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ABSTRACT 

Electrical impedance tomography was used to monitor the movement of a fluorinated hydrocarbon 

DNAPL through a saturated porous medium within a laboratory column. Impedance measurements 

were made using a horizontal plane of twelve electrodes positioned at regular intervals around the 

centre of the column. A 2D inversion algorithm, which incorporated the cylindrical geometry of the 

column, was used to reconstruct resistivity and phase images from the measured data. Differential 

time-lapse images of DNAPL movement past the plane of electrodes were generated by the cell-by-

cell subtraction of resistivity and phase baseline models from those associated with the DNAPL 

release stage of the experiment. 

The DNAPL pulse was clearly delineated as resistive anomalies in the differential time-lapse 

resistivity images. The spatial extent of the resistive anomalies indicated that, in addition to vertical 

migration, some lateral spreading of the DNAPL had occurred. Residual contamination could be 

detected after quasi-static conditions were re-established.  Residual DNAPL saturation was 

estimated from the resistivity model data by applying Archie’s second equation. 

Despite significant measured phase changes due to DNAPL contamination, the differential phase 

images revealed only weak anomalies associated with DNAPL flow; these anomalies could be seen 

only in the initial stages of the experiment during peak flow through the plane of electrodes. 
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1. INTRODUCTION 

Groundwater contamination by dense nonaqueous phase liquids (DNAPLs), such as chlorinated 

solvents, PCB oils and creosotes, has been increasingly recognised as a serious environmental 

problem. DNAPLs have been widely used by a range of industries for many decades, and have been 

introduced into the subsurface by spills, uncontrolled releases and leaking storage and disposal 

facilities (Rivett et al., 1990; Pankow et al., 1996). Upon release DNAPLs spread under the 

influence of gravity until they are distributed to such an extent that residual levels are attained and 

capillary trapping prevents further movement, or an impermeable layer is reached, at which point 

pooling and lateral spreading may occur (Schwille, 1988; Mercer and Cohen, 1990; Pankow and 

Cherry, 1996). DNAPLs are typically characterised by low solubilities and are resistant to 

biodegradation and natural attenuation (Lucius et al., 1992; Pankow et al. 1996); they are, however, 

soluble enough to cause levels of contamination far greater than those permissible in drinking 

water. Consequently, even small amounts of DNAPL can present a long-term source of 

contamination (Johnson and Pankow, 1992). 

The characterisation of DNAPL contaminated sites and source zones are essential for the successful 

design of remedial strategies (Cohen and Mercer, 1993; Feenstra and Cherry, 1996; Gavaskar et al., 

2000). Conventional site investigation relies in part upon intrusive methods, such as boreholes and 

cone penetration tests. These techniques provide limited spatial information of the subsurface at 

discrete intervals, and have the potential to spread contamination by opening DNAPL migration 

pathways through low permeability zones (Feenstra and Cherry, 1996; Broholm et al. 1999). 

Alongside intrusive techniques geophysical methods are now beginning to be applied to DNAPL 

contamination problems (ITRC, 2000), both to assist in site characterisation (e.g. Chambers et al., 

1999) and to monitor remedial processes (e.g. Daily and Ramirez, 1995; Newmark et al., 1998). 

Geophysical techniques can have the advantages of reducing the need for intrusive investigations, 

and can provide spatially continuous information regarding subsurface structure (Reynolds, 1997). 
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The technique considered in this study is electrical impedance tomography (EIT). Electrical 

impedance measurements carried out by Olhoeft (1985) and Vanhala (1997) on laboratory samples 

have indicated that NAPL contaminated materials may be discriminated on the basis of altered 

electrical properties. This research has provided the basis for the use of EIT as a means of detecting 

and monitoring DNAPL contamination (Weller et al., 1996b; Daily et al., 1998). 

The aim of this study is to demonstrate the effectiveness of EIT as a means of detecting and 

monitoring DNAPL distribution within a water-saturated porous medium. An experiment is 

described in which a DNAPL is released within a laboratory column and is monitored using time-

lapse EIT.   

 

2. ELECTRICAL IMPEDANCE TOMOGRAPHY 

Electrical impedance is a complex quantity consisting of a magnitude and a phase component. 

Impedance magnitude is the amplitude of the frequency dependent resistance, whilst the impedance 

phase is a measure of induced polarization (IP). Measurements can be made over a range of 

frequencies so that the frequency dependence of the materials of interest may be assessed; this 

method is termed spectral induced polarization (SIP) or complex resistivity. 

The two main mechanisms of IP are membrane and metallic polarization (Sumner, 1976). 

Membrane polarization occurs when the movement of ions within a rock mass is restricted, due to 

blockages at pore throats caused by layers of loosely bound ions on the mineral grain surfaces. As 

an electrical current is applied, concentrations of ions build up around these blockages causing 

membrane polarization. When the current is removed the ions migrate back to their original 

positions, thereby generating a transient decay voltage. Membrane polarization is particularly 

associated with the presence of clay minerals. Metallic polarization occurs when a voltage is 

applied across an electrolyte filled pore space blocked by a conducting mineral grain. The transfer 

from electrolytic conductance to electrical conductance impedes the current flow, and the 
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electrolyte/mineral interface becomes polarized. As applied voltage is removed a transient decay 

voltage is produced as the ions diffuse back to their original positions. Marshall and Madden (1959) 

indicate that membrane and metallic polarization effects are difficult to distinguish on the basis of 

their electrical behaviour, as they both result from diffusion processes. Other mechanisms of IP 

have been identified, including electrokinetic, thermoelectric and electromagnetic effects (Marshall 

and Madden, 1959) and clay-organic reactions (Olhoeft, 1985). 

EIT involves the collection of data sets comprising multiple electrical measurements (amplitude and 

phase). This requires the use of computer controlled automated measurement systems and multi-

electrode arrays, due to the typically large number of measurements made during the course of a 

survey. Numerical inversion of these data is undertaken to produce tomograms of subsurface 

electrical property distributions. Examples of electrical impedance imaging procedures are given by 

Cho (1996), Ramirez et al. (1999), Daily et al. (2000) and Kemna et al. (2000). 

 

3. EXPERIMENTAL PROCEDURE 

3.1 Experimental Design 

The laboratory column (Figure 1) measured 520 mm in height, with an internal diameter of 310 

mm. The base of the column was sealed with a plastic plate. An in/outflow valve was positioned at 

the base of the column to allow saturation and drainage of the column. The column was constructed 

using PVC; silicone rubber was used as a sealant and adhesive. Twelve 10 mm diameter carbon 

electrodes were positioned at regular intervals around the centre of the column at a height of 260 

mm. The flat ends of the electrodes were flush with the internal column wall.  

The column was filled with a range of porous materials, as shown in Figure 1. A coarse washed 

silica sand layer (BS Mesh 16/30), 40 mm thick, was positioned at the base of the column. A ring of 

fine washed silica sand (AFS 95), 20 mm thick, was introduced around the sides of the column. 

This ring was intended to act as a capillary barrier to the DNAPL, thereby preventing the coating of 
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the electrodes by the organic liquid. The central area of the column was filled with a polarizable 

medium that comprised an 80:20 dry weight percent mix of coarse sand and iron grit. A medium 

grained (BS Mesh 22/52) iron grit was used, comprising angular grains varying in size from 0.3 to 

0.71 mm. The sand and iron grit were thoroughly mixed and placed carefully into the column, with 

further in-situ mixing, to minimise heterogeneities arising from the localised sorting of grains. 

Though a perfectly homogeneous mix was not achievable, it was anticipated that mixing was 

sufficient to minimise disruption of DNAPL flow on a macroscopic scale. The column was 

saturated with tap water (~ 17 Ωm) from the base of the column. 

Iron grit was used in the place of clay to provide a relatively permeable polarizable medium. Sand-

clay mixes displaying a suitably high IP effect (>10 mrads) were found to be essentially 

impermeable to DNAPL over the timescale of a few days, due to the blocking of pores by clay 

grains. It was anticipated from prior testing of contaminated samples that the scale of DNAPL 

induced phase changes would be of a similar order to that observed with the organic contamination 

of clay containing samples (Vanhala, 1997), and would therefore allow the potential for EIT to 

detect phase changes of this magnitude to be assessed. 

A hydrocarbon DNAPL, 3M Novec HFE-7200 engineered fluid, used here as a surrogate for 

other more toxic industrial DNAPLs, was introduced into the column through a 25 mm diameter 

polycarbonate tube embedded approximately 80 mm into the sand. A head of approximately 80 

mm, equivalent to a capillary pressure of ~1122 Nm-2, was maintained during the DNAPL release 

phase in order to overcome the entry pressure of the sand. The minimum pore diameter invaded by 

DNAPL is given as (Kueper and McWhorter, 1991), 

eP
e θσ cos4
=         (1) 

where, e is the pore throat diameter, σ is the interfacial tension between NAPL and water, θ is the 

contact angle at the solid-fluid-fluid interface, and Pe is the entry pressure. Given an entry pressure 
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of 1122 Nm-2 and the fluid properties in Table 1, it was calculated, using equation (1), that pore 

throats with diameter of greater than 118 µm would be invaded at the porous medium-DNAPL 

interface. With increasing depth in the column, capillary pressure was expected to increase (Kueper 

and McWhorter, 1991), resulting in the invasion by DNAPL of pore throats with diameters of less 

than 118 µm. Water displaced by the DNAPL overflowed and was collected from the top of the 

column. 

Novec HFE-7200 is a practically non-toxic and non-flammable colourless fluorinated liquid with 

a number of physical properties (Table 1) similar to those of trichloroethene (TCE), which is one of 

the most commonly occurring industrial DNAPL contaminants (Pankow et al., 1996). It has a high 

chemical stability and appears not to react with the materials comprising the column and the 

infilling sand and iron. Furthermore, the low solubility (Table 1), volatility and evaporation rate of 

HFE-7200 will result in minimal mass loss of DNAPL from the system during the course of the 

experiment. HFE-7200 is an extremely difficult liquid to dye, and at the time of this study a suitable 

dye was not available; visual confirmation of the NAPL flow pathway after the infiltration 

experiment could not be achieved. Studies by Schwille (1988), Kueper et al. (1989) and Oostrom et 

al. (1999) do however indicate that in a saturated homogeneous coarse-grained porous medium 

DNAPL would be expected to migrate downwards through the column with limited lateral 

spreading, either as a front or as fingers. In this case, given the density (d) and viscosity (μ) of the 

DNAPL used, i.e. dDN A P L>dwat er ,  μD N AP L<μwat er , it is likely that unstable flow and fingering 

will have occurred (Trantham and Durnford, 1999).  

 

3.2 Data Collection 

Instrumentation 

A multichannel complex resistivity system (Radic-Research SIP256b) was used for data acquisition. 

The system comprised a base unit housing a current source and signal generator, twelve remote 
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units each containing a 24 bit A/D converter, and a computer to control the system and archive the 

data. Each measurement electrode was attached to the system through a remote unit. A schematic 

diagram of the system is shown in Figure 2a. The computer interface allowed the input current and 

measured amplitude and phase to be monitored during the data collection process. 

The system was operated using predefined measurement protocols that were read by the control 

program. For each measurement position, electrodes were selected as either current sources or used 

for potential measurements; each electrode pair not used as current sources were automatically 

employed to measure potential. The array configuration used during this study is summarised in 

Figure 2b. A full scan comprised twelve measurement positions, in which all possible combinations 

of the dipole-dipole array, for which the current and potential dipole lengths equalled one unit 

electrode separation, were utilised. A single frequency scan carried out using this measurement 

protocol comprised 108 measurement points, which consisted of 54 normal and 54 reciprocal 

measurements. A single measurement at a frequency of 5 Hz comprised an input current pulse 

duration of 4 seconds, with a further 18.5 seconds required for data processing. Each twelve-

measurement scan took 270 seconds. Movement of DNAPL during individual scans will inevitably 

have led to the blurring and averaging of model resistivity values, particularly during the most 

dynamic phase of DNAPL infiltration. Consequently, peak model resistivity values may 

underestimate the true formation resistivity. 

SIP measurements made on a sample of the sand/iron mix used in this experiment, at frequencies of 

between 0.6 and 125 Hz, indicated a phase peak situated between 5 and 10 Hz. Testing also 

revealed that contamination of the material with HFE-7200 resulted in a reduction in the phase 

peak, with the greatest reduction in phase occurring between 5 and 10 Hz. In order to ensure that the 

maximum phase contrast between contaminated and uncontaminated material could be achieved, 

measurements were made using a 5 Hz injection current. A frequency of 5 Hz also represented a 

good compromise between the faster measurement rates and poorer data quality associated with 
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higher frequency measurements, and the much slower measurement rates but higher data quality 

associated with measurements made at lower frequencies (Ramirez et al., 1999). 

Measurement Error 

Measured data is subject to error from a variety of sources, including that introduced by the 

measurement device, poor electrode contact or electrode polarization, and other indeterminate 

external effects (Sumner, 1976). Comparison of normal and reciprocal data points has been 

identified in other studies as a good measure of data quality (Binley et al., 1996; Ramirez et al. 

1999). In this study reciprocal error was calculated as the percentage difference between normal and 

reciprocal data points, unless otherwise stated. An additional measure of error used in this study 

was that calculated by the SIP256b system in the frequency domain from time series measured for 

voltage and for current; the method is the same as that used in magnetotellurics (Bendat and Piersol, 

1971). A relative error is calculated for magnitude and an absolute error is given for phase. 

Prior to data collection a test was carried out using a blank tap water sample; the water represented 

a non-polarizable target and was expected to produce a phase response of zero. Reciprocal errors for 

the measured amplitude data were typically less than 1%, whilst measured phase shift were 

predominantly less than ± 1 mrad. These results indicated that measurement errors associated with 

the instrument and column were low, and that the carbon electrodes used in the experiment had only 

a very small polarizability. Reciprocal errors from the amplitude and phase data collected during the 

DNAPL infiltration experiment described in this study were predominantly below 2 and 10%, 

respectively. Calculated errors from the SIP256b system for the magnitude data at 5 Hz were 

typically less than 1%; likewise, errors calculated for phase were small, predominantly less than 2 

mrads. Normal measurements were used as default. However, measurements with a reciprocal error 

of greater than 5% were reassessed on the basis of calculated error, and the point with the lowest 

calculated error was used, whether normal or reciprocal.  

Measurement Procedure 
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Prior to DNAPL release a scan was carried out in order to characterise the static water saturated 

conditions within the column, and to provide baseline sections with which to produce differential 

time-lapse images from subsequent scans. Upon the release of the DNAPL, continuous scans were 

made for a period of 3.5 h, after which time pairs of scans were collected at approximately 30 min 

intervals. The DNAPL drained entirely from the surface of the column within 30 min. 

Measurements were stopped 8.5 h after the initial release of the DNAPL. 

 

4. NUMERICAL INVERSION 

In order to interpret the data from this experiment, a finite element (Silvester and Ferrari, 1990) 

forward modelling subroutine to calculate the electrical response of a cylindrical structure due to 

point current sources was used. To simplify the computations needed, it was assumed that the 

column has a cylindrical shape that extends to infinity at both ends, i.e. a 2D structure. By reducing 

the problem to a 2D geometry, the computer time required for the finite-element subroutine can be 

significantly reduced. Only a brief outline of the finite-element method is given here as the details 

can be found in other sources (Coggon, 1971; Sasaki, 1989). The DC response of a 2D structure is 

given by Poisson’s equation, 
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where λ is the Fourier transform variable. The finite element discretisation of the above equation 

results in a matrix equation  

   C Φ = I       (4) 

where C is the capacitance matrix that contains the geometry and resistivity of the mesh elements. It 

is a symmetric, sparse and banded matrix. The matrix equation is usually solved using a direct 

method such as the sparse Cholesky method (George and Liu, 1981) for 2D problems. The solution 

of the matrix equation in (4) gives the transformed potential, Φ (x,λ ,z) in the (x,λ ,z) space for a 

range of λ values (Weller et al., 1996a). To obtain the potential in the (x,y,z) space, the following 

inverse Fourier transform is carried out by numerical integration. 

  ∫ Φ=
∞

0
),,(1),0,( λλ

π
φ dzxzx       (5) 

To accurately simulate the curved surface of the cylinder, an isoparametric quadrilateral element 

with 8 nodes is used (Figure 3a). The arrangement of cells in concentric rings (Figure 3a) was 

chosen so that adjacent sides in any quadrilateral element are almost orthogonal. This results in a 

more stable numerical system of equations and consequently greater accuracy in the calculated 

potentials (Silvester and Ferrari, 1990). This arrangement avoids cells with almost colinear adjacent 

sides that are numerically less stable. Within the element, the potential is approximated by a 

quadratic function. By applying an isoparametric transformation on the quadrilateral element, the 

nodes on each cell can be shifted such that they coincide with corresponding points on the 

cylindrical cells. Each side of the quadrilateral element follows a quadratic curve. If the elements 

are sufficiently small, the curved surface of the cylinder can be accurately modelled by such curved 

elements. Two quadratic elements are placed between adjacent electrodes in the forward modelling 

subroutine (Figure 3a). Tests using four elements between adjacent electrodes did not show 

significant changes in the calculated potential values. To minimise any errors due to mismatch 

between the true shape of the cylinder and the quadratic elements, the electrodes are placed at the 
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middle node on the side of the element (node 2 in Figure 3a). Note that the centre of the cylindrical 

model is a point. Triangular elements were used to model the central core of the cylinder. 

Ends effects due to the finite length of the column were minimised by placing the electrodes at the 

centre of the column. Experiments with a homogeneous material (tap water) filling the column 

showed that end effects are not significant. Table 2 shows the results from measurements made with 

the dipole-dipole array with the ‘n’ factor ranging from 1 to 5. The geometric factors were 

determined empirically by calculating the resistance values measured by the same array 

configuration for a homogeneous cylindrical body with the same radius using the finite-element 

forward modelling program. The geometric factor is given by the ratio of the calculated resistance 

value and the resistivity of the synthetic model. The empirical geometric factors were compared 

with analytical values given by Weidelt and Weller (1997). The average difference between the 

empirical and analytical geometric factors was 2.3% with a maximum difference of 4.8%. The 

difference is probably partly due to the finite length of the cylinder that is not taken into account in 

the 2D finite-element program. One possible advantage of the finite-element approach in 

calculating the geometric factors is that it can be extended for bodies with a non-cylindrical 

geometry, such as tree trunks (Hagrey et al., 2003). The apparent resistivity values in Table 2 show 

a small but systematic increase of about 5% as the dipole-dipole ‘n’ factor increases from 2 to 5. 

However, even measurements with the same ‘n’ value show some variation due to asymmetries in 

the experimental design; such as the variations in the distances between adjacent electrodes, 

departures from a perfect cylinder and variations in the fine sand layer next to the electrodes. It is 

expected that the change in the measured resistance values due to the finite ends of the cylinder 

should be similar for different sets of measurements. While this will influence the inversion model 

from a single set of measurements, it should have minimal effect on the differential resistivity 

images. 

Apparent IP (chargeability) values were calculated by using the following formula (Oldenburg and 

Li, 1994) 
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where ρφ  is the DC resistivity potential while ηφ  is the potential for a modified resistivity 

distribution ηρ . The modified resistivity distribution is given by  

  
),,(1
),,(),,(

zyx
zyxzyx DC

η
ρρη −

=        (7) 

where ),,( zyxη  is the model chargeability distribution. The chargeability values in mV/V can be 

converted into phase angles, and vice versa, using the relationships given in Van Voorhis et al. 

(1973) and Nelson and Van Voorhis (1973). 

The measured data consist of the apparent resistivity and phase measurements with different sets of 

electrodes. The purpose of the data inversion is to convert these measurements into the resistivity 

and IP values in different parts of the cylindrical cross-section. The smoothness-constrained Gauss-

Newton least-squares optimisation method that is commonly used for the inversion of data from 2D 

electrical surveys along the ground surface (Oldenburg and Li, 1994; Loke and Dahlin, 2002) was 

adapted for this study. This method uses the following equation 

i
T

ii
T
ii

T
ii

T
i CpCλgJΔpCCλJJ −=+ )(                            (8) 

 

where ∆pi is the model parameters (the logarithm of the resistivity) change vector for the ith 

iteration, J is the Jacobian matrix of partial derivatives and g is the data misfit vector (Lines and 

Treitel, 1984). A first order finite-difference operator (deGroot-Hedlin and Constable, 1990) was 

used for the roughness filter C. A two step process was used for the inversion of the resistivity and 

IP data. Firstly the inversion of the apparent resistivity data was carried out to obtain a resistivity 

model. This resistivity model was then used as a background resistivity model in the inversion of 

the apparent phase data to construct an IP model (Oldenburg and Li, 1994). The discretised 
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inversion model, consisting of a number of concentric circular zones that were subdivided into a 

number of cells, is shown in Figure 3a; the resulting model has 7 zones and 168 cells. 

Equation (8) minimises the sum-of-squares (a l2 norm) of the change in the model resistivity values 

(the CTC term) between adjacent cells. The resistivity variations within such a model will have 

smooth boundaries. Since it is expected that the DNAPL will spread gradually as it flows down the 

column, this constraint is close to the actual situation. However, the use of such a smoothness 

constraint will result in poorer resolution in areas with sharp boundaries (Loke and Lane, 2002) 

such as the interface between the fine silica sand ring around the sides of the column and inner 

coarse sand/iron mix. A modified least-squares optimisation method using the l1 norm, commonly 

referred to as a blocky inversion method (Ellis and Oldenburg, 1994; Loke and Lane, 2002) that 

produces an inversion model with sharper boundaries, is also available in the computer program 

used. 

Some smearing of the images may occur due to the finite time required for each measurement as 

well as the assumption of a 2D geometry. Since changes in the resistivity variations will occur 

during the time required for each set of measurements, the inversion model probably gives an 

‘average’ of the true resistivity during the measurement time. The resistivity distribution also 

changes along the length of the column. Each 2D image is also affected by the resistivity of the 

material above and below the ring of electrodes. However, since lateral spreading of the DNAPL is 

likely to be much slower than the rate of flow down the column, such 3D effects are probably not 

significant. 

One possible disadvantage of the model discretisation used in Figure 3a is that the cells become 

progressively narrower towards the centre of the cylinder. In order to verify that the model 

discretisation and regularisation method chosen does not result in significant artefacts in the 

inversion models, two series of tests with structures of known geometry were carried out. The first 

series used synthetic data generated using the finite-element forward modelling program. In the 

second set of tests, measurements were made with the cylinder filled with water and objects such as 
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plastic tubes or metal rods placed within the cylinder. Both sets of tests confirmed that the inversion 

results are not significantly influenced by the model discretisation and regularisation method used. 

As an example, Figure 3b shows the results from a test where a plastic tube was used. The inversion 

model shows a high resistivity anomaly in the region of the tube without significant artefacts in 

other parts of the cylinder. 

 

5. RESULTS AND DISCUSSION 

5.1 Baseline Models 

The baseline resistivity and phase scans are shown as Figure 4. Model resistivities of the coarse 

sand/iron mix are seen to vary between 50 and 60 Ωm, whilst the fine sand around the edge of the 

column is associated with resistivities of approximately 70 Ωm. The phase model indicates that the 

sand/iron mix had a phase response as high as 160 mrads. A zone of relatively low phase values is 

seen around the edge of the model reflecting the presence of the fine sand. The phase values shown 

in the model for this zone are still much higher than would be expected for clean sand, indicating 

imperfect resolution of the fine sand layer. Thin layers of greatly contrasting electrical properties 

are, however, typically difficult to precisely resolve using smoothness constrained inversion 

methodologies (Chambers, 2001). Both the resistivity and phase models contained heterogeneities, 

in particular resistivity and phase lows were observed towards the centre of the models. These 

heterogeneities are likely to be a function of the mixing of the sand and iron, and possibly artefacts 

of electrode array and FE mesh geometry. The use of differential imaging was intended to reduce 

the effects of these heterogeneities by allowing the changes in electrical properties produced by the 

presence of DNAPL to be considered in isolation. 

 

5.2 Measured Breakthrough Curves 
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Prior to the inversion of the tomographic data, measured data were extracted for a dipole-dipole 

configuration comprising remote units 7 (C1) and 8 (C2), and 10 (P1) and 11 (P2); these measured 

data were used to provide an indication of DNAPL movement past the plane of electrodes. This 

electrode configuration was chosen due to its close proximity to the lateral position of the DNAPL 

release point. Figure 5 shows measured amplitude and phase data collected from this electrode 

configuration between t = 0 and 213 min. The measured amplitude can be seen to increase with the 

introduction of the highly resistive DNAPL. A rapid increase in amplitude can be seen to occur 

between t = 0 and 25 min, before an equally rapid decline from t = 25 to 50 min. After this point the 

change in amplitude was minimal indicating a return to essentially static conditions. The measured 

phase angle curve mirrored that of the amplitude; phase angles were shown to markedly drop with 

the introduction of DNAPL. This may have been due to DNAPL enveloping the metallic grains, 

thereby preventing metallic polarization from occurring. These curves indicate that the DNAPL 

migrated rapidly through the column with peak flow of DNAPL past the electrodes occurring within 

30 min of DNAPL release; a majority of DNAPL movement appears to have occurred with the first 

hour of the experiment. Both the measured amplitude and phase curves showed an offset at t = 213 

min from original levels at t = 0, due almost certainly to the presence of residual DNAPL. 

 

5.3 Time Lapse Imaging 

The differential time-lapse resistivity and phase images of DNAPL induced changes between t = 4.5 

and 481.5 min are shown in Figure 6. Differential images were produced by the cell-by-cell 

subtraction of baseline model from subsequent models. It should be noted that small-scale 

intergranular features, such as fingers and isolated blobs (Schwille, 1988), are beyond the resolution 

of the electrical imaging configuration used in this case; DNAPL contaminated zones will be 

distinguished as laterally continuous resistivity or phase anomalies with each model cell indicating 

an average resistivity or phase value for the area of the cell. 
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The resistivity images show a marked resistive anomaly coinciding with the lateral position of the 

DNAPL release point. This anomaly can be seen to intensify up to t = 22.5 min before diminishing, 

with a peak corresponding with that of the measured data curves (Figure 5). These anomalies 

clearly reflect the migration of the DNAPL past the plane of electrodes. As anticipated, the size of 

the anomalies relative to the release point diameter indicates some lateral spreading of the DNAPL 

with downward migration. Maximum increases in resistivity associated with the presence of 

DNAPL are approximately 35 Ωm, seen at t = 22.5 min. As previously mentioned these model 

resistivity changes may represent an underestimate of true peak resistivities. However, model 

resistivity increases (~35 Ωm) are small enough to indicate that full DNAPL saturation within the 

migration pathway within the plane of electrodes probably did not occur; instead it is probable that, 

due to variability in pore throat diameter (equation (1)) and fingering, some pore spaces within the 

main DNAPL pulse remained wholly or partially water filled thereby permitting electrolytic 

conduction through the main zone of contamination. 

The phase images are very much more heterogeneous and variable, reflecting the greater sensitivity 

of phase measurements to noise. At t = 13.5 and 22.5 min, over the same time as the peak in 

resistivity occurred (Figure 6), small phase lows can be seen below the DNAPL release point, most 

likely indicating the presence of DNAPL. No other features within the phase images shown in 

Figure 6 can be linked with any confidence to the presence of DNAPL, despite measured phase 

shifts of up to 14 mrads. These phase shifts are of a similar order of magnitude to those reported by 

Vanhala (1997) for oil contaminated glacial till and sand samples. Though the IP mechanisms 

identified by Vanhala (1997) were different to those operating during this study, i.e. clay-organic 

reactions or disrupted membrane polarization, the implications for the ability of EIT to image phase 

changes of this magnitude are the same. Detection of these levels of DNAPL induced phase shifts in 

the field environment, where there are fewer controls and greater noise influences, is likely to be 

even more problematic. 
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5.4 Model Breakthrough Curves 

Slater et al. (2000) describe an experiment in which time-lapse resistivity model cells were used to 

produce multiple breakthrough curves describing the movement of a saline tracer through a porous 

medium. In this study a similar procedure is used to monitor DNAPL migration. Figure 7 shows 

model resistivity and phase breakthrough curves for cells 38 and 142. Cell 38 is located directly 

below the DNAPL release point, and consequently coincides with the modelled DNAPL flow path 

(Figure 6); cell 142 is situated on the opposite side of the column. 

The model breakthrough curves for the phase are highly variable, probably as a result of noise, and 

systematic variation corresponding to DNAPL movement is difficult to detect. The cell 38 curve 

does however display a phase low, consisting of three points, at t = 13.5 to 22.5 min corresponding 

to the rise to peak DNAPL saturation within the plane of electrodes. Conversely, the resistivity 

breakthrough curves are relatively smooth, with few irregular datum points. Cell 142 shows only 

slight changes in model resistivity, with a maximum change of <5 Ωm. After 3.5 h an offset of <3 

Ωm from the starting resistivity is observed. It is likely that the slight variation in amplitude is 

related to resistivity changes in other parts of the column, and is a result of the smoothing inherent 

in the inversion routine. The cell 38 curves display a similar pattern to that seen from the measured 

amplitude curve in Figure 5. A steady increase in resistivity up to 87 Ωm is seen within 22.5 min of 

DNAPL release. A rapid decline is then seen corresponding to the passing of the DNAPL before 

virtually static conditions are reached after approximately 60 min. After 3.5 h little change in 

resistivity is seen, with values holding steady at around 69 Ωm, representing an offset of 15 Ωm 

from the starting resistivity. 

 

5.5 Estimation of DNAPL Saturation 

DNAPL saturation was estimated using the second Archie equation (Archie, 1942) 
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( ) n
towS

1
ρρ=      (9) 

where Sw is the fraction of pores containing water, ρo is the resistivity of the water-saturated 

sediment, ρt is resistivity of partially saturated sediment, and n is the saturation exponent, usually 2. 

This equation was originally developed to determine reservoir characteristics of oil and gas bearing 

formations, though latterly it has also been applied to environmental problems (e.g. Daily et al., 

1992; Schima et al., 1996; Weller et al., 1996b). The Archie equation is typically applied to clean 

materials with no conductive matrix components. The presence of conductive matrix components 

can lead to an overestimation of Sw, particularly at low water saturations (Hearst et al., 1999). 

However, in this case the iron component, approximately 4.5% by volume, is expected to have only 

a modest effect on the calculated saturations as the grains are disseminated, preventing metallic 

electrical continuity (Clavier et al., 1976). Consequently, it is assumed that the Archie equation will 

provide an approximate indication of the DNAPL saturation, particularly at the high water 

saturations (e.g. Sw > 75%) associated with residual DNAPL levels. For a clean water-saturated 

porous medium with a resistivity of 54 Ωm, reflecting the value of cell 38 at t = 0, Table 3 shows 

how resistivity changes with increasing DNAPL saturation, according to equation (9). DNAPL 

saturations calculated for cell 38 between t = 0 and 213 min are shown on Figure 7. The curve 

shows maximum DNAPL saturations of 21% of pore space, reducing to approximately 12% with 

time. The maximum saturation level is subject to increased uncertainty due to the likely 

underestimation of peak resistivity values. Saturation levels calculated during less dynamic periods 

of the experiment, i.e. after t = 60 min are less likely to be affected by these averaging and 

smoothing effects. 

Figure 8 shows a contour plot of inferred DNAPL residual saturations across the column at t = 8.5 

h; residual saturation levels were calculated for each cell using the equation above. The plot shows 

residual DNAPL saturation values of up to 12% directly below the DNAPL release point within the 

zone identified in Figure 6 as the DNAPL migration pathway. These values are towards the lower 
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end of those recorded by other researchers. Imhoff et al. (1998) recorded average residual TCE 

saturations of 12 and 13% from saturated medium grained glass beads and sand, respectively. 

Cohen and Mercer (1993) list 1-1-1 trichloroethane and tetrachloroethene residual saturation values 

of 15 to 40% in coarse Ottawa sand. Oostrom et al. (1999) give residual TCE saturation values in 

coarse, medium and fine sands as 22, 20 and 19%, respectively. If fingering had occurred then 

model resistivity, and consequently calculated residual DNAPL saturation levels, will represent 

average values for contaminated and uncontaminated material at the scale of a model cell; 

calculated residual saturations in this instance would therefore be lower than those determined from 

laboratory bulk samples. 

 

6. SUMMARY AND CONCLUSIONS 

EIT was used to monitor the migration of a fluorinated DNAPL through a porous polarizable 

medium within a laboratory column. Measured amplitude and phase data indicated rapid movement 

of DNAPL within the first hour of the experiment followed by a return to essentially static 

conditions. Measured amplitude and phase offsets after the initial dynamic phase indicated the 

presence of residual DNAPL within the flow path. 

Differential resistivity images were successful in identifying DNAPL flow, and agreed well with the 

measured data. Resistivity anomalies consistent with the presence of residual DNAPL were still 

apparent in the late stages of the experiment. The size of the anomalies associated with the DNAPL 

flow indicated that some lateral spreading had occurred.  Also the relatively modest increase in 

resistivity associated with the contaminated zone indicated that DNAPL had infiltrated only a 

limited proportion of the pores in the zone, and therefore fingering may well have occurred. Further 

experiments using dye-stained DNAPL are planned. These experiments would allow the extent and 

nature of flow to be visually assessed subsequent to electrical data collection, and would also 

include destructive sampling to determine residual saturation of DNAPL (Poulsen and Kueper, 
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1992). Comparisons between these data and the resistivity, phase and residual saturation models 

could then be made, thereby allowing the resolution of the EIT technique to be more robustly 

examined.  

The differential phase images were less successful in delineating DNAPL flow, despite a significant 

phase shift identified in measured data associated with DNAPL contaminated material. Anomalies 

coinciding with the DNAPL were only apparent in the initial stages of the experiment, during which 

time DNAPL flow through the plane of electrodes was at a maximum. The differential phase 

images were of a relatively poor quality and were characterised by heterogeneous and variable 

phase angle distributions, seemingly unrelated to the DNAPL flow. 

Resistivity data from individual model cells were used to estimate DNAPL saturation levels within 

the column. Residual saturation levels of up to 12% were calculated within the DNAPL flow path at 

the end of the experiment. These levels may be an underestimate of the true residual saturations at 

an inter-granular level, and instead probably represent an average value from uncontaminated 

material and DNAPL fingers within the flow path identified in the EIT images.  

This study illustrates the potential value of EIT, and in particularly resistivity imaging, for the non-

invasive monitoring of hydraulic experiments involving DNAPL invasion in laboratory conditions. 

Improvements in EIT monitoring of hydraulic experiments are likely to be achieved with the 

development of more rapid data acquisition systems, which will reduce errors due to DNAPL 

movement during data collection, and the use of data collection and inversion methodologies which 

fully account for the 3D nature of such experiments. 
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FIGURE CAPTIONS 

Figure 1. Schematic diagram of laboratory column, including porous media distribution, in (a) 

section and (b) plan view. The PVC column and carbon electrodes are shown in grey and black, 

respectively. 

Figure 2. (a) SIP256b system architecture showing current electrodes switched to remote units 5 

and 6. (b) Measurement protocol for a scan that includes all dipole-dipole positions for which each 

dipole length is equal to one unit electrode separation. 

Figure 3. (a) Example of the dipole-dipole array on a cylindrical surface (where dipole length is 

denoted by ‘a’ and dipole separation factor by ‘n’), including model elements and an exploded view 

of the shape and locations of the nodes for an isoparametric quadrilateral element with 8 nodes, and 

(b) an example of an inverted model generated using this mesh geometry from a test with a known 

target. 

Figure 4. Base line scans collected prior to DNAPL release showing model resistivity and phase 

angle. 

Figure 5. Measured amplitude (resistance) and phase breakthrough curves, collected using remote 

units 7 (C1), 8 (C2), 10 (P1) and 11 (P2). Error bars show SIP256b calculated error. 

Figure 6. Differential resistivity and phase time-lapse images collected at t = 4.5, 13.5, 22.5, 31.5, 

49.5 and 481.5 min. The horizontal position of the DNAPL surface release point is shown as a 

circle. 

Figure 7. Breakthrough curves of model resistivity and phase angle for cells 38 and 142. 

Figure 8. Contour plot showing calculated residual DNAPL saturation at t = 481.5 min. 
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TABLES 

Physical Properties HFE-7200 Trichloroethene

Density (kg/m3) 1430 [a] 1460 [b]

Dynamic Viscosity (Pa.s) 0.00061 [a] 0.00057 [b]

Interfacial Liquid Tension (N/m) 0.0382 [c] 0.0345 [b]

Contact Angle, Sessile (degree) - quartz 30 ±1 [d] 20 ±5 [e]

Solubility in Water @ 25oC(mg/L) <20 [a] 1100 [f]

Resistivity (Ωm) 106 [a] 106 [f]

Data from [a] 3M Product Data Sheet, [b] Oostrom et al. (1999), [c] Centre for Contaminated Land 
Remediation (CCLR), University of Greenwich, UK, measured using Krüss DSA 10, [d] CCLR, 
[e] Harrold et al. (2001) and [f] Lucius et al. (1992).  

Table 1. Fluid properties. 
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1 1.4165 12 17.38 0.47
2 4.8004 12 16.61 0.22
3 10.077 12 16.86 0.28
4 15.265 12 17.23 0.21
5 17.479 6 17.37 0.27

Standard 
deviation (Ωm)

Dipole-dipole 
array 'n' value

Geometric 
factor (m)

Number of 
measurements

Average apparent 
resistivity (Ωm)

 

Table 2. The geometric factors for the dipole-dipole array for a cylindrical geometry. The apparent 

resistivity values were produced from a test with tap water. 
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Water NAPL
100 0  54
95 5  60
90 10  67
80 20  84
60 40  150

Pore Fluid (%)
 Resistivity (Ωm)

 

Table 3. Clean porous media resistivity as a function of DNAPL saturation. 
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