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Abstract 
The efficiency of subglacial drainage is known to have a profound influence on 

subglacial deformation and glacier dynamics with, in particular, high meltwater 

contents and/or pressures aiding glacier motion. The complex sequence of Middle 

Pleistocene tills and glacial outwash sediments exposed along the north Norfolk coast 

(Eastern England) were deposited in the ice-marginal zone of the British Ice Sheet 

and contain widespread evidence for subglacial deformation during repeated phases of 

ice advance and retreat. During a phase of easterly directed ice advance, the glacial 

and pre-glacial sequence was pervasively deformed leading to the development of a 

thick unit of glacitectonic mélange. Although the role of pressurised meltwater has 

been recognised in facilitating deformation and mélange formation, this paper 

provides evidence for the subsequent development of a channelised subglacial 

drainage system beneath this part of the British Ice Sheet filled by a complex 

assemblage of sands, gravels and mass flow deposits. The channels are relatively 

undeformed when compared to the host mélange, forming elongate, lenticular to U-

shaped, flat-topped bodies (up to 20 to 30 m thick) located within the upper part of 

this highly deformed unit. This relatively stable channelised system led to an increase 

in the efficiency of subglacial drainage from beneath the British Ice Sheet and the 

collapse of the subglacial shear zone, potentially slowing or even arresting the 

easterly directed advance of the ice sheet. 
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1. Introduction 
Subglacial drainage systems have been shown to exert a strong influence upon the 

processes operating within the beds of glaciers, sediment mobility and ultimately ice 

sheet dynamics (Kamb, 1987; Stokes and Clark, 2001; Breemer et al., 2002; Lowe 

and Anderson, 2003; Bell et al., 2007). The pathways followed by pressurised 

subglacial meltwater have been described as taking the form of either: (i) thin sheets 

or films developed along the ice-bed interface (Weertman, 1972; Alley, 1989; Sharp et 

al., 1990; Hubbard and Sharp, 1993) potentially leading to the decoupling of the ice 

from its bed and rapid forward motion of the ice; (ii) intergranular flow, with 

meltwater flowing through pore spaces (Darcian flow) within subglacial sediments 

(Hubbard et al., 1995; Boulton et al., 1995) promoting soft-sediment deformation of 

the bed (deforming beds); (iii) distributed flow through a network of linked cavities 

(Sharp et al., 1989) or braided canals (Shoemaker, 1986; Clark and Walder, 1994; 

Benn and Evans, 2010) between the ice and underlying bed; or (iv) discrete, highly 

efficient systems of drainage channels or tunnel valleys feeding meltwater to the 

margin of the glacier or ice sheet (Wingfield, 1990; Ó Cofaigh, 1996; Praeg, 2003; 

Huuse and Lykke-Andersen, 2003; Longeran et al., 2006).  

Studies of the subglacial hydrology of contemporary ice sheets (e.g. 

Greenland) indicate that there is a direct correlation between the volume of meltwater 

entering the bed of the glacier and a seasonal increase in the velocity of the overriding 

ice (e.g. Zwally et al., 2002; Joughin et al., 2008; Schoof, 2010). This link is complex, 

with work by Schoof (2010) demonstrating that the subglacial drainage system 

switches between different modes as it adapts to the variable input of surface water 

into the bed, with the variability in meltwater input, rather than total volume, forming 

the main driver for ice-sheet acceleration (also see Lüthi, 2010). The introduction of 

meltwater into an actively deforming bed can promote the development of either 

relatively faster flowing ice streams which aid in the regulation of the size and shape 

of ice sheets, or transient surge-type flow behaviour of glaciers (Kamb, 1987; Siegert 

and Bamber, 2000; Breemer et al., 2002; Lowe and Anderson, 2003; Tikku et al., 

2004; Bell et al., 2007). In contrast, the development of relatively stable channelised 

drainage systems beneath glaciers and ice sheets, associated with a steady supply of 

meltwater, may lead to the draining of the bed and deceleration of the overriding ice 

(Hubbard et al., 1995; Boulton et al., 2007a and b; Magnússon et al., 2010). In a 

Pleistocene context, there are several case studies that examine the range and 
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distribution of preserved subglacial meltwater features (e.g. Piotrowski et al., 1999; 

Piotrowski et al., 2006; Piotrowski, 2006). However, it has proved difficult to relate 

these directly to processes operating within the subglacial bed, and in-turn, their 

controls on ice sheet behaviour. 

This paper presents evidence from the coastal cliff sections in north Norfolk, 

Eastern England for the development of a subglacial drainage system beneath the 

eastern margins of the Middle Pleistocene (Anglian) British Ice Sheet (BIS). This 

system comprised a series of relatively undeformed, sand and gravel bodies 

comprising several stacked channels, linked by smaller channels which were eroded 

into the polydeformed sequence of ice-marginal tills, waterlain diamictons and 

outwash sediments. This sequence contains widespread evidence (at various scales) 

for subglacial deformation (Dhonau and Dhonau, 1963; Banham 1975, 1988; Hart, 

1987; Hart and Boulton, 1991; Hart and Roberts, 1994; Phillips et al., 2008), 

deformable beds (Lee, 2001; Roberts and Hart, 2005; Hart, 2007) and the formation 

of a thick unit (up to 20 to 30 m thick) of glacitectonic mélange associated with large-

scale subglacial shear zone beneath the Anglian BIS (Lee and Phillips, 2008; Phillips 

et al., 2008). The influence of the development of the subglacial drainage system on 

these subglacial deforming-bed processes is examined, in particular its effect on the 

style of deformation within the subglacial shear zone and ultimately the advance of 

the ice sheet across north Norfolk. 

 

2. Location of study area and methodology 
The present study focused on the coastal cliff sections between Weybourne (National 

Grid Reference (NGR: TG 111 437)) and Sheringham (NGR: TG 155 435), north 

Norfolk, Eastern England (Fig. 1). Cliff sections range in height from 5 m at 

Weybourne to 45 m along the 4.4 km length of the section to Sheringham. The cliff 

sections between Weybourne and Sheringham were mapped and described on the 

basis of their sedimentological, lithological and structural characteristics. A sequence 

of overlapping photographs were taken of the cliffs enabling the analysis of the 

larger-scale structures developed along the entire length of the coastal section. Due to 

significant changes in perspective between some of the photographs, the interpretive 

section is divided into several overlapping segments (Fig. 2). Large format (A0) 

supplementary publications of this photographic interpretation and structural synthesis 

of the Sheringham to Weybourne coastal section have been made available by the 



 4 

authors for download. Sedimentological analysis of the sands and gravels units within 

the proposed subglacial drainage channels were aided by constructing photo mosaics 

enabling the construction of a number of detailed graphic logs which show the 

geometry of the sediment packages identified within the individual parts of this 

system (Figs. 3 to 8). Detailed graphic logs showing the variation in bedding type, 

particle size, bed geometry and sedimentary structures were obtained through a 

number of the larger sand and gravel bodies (see Figs. 6, 7 and 8). The orientations of 

sedimentary and deformation structures were measured using a compass clinometer. 

The sense of asymmetry of various fold phases and movement on the faults, and inter-

relationships between the various generations of structures were established. 

Successive generations of folds (F1, F2…..Fn), fabrics (S1, S2…..Sn) and lineations 

(L1, L2…..Ln) are distinguished by the nomenclature normally used in structural 

geological studies (S1 earliest fabric to Sn latest) (see Phillips et al., 2011). However, 

this nomenclature does not necessarily imply that these structures were developed in 

response to separate deformation events (D1, D2…..Dn). 

 

3. Glacial geology of the North Norfolk coast 
The study area lies just to the south of the Late Devensian ice limit (Pawley et al., 

2006), but was glaciated during the Middle Pleistocene by the Anglian British Ice 

Sheet (BIS). Although the precise number of glaciations within this Pleistocene 

remains a contentious issue (see Clark et al., 2004; Preece et al., 2009; Rose, 2009; 

Lee et al., 2012 for overviews), the traditional view is that all of the glacial deposits in 

northeast Norfolk lying to the south of the Late Devensian ice limit are Marine 

Isotope Stage 12 in age (Bowen et al., 1986; Banham et al., 2001; Pawley et al., 2008; 

Preece et al., 2009). The geology of the Weybourne-Sheringham cliff section 

comprises Cretaceous chalk bedrock (Moorlock et al., 2002), overlain by the shallow 

marine sand and gravels of the Early to early Middle Pleistocene Wroxham Crag 

Formation (Table 1) (Reid, 1882; Pawley et al., 2004). These sediments are overlain 

by various sandy and chalky diamictons (tills) that belong to the Happisburgh, 

Lowestoft and Sheringham Cliffs formations, and outwash sands and gravels assigned 

to the Briton’s Lane Formation (Table 1) (Pawley et al., 2004). Deforming and 

overprinting this succession are a complex array of glaciotectonic structures which 

have led to this polydeformed sequence being referred to as the ‘Contorted Drift’ 

(Reid, 1882; Dhonau and Dhonau, 1963; Banham, 1965, 1975, 1988; Ehlers et al., 
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1987, 1991) or the ‘Laminated Diamicton’ (Hart and Boulton, 1991; Hart and 

Roberts, 1994). Whilst Eyles et al. (1989) interpreted the style of deformation to be 

the product of sub-aqueous gravity flows, the majority of workers conclude that the 

glacitectonic overprint is subglacial in origin (Hart, 1987; Hart et al., 1990; Hart and 

Boulton, 1991; Hart and Roberts, 1994; Phillips et al. 2008), interpreting the range of 

small-scale structures within the tills in terms of a deforming bed model of glacier 

movement (Lee, 2001, 2009; Roberts and Hart, 2005; Hart, 2007).  

Phillips et al. (2008), using the regional stratigraphy of Lee et al. (2004) and 

Hamblin et al. (2005) (see Table 1), were able to unravel the complex, larger-scale 

glacitectonic history recorded by the glacial and preglacial sediments at West Runton, 

interpreting the main deformation event (D3 of Phillips et al., 2008), which led to the 

disruption of this sequence, in terms of a progressive proglacial to subglacial 

deformation model. Phillips et al. (2008) presented clear evidence for meltwater being 

present at the time of deformation, typically in the form of penecontemporaneous 

deformed proglacial outwash sands and gravels, with Lee and Phillips (2008) 

emphasising the role of pressurised porewater in the formation of a subglacial shear 

zone and development of a thick unit (up to 20 to 30 m thick) of glacitectonic 

mélange which characterised subglacial deformation beneath the easterly advancing 

BIS. These authors concluded that the variability in the porewater content of the 

glacier bed played an important role in regulating the mechanism(s) driving subglacial 

deformation and ultimately the advance of the ice sheet across North Norfolk. 

However, no direct evidence has previously been presented for the presence of a 

linked system of drainage channels and/or cavities beneath the BIS in this area, and 

much of the evidence for meltwater activity simply relates to localised high porewater 

conditions within the subglacial bed (Roberts and Hart, 2005; Lee and Phillips, 2008; 

Phillips et al., 2008) and proglacial outwash deposits (Boulton et al., 1984; Hart, 

1992; Lunkka, 1994; Lee et al., 2004; Pawley et al., 2005). 

 

4. The glacial and preglacial sequence between Sheringham and 
Weybourne 
The preglacial and glacial sequence exposed along the coast between Sheringham and 

(TG 155 435) and Weybourne (TG 111 437) occurs within a westwards extension of 

the zone of subglacial deformation, associated with ice advance from the west, 

identified by Phillips et al. (2008) at West Runton (TG 181 432) located further to the 
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east. In the present study area the glacial sequence is dominated by the mélange facies 

of the Bacton Green Till (Table 1, BGT; up to 30 m thick) which overlies the older 

Happisburgh Till (HT; up to 10 m thick) and pre-glacial Wroxham Crag Formation 

(Table 1, WCF; 1 to 5 m thick) (Reid, 1882; Pawley et al., 2004); the latter resting 

unconformably upon Cretaceous chalk bedrock (Moorlock et al., 2002). These 

sediments are locally eroded into by a sequence of well-bedded, outwash sands and 

gravels assigned to the Briton’s Lane Formation (see Fig. 2) (Lee et al., 2004; Pawley 

et al., 2004). Between Weybourne and Sheringham, the grey coloured, relatively clay-

rich HT thins westwards until it is eventually truncated between the BGT and 

underlying chalk. The BGT is a brown, sandy diamicton which possesses a well-

developed glacitectonic foliation (S1 in age) defined by centimetre-scale 

compositional layering. Deformation structures developed within the BGT mélange 

and, where present, HT, include small- to large-scale asymmetrical, tight to isoclinal 

folds (F2 in age), ductile shear zones and brittle thrusts, that record a consistent 

easterly-directed sense of shear and deform the earlier developed S1 fabric present 

within the diamictons. The mélange locally contains elongate slab-like to rounded 

‘eye’ or ‘augen’ shaped intraclasts of poorly consolidated sand. These intraclasts are 

aligned within and wrapped by the S1 foliation present within the BGT. The shape of 

the intraclast and asymmetry of the enveloping S1 fabric records an easterly directed 

sense of shear consistent within that recorded by the F2 folds, thrust and shears 

developed elsewhere within the BGT. Waller et al. (2011) concluded that the sand 

intraclasts were frozen (pore ice cement) during deformation, providing clear 

evidence for the easterly advancing BIS having overridden and deformed "warm" 

permafrost (also see Waller et al., 2009). These authors argued that deformation 

beneath the ice occurred at temperatures slightly below the pressure melting point, but 

in the presence of a significant liquid water content within the fine-grained matrix to 

the mélange.  

The BGT is overlain by a thin (1 to 2 m thick), relatively laterally continuous, 

white to pale grey chalk-rich till exposed at the top of the cliff and correlated with the 

Weybourne Town Till (WTT) of Lee et al. (2004) whose stratotype is located just 

south of the study area at Weybourne Town Pit (TG 114 430). 

 

4.1. Morphology and stratigraphical context of the sand and gravel bodies 
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The subglacially deformed sequence between Sheringham and Weybourne contains a 

number of relatively undeformed, elongate to crudely symmetrical, lenticular to U-

shaped, flat-topped sand and gravel bodies located near to, or at the top of the 

mélange (i.e. near to the top of the cliff section) where they are capped by a relatively 

thin layer of BGT and/or WTT (Figs. 3, 4, 5, 7 and 9). The sand and gravel bodies 

range from 5 m to several tens of metres in width and comprise a locally thick (up to 

20 to 30 m) sequence of pale yellow to brown sand, silty sand and clast-supported 

gravel (see Figs. 6, 7 and 8). The moderately to locally steeply-inclined bases of these 

bodies are gently curved (convex downward) to irregular (erosive) in form, cutting 

downward into the underlying BGT (Figs. 4, 5, 10a and b). Beneath the larger bodies 

the BGT thins rapidly or is locally cut out, with the sands and gravels resting directly 

upon, or cutting into the underlying WCF (Figs. 4, 10c and d). The gravels are 

composed of rounded to subangular pebbles and cobbles of flint, quartzite, vein quartz 

with occasional clasts of sandstone, crystalline erratics, chalk and broken shell debris. 

The presence of soft chalk and bioclastic material within the gravels provides further 

evidence that the sands and gravel bodies are partly derived from locally scoured 

bedrock and WCF. Although the bases of the sand and gravel bodies are clearly 

erosive, the foliation present within the BGT appears to ‘wrap around’ these contacts, 

with the sand and gravel having filled, or eroded into a broad open synformal 

structure developed within the diamicton.  

Although relatively undeformed when compared to the mélange, bedding 

within sand and gravel bodies, and the foliation developed adjacent BGT are locally 

deformed by meso- to large-scale east to southeast-verging (F2) folds and thrusts 

(Figs. 9 and 11) indicating that they have both encountered the same easterly directed 

subglacial deformation event. This evidence clearly indicates that the sand and gravel 

bodies do not represent part of a later outwash sequence eroded into the BGT, but in 

fact form an integral part of this subglacial succession. 

 

4.2. Sedimentology of the sand and gravel bodies 

Detailed sedimentological analysis of the sands and gravel bodies is restricted due to 

their typical occurrence within the upper part of the cliff sections. However, 

lithological logs through the sequences within three of the larger sand and gravel 

bodies are shown in Figs. 6, 7 and 8, with the location of these logged sections being 

shown on Fig. 2 (also see supplementary publication). The sedimentary sequences 
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within the individual bodies are highly variable, consisting of massive to well-bedded 

sand, silty sand and gravel (Fig. 6) with rare thin clay beds and sandy mass-flow 

deposits (Figs. 7f and g). Interbeds of finely laminated sand and silt locally show 

evidence of soft-sediment deformation (disharmonic folding, convolute bedding) and 

localised liquefaction (Figs. 8f, g, h). Primary sedimentary structures, including 

massive bedding (Fig. 6 c), thin horizontal-bedding, cross-lamination (Fig. 7d), 

climbing-ripple cross-lamination (types A and B; Fig. 7e), normal (Fig. 6d) and 

reverse graded-bedding and trough cross-bedding (Fig. 6e), are well preserved (Figs. 

6 and 8), even immediately adjacent to the contacts with the BGT indicating that these 

primary erosive contacts have undergone very little glacitectonic modification. Initial 

palaeocurrent data obtained from the cross-bedded sands record potential sediment 

transport directions towards the northeast, east and southeast. 

Fining and coarsening up-ward sequences (2 to 7 m in scale; Figs. 6 and 7) are 

punctuated by the influx of thick massive gravels. The recognition of fining-upward 

sequences within the logged sections (see Fig. 6) is consistent with waning flow 

conditions, and suggests periods of lower energy sedimentation under much lower 

flow regimes. Locally sedimentation was dominated by sand deposition, with influxes 

of coarse gravel only occurring within the upper part of the sequence (Fig. 8). In one 

sand and gravel body, the erosive base is immediately overlain by a complex, 

moderately to thinly bedded sequence of type-A climbing ripples to trough cross-

bedded, fine- to medium-grained sands interbedded with internally highly deformed 

silty sands (Fig. 7). Syn-sedimentary soft-sediment deformation structures 

(disharmonic folds, ductile shears, thrusts; Figs. 7f and g) which characterise the silty 

sands as mass-flows record both easterly and westerly transport directions, consistent 

with the flow of these fluidised sediments towards the centre of the sand and gravel 

body from both side margins, and sedimentation within a channel or similar 

depression. The presence of load structures, convolute bedding, and water-escape 

conduits (Fig. 8h), coupled with normal (extensional) syn-sedimentary faults within 

the sands and silty sands (Fig. 8e) are indicative of loading and high sedimentation 

rates during deposition. 

The internal structure of the smaller sand bodies is relatively simple, as they 

typically comprise a small number of 1 to 3 m thick units of sub-horizontally bedded 

sand and gravel that thin laterally towards the margins of the body (see Fig. 9), 

resulting in a distinctive channel-like cross-section morphology. Gravel dominated 
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units are massive to poorly bedded indicative of rapid deposition and form either 

laterally extensive beds (that extend across the width of the body) or more restricted, 

lenticular, channelised units that erode into the underlying sands (Fig. 9c) or BGT 

(Figs. 9a and d). 

In contrast to these relatively simple sequences, the larger sand and gravel 

bodies are internally complex. Detailed field and photographic analysis reveal that 

they comprise a series of cross-cutting, laterally and vertically stacked, lenticular 

(channelised) to tabular units of well-bedded sand and gravel (Figs. 3, 4, 5, 7 and 8). 

The cross-cutting relationships indicate that, in general, the sediment packages within 

each individual sand and gravel body become progressively younger towards the east 

(down-ice) (see Fig. 5). The geometry of these sand and gravel bodies, combined with 

their sedimentology indicate that they were deposited during a series of high energy 

pulses. Characteristic evidence includes the scoured and cross-cutting basal form of 

the sands and gravels (Figs. 4, 5, 10a and b), and occasional beds of massive gravel 

(Figs. 6a and c) indicative of large sediment influxes during high or peak flow with 

rapid sedimentation from bed-load transport. Equally significant are the fining-

upward and coarsening-upward sequences of sand and gravel (Figs. 6a and 7c) that 

record pulsed sediment input into the sediment system of varying magnitudes. 

Coarsening-up sequences record an increase in the energy regime, with sharp changes 

in sedimentology between sand and gravel beds indicating that they form several, 

superimposed pulses of sedimentation. 

Fining-upward gravel-sand sequences composed of graded, individual sets of 

sand and gravel record deposition during a series of smaller sediment pulses under an 

overall subsiding flow regime. Fining-up sequences of gravel to sand indicate 

deposition during ‘moderate pulse’ events which commenced with a smaller influx of 

coarse sediment followed by waning flow. Type-A and type-B climbing ripples record 

subtle temporal variations in the sediment supply and energy regime although the 

dominance of type-B climbing ripples, coupled with the presence of syn-depositional 

load structures, are suggestive of high sedimentation rates. ‘Low’ to ‘low-moderate’ 

flow events are characterised by massive, horizontal and cross-bedded sands. They 

characterise deposition mainly from bed load transport punctuated by a series of 

minor hiatuses, whilst trough-cross bedding records the migration of small 

subaqueous lunate bar forms under lower, probably background, energy regimes.  

Background sedimentation is then terminated during the next high energy flow event 
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and the influx of coarser grained sand and gravel. The occurrence of thin clay and/or 

silty layers interbedded within the sand-dominated parts of the sequence record 

phases where the energy regime fell dramatically with background low-energy 

sedimentation occurring. The presence of mass-flow deposits within the lower energy 

sand dominated parts of the sequence indicates that the margins of the sand and gravel 

bodies were unstable leading to slumping during episodes of quiescence. 

 

4.3. Deformation of the sand and gravel bodies 

Although relatively undeformed when compared to the BGT, the sand and gravel 

bodies do show evidence that they have undergone the same easterly directed 

subglacial deformation as the mélange. This deformation, where present, is highly 

variable in its intensity, ranging from the simple tilting of bedding and over-

steepening of the erosive bases of the sand and gravel bodies (Figs. 4, 10c and d), 

through to more complex folding and thrusting (Figs. 9 and 11; also see Fig.2 and 

supplementary publication). Importantly this deformation was, in the majority of 

cases, focused along the western (up-ice) side of the body. However, locally, the 

sands and gravels are apparently undeformed and the channel-like morphology is 

clearly preserved (Figs. 3 and 7). The pervasive foliation within the BGT wraps 

around the base of the channels with the sands and gravels occupying a broad, open, 

symmetrical to asymmetrical synform within the mélange. 

In the least deformed examples, bedding has simply been over-steepened due 

to rotation towards the east (Figs. 4, 10c and d). However, the adjacent BGT, is 

deformed by meso- to large-scale, E/SE-verging, asymmetrical folds as well as SE-

directed thrusts and ductile shear zones which led to the tectonic thickening of the till 

(Fig. 4). The steeply inclined to sub-vertical bedding within the sands and gravels is 

co-planar to the foliation within the BGT on the steep, overturned limbs of these 

large-scale folds.  

Where deformation is more pronounced, the sands and gravels adjacent to the 

western (up ice) margin of the body are deformed by small- to meso-scale recumbent 

to moderately inclined, asymmetrical, SE-verging folds which also deform the 

adjacent BGT (Figs. 9c, d and e); indicating that they have both recorded the same 

easterly directed deformation event. The intensity of this folding and thrusting is, 

however, far greater within the BGT which has been tectonically thickened on the up-

ice side of the sand and gravel bodies (see Fig. 4). The relationships between the 



 11 

thrusting of the BGT and formation of the sand and gravel bodies is complex. In a 

number of examples, the erosive bases of the sand and gravel bodies clearly cut the 

faults and shears, indicating that thrusting predated sedimentation. Elsewhere, 

however, the thrusts clearly propagated into and deformed bedding within these 

bodies (see Fig. 11), demonstrating that subglacial deformation continued during, or 

after deposition of the sands and gravels. The western margin of one large sand and 

gravel body (TG 13458 43555) is deformed by a large-scale asymmetrical synform 

with small to meso-scale east/southeast-verging folds and thrusts within its core (Fig. 

11). The fold occurs within the footwall of a prominent westerly dipping thrust or 

shear zone which resulted in the displacement of a detached slab of BGT across the 

top of the sand and gravel (also see Figs. 9b and f). At this locality the locally intense 

folds and thrusts within the BGT are cross-cut (post-dated) by a 2 to 5 m wide, steeply 

inclined to subvertical water-escape conduit filled by red-brown, hematitic sand 

derived apparently from the structurally underlying WCF (Fig. 11). This large-scale 

water-escape feature (hydrofracture) is developed immediately adjacent to the sand 

and gravel body and clearly records the movement of overpressurised meltwater 

within the bed of the ice sheet.   

In marked contrast to the folded and thrusted western (up-ice) margins of the 

sand and gravel bodies, their eastern (down-ice) terminations are typically 

undeformed and an original, channel-like morphology is preserved (see Figs. 3, 5 and 

8). 

 

5. Subglacial drainage system within the deforming bed of the 

Anglian BIS 
It is clear from the above description that the sand and gravel bodies exposed in the 

cliff sections between Sheringham and Weybourne represent an integral part of the 

BGT subglacial succession and are not large-scale load structures or ‘sag basins’ as 

described elsewhere (Hart, 1987; Ehlers et al., 1991). This conclusion is demonstrated 

by the fact that the sands and gravels have undergone the same easterly-directed 

subglacial deformation as the BGT and are locally enclosed within this mélange. The 

internal structure and sedimentology of these bodies is consistent with them having 

formed part of a major subglacial drainage system (see Fig. 12) composed of 

channelised to tabular sands and gravels laid down in an overall high energy 
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environment. Rapid changes in the style of sedimentation indicate that the energy of 

this environment varied dramatically, with high to low energy flow events being 

separated by periods of channel abandonment. The internal complexities identified 

within the larger sand and gravel bodies are consistent with the vertical and lateral 

stacking of these sequences, recording a shifting pattern of sediment dispersal within 

this high energy system which potentially fed detritus to the proglacial outwash 

sequence of the Runton Sands and Gravels (RSG) described by Phillips et al. (2008) 5 

km to the east at West Runton. 

The BGT on the western, up-ice side of the larger sand and gravel bodies is 

tectonically thickened, with sands and gravels apparently occupying or having been 

eroded into broad, open synforms within the mélange (Fig. 13). This relationship is 

analogous to that displayed by lee-side cavity fills developed down ice of bedrock 

highs or other similar large-scale perturbations within the glacier bed (Kamb, 1987; 

Benn and Evans, 2010). Consequently, it is possible that the larger sand and gravel 

bodies represent some form of ‘cavity fill’ composed of several laterally stacked 

channels, connected by a system of relatively minor channels (Fig. 12); the latter 

represented by the smaller sand and gravel lenses shown in Fig. 9. However, linked 

cavity networks described within the literature (Kamb, 1987; Hooke, 2005; Benn and 

Evans, 2010) are highly complex, tortuous systems typically formed between the 

glacier and underlying bedrock (see figs 3.15 and 3.23 of Benn and Evans, 2010). As 

a result they are considered to be an inefficient form of subglacial drainage with parts 

of the system becoming isolated, or cut off, as a result of the closure of the narrow 

connections linking the cavities due to continued ice movement. Such constriction 

leads directly to low water transit velocities within the linked cavity systems. The 

sedimentology and internal architecture of the sand and gravel bodies identified 

between Sheringham and Weybourne, however, clearly indicate that they record a 

shifting pattern of sedimentation within an overall high energy environment. 

Consequently, the preferred interpretation is that these sand and gravels bodies 

represent part of a channelised drainage system incised into the glacial and pre-glacial 

sediments beneath the easterly advancing Anglian BIS (Fig. 12).  

Channelised drainage systems are more efficient at transporting meltwater 

through the subglacial environment and, therefore, can lead to the dewatering of the 

bed. Piotrowski et al. (1999) concluded that subglacial channel formation is initiated 

when the bed can no longer evacuate all the meltwater produced. The development of 
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a potentially extensive subglacial drainage system below the Anglian BIS may 

tentatively be used to indicate a marked increase in the volume of meltwater reaching 

the bed, possibly as a result of increased melting of the ice sheet. The proposed 

drainage system formed within the upper part of the BGT (see Fig. 12), with the 

larger channel-fill sequences cutting downwards through this glacitectonic mélange 

(Fig. 5) and, in some cases, into the underlying WCF (Fig. 4), indicating that this 

highly deformed deposit had already largely been formed prior to the development of 

the channel system. The composition of the gravels within these channel-fill 

sequences (see section 4.1) indicates that the erosion of the glacial and pre-glacial 

sediments, as well as the underlying bedrock, provided part of the source of detritus 

which fed this essentially fluviatile system. The relatively undeformed nature of the 

sands and gravels, coupled with the locally complex relationships between the 

channel-fill sequences and the glacitectonic structures within the adjacent BGT, 

indicates that the drainage system did not become established until the later stages of 

the easterly-directed subglacial deformation event. This conclusion is supported by 

the fact that the bases of a number of the channels clearly cross-cut, and therefore 

postdate, the S1 foliation, east/southeast-verging F2 folds and thrusts present within 

the adjacent diamicton. However, the western (up-ice) margins of a number of the 

channels are deformed by F2 in age glacitectonic structures, indicating that subglacial 

deformation continued after the drainage system had been established. 

 

5.1. The effect of increased subglacial drainage efficiency on deformation beneath the 

Anglian BIS 

Phillips et al. (2008) demonstrated that subglacial deformation beneath the Anglian 

BIS as it advanced eastwards across northern Norfolk resulted in the glacitectonic 

thickening and disruption of the pre-existing glacial and preglacial sequences. Ductile 

shearing within the resulting mélange is thought to have accommodated the bulk of 

the forward motion of the overriding ice. This thick (up to 30 m thick) laterally 

extensive subglacial shear zone is composed of a complex, anastomosing system of 

shallowly to moderately west-dipping thrusts and broader ductile shear zones 

wrapping around apparently lower strain areas (Lee and Phillips, 2008; Phillips et al., 

2008), and is responsible for much of the deformation seen in the Sheringham to 

Weybourne coastal cliff sections. This shifting (spatial and temporal) pattern of 

deformation partitioning recorded by the BGT is consistent with the model proposed 
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by Piotrowski and Kraus (1997) (also see Evans et al., 2006; Lee and Phillips, 2008) 

for the development of actively deforming and stable (non-deforming) zones within 

the subglacial deforming bed in response to either water-induced decoupling at the 

ice-bed-interface (Hoffman and Piotrowski, 2001), or the ability of the subglacial bed 

to drain inter-granular pore water (Piotrowski et al., 2004). 

Lee and Phillips (2008) and Phillips et al. (2008), using macroscopic structural 

evidence from Bacton Green and West Runton (respectively), argued that during the 

earlier stages of subglacial deformation, shear stress imposed by the overriding glacier 

ice was being transmitted throughout the entire bed resulting in the pervasive 

deformation of the BGT (cf. van der Meer et al., 2003; Menzies et al., 2006). As 

deformation progressed, however, deformation within the mélange was preferentially 

partitioned into discreet zones of enhanced ductile shear. Deformation partitioning is 

thought to have been controlled by the variation in pore water content and the rate of 

thickening of the BGT, with deformation being focused into the relatively weaker, 

‘water-rich’ (dilated) parts of the sequence (cf. Evans et al., 2006; Lee and Phillips, 

2008). Phillips et al. (2008) suggested that the subsequent dewatering of the bed 

beneath the BIS during the later stages of subglacial deformation probably led to the 

locking up of the subglacial shear zone and late-stage brittle thrusting. In the absence 

(at the time) of evidence for the existence of a contemporaneous subglacial 

channelised drainage system beneath the Anglian BIS, these authors considered the 

dewatering of the subglacial shear zone to have been instigated by the overburden 

pressure exerted by the overriding ice, assisted by the tectonic thickening and 

accretion of the deforming bed (cf. Lee and Phillips, 2008). 

An alternative explanation for sub-marginal till thickening may also be 

applicable to this active temperate glacier margin. Several workers have recognised 

that till thickening can occur by the seasonal penetration of cold through a thin glacier 

snout and the freeze-on of basal ice to its bed (Matthews et al., 1995; Krüger, 1996). 

This so-called ‘cold wave’, combined with forward glacier motion, causes thrust-

stacking of frozen till slices with subsequent decoupling during spring-melt enabling 

deposition and till thickening (Evans and Hiemstra, 2005). Possible attribution of this 

mechanism to the till thickening reported here is supported (circumstantially) by the 

regional existence of ‘warm’ permafrost within the mélange (Waller et al., 2011). The 

presence of permafrost would provide a seasonal dimension to water availability, plus 

provide an indication of the prevailing climate conditions. In a separate study, 
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Christoffersen and Tulaczyk (2003) argued that this process of seasonal basal-freeze-

on, and by inference till-thickening, could cause the subglacial deforming bed to 

consolidate and ‘lock’ leading to a cessation of fast flow behaviour. 

Recent studies have shown that the development of relatively stable 

channelised drainage systems beneath glaciers and ice sheets can lead to the draining 

of the bed and deceleration of the overriding ice. Work by Hubbard et al. (1995) on 

the Glacier d’Arolla in Switzerland has demonstrated that during periods of high 

meltwater pressure/discharge, water can be forced out of subglacial channels into the 

adjacent sediments. Conversely, a reversed or negative pressure gradient is set up 

during periods of low meltwater discharge leads to water draining out of the bed into 

the channel. The formation of a relatively stable drainage system beneath the Anglian 

BIS would have resulted in an increase in the efficiency of the subglacial hydrological 

system, feeding meltwater more rapidly through this environment to the ice margin. 

The fluctuation in meltwater discharge/pressure beneath the BIS may have led to 

repeated periods of saturation (wetting) and draining (drying) of the BGT adjacent to 

the channels, affecting the physical properties of the diamicton and its response to any 

imposed glacitectonism. Evidence for the development of pronounced hydrostatic 

pressure gradients adjacent to the subglacial drainage channels and migration of 

overpressurised meltwater beneath the Anglian BIS is provided by the water-escape 

conduits cutting through the BGT (e.g. at TG 13458 43555; also see fig. 9a of Phillips 

et al., 2008). These features clearly cross-cut earlier formed ductile (folds) and brittle 

(thrusts) deformation structures (see Fig. 11), indicating that hydrofracturing occurred 

at a late stage and would further facilitated in the dewatering of the bed. 

During the early stages of the evolution of the subglacial drainage system, the 

BGT may have maintained a relatively high degree of saturation, leading to a 

continuation of predominantly ductile (folding, shearing) deformation. However, with 

time, as the diamicton progressively dewatered, deformation would have become 

increasingly brittle in nature, leading to the observed late stage thrusting and tectonic 

thickening of the bed. This would have accompanied the progressive ‘collapse’ and 

‘locking up’ of the subglacial shear zone beneath the BIS (c.f. Lee and Phillips, 2008; 

Phillips et al., 2008). As a direct result, the preservation potential of the sand and 

gravel-filled drainage system would have been greatly increased. Saturation of the 

glacier bed with pressurised meltwater is known to facilitate the forward movement of 

the overriding ice (Evans et al., 2006 and references therein). Consequently, the 
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collapse of the water-lubricated, predominantly ductile subglacial shear zone beneath 

the BIS in response to the development of a relatively stable drainage system could 

have potentially resulted in the stalling, or even cessation, of the easterly advance of 

this ice sheet across northern Norfolk. 

 

5.2. Potential structural control on the pattern of subglacial drainage? 

One of the key features of the subglacial drainage system identified in the Sheringham 

to Weybourne sections is that the larger, internally more complex sand and gravel 

bodies occupy or have been eroded into large-scale synformal folds present within the 

BGT, with folding and thrusting on the up-ice side of these larger channel fill 

sequences leading to the tectonic thickening of the diamicton. The inferred 3D 

geometry and relationship of these large channels to the synform-antiform fold pair 

are shown in Fig. 12. This relationship suggests that the developing large-scale folds 

and thrusts within the BGT may have influenced the pattern of subglacial drainage 

beneath the Anglian BIS (see Figs. 12, 13 and 14). Field evidence indicates that the 

synforms acted as a focus for erosion with meltwater apparently diverted along the 

axis of the folds which would have developed transverse to the ice movement 

direction (see Figs. 12 and 13). Alternatively, tectonic thickening of the bed in 

response to folding and thrusting may have resulted in the localised decoupling of the 

ice from its bed forming a temporary ‘cavity’ in the lee of the developing antiform-

thrust stack (see Fig. 13). This process is more likely to occur towards the ice margin 

as it requires the ‘jacking-up’ of overlying ice to accommodate the glacitectonic 

thickening of the bed. Consequently, the drainage system probably developed close to 

the ice margin when the ice sheet had either reached its maximum extent, or as this 

margin actively retreated westward. Benediktsson et al. (2009) and Benediktsson 

(2009) have similarly argued for glacitectonic thrusting and folding resulting in the 

lifting of the overriding ice during the formation of a submarginal end moraine 

associated with the final stages of the 1963-64 surge of Brúarjökull in Iceland. The 

stacking of the individual channel-fill sequences within the larger sand and gravel 

bodies recognised within the Middle Pleistocene glacigenic sequence of north Norfolk 

is consistent with an overall easterly, down-ice shift in the pattern of sedimentation. 

This is coincident with the main stress direction responsible for folding and thrusting 

within the BGT. Continued deformation during sedimentation may have forced this 

shift in the pattern of drainage with the smaller channels and cavities becoming 
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‘blocked’/‘choked’ as they were deformed or overridden by detached, thrust-bound 

slabs of BGT.  

Figure 14 shows a 5 stage model proposed for the progressive development of 

larger drainage channels during subglacial deformation: 

Stage 1 – large-scale folding and thrusting led to the variable tectonic 

thickening of the BGT and the localised ‘detachment’ of the ice from its bed 

potentially resulting in the opening of lee-side cavity within the core of large-scale 

synclinal folds (CH1 on Fig. 14a). The opening of such ‘cavities’ would have resulted 

in the ‘capturing’ of the subglacial drainage system, diverting meltwater flow through 

these glacitectonically controlled features. Although initially controlled by the 

developing synform, contemporaneous erosion during deposition of the high-energy 

sands and gravels would have facilitated downcutting and enlargement of the cavity 

system. Slumping and syn-sedimentary faulting within the sands and gravels indicates 

that the sides of the channel were unstable, with continued deformation of the 

adjacent BGT probably promoting further instability. The tectonic thickening of the 

BGT and opening of cavities down-ice of the evolving fold and thrust stack suggests 

that this process probably occurred close to the margin of the ice sheet; 

Stage 2 – continued folding and thrusting led to the deformation of earlier 

formed parts of the cavity-fill sequence and forced a down-ice (easterly) shift in the 

active part of the drainage system (CH2 on Fig. 14b); 

Stage 3 – cross-cutting relationships observed between the stacked channel-

fills indicate that periodically the active part of the drainage system shifted back, up-

ice (CH3 on Fig. 14c). This up-ice shift could have been induced by either: (i) a 

marked increase in the erosive energy of the drainage system ‘overriding’ the 

glacitectonic control exerted by the easterly propagating fold and thrust stack; (ii) the 

back-shifting of the channel could be driven by hydraulic jumps that occur under 

supercritical flows, when higher flow discharges into zones of lower flow causing the 

development of standing waves and possible upstream migration of bedforms (i.e. anti 

dunes); or (iii) a pause in thrust and fold propagation in response to episodic or 

polyphase deformation associated with an oscillating ice margin.  

Stage 4 – continued deformation with folds and thrusts initially developed 

within the adjacent BGT propagating eastwards to deform the western, up-ice margin 

of the sands and gravels forcing a down-ice shift in the focus of active deposition 

(CH4 on Fig. 14d).  
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Stage 5 – final abandonment of the cavity (Fig. 14e) and diversion of the flow 

of meltwater into a different part of the subglacial drainage system. The presence of 

till overlying the cavities indicates a re-coupling of the ice to its bed and continued 

advance of ice eastwards across the site following abandonment of the cavity system. 

 

6. Conclusions 
Elongate to lenticular sand and gravel bodies present within the polydeformed 

mélange facies of the Bacton Green Till exposed between Sheringham and 

Weybourne on the North Norfolk coast form an integral part of this subglacial 

sequence. The sedimentology and internal architecture of these bodies is consistent 

with them having form part of a relatively stable system of subglacial channels 

formed within an overall high-energy, fluviatile environment. The energy of this 

environment, however, fluctuated dramatically, with high- to low-energy flow events 

being separated by periods of channel abandonment. Internal complexities present 

within the larger sand and gravel bodies are consistent with the vertical and lateral 

stacking of the channel-fill sequences, recording a shifting pattern of sediment 

dispersal, with the available palaeocurrent data recording an overall easterly flow 

direction. The relationships displayed between the channels and the large-scale 

glacitectonic structures developed within the adjacent Bacton Green Till indicate that 

there may have been a structural control on the pattern of subglacial drainage beneath 

this sector of the Middle Pleistocene BIS. Continued large-scale thrusting and 

associated folding during sedimentation resulted in the deformation of the western 

side of the channels, and ‘forced’ migration of the active part of the drainage system 

eastwards, down-ice. 

The channelized subglacial drainage system developed during the later stages 

of glacitectonism associated with an easterly advance of the Anglian BIS across North 

Norfolk, possibly when the ice sheet had either reached its maximum extent or during 

active retreat. Its development would have resulted in a marked increase in the 

efficiency of subglacial drainage leading to the progressive ‘collapse’ and ‘locking 

up’ of the water lubricated ductile shear zone which had dominated the earlier stages 

of this deformation event. The collapse of the water-lubricated, predominantly ductile 

subglacial shear zone beneath the BIS could have potentially resulted in the stalling or 

even cessation of the easterly advance of this ice sheet across northern East Anglia. 
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9. Figures 
Fig. 1. Map showing the location of the Sheringham to Weybourne coastal section, 

North Norfolk, Eastern England. Green arrows denote main ice-flow direction during 

westerly directed ice advance. 

Fig. 2. Detailed structural interpretation of part of the coastal section between 

Sheringham and Weybourne. The individual sections cover the whole of the exposed 

cliff sections with varying degrees of overlap (approximate height of cliff face = 20 to 

40 m). The location of the variably deformed sand and gravel filled channels 

illustrated in Figs 3 to 8 are also shown.  

Fig. 3. (a) Photomontage of a large, lenticular sand and gravel body within highly 

deformed Bacton Green Till [TG 13153 43587]; (b) Interpretation of the internal 

structure of the sand and gravel body showing the cross-cutting relationships between 

the various generations of sediment fill. 

Fig. 4. (a) to (c) Photomontage of a large sand and gravel-filled body cutting 

downward through the highly deformed Bacton Green Till [TG 14869 43531]. 

Immediately adjacent to the western side of body bedding has been titled and is 

steeply dipping to subvertical in attitude. (d) to (f) Interpretation of the internal 

structure of the sand and gravel body showing the cross-cutting relationships between 

the various generations of sediment fill. 

Fig. 5. (a) to (c) Photomontage of a large lenticular, sand and gravel-filled body 

cutting downward into the highly deformed Bacton Green Till [TG 13459 43556]. (d) 

to (f) Interpretation of the internal structure of the sand and gravel body showing the 

cross-cutting relationships between the various generations of sediment fill. (g) 

summary diagram showing overall geometry of channel complex comprising a cross-

cutting sequence of sand and gravel fills. Note the marked difference between the 

highly folded, over-steepened western margin of the channel and its relatively 

undeformed eastern section. 

Fig. 6. (a) Lithological log through the basal gravel-rich part of the sequence [TG 

14869 43531]; (b) Photograph showing an overview of the basal gravel-rich part of 

the sediments filling a large sand and gravel body. Also shown is the location of the 

graphic log illustrated in Fig. 7a; (c) Massive, coarse-grained, clast supported gravel; 

(d) Graded bedding and cross stratification developed within sandy gravel beds; (e) 
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trough cross-bedded gravelly sand overlain by massive gravel unit containing a lens 

of sand; (f) Well-bedded, graded gravel to sand beds. 

Fig. 7. (a) and (b) Photomontage and interpretation of the sedimentary sequence 

exposed at the base of a large sand and gravel body. Note the presence of the 

opposing fold vergence recorded by the disharmonic folds within the silty sands; the 

latter interpreted as mass flow deposits; (c) Lithological log through this basal sand 

and gravel sequence [TG 13458 43555]; (d) Cross-lamination developed within beds 

of fine sand; (e) Climbing ripple cross-lamination developed within beds of fine sand; 

(f) Soft-sediment deformation, including westerly verging folds, within a mass flow 

deposit; (g) Easterly verging recumbent disharmonic folding within a mass flow 

deposit. 

Fig. 8. (a) and (b) Photomontage and interpretation of the sedimentary sequence 

exposed within a large sand and gravel body. Note the presence of the opposing fold 

vergence recorded by the disharmonic folds within the silty sands; the latter 

interpreted as mass flow deposits; (c) Lithological log through this sand-dominated 

sequence [TG 13155 43580]; (d) Undeformed, well-bedded sands and silty sands 

exposed immediately above the erosive contact with the underlying Bacton Green 

Till; (e) Small-scale, normal (extensional) faults off-setting bedding; (f) Soft-sediment 

deformation of thinly bedded to laminated sand and silty sand; (g) Soft-sediment 

deformation and localised liquefaction of laminated sands, silts and thin clays due to 

loading; (h) Subvertical water-escape conduit. 

Fig. 9. (a) Relatively undeformed sand and gravel body [TG 14740 43540] showing 

cross-cutting relationships between different phases of sand and gravel fill. Also note 

that the erosive base of the sand and gravel body cuts through the foliation present 

within the underlying Bacton Green Till; (b) Relatively undeformed sand and gravel 

body composed of two distinct units of horizontally bedded sand. Note that the lower 

unit thins laterally towards the margins of the body; (c) Folded western edge of sand 

and gravel body [TG 13209 43582]. Note that the moderately to steeply inclined 

bedding within the lower part of the channel is cross-cut by the erosive base of a 

relatively younger phase of sediment fill; (d) Details of the complex, meso- to large-

scale recumbent to downward-facing folds [TG 13209 43582] deforming the western 

margin of the sand and gravel body shown in Fig. 2c; (f) Deformed sand and gravel 

body folded by a distinctive open syncline [TG 11586 43673]. Note that syncline 

occurs within the footwall of a E/SE directed thrust. 
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Fig. 10. (a) Cross-cutting relationships between several generations of fill within a 

single large sand and gravel body [TG 13458 43555]; (b) Deformed sands and gravels 

at the western edge of a large sand and gravel body [TG 13458 43555]. Note that the 

steep sided lenses of sand and gravel in the central part are undeformed and cross-cut 

the earlier formed folds which deformed the well bedded sand and gravel along the 

western side of the body; (c) Tilted, over-steepened western margin of a very large 

sand and gravel-filled channel [TG 14873 43509]; (d) Details of erosive base of very 

large sand and gravel body illustrated in Fig. 10c [TG 14873 43509]. 

Fig. 11. SE-directed folding and thrusting of the western margin of a large sand and 

gravel-filled body [TG 13458 43555]. The SE-vergence of the deformation structures 

present within the channel is comparable to that recorded by the folds developed  

within the adjacent highly deformed Bacton Green Till. 

Fig. 12. 3D block diagram showing the possible pattern of subglacial to proglacial 

drainage associated with the margin of the Anglian British Ice Sheet based upon field 

evidence from the North Norfolk coast (this study; Phillips et al., 2008). 

Fig. 13. Schematic diagram showing the 3D geometry of the sand and gravel-filled 

channel features developed within the mélange facies of the Bacton Green Till 

between Sheringham and Weybourne. Note that the larger channel features are 

located within a broad, open synform on the down-ice side eastern side of a large-

scale fold and thrust stack developed within the till. Cross-cutting relationships 

displayed between the various sand and gravel bodies within the channel features 

indicate that, in general, the individual channels migrated down-ice direction (see text 

for details). 

Fig. 14. Diagram showing the progressive development of the stacked channel 

sequences exposed between Sheringham and Weybourne highlighting the relationship 

between subglacial deformation and the location of these subglacial drainage channel 

complexes. 
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10. Tables 
Table 1. Lower and lower Mid-Pleistocene stratigraphy of northern East Anglia with 

particular reference to units that crop-out within the Sheringham-Weybourne study 

area shown in bold (modified from Lee et al., 2004; Pawley et al., 2004). 

 
Lithostratigraphy 

(Subgroup / Formation / Member) 

Sediment Environment & Process Chronostratigraphy 

Briton’s Lane Formation 

Briton’s Lane Sand & Gravel Member 

Runton Sand & Gravel Member (RSG) 

 

Sands and gravels 

Sands and gravels 

 

Proglacial outwash 

Proglacial outwash 

 

    

Sheringham Cliffs Formation    

Weybourne Town Till Member 

Bacton Green Till Member (BGT) 

Ivy Farm Laminated Member 

Marl Bed 

Very chalky diamicton 

Sandy diamicton 

Stratified silts and clays 

Stratified marl 

Subglacial till 

Subglacial till 

Glaciolacustrine 

Glaciolacustrine 

 

   Mid-Pleistocene 

Lowestoft Formation    

Lowestoft Till Member Chalky, clayey diamicton Subglacial till  

Walcott Till Member Silty, clayey diamicton Subglacial till  

    

Happisburgh Formation    

Happisburgh Till Member (HT) Sandy, grey diamicton Subglacial till  

    

Wroxham Crag Formation (WCF)    

Mundesley Member (MM) Sands and gravels Shallow marine lower Mid-Pleistocene 

    

Cromer Forest-bed Formation    

West Runton Freshwater Bed Organic muds Fluviatile, Floodplain  

    

Wroxham Crag Formation    

Mundesley Member Gravels, sands & muds Tidal, shallow marine Lower Pleistocene 

    

White Chalk Subgroup White, flinty chalk Deep marine Upper Cretaceous 
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50 km
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Trimingham
Bacton Green

Sheringham
b
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by Fig. 10d

East
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Bacton 
Green Till 

Bacton 
Green Till 

erosive base 
of channel

erosive base 
of channel

coarse sand
and gravel

West

West

c

d

Wroxham Crag Formation

Wroxham Crag Formation

cross-cutting erosive
contacts between 
different phase of 

fill within the channel

cross-cutting erosive
contacts between 
different phase of 

fill within the channel

folding near western
edge of large channel

folding near western
edge of large channel

deformed, over-steepened
western margin of 

large channel

Briton’s Lane 
sand & gravel

Briton’s Lane sand and gravel
chalk-rich Weybourne 

Town Till

Weybourne Town Till

a

East East
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Green Till 
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Green Till 
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of channel

planar top
to channel
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well-bedded sand
and gravel

West West

b
Wroxham Crag Formation

cross-cutting erosive
contacts between 
different phase of 

fill within the channel
cross-cutting erosive

contacts between 
different phase of 

fill within the channel

folding near western
edge of large channel

easterly verging
syncline



red-brown sand derived from 
Wroxham Crag Formation 

red-brown sand derived from 
Wroxham Crag Formation 
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Wroxham Crag Formation 

large-scale, sand-filled water-escape
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deformed Bacton Green Till

large-scale, sand-filled water-escape
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deformed Bacton Green Till

red-brown sand derived from 
Wroxham Crag Formation 

Briton’s Lane 
sand and gravel

Briton’s Lane 
sand and gravel

a

b

Bacton Green Till

channel feature

channel feature

thrust

thrust
thrust

thrust

East

East
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Green Till 

highly deformed
Bacton Green Till 
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West

West

Briton’s Lane sand and gravel

sense of displacement on thrusts

Wroxham Crag Formation chalk-rich Weybourne Town Till

sand and gravel filling channel 
colours denote different phases 
of sediment fill

bedding/layering

thrust faults

fold axes



moranic ridges developed 
above tips of propagating thrusts

glacial outwash
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late-stage subglacial deformation

channels developed in lee of 
fold and thrust stack
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direction
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proglacial deformation
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colours denote different phases 
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active channel
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abandoned channels
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older  channel active channel

CH2
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CH3
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CH1

cross-cutting erosive
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different phase of 

fill within the channels

cross-cutting erosive
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different phase of 

fill within the channel
chalk bedrock

chalk bedrock
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Formation
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Formation
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Formation
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Formation
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Formation

chalk bedrock

channel developed in lee
of thrust and fold stack

overriding ice sheet

overriding ice sheet

large-scale folding and thrusting 
of subglacial sediments

East

Bacton Green Till 

Bacton Green Till 

Bacton Green Till 

Bacton Green Till 
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erosive base 
of channel

cross-cutting erosive
contacts between 
different phase of 

fill within the channels

channel filled by well-bedded 
sand and gravel

West

East West

East West

East West

East West

Stage 2

Stage 3

Stage 4
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Stage 2: continued subglacial folding and thrusting leading to initial deformation of western margin of ‘older’ 
channel sequence and down-ice (eastward) migration of active channel system

Stage 1: onset of large-scale subglacial folding and thrusting, and formation of a channel in the 
lee of the developing fold and thrust stack

Stage 3: apparent pause in subglacial deformation allowing the to up-ice (westward) migration of the active 

Stage 4: renewed subglacial deformation leading to abandonment of existing Stage 3 channel, continued 
deformation of older channel-fill sediments at western margin of channel complex and down-ice (eastward) 

Stage 5: renewed till deposition, channel abandonment, cessation in large-scale folding and thrusting, overall 
thickening of the subglacial sedimentary succession

ice movement direction

easterly directed thrusting and folding easterly directed thrusting and folding



Bacton Green Till
Bacton Green Till

Bacton Green Till

Bacton Green Till

Bacton Green Till

Bacton Green Till

Bacton Green Till

Bacton Green Till

Bacton Green Till

small chalk
rafts

Bacton Green Till

Bacton Green Till Bacton Green Till

irregular, karst-like
surface to Weybourne 

Town Till

irregular, karst-like
surface to Weybourne 

Town Till
irregular, karst-like

surface to Weybourne 
Town Till

irregular, karst-like
surface to Weybourne 

Town Till

irregular, ?involuted surface 
to Bacton Green Till

thrusting within 
chalk raft

irregular, karst-like
surface to Weybourne 

Town Till

Bacton Green 
Till

Bacton Green Till

Wroxham Crag 
Formation

Bacton Green Till

Bacton Green Till

Bacton Green Till

Bacton Green Till

Bacton Green Till
Bacton Green Till

deformed raft/intraclast of 
well-bedded sand and gravel

deformed rafts/intraclasts of 
well-bedded sand and gravel

debris

debris

East

East

Sheringham Coast 
Guard Sation

Boat House

debris

sea wall

sea wall

debris debris

debris

debris

debris

debris

debris debris

debris

debris

debris

deformed sand 
intraclast

deformed 
lens of sand deformed 

lens of sand

debris

debris

debris

debris

debris

debris

debris

small-scale folding
within Bacton Green Till

debris

debris

debris

debris

debris

no exposure

no exposure

no exposure

no exposure

no exposure

no exposure

no exposure

no exposure

no exposure
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large-scale channel 

large-scale channel comprising cross-cutting lenses of sand and gravel
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sand and gravel

no exposure
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faults
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debris

debris debris

debris
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Briton’s Lane 
sand and gravel

Briton’s Lane 
sand and gravel

?Briton’s Lane 
sand and gravel

Briton’s Lane 
sand and gravel

Briton’s Lane 
sand and gravel

Briton’s Lane 
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folding of western 
margin of channel

irregular, folded
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sand and gravel
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sand and gravel

well-bedded sand and gravel

well-developed 
cross stratification well-developed 

cross stratification

Briton’s Lane 
sand and gravel

E-directed folding 
and thrusting

sand and gravel
sand and gravel

sand and gravel

cross-cutting, erosive
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deformed, steeply inclined 
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bedding in sand and gravel

erosive contact

erosive base to 
channel

erosive base to 
channel

sand and gravel
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erosive contact

large-scale 
E-verging fold
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deformed channel composed 
of well-bedded sand and gravel

deformed channel-like feature
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sand and gravel
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sand and gravel
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sand and gravel

deformed channel-like feature
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sand and gravel

deformed channel-like feature
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sand and gravel
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of chalk raft

large-scale,
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sand and gravel
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Weybourne Town Till

Weybourne Town Till

Weybourne Town Till

Weybourne Town Till
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Wroxham Crag 
Formation

Wroxham Crag 
Formation

Wroxham Crag 
Formation

large raft of Wroxham 
Crag Formation

large raft of Wroxham 
Crag Formation

E-directed thrusting in
Bacton Green Till

E-directed folding and
thrusting in Bacton Green Till

large-scale cross bedding 
in Wroxham Crag 

Formation

raft of Wroxham Crag 
Formation

raft of Wroxham Crag 
Formation

raft of Wroxham Crag 
Formation

large-scale, E-verging
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