spatial trends in 82 

PBDE contamination in the UK terrestrial ecosystem using sparrowhawk eggs as an 83 

environmental monitoring tool. We had several specific objectives.  The first was to 84 

determine how individual congener PBDE concentrations, sum PBDE (ΣPBDE) 85 

concentrations and congener profile varied in eggs over time. The second objective was to 86 

examine if PBDE concentrations in sparrowhawk eggs varied spatially such that they were 87 

positively associated with proximity to human populations. This was because the density of 88 

people has previously been found to be positively correlated with ΣPBDE concentrations in 89 

birds eggs in North America and Europe (4, 5), and with more highly brominated congeners 90 

in peregrine falcon eggs in the US (28), consistent with the concept that environmental PBDE 91 

concentrations are highest in proximity to anthropogenic sources (5).  As part of this spatial 92 

analysis, we also explored whether PBDE concentration varied in relation to land-use type as 93 
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sewage applied to agricultural land may also be a potential source of PBDEs to the terrestrial 94 

food chain (29).  Our final objective was to determine if there was any relationship between 95 

egg PBDE concentrations and eggshell thickness,  as PBDEs have recently been associated 96 

with eggshell thinning in at least one raptor, the American kestrel (Falco sparverius) (Fernie 97 

30).  98 

 99 

EXPERIMENTAL SECTION 100 

Egg sampling and analysis. Failed or abandoned sparrowhawk eggs were taken from 101 

nests by licensed egg collectors and archived as part of the monitoring activities of the 102 

Predatory Bird Monitoring Scheme (PBMS) in the UK (27; 31).  Egg weight, length and 103 

breadth were measured and the eggs were then blown or cracked open.  The shells were 104 

washed, air-dried and reweighed, while the egg contents were homogenised and stored in 105 

glass jars at -20oC until analysed. Samples were selected from the PBMS archive for PBDE 106 

analysis based on the criteria of covering the longest temporal period in eggs from the 107 

smallest possible geographical area, which was found to be the region of England directly 108 

east and within 250 km of the Welsh border (Figure SI-1).  Sampling years were determined 109 

by the availability of eggs in the archive, the criterion being that three-five eggs, each from a 110 

different nest, were available for analysis for each sampling year.  There were sufficient eggs 111 

for 10 sampling years that spanned the period 1985-2007. When more than one egg was 112 

available from any given nest, the egg for analysis was selected at random as laying order 113 

was not known.  114 

Egg homogenates were extracted, cleaned and analysed as described elsewhere (Crosse 115 

19).  The mean (± SD) wet weight (wet wt.) and % lipid content of egg homogenates (n = 43) 116 

were 1.98 ± 0.34 g and 8.35 ± 6.30%, respectively.  The cleaned-up extract was analysed by 117 
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Gas Chromatography Mass Spectrometry (GC-MS, Thermo-Finnigan Trace MS) fitted with a 118 

ThermoQuest AS2000 autosampler and using a 30m CPSIL-8 CB pesticide column (0.25 mm 119 

diameter, 0.12 µm internal diameter) and calibrated using seven PBDE standards in a linear 120 

range 2.5-250 pg/ul. Eggs were analysed for a suite of 27 PBDE tri-Octa BDE congeners (17, 121 

28, 32, 35, 37, 47, 49, 51, 66, 71, 75, 77, 85, 99, 100, 118, 119, 126, 128, 138, 153, 154, 166, 122 

183, 190, 196, 197).   123 

Instrument Limit of Detection (LoD), defined as the lowest observable calibration 124 

standard, ranged from 2.5 pg/ul for tri-hexa BDEs to 5 pg/ul for BDE183 and 12.5 pg/ul for 125 

Octa BDEs; these were equivalent to average egg LODs  of 0.0631, 0.126 and 0.316 ng/g wet 126 

wt. respectively. A total of five procedural blanks were run alongside samples and samples 127 

were blank-corrected.   Mean recoveries for 13C12 labelled BDE congeners 28, 47, 99, 100, 128 

153, 154 and 183 (Wellington Laboratories, Guelph, Ontario, Canada) ranged between 73.4 129 

and 95.6% across homologue groups and concentrations were recovery corrected (19).  A 130 

quality control (QC) standard was used to ensure precision and was analysed together with 131 

unknowns. The QC contained five PBDEs that encompassed tri-hepta homologue groups at 132 

concentrations of 2.5-250 pg/ul. Batches of samples were only deemed to pass quality control 133 

if concentrations were +/- 10% of expected values.  134 

 135 

In addition to the PBDEs in the calibration standard, we identified during the course of 136 

the study three additional potential octa-brominated BDEs. These were detected, along with 137 

known octa homologues (BDEs 196 and 197), with mass fragments of 640 and 643 and 138 

further confirmed using additional masses of 320 and 802, as done elsewhere (32, 33). These 139 

five octa homologues comprise a distinctive pattern of peaks in the chromatogram (Figure SI-140 

2) that has been reported in several other studies (3, 7, 8); the three additional peaks are 141 

BDEs 201, 202 and 203. The distinctive chromatographic pattern and the confirmation of the 142 
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potential octa-BDEs using three qualifier ions are strongly indicative of BDEs 201, 202 and 143 

203 and they are reported as such in this study.  Because of the absence of these congeners in 144 

our calibration standard, we ‘semi quantified’ the concentrations of these congeners using the 145 

calibration curves generated for BDEs 196 and 197.    146 

Statistical analyses. Individual PBDE congener and ΣPBDE concentrations are 147 

presented on a wet wt. basis and were corrected for desiccation by multiplying concentrations 148 

by the total egg weight/volume ratio. Egg volume was estimated using the equation V = 0.51 149 

× LB2, where L is egg length and B is egg breadth (34).  Some eggs were damaged on receipt 150 

and mean volume/weight ratios could not be calculated. In those cases, the mean 151 

volume/weight ratio for other eggs received that year was used to adjust for desiccation. Egg 152 

shell index, a measure of shell thickness, was calculated as shell weight (mg)/shell length x 153 

breadth (mm) (35). 154 

 Concentrations below the LoD were recorded for congeners in at least some of the 155 

eggs.  Ascribing a single value to all observations below a LoD can introduce misleading 156 

biases into analysis of statistical properties and when estimating correlations and regressions 157 

(36, 37).  We therefore interpolated values for “below LoD” observations (36) for those 158 

congeners when the overall percentage of such observations across all eggs was less than 159 

20%,  This was not done for those congeners that had more “below LoD” concentrations in 160 

more than 20% of eggs and no statistical analyses were conducted on those datasets.  161 

Congener sum PBDE concentrations (ΣPBDE) were calculated as the sum concentrations of 162 

all congener concentrations that were determined but, for this calculation, concentrations 163 

below the LoD were assigned a value of zero.  The data sets for individual congeners and 164 

ΣPBDE concentrations were skewed and Box-Cox transformations were employed to ensure 165 

normality and that the underlying assumptions of statistical tests were met.  166 
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Associations between ΣPBDEs, PBDE congeners and shell index were evaluated 167 

using Pearson’s rank correlation coefficient.  Temporal trends were analysed using linear, 168 

second order polynomials or split-line regressions and relationships between concentrations 169 

and time, land-use, human population density and eggshell thickness were modelled using 170 

linear and polynomial regression. Suitability of models was assessed using Akaike 171 

Information Criterion (AIC). Analyses that included shell index were performed only on 172 

samples for which shell index could be reliably calculated (i.e. undamaged eggs).  173 

Human population density in proximity to nest sites was estimated by the “sphere of 174 

influence” approach  (10) at a 200m resolution using population data from the 2001 UK 175 

census (38) .  This approach considered inputs from the whole of England and Wales with 176 

populations closer to the sampling point having the most influence.  In this calculation,   177 

A=Σ(popi/ri
2)  178 

where popi = population density, ri
2 = (Ei-E0) 2+(Ni-N0) 2,  Ei is any/all Easting coordinates in 179 

England, E0 is the Easting of the nest site, Ni is any/all Northing coordinates in England and 180 

N0 is the Northing of the nest site. 181 

 Land use was classified within a 10km2 area around the nest site from which an egg 182 

was taken; this represented the approximate foraging range for individual nesting 183 

sparrowhawks (39, 40).  Land use was determined by GIS using data from the 2000 UK Land 184 

Cover Map (41) at 1km resolution. For simplicity, land use classifications were condensed 185 

into five groups: urban, arable, grassland, woodland and semi-natural. Land use within the 186 

10km radius was considered both as percentages of the whole that these five classes made up 187 

and as an overall class based on the majority land use within the 10km. These land-use types 188 

were then used to model ΣPBDE and BDE congener concentrations in the sparrowhawk eggs. 189 
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 190 

RESULTS AND DISCUSSION 191 

Congener profile. A total of 27 congeners were detected in one or more eggs (Tables SI-1, 192 

2).   BDEs 47, 99, 100, 153 and 154 were detected in all eggs,  BDEs 35, 66, 138, 183, 196  193 

197, 201, 203 were detected in >80% eggs and BDEs 28, 49, 77, 85, and 202 were detected 194 

in >50% of eggs.  Only BDEs 32, 75 and 166 were not detected in any eggs.  BDE99 was the 195 

dominant congener in eggs (Figure 1), and five PeBDE-associated congeners dominated the 196 

overall PBDE profile (BDE 99>BDE 47>BDE 153>BDE 100>BDE 154; Figure 1), 197 

occurring in concentrations an order of magnitude higher than all other congeners in most 198 

years.  These five congeners comprised, on average, almost 90% of the ΣPBDE concentration 199 

and each was significantly correlated with concentrations of ΣPBDEs and each other (Table 200 

SI-3).  This suggests that the PeBDE mixture is likely to be the most important source of 201 

PBDE contamination in sparrowhawk eggs in Britain.  202 

 The dominance of BDE 99 in the present study was consistent with that found in 203 

sparrowhawk tissues elsewhere (42, 43) and in the eggs of other terrestrial birds of prey such 204 

as tawny owl and little owl (Athene noctua) (44, 45).  This contrasts markedly to the 205 

congener profile for marine systems (12, 15, 46-48) and in the eggs of piscivorous birds (14, 206 

16, 19, 20, 49) where BDE47 has been found to predominate.  BDE47 is both a major 207 

component of the PeBDE mixture and a breakdown product of BDE99 (50). The dominance 208 

of BDE99 (rather than BDE 47)  in sparrowhawks and owls suggests this congener may not 209 

be readily degraded by terrestrial predatory birds and it has been reported that PBDE half 210 

lives are in the order of months to years in some raptor species (21). However, poor 211 

metabolism of BDE99 in terrestrial species may extend beyond birds of prey as BDE99-212 

dominated congener profiles have reported in lower trophic terrestrial species such as the 213 
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great tit (Parus major) (4), blue tit (Cyanistes caeruleus), (51) and common magpie (Pica 214 

pica) (52).  A relative lack of breakdown of BDE99 in terrestrial systems may well be due to 215 

a lack of metabolic capability that, in aquatic systems, is provided by certain fish species that 216 

have been shown to be good metabolisers of PeBDE and more brominated  homologues (53).  217 

 Temporal patterns in PBDE concentrations. ΣPBDE concentrations increased 218 

linearly up until the 1990s (R2=39.7, F1, 42=17.5, P<0.001) and then remained at the same 219 

concentration up until the 2007, the last sampling year;  temporal trends for BDEs 47, 99, 220 

100, 153 and 154 were similar (Figure 2).  The statistically determined “breakpoints” after 221 

which concentrations ceased to increase ranged between 1992 and 1998 for the different 222 

congeners and for ΣPBDEs but all were co-correlated (Table SI-3) and the geometric 223 

standard deviations for concentrations in those years were relatively high.  Thus, there is no 224 

underlying rationale to suggest that difference in the timing of the breakpoints between 225 

congeners was significant.   226 

The persistence of the predominant PeBDE associated congeners in sparrowhawk eggs 227 

in the present study, with concentrations remaining high throughout the late 1990s and 2000s 228 

despite the phasing out of the PeBDE and OBDE technical products, is atypical of other 229 

European studies.  A rise and subsequent decline in PBDEs has been observed in the eggs of 230 

aquatic and terrestrial birds from Europe (14, 19, 24, 45, 49), in other aquatic organisms (12, 231 

15, 17), and in air and soils in the UK and Norway (10, 54).   One possible reason for the 232 

maintained concentrations in eggs may be relatively poor metabolism of PeBDE-associated 233 

congeners by sparrowhawks and perhaps terrestrial species generally, as suggested by the 234 

general predominance of BDE99 in the congener profiles of terrestrial birds. Other factors 235 

may include exposure to re-circulating sources such as dust, and/or the existence of fresh 236 

PBDE sources, such as disposal of waste electronic and electrical equipment and application 237 

of sewage sludge to land.  Finally, usage in non-electrical products has shifted from PeBDE 238 
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and OBDE to DeBDE and levels of BDE209 have increased in marine sediments from the 239 

UK and Europe (3, 13) and in sparrowhawk eggs (22). Debromination of deca-BDE may 240 

result in some new contamination of wildlife by lower brominated congeners.  241 

In contrast to the PeBDE associated congeners, concentrations of the hexa-BDE 138 242 

and the octa-BDEs 196, 197, 201and 203 increased linearly over time (0.105 ≤ R2 ≤ 0.404, 243 

F1,42 > 5.30, P<0.05 in all cases; Figure 3).  Concentrations of the octa-BDE congener, BDE 244 

202, also increased linearly over time from 1990, the year it was first detected in samples 245 

(data not shown). One or more of the five octa-BDEs have previously been reported in other 246 

bird eggs (5, 18, 55).  All but BDE 202 are components of the OBDE formulations and BDEs 247 

196 and 197 are also present in small quantities in the DeBDE formulation Bromkal 82-ODE 248 

(32).  However, all four congeners are frequently suggested as breakdown products of 249 

BDE209, as is BDE202 which is not native to any technical product (3, 32, 56).  250 

Debromination of BDE209 has been demonstrated experimentally in several studies (7, 57, 251 

58) and proposed pathways include one or more of these five octa-BDEs as breakdown 252 

products (50). The continuing rise in the concentration of these BDEs in sparrowhawk eggs 253 

in the current study suggest ongoing and increasing contamination associated with OBDE 254 

and/or DeBDE formulations.   255 

Unlike all the other congeners for which we examined time trends , BDE35, detected 256 

in 93% of sparrowhawk eggs, declined linearly in concentration over time, although this was 257 

did not quite achieve statistical significance (R2=0.085, F1, 41=3.69, P=0.06; Figure 3). This 258 

congener has been found in other biota from the UK and elsewhere (9, 18) and similar long-259 

term (1976-2006) linear declines in concentrations  have been detected in gannet eggs from 260 

two colonies in Scottish waters (19). The underlying mechanism both for the formation and 261 

decline of this congener appears to be independent of inputs of more highly brominated 262 

PBDEs into the environment.  This congener is only reported in EU studies and in one study 263 
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from the vicinity of an E-waste recycling centre in China, suggesting that this congener is 264 

somehow “unique” to EU systems or is generally unreported.   265 

Spatial trends. Interpretation of relationships between PBDE concentrations and 266 

either land use or population density are likely to be confounded by temporal changes in 267 

inputs of PBDEs into the environment.  We therefore restricted our analysis of the 268 

relationship between egg PBDE concentrations and human population density for the time 269 

period when concentrations of the main congeners were relatively stable which was after the 270 

break-points identified in the long term time trends (Figure 2).    271 

Concentrations of ΣPBDE or any individual BDE congeners were not correlated with 272 

either the % of urban land cover or the % of arable land (to which sewage sludge may be 273 

applied) in the proximity of the nest site (R2≤ 0.075, F1, 21≤ 1.64, P>0.05).  When the area 274 

around the sparrowhawk nest site was simply characterised by majority land use type, there 275 

was no difference in PBDE concentrations in eggs from different land use types. 276 

Unsurprisingly, human population density was correlated with % urban land cover 277 

(R2=0.855, F1, 41=236.1, P<0.001) and, consistent with the lack of any relationship between % 278 

urban land use and PBDE concentrations, there were no significant relationships between 279 

concentrations of ΣPBDE, BDEs 47, 99, 100, 153 or 154 and weighted population density 280 

(R2≤ 0.202, F1, 24≤ 4.12, P>0.05 in all cases). These results contrast to other studies where 281 

proximity to urban areas has significantly explained some of the variation in PBDE 282 

concentrations in air, sediments and birds eggs (4-6, 47).  One possible reason why there was 283 

no detectable relationship between proximity of the nest site to urban locations/human 284 

populations and egg PBDE concentrations may be that sparrowhawks spatially integrate 285 

PBDE contamination over a wide area because their hunting areas are relatively large and 286 

their prey are also highly mobile.   287 
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ΣPBDE concentrations and potential toxicity. ΣPBDE concentrations in 288 

sparrowhawk eggs ranged from 34 – 2281 ng/g wet wt, equivalent to 382 -54,972 ng/g lipid 289 

weight. There was no significant association between ΣPBDEs and shell index (Figure 4) nor 290 

between any of the major individual congeners and shell index (data not shown).  This 291 

contrasts to studies on in American kestrels where negative associations have been found (30) 292 

for PBDE concentrations that were of similar wet wt. magnitude to those reported in the 293 

current study.  In fact, shell index in sparrowhawks increased positively over time (R2= 294 

0.114, F1, 41= 5.00, P<0.05; Figure 4) and this is most likely due to falling DDE 295 

concentrations and subsequent recovery from the shell-thinning effects of DDE (25). 296 

Although the PBDE congener profiles in sparrowhawk eggs (Figure 1) are similar to the 297 

profiles found in the eggs of other terrestrial birds in Europe (4,44), yearly arithmetic mean 298 

concentrations of ΣPBDE in sparrowhawk eggs exceeded the concentrations reported in those 299 

studies by one-two orders of magnitude. ΣPBDE concentrations in sparrowhawk eggs in the 300 

present study were comparable to those reported in the eggs of coastal peregrine falcons from 301 

Sweden (24) and Spain (59), although concentrations in the sparrowhawk eggs exceed those 302 

in terrestrial Spanish peregrine eggs by more than double in later years.  Generally, ΣPBDE 303 

concentrations in eggs from the present study are more akin to those in bird eggs from North 304 

America (20, 59) than in eggs from elsewhere in Europe.  This may reflect greater 305 

consumption of PBDEs in Britain compared with elsewhere in Europe (1) and later phasing 306 

out of use and production of PeBDE.  307 

A ΣPBDE concentration of 1000 ng/g wet wt. has been suggested as a “threshold” 308 

concentration in ospreys (Pandion haliaetus) above which there may be impacts on 309 

productivity (60).  No such thresholds have yet been proposed for sparrowhawks but four of 310 

eggs in the present study had concentrations >1000 ng/g wet wt.  It is therefore possible that 311 

PBDEs may have been a contributory factor in the failure of those eggs.  They were collected 312 
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between 1994 and 2007, the period when ΣPBDEs were at a maximum, and represented 18% 313 

of all the eggs from that period that we examined.  The UK sparrowhawk population 314 

increased rapidly through the 1980s, a recovery from the impacts of organochlorine 315 

insecticides (26); this was also before ΣPBDE concentrations peaked in sparrowhawk eggs 316 

(Figure 2).  However, the sparrowhawk population in England, from where all the eggs in the 317 

present study were sourced, was estimated to have declined by 26% between 1994 and 2007, 318 

despite an increase in potential prey species (61).  This decline in population size at the time 319 

of maximal egg ΣPBDE concentrations may be simply coincidental, but the high and 320 

maintained (until at least 2007) PBDE contamination in sparrowhawks raises significant 321 

concerns about the fate and toxicological potential of PBDEs in the terrestrial ecosystem in 322 

Britain. Monitoring of current levels of contamination and impacts are needed. 323 
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Figure 1  BDE congener profile in sparrowhawk eggs collected between 1985 and 2007 and 607 

in the DE-71 and 70-5DE PeBDE technical formulations (La Guardia et al 2006). Relative 608 
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abundance data for each congener in eggs was the % contribution to the ΣPBDE 609 

concentration and the average for all eggs within the year was taken.  610 

Figure 2  Trends over time (split line regression models of Box-Cox transformed wet wt. 611 

concentrations) in PBDE congeners (47, 99, 100, 153, 154) and ΣPBDE concentrations in 612 

sparrowhawk eggs.  Data with different symbols distinguish the years before and after the 613 

break-points in the regression models.   614 

Figure 3  Trends over time (linear regression models of Box-Cox transformed wet wt. 615 

concentration data) in PBDE congeners (35, 138, 196, 197,201, 203) in sparrowhawk eggs.   616 

Figure 4  Scatterplot of eggshell index against (Box-Cox transformed) wet wt. ΣPBDE 617 

concentration (upper graph) and relationship between shell index and date of collection 618 

(bottom graph) for sparrowhawk eggs. 619 

Figure SI-1 Location in Britain of sparrowhawk nests from which eggs were sampled  620 

Figure SI-2 Chromatogram of 5 Octa-BDE congeners. From left to right: BDE 201, 203, 621 

197, 203, 196. Masses from (32, 33). 622 
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 646 
Table SI-1 Yearly geometric mean concentrations (ng/g), standard deviation and range of all BDE congeners, and ΣPBDE, detected in 647 

sparrowhawk eggs at frequencies of 80% or higher. 648 

Table SI-2 Yearly median concentrations (ng/g), range and frequency of detects of BDE congeners detected in sparrowhawk eggs at frequencies 649 

of less than 80%. 650 

Table SI-2 Correlation matrix of BDE congeners detected in sparrowhawk eggs at frequencies of 80% or higher and ΣPBDE. 651 

652 
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 653 
Table SI-1.    Annual geometric mean concentrations (ng/g) wet wt.), geometric standard deviation and total range of those BDE 654 
congeners detected in ≥ 80% of eggs and ΣPBDE concentrations. 655 

 656 

 657 

                    
    1985 1987 1988 1990 1992 1994 1998 2003 2005 2007 
 BDE35 Mean 0.73 0.35 3.45 0.58 1.12 0.39 0.19 0.28 0.59 0.24 
   STDEV 0.09-0.59 0.16-0.79 0.44-27.4 0.21-1.64 0.31-4.00 0.23-0.67 0.04-0.81 0.09-0.087 0.15-2.37 0.17-0.33 
   Range 0.04-10.5 0.17-0.83 0.27-30.1 0.20-1.85 0.15-3.47 0.21-0.87 0.02-1.01 0.06-0.82 0.22-6.56 0.16-0.29 
 BDE47 Mean 14.5 13.8 15.8 29.5 55.7 57.2 72.4 43.6 69.9 43.2 
   STDEV 4.67-45.2 8.83-21.5 8.61-29.0 17.6-49.7 25.4-122 29.6-111 18.3-286 16.3-116 19.6-249 21.8-85.6 
   Range 5.14-101 9.82-22.8 9.30-26.3 21.9-64.2 19.2-126 28.6-120 17.7-605 19.7-181 19.6-276 24.8-92.6 
 BDE99 Mean 27.7 30.2 33.6 71.1 158 140 166 94.3 179 96.0 
   STDEV 9.29-82.4 17.7-51.4 15.8-71.7 38.9-130 87.8-284 54.7-359 52.4-523 36.2-245 51.7-620 54.6-169 
   Range 10.9-166 22.0-55.8 15.5-64.6 49.4-175 68.7-250 49.2-423 55.3-881 45.2-385 51.2-721 54.7-169 
 BDE100 Mean 6.88 6.02 6.73 14.7 27.7 27.9 37.7 24.5 46.4 21.3 
   STDEV 1.72-27.5 3.09-11.7 3.43-13.2 7.51-28.9 14.9-51.4 12.4-63.1 10.6-135 10.2-59.2 12.8-168 9.12-49.9 
   Range 2.12-76.4 3.82-12.9 3.50-12.5 9.84-40.2 13.8-53.2 9.46-60.2 11.6-265 14.2-91.2 9.94-184 10.5-54.6 
 BDE138 Mean 0.79 0.74 0.71 1.56 2.25 2.10 4.23 1.71 4.85 2.19 
   STDEV 0.25-2.45 0.40-1.39 0.43-1.17 0.92-2.61 0.86-5.86 1.07-4.15 1.33-13.5 0.69-4.2 1.66-14.2 1.23-3.90 
   Range 0.36-0.42 0.52-1.53 0.42-1.41 0.92-3.11 0.58-6.94 1.06-5.20 1.14-16.9 0.64-5.64 1.23-19.2 1.26-3.98 
 BDE153 Mean 9.50 8.08 15.8 19.1 35.2 32.4 45.4 37.5 60.0 21.3 
   STDEV 1.82-49.5 5.32-12.3 7.92-31.6 10.1-36.0 9.89-126 12.7-82.7 14.3-145 19.5-72.3 22.4-161 16.3-27.9 
   Range 1.29-120 5.19-11.9 6.37-29.1 8.24-38.4 4.23-104 13.3-133 18.0-334 22.3-93.2 29.4-327 17.5-28.9 
 BDE154 Mean 3.25 4.06 2.30 8.57 12.1 12.5 22.2 9.03 26.5 14.5 
   STDEV 0.64-16.4 0.50-32.7 1.32-4.00 2.15-34.2 5.89-24.9 3.15-49.5 3.19-154 4.33-18.8 5.62-125 3.55-29.5 
   Range 0.81-35.4 0.80-42.7 1.19-3.85 2.72-62.5 5.08-37.0 2.77-98.5 3.70-372 4.50-25.5 6.60-241 4.80-70.9 



30 

 

Table SI-1 continued 658 
                    
   1985 1987 1988 1990 1992 1994 1998 2003 2005 2007 

BDE183 Mean 6.22 4.82 3.69 6.92 7.58 6.42 6.52 2.55 11.36 4.66 
 STDEV 2.06-18.7 1.04-22.4 1.29-10.6 1.51-31.8 1.26-45.4 1.10-37.3 0.51-83.5 0.71-9.13 2.05-62.9 1.97-11.0 
 Range 2.15-35.8 1.16-24.6 1.02-11.0 0.87-27.7 0.44-54.2 0.70-57.1 0.59-464 0.79-12.9 0.95-111 2.61-12.5 

BDE196 Mean 1.06 0.67 0.49 0.76 1.55 1.18 2.74 0.94 4.78 1.52 
  STDEV 0.32-3.53 0.21-2.17 0.19-1.27 0.15-3.88 0.70-3.46 0.65-2.16 0.32-23.5 0.30-2.96 1.88-12.1 0.82-2.81 
  Range 0.38-7.76 0.23-2.33 0.13-1.19 0.08-2.53 0.66-3.92 0.52-2.36 0.50-59.1 0.18-2.45 2.06-18.3 0.80-2.73 

BDE197 Mean 1.59 2.45 2.21 4.05 6.40 3.49 8.32 3.20 11.86 3.36 
  STDEV 0.41-6.22 0.71-8.50 1.15-4.24 1.56-10.6 2.95-13.9 1.10-11.1 0.76-90.7 1.38-7.42 4.23-33.3 1.77-6.4 
  Range 0.51-14.5 0.93-9.97 0.83-3.14 1.64-9.99 2.10-15.8 0.73-14.0 0.76-206 1.30-8.22 5.00-56.5 1.93-6.8 

BDE201 Mean 0.29 0.40 0.24 0.94 1.10 1.66 2.31 1.73 5.08 1.79 
  STDEV 0.12-0.70 0.17-0.95 0.11-0.49 0.26-3.45 0.68-4.30 0.49-5.58 0.49-10.9 0.77-3.92 2.18-11.9 1.14-2.80 
  Range 0.06-0.49 0.21-1.07 0.10-0.58 0.14-2.84 0.72-1.81 0.42-8.03 0.66-16.9 0.73-4.70 1.99-12.5 1.21-2.92 

BDE203 Mean 0.19 0.16 0.18 0.53 0.60 0.68 0.84 0.49 1.96 0.75 
  STDEV 0.11-0.32 0.05-0.48 0.11-0.29 0.12-0.40 0.40-0.90 0.27-1.74 0.23-3.14 0.17-0.37 0.71-5.46 0.4-1.3 
  Range 0.08-0.31 0.05-0.43 0.10-0.30 0.13-1.32 0.34-0.97 0.27-2.91 0.27-5.17 0.12-1.37 0.51-5.00 0.5-1.39 

ΣPBDE Mean 79.7 80.5 98.1 177 344 311 459 233 465 226 
  STDEV 25.2-252 39.6-164 53.4-180 99.8-314 198-598 131-736 119-1770 99.7-545 145-1500 120-426 
  Range 33.6-582 48.0-181 41.6-155 109-402 179-634 114-821 120-2280 123-809 154-1640 129-449 

Number of eggs analysed per year were 3 in 1987 and 2007, 4 in 1988, 1990 and 2003, and 5 in all other years 659 
 660 
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 664 

Table SI-2.  Annual median concentrations  (ng/g wet wt.) and range s of those BDE congeners detected in  less than 80% of eggs  665 
1985 1987 1988 1990 1992 1994 1998 2003 2005 2007 % 

BDE17 no. of detects 0 0 0 0 1 0 1 2 1 0 9.30 
Median - - - - ND - ND 0.11 ND - 
Range - - - - ND-0.28 - ND-0.17 ND-0.28 ND-0.31 - 

BDE28 no. of detects 2 2 2 1 4 2 3 3 3 1 53.5 
Median 0 0.13 0.08 ND 0.27 ND 0.26 0.30 0.13 ND 
Range ND-0.64 ND-0.18 ND-0.18 ND-0.11 ND-0.72 ND-0.22 ND-7.39 ND-0.42 ND-0.40 ND-0.36 

BDE37 no. of detects 0 0 1 1 1 3 3 1 3 1 32.6 
Median - - 0 0 ND 0.12 0.16 ND 0.14 0.32 
Range - - ND-6.39 ND-0.11 ND-0.14 ND-0.21 ND-0.21 ND-0.21 ND-0.42 ND-0.32 

BDE49 no. of detects 1 0 0 1 2 4 4 5 4 3 55.8 
Median ND - - ND 0 0.26 0.23 0.35 0.47 0.20 
Range ND-1.33 - - ND-0.08 ND-0.63 ND-0.35 ND-0.47 0.29-1.32 ND-1.76 0.17-0.62 

BDE51 no. of detects 0 0 0 0 0 0 0 1 2 2 11.6 
Median - - - - - - - ND ND 0.11 
Range - - - - - - - ND-0.17 ND-0.31 ND-0.32 

BDE66 no. of detects 2 3 3 3 3 4 5 3 5 3 79.1 
Median ND 0.26 0.32 0.67 0.62 1.20 1.39 0.95 1.14 0.41 
Range 0-0.52 0.22-0.29 ND-0.39 ND-0.91 ND-0.84 ND-1.25 0.3-15.87 ND-1.54 0.32-2.96 0.34-1.23 

BDE71 no. of detects 0 0 0 0 1 0 1 2 0 0 9.30 
Median - - - - ND - ND 0.11 - - 
Range - - - - ND-0.24 - ND-0.22 ND-0.56 - - 

BDE77 no. of detects 0 0 1 2 3 4 4 2 4 3 53.5 
Median - - 0 0.09 0.13 0.27 0.27 0.14 0.41 0.22 
Range - - ND-0.15 ND-0.19 ND-0.22 ND-0.36 ND-0.34 ND-0.44 ND-1.69 0.16-0.66 
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Table SI-2 continued 669 

1985 1987 1988 1990 1992 1994 1998 2003 2005 2007 % 
BDE85 no. of detects 0 1 2 3 4 5 5 4 4 2 69.8 

Median - 0 0.24 1.36 0.95 2.01 1.69 1.37 0.80 1.78 
Range - ND-0.93 ND-0.63 ND-2.09 ND-3.30 0.56-2.18 0.56-5.42 0.75-2.07 0.46-6.43 ND-3.01 

BDE118 no. of detects 2 1 1 2 2 4 3 0 3 3 48.8 
Median ND ND 0 0.46 ND 1.04 0.91 - 1.52 1.19 

Range ND-0.31 
ND-
0.073 ND-0.46 ND-2.31 ND-1.55 ND-3.12 ND-3.42 - ND-4.53 0.67-3.02 

BDE119 no. of detects 0 0 0 1 2 2 3 4 3 2 39.5 
Median - - - ND ND ND 0.34 0.57 0.30 1.16 
Range - - - ND-0.29 ND-1.07 ND-0.48 ND-2.61 0.28-1.85 ND-1.17 ND-1.63 

BDE126 no. of detects 0 0 0 0 0 2 0 0 2 1 11.6 
Median - - - - - ND - - ND ND 
Range - - - - ND-0.24 - - ND-0.71 ND-0.43 

BDE128 no. of detects 0 0 0 0 0 0 1 1 0 0 4.65 
Median - - - - - - ND ND - - 
Range - - - - - - ND-0.93 ND-0.68 - - 

BDE190 no. of detects 0 0 1 1 2 0 2 2 0 0 18.6 
Median - - 0 ND ND - ND 0.13 - - 
Range - - ND-0.21 ND-0.15 ND-0.30 - ND-0.22 ND-0.31 - - 

BDE202 no. of detects 0 1 0 3 4 3 5 2 5 3 60.5 
Median - 0 - 0.42 0.44 0.84 0.46 0.21 1.32 1.43 
Range - ND-0.35 - ND-0.65 ND-0.82 ND-3.96 0.36-7.58 ND-4.64 0.79-3.80 0.77-2.63 

BDEs 32, 75 and 166 were not detected in any eggs.  Number of eggs analysed per year were 3 in 1987 and 2007, 4 in 1988, 1990 and 2003, and 5 in all other years 670 
671 
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Table SI-3.  Correlation matrix for concentrations of those BDE congeners detected in ≥ 80% of eggs and for ΣPBDE concentration 673 

BDE35 BDE47 BDE99 BDE100 BDE138 BDE153 BDE154 BDE183 BDE196 BDE197 BDE201 BDE203
BDE47 r 0.107                       
  p 0.495                     
BDE99 r 0.108 0.971                     
  p 0.493 0                   
BDE100 r 0.109 0.98 0.974                   
  p 0.485 0 0                   
BDE138 r 0.119 0.884 0.877 0.887                 
  p 0.448 0 0 0               
BDE153 r 0.364 0.727 0.741 0.746 0.723               
  p 0.016 0 0 0 0               
BDE154 r -0.071 0.823 0.821 0.851 0.788 0.35             
  p 0.649 0 0 0 0 0.021           
BDE183 r 0.104 0.202 0.26 0.231 0.398 0.022 0.468           
  p 0.507 0.193 0.092 0.136 0.008 0.89 0.002         
BDE196 r 0.191 0.657 0.655 0.695 0.799 0.467 0.769 0.568         
  p 0.219 0 0 0 0 0.002 0 0         
BDE197 r 0.23 0.722 0.737 0.759 0.747 0.524 0.812 0.501 0.831       
  p 0.191 0 0 0 0 0 0 0.001 0       
BDE201 r 0.256 0.640 0.657 0.657 0.718 0.414 0.635 0.346 0.702 0.685     
  p 0.097 0 0 0 0 0.006 0 0.023 0 0   
BDE203 r 0.247 0.596 0.605 0.602 0.667 0.368 0.720 0.239 0.628 0.595 0.926   
  p 0.110 0 0 0 0 0.015 0 0.122 0 0 0   
ΣPBDE r 0.498 0.968 0.989 0.975 0.940 0.873 0.873 0.418 0.757 0.836 0.687 0.621 
  p 0.001 0 0 0 0 0 0 0 0 0 0 0 
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