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Abstract. We present an automated process for determin-
ing the annual layer chronology of an ice-core with a strong
annual signal, utilising the hydrogen peroxide record from
an Antarctic Peninsula ice-core as a test signal on which
to count annual cycles and explain the methods. The sig-
nal is de-trended and normalised before being split into sec-
tions with a deterministic cycle count and those that need
more attention. Possible reconstructions for the uncertain
sections are determined which could be used as a visual
aid for manual counting, and a simple method for assign-
ing probability measures to each reconstruction is discussed.
The robustness of this process is explored by applying it to
versions of two different chemistry signals from the same
stretch of the NGRIP (North Greenland Ice Core Project) ice-
core, which shows more variation in annual layer thickness,
with and without thinning to mimic poorer quality data. An
adapted version of these methods is applied to the more chal-
lenging non-sea-salt sulphur signal from the same Antarc-
tic Peninsula core from which the hydrogen peroxide signal
was taken. These methods could readily be adapted for use
on much longer datasets, thereby reducing manual effort and
providing a robust automated layer-counting methodology.

1 Introduction

Ice-cores hold information about the Earth’s past climate.
This information is recorded by chemical and physical sig-
nals in the ice that reflect the environmental conditions
when the ice was deposited. These signals are measured
as a depth series, but need to be modelled against time. In
some cases the chemical or isotopic signals measured from

the melt-water of ice-cores have annual cycles which can
be counted to provide a chronology. Traditionally this has
been undertaken by visual assignment of annual markers,
with no formal systematic method for ensuring consistency
or assessing uncertainty. In some cases, ice-core annual layer
chronologies have been counted manually for data spanning
tens of thousands of years (seeAndersen et al., 2006) requir-
ing months to years of effort. This highlights a clear need
to develop an automated, statistically based methodology for
application in this type of physical sciences research.

Previous attempts at developing automated cycle counting
methods in the literature have generally only provided point
estimates with no measure of uncertainty.Weber et al.(2010)
apply automated methods for determining annual peaks and
troughs to high-resolution signals induced from scanned im-
ages of tree rings, marine varves, and marine laminae – more
discussion of these tools can be found in Sect.8. Rasmussen
et al. (2002) use independent component analysis to com-
bine chemistry data in conjunction with a low-pass filter; the
resulting signal is dated by counting peaks that rise above
a constant threshold value. Other methods range from itera-
tively picking the most likely annual peaks along a core with
respect to their spacing and magnitude (Taylor et al., 2004;
McGwire et al., 2011) to measuring periodicities in the sig-
nals (Rupf and Radons, 2004; Svensson et al., 2005).

Uncertainty has been addressed under the Bayesian frame-
work, applying hidden Markov models (Winstrup et al.,
2012) and Markov chain Monte Carlo methods (Wheatley
et al., 2012) to univariate models. The method presented
here has the advantage over these approaches that it is suf-
ficiently straightforward computationally to use on full size
cores, whilst still providing a measure of uncertainty.
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In this context it has to be pointed out that in the follow-
ing our (as well as any other) counting method considers the
records provided by some measurement technique and used
for the counting to be complete. That means that we do not
consider signal loss due to the true resolution of the mea-
surement, which may be lower than the sampling frequency,
or loss of information because the ice core record consists of
individual snow fall events and is subject to wind reworking.
Thus, annual cycles that are lost in this process cannot be
counted by any method and will generally lead to a system-
atic error of the layer count to smaller numbers.

Hydrogen peroxide (H2O2) is particularly suitable as
a chronological marker in ice-cores. It is created in the atmo-
sphere by a chemical reaction that requires ultraviolet light.
Because of the very strong seasonality in Antarctica (from
complete darkness in midwinter to 24 h daylight in midsum-
mer), there is a strong and regular seasonality in ultravio-
let light, and a theoretical basis for expecting a single quasi-
sinusoidal variability in H2O2 concentration. Measurements
of H2O2 dissolved in the ice therefore provide a good annual
cycle.

In this study we utilise the H2O2 record from an Antarc-
tic Peninsula ice-core as a test signal on which to count an-
nual cycles and explain the methods. We use this signal as it
clearly has the strongest annual component and is therefore
most reliable, and is therefore the most realistic choice within
this dataset. The Gomez core extends to 134 m (Thomas
et al., 2008). We use 2 cm average H2O2 concentrations de-
termined from continuous measurements along the core. This
core has been manually dated to 153 yr by determining the
depths of the lowest points (“nadirs”) of the annual troughs.
We present a simple method based on these data for count-
ing cycles which is fully automated, requires no prior manual
assessment of the chronology, and assigns probability mea-
surements to the cycle count.

Robustness is explored by applying our method to thinned
and unthinned versions of the ammonium and calcium sig-
nals from a stretch of the NGRIP ice-core (Dahl-Jensen et al.,
2002), which shows more variation in annual layer thickness
than the Gomez core; see Sect.6. A more robust version of
our method is applied to the non-sea-salt sulphur signal from
the Gomez core as an example of how our general framework
can be adapted to asymmetric data; see Sect.7.

We assume throughout that data points are equally spaced
in depth, as is the case for the Gomez and NGRIP exam-
ples, and that depth can therefore be represented as an in-
teger; as explained in Sect.4.2 this is purely for notational
convenience and is not inherent in the method.

2 Data pre-processing

The Gomez H2O2 signal, indexed by its depthi, is trans-
formed by taking logarithms to improve the symmetry in its
annual periodicity, giving the log signalx = {xi}.

In order to simplify the process of cycle counting,x is de-
trended and the annual cycle amplitudes are set to approxi-
mately 1. This is achieved by smoothing the signal with re-
spect to an initial rough estimate of the average cycle length
at each depth; see Sect.2.1 below for details. While hydro-
gen peroxide seems to (and is expected to) yield a sine wave,
the precise shape of the normalised signal has little effect on
the methods presented below. The underlying assumption is
that the seasonality follows a ...peak, descending, trough, as-
cending... pattern.

2.1 Smoothing

Band-pass or low-pass filters are frequently used to remove
cycles with periods deemed to be larger or smaller than ex-
pected (seeRasmussen et al., 2002; Taylor et al., 2004; Rupf
and Radons, 2004; McGwire et al., 2011). In Shimohara et al.
(2003) the data are smoothed by taking a moving average
over a range of half an estimated annual layer thickness. Here
we use a point-wise standardisation: at each depthi

si =
xi − µi
√

2σi

whereµ = {µi} is a moving average ofx and σ = {σi} is
a moving standard deviation of(x − µ), both over the range
of one annual layer thickness based on a preliminary estimate
– see Sect.2.2below.

µ measures trend in the data, the annual seasonality being
averaged out due to the interval length being a whole year.
Subtractingµ de-trendsx and centress on 0.

√
2σ is an esti-

mate for the annual cycle amplitude at each depth. Dividing
by

√
2σ sets the apices and nadirs of the annual cycles ins

to a magnitude of approximately 1. In the case of missing
values, the correspondingµ andσ values are linearly inter-
polated from the closest surrounding points where there are
sufficient data.

2.2 Initial estimate of cycle length

An initial estimate for the average cycle length in any suffi-
ciently large subsection of the signal can be found using the
autocorrelation function (ACF); see Fig.1. This is used for
the smoothing and not directly for the actual layer-counting.
x is split into β non-overlapping sections, each containing
approximately the same number of cycles. This is achieved
via an algorithm that perturbs the section boundaries with re-
spect to the expected number of cycles in each section. Firstly
the signal is split intoβ sections using (β−1) boundaries that
are equally spaced in depth, then we iterate as follows:

1. calculate the expected average cycle length,lj , for each
section from its ACF,j ∈ (1,2, . . . ,β);

2. redistribute the boundaries so that sectionj contains
[nlj/

∑
j lj ] points;
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Fig. 1. The autocorrelation functions (ACFs) of the log H2O2 from
the second (circles) and fifth (stars) of theβ = 6 sections of the
Gomez ice-core, plotted against lag measured as a number of obser-
vations. The vertical dashed lines indicate the local maxima of the
ACFs, used to obtain an initial estimate of cycle length.

3. recalculatelj for each section;

4. if the expected numbers of cycles in all sections are
equal, then stop – otherwise go to 2.

Each data point is then assigned the average cycle length
for its section, to be used as the interval length for calculat-
ing µi andσi . Other methods used to obtain this estimate as
a precursor to layer counting include Fourier analysis (McG-
wire et al., 2011) and ice flow modelling (Shimohara et al.,
2003).

Figure1 shows the ACF for the second (circles) and fifth
(stars) sections of the Gomez ice-core whenβ = 6. The sec-
ond section has an estimated 51 points in an average annual
cycle and is of length 1233 points. The fifth section has an es-
timated 32 points in an average annual cycle, and is of length
774 points. Both sections therefore contain an estimated 24.2
annual cycles, as do all 6 sections. This gives an initial esti-
mate of approximately 145 cycles contained ins, which is an
underestimate due to the stretches of missing values.

Figure2 illustrates the smoothing process forβ = 6; each
plot has vertical lines that represent the section boundaries.
Figure 2a shows the log signalx, with its annual moving
averageµ as a dotted line. Figure2b shows the de-trended
signal, with its estimated amplitude (

√
2σ ) as a dotted line.

Figure2c is of s, the standardised signal. There is still some
variation in mean and amplitude visible due to the crude esti-
mate of cycle length at each depth; however, this is sufficient
to serve as a starting point for our automated dating scheme.

The choice ofβ affects the number of cycles available to
estimate the average cycle length in each section; there is
a trade-off between having sufficient data in each section and
averaging over many cycles. In Sect.5.2we further examine
the sensitivity of the method to the choice ofβ.
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Fig. 2. The process of smoothing the H2O2 signal from the Gomez
core, using initial estimates of annual cycle length based onβ = 6
sections – boundaries shown as vertical lines.(a) The log signal
x, with its annual moving averageµ as a dotted line.(b) The de-
trended signal, with its estimated amplitude (

√
2σ ) as a dotted line.

(c) The standardised signals.

3 “Certain” annual cycles

In large-scale manual layer counting exercises, annual cycles
have been termed “certain” if they are judged through con-
sensus of multiple counters to have probability at least 3/4;
seeAndersen et al.(2006). Here we present a method of auto-
matically classifying quarter cycles, analogous to seasons in
the H2O2 signal, as being “certain” if they are well-defined
in the smoothed signal with respect to our repeatable algo-
rithm; we do not however attempt to match the “3/4 con-
sensus ratio”. This classification process is very simple in
terms of computation and is therefore very quick, taking less
than a second on a modern laptop for the Gomez core. It is
consistent, repeatable, and does not require any prior manual
assessment of chronology.

3.1 Classification into runs

We aim to segment the points ofs into non-overlapping
subsections calledruns, each representing either a “certain”
quarter cycle or season, or an “issue” where manual inter-
vention is required. Each run is a collection of consecutive
points and has one of five labels:

P: peak/summer;

D: descending/spring;

T: trough/winter;

A: ascending/autumn;

χ : issue.

This classification is a two-stage process. Firstly we find po-
tential quarter cycles; these cannot contain missing values
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as we are unsure of their classification. For some sensible
choice of cut-off parameterν, all runs of consecutive data
pointssi ≥ ν are labelled as P∗, the star meaning potential;
all runs of data pointssi ≤ −ν are labelled as T∗. Runs of
data points for which−ν < si < ν are labelled as potentially
ascending and descending: A∗ if they fall between a T∗ and
P∗; D∗ if they fall between a P∗ and a T∗; andχ otherwise.
So the stretch of data in Fig.3a withν = 1/

√
2 has potential

run label pattern:

. . . ,T∗,A∗,P∗,D∗,T∗,A∗,P∗,D∗,T∗,χ,T∗,A∗,

P∗,χ,P∗,D∗,T∗,A∗,P∗,D∗,T∗,A∗,P∗, . . .

In the second stage, potential runs are labelled as runs only if
they are central to 5 consecutive runs whose potential labels
obey the pattern expected from a sinusoidal signal. In the
example, this gives the following:

. . . ,T,A,P,D,T,A,P,D∗,T∗,χ∗,T∗,A∗,

P∗,χ∗,P∗,D∗,T,A,P,D,T,A,P, . . .

Finally, consecutive data points that make up the unlabelled
runs are collected together into runs labelled asχ , and termed
issues. This gives

. . . ,T,A,P,D,T,A,P,χ,T,A,P,D,T,A,P, . . .

Each point ofs is now in exactly one run, and each run that
is not labelled asχ makes up a certain quarter annual cycle
– these are termed certain runs. In Fig.3 runs labelled P are
coloured red, D runs orange, T runs blue, A runs green, and
issues black.

The value of the threshold used here,ν = 1/
√

2 ≈ 0.707,
is natural in that it would lead to the same proportions of
points in each of the four types of quarter cycles, in an ideal
signal. Other choices have their merits; the value used is fur-
ther discussed in Sects.3.2 and 4.2, and robustness to the
choice is considered in Sect.5.1.

3.2 Issues

Runs labelledχ , or issues, consist of consecutive data points
that are missing values, surround missing values or are in
some way dubious in their periodicity. Sections of signal
where there are no issues have a deterministic number of cy-
cles: 1/4 of a cycle per certain run.

Figure3 shows a stretch ofs between 9.8 m and 18.6 m,
classified usingν = 1/

√
2 (a) andν = 1/2 (b). The issues

here are caused by the run pattern alone and contain no miss-
ing values. Atν = 1/

√
2 there is an issue between 13.1 m and

15.4 m: a peak dips below 1/
√

2, and a trough rises above
−1/

√
2. At ν = 1/2 the points corresponding to this issue

now make up 5 certain runs; however there is a new issue
between 16.8 m and 18.2 m.

Issues such as those seen in Fig.3 occur only in the first
20 m of the Gomez core where, due to the very high resolu-
tion of the sampling with respect to the annual cycle length,
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Fig. 3. Part of the standardised H2O2 signal, for depths between
9.8 m and 18.6 m, showing the “issues” (regions of dating uncer-
tainty) caused by fluctuations in the signal and identified using two
different values of the thresholdν for classifying individual points.
Points within “issues” are black; points within peaks (labelled P
in main text) are coloured red; descending points (D) are orange;
troughs (T) are blue; and ascending points (A) are green.(a)Thresh-
old ν = 1/

√
2. (b) Thresholdν = 0.5.

small fluctuations are found in the annual cycles. Choosing
different values ofν affects where data points are classified
into certain runs and therefore the distribution of issues in
this first part of the signal.

Figure4 shows a stretch ofs between 106.7 m and 110.2 m
with ν = 1/

√
2. This issue is caused by a stretch of missing

values; the non-missing data points that also form part of the
issue are shown as a black line. The choice ofν affects only
the issue’s length, which decreases withν.

For the Gomez H2O2 with β = 6 andν = 1/
√

2, s has 528
deterministic runs and 12 issues; withν = 1/2, s has 533
deterministic runs and 15 issues.

We can now split the signal into sections with a determin-
istic count and those that need more attention. At this stage,
the “issues” could be presented to experts as in Fig.3 so
they can place certain and uncertain layer markers. However,
the run pattern provides more information that could be ex-
ploited either to assist the expert analysis or to allow further
automation.

4 Reconstructions and probabilities

4.1 Reconstructions

The labels of the certain runs that bound an issue provide
insight into the label pattern of the runs that could replace it.
It is convenient to refer to peak and trough runs collectively
asextremeruns; similarly ascending and descending runs are
termedcentral. Issues are always bounded by extreme runs,
leading to four possible cases:
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Fig. 4. Four possible reconstructions of an “issue” (region of dat-
ing uncertainty, bounded by the dotted lines) caused by missing
values in the standardised H2O2 signal (black curve) at a depth of
around 108.5 m. Coloured points within the issue represent imputed
values for missing observations, or conjectured “corrected” values
for nearby observations; coloured points outside the issue indicate
the classification of actual observations. In each case, points clas-
sified as being within peaks (labelled P in main text) are coloured
red, descending points (D) orange, troughs (T) blue, and ascend-
ing points (A) green. The four different reconstructions are indexed
by d, the number of runs (sets of consecutive points classified in
the same way) used to reconstruct the issue, including the adjacent
runs; adding an extra year to the reconstructed chronology increases
d by 4. (a) The minimal reconstruction, with no additional annual
cycles, involvingd = 1 runs.(b) The reconstruction with one addi-
tional annual cycle andd = 5. (c) The reconstruction with two ad-
ditional annual cycles andd = 9. (d) The reconstruction with three
additional annual cycles andd = 13.

. . . ,P,χ,P, . . . (1) . . . ,P,χ,T, . . . (2)

. . . ,T,χ,P, . . . (3) . . . ,T,χ,T, . . . (4)

The points ofs that correspond to an issue can be replaced
with a compatible section of sine wave, spread evenly over
the points, referred to as areconstruction. This could be used
to fill in missing values, or replace sections of data affected
by a sampling problem or where the annual signal is not suf-
ficiently clear cut, but is primarily intended as a visual aid for
manual counting.

The minimal reconstructions for cases(1) and(4) consist
of 3 runs, as the minimal compatible sections of sine wave
have run label patterns D, T, A and A, P, D, respectively. The
minimal reconstructions for cases(2) and(3) consist of 1 run
labelled as D and A, respectively. Further reconstructions can
be found by adding in whole cycles.

Each possible reconstruction is made up of an odd num-
ber of runs. If m is the number of runs in its minimal

reconstruction andk cycles are added in, the issue would con-
taind = m+ 4k runs. Issues are always bounded by extreme
runs and will therefore always containd−1

2 extreme runs and
d+1

2 central runs.
Figure4 shows possible reconstructions of an issue caused

by missing values. The top plot shows the minimal recon-
struction with one run, and the bottom shows the reconstruc-
tion with 3 additional cycles added which consists of 13 runs.
Plots like this could be used as visual aids to the manual as-
sessment of issues. However, the available information can
be used to assign probabilities to each reconstruction based
solely on their length, which would provide an automated
method of layer counting, or give further guidance in semi-
automated counting.

4.2 Assigning probabilities

The lengthof a run,` say, is used here to denote the number
of data points it contains. Provided that the time-depth rela-
tionship does not change too quickly, we would expect a run
of a given type to have a similar length to other such runs
near to it within the core. This concept is key to existing man-
ual and semi-automated layer-counting approaches. Here we
present a method of assigning probabilities to the possible
reconstructions of each issue by comparing` to its implied
distribution. For simplicity we are assuming throughout that
points are equally spaced in depth, as is the case in our ex-
amples. Relaxing that assumption is straightforward in prin-
ciple; it simply requires a slight extension of the notation, to
work with lengths expressed in terms of differences of depth
rather than just numbers of points.

We takep(d|`) ∝ p(`|d); that is, we take the probability
of a reconstruction withd runs, given that the issue contains
` data points, to be proportional to the probability of thosed

runs having total length̀. This is essentially a Bayesian sta-
tistical approach, with a flat prior distribution ond. Again,
using an alternative prior distribution would be straightfor-
ward, but, in practice, prior information is always likely to
be dominated by the other information in the core, as repre-
sented byp(`|d).

Groups ofd consecutive certain runs, of whichd−1
2 are

extreme, are analogous to issue reconstructions. Ideally, we
would model the lengths of these directly to find the distri-
bution of` givend. However, issues are concentrated in the
first 20 m of the Gomez H2O2 signal due to the fluctuations
discussed above, and the last 20 m where there are regular
stretches of missing values. In either case, this results in the
analogous sections being concentrated at the centre ofs, re-
sulting in a poor fit to the sections with issues.

Instead, we need to make use of information on individ-
ual certain run lengths. In the Gomez H2O2 signal, peak run
lengths are equivalent in distribution to trough run lengths
because of the symmetry in the seasonality ofs and in the
classification process. Whenν is equal to the 75th percentile
of a sine wave (1/

√
2), extreme and central run lengths are

www.clim-past.net/8/1869/2012/ Clim. Past, 8, 1869–1879, 2012



1874 J. J. Wheatley et al.: Automated ice-core layer-counting with strong univariate signals

equivalent in distribution; forν < 1/
√

2 extreme run lengths
are generally larger than central; and forν > 1/

√
2 central

run lengths are generally larger than extreme. The lengths of
the certain runs are non-linear, and also change in spread, as
a function of depth in the Gomez core. This non-linearity in
ice-core layer thickness is caused by vertical compaction of
snow into ice and thinning of the ice layers caused by hori-
zontal flow. Other proxy records where annual layer count-
ing is used for establishing chronologies, such as tree rings,
varves and corals, will not in general display this system-
atic reduction in layer thickness through the depth profile.
However, after taking natural logs the individual certain run
lengths show a linear trend for the Gomez H2O2 series. This
is well described by a regression model which has the ex-
treme or central run label as a factor; see Fig.5. The model
is a linear regression, with independent Gaussian errors with
constant variance, fitted using ordinary least-squares estima-
tion within thelm function in R (R Development Core Team,
2011). The standard regression diagnostics and residual plots
in plot.lm in R were all satisfactory. If we know the cen-
tral depth of a run and its label, we can find its expected
length from the model. This model is analogous to the re-
sults ofRasmussen et al.(2006) where annual layer thick-
nesses from the NGRIP core are shown to be log-normally
distributed after a linear strain correction.

All of the d runs that make up the reconstruction of an
issue have implied central depths and labels. The expected
value for the lengths of these runs, and therefore the total
length of the issue implied by the reconstruction,ˆ̀

d , can
be interpolatedfrom the regression model. We assume that
ln(`) ∼ N(ln( ˆ̀

d),σ 2
d ), whereσd depends ond and is esti-

mated using groups of certain runs, analogous to that par-
ticular reconstruction, as discussed above. (Note thatσd can
not be obtained directly from the model for individual runs
because of the dependence in lengths between consecutive
runs.)

The issue from Fig.4 contains` = 64 data points. The
minimal reconstruction for this issue (a) is made up of one
quarter cycle (m = 1); at this deptĥ̀ 1 = 8 andp(`|d = 1) =

0 to three decimal places after normalisation. The second
reconstruction contains 5/4 cycles, ˆ̀5 = 38, andp(`|d =

5) = 0.005. At d = 9, ˆ̀9 = 68 andp(`|d = 9) = 0.984; and
atd = 13, ˆ̀13 = 95 andp(`|d = 13) = 0.011. Continuing to
add cycles in this way results in reconstructions with negli-
gible probability.

Mudelsee et al.(2012) state that “Age-depth modelling
must also provide simulated curves, which can then be fed
into modern resampling methods of climate time series anal-
ysis, resulting in realistic measures of uncertainty in our
knowledge about the climate”. One benefit of our method
over other layer detection schemes is that it simultaneously
models the change in layer thickness with depth and, while
it is not our main purpose here, timescales can be simulated
from the fitted regression model via an iterative scheme. This
would require a minor adjustment: taking the run starting
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Fig. 5. A linear model for the logarithm of the length of a certain
run – a set of consecutive observations that can be definitely clas-
sified as belonging to the same part of an annual cycle – against
depth within the Gomez core withν = 0.5 andβ = 6. Runs repre-
senting peaks (labelled P in main text) are represented by red stars,
descending runs (D) by orange circles, troughs (T) by blue stars,
and ascending runs (A) by green circles. The solid lines indicate the
fitted values for peak/trough runs (red) and ascending/descending
runs (green), and the red and green dotted lines represent the re-
spective 95% predictive intervals for individual runs.

depth as a covariate instead of the run central depth. Start-
ing at depth 1, and using the fact that run labels must follow
the P D T A pattern, fitted log run lengths can be generated
one at a time down the core and perturbed by adding Gaus-
sian noise (using the residual error). One could continue to
generate cycles until a required number or depth is reached.
To incorporate the serial dependence between depth points
into this scheme, it should be possible to measure the corre-
lation between log run lengths of all possible pairs of types,
and take this into account when adding noise.

5 Results for Gomez H2O2

The probabilities obtained in Sect.4.2 can be combined
across the whole core, assuming separate issues to be inde-
pendent given the certain parts of the classification.

Figure6 shows the probability distribution for the num-
ber of annual cycle troughs in the Gomez ice-core forβ = 6,
ν = 1/2 (a) andν = 1/

√
2 (b). This is found by combining

the probabilities for each possible reconstruction of each is-
sue. The manual count gave 153 yr exactly. The differences
in these distributions are due to the fluctuations found in the
first 20 m of signal as discussed in Sect.3.2. These relate
to the date at the bottom of the core, since this is the sin-
gle point most likely to be of interest, but such distributions
could equally be calculated at any required depth.

The most probable reconstruction (p > 0.8 in both cases)
has 153 troughs and agrees closely with the manually
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Fig. 6.Bar plots showing the probability distributions of the number
of annual troughs – a summary of the chronology – in the dating of
the Gomez core, based on two possible values of the thresholdν for
classifying individual points, and dividing the core intoβ = 6 sub-
sections for the initial smoothing process.(a) Thresholdν = 0.5.
(b) Thresholdν = 1/

√
2.

counted solution. Each nadir placed by the model is placed
in one-to-one accordance with, and in very close proximity
to, the corresponding one from the manual assessment.

The signal is standardised in sections with respect to a typ-
ical cycle length, which may not be sensitive to an abrupt
change in frequency. Depending on the cut-offν, it is pos-
sible that a relatively short (and therefore uncertain) cycle
could be either counted as certain or missed out altogether,
without flagging an issue. Labelling a short cycle as certain
would result in several consecutive low-valued run lengths,
whereas missing a short cycle out would result in one very
high valued central run length. Outliers from the regression
model have been assessed to test for this possibility and no
examples were found.

The Gomez core covers the firnification process, and an
exponential decay in layer thickness is observed. There are
several cycles in the first 20 m of the core that contain over
100 data points (2 m); in contrast the last 5 m of the core has
several cycles with fewer than 20 data points (40 cm) – a
five fold decrease. This is well modelled by a linear trend
on the log transformed thicknesses fit via simple linear re-
gression. The mean layer thicknesses (and 99 % confidence
intervals) under this model for the start (at 3 m), middle (at
65 m), and end of the core (at 132 m) are respectively 171 cm
(109 cm, 268 cm), 94 cm (59 cm, 147 cm), and 49 cm (31 cm,
77 cm). Note the asymmetry in the confidence intervals. To
allow comparison with other datasets, under this model the
probability of a random annual layer being either double or
half the mean thickness at any given depth is≈ 0.025 % after
allowing for the exponential decay in layer thickness.

5.1 Sensitivity toν

To test the sensitivity of this process to the choice ofν, it was
run for a wide range of values. Figure7a shows the result-
ing distributions of cycle counts for 0.3 ≤ ν ≤ 0.8; the areas
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Fig. 7. The effect of the number of sectionsβ used in the initial
smoothing of the H2O2 signal, and the thresholdν for classify-
ing individual points, on the probability distribution obtained for
the number of annual troughs – a summary of the chronology – in
the dating of the Gomez core. Each circle has area proportional to
the probability of a particular number of troughs, when the recon-
struction uses particular values ofβ andν. (a) ν = 0.3, . . . ,0.8 with
β = 6. (b) β = 2, . . . ,20 withν = 1/

√
2.

of the circles are proportional to the probabilities. While not
identical, the results are quite stable forν in this range. For
ν < 0.3 the resolution of the data is such that some of the A
and D runs at the bottom of the core are of length 1 or miss-
ing; similarly for ν > 0.8 some of the P and T runs at the
bottom of the core are of length 1 or missing. This adversely
affects the regression model and causes the model assump-
tions to fail outside of this range.

5.2 Sensitivity toβ

To test the sensitivity of this process to the choice ofβ, it
was run for 2≤ β ≤ 20. Figure7b shows the resulting dis-
tributions of cycle counts forν = 1/

√
2. Forβ > 20 there is

not enough data in the first section with which to estimate
the average cycle length. Forβ < 5 the sections are too long;
the thinning of annual cycle length with depth causes the es-
timated average length to be unrepresentative of cycles at ei-
ther end of the sections. This results in some of the mean
trend and variation in amplitude still being present ins. For
ν = 1/

√
2 a number of peaks and troughs are missed, caus-

ing an underestimate in the cycle count. However,ν = 1/2
has many additional issues but still works well in this range,
and the equivalent plot shows a stable distribution for allβ.

6 NGRIP: ammonium and calcium

In this section we analyze the ammonium (NH4) and cal-
cium (Ca) chemistry signals from the NGRIP ice-core be-
tween 1440.49–1464.81 m, measured by the University of
Bern ice-core group using continuous flow analysis at 1 mm
intervals. Note that this represents the sampling frequency
of the CFA measurements and not the nominal resolution.
The latter is controlled by dispersion in the CFA system and
is more on the order of 1 cm. These data cover part of the
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Fig. 8.The ACFs of the log NH4 (circles) and log Ca (stars) signals
from the NGRIP ice-core (1440.49–1464.81 m), plotted against lag.
The vertical dashed lines indicate the local maxima, used to obtain
an initial estimate of cycle length.(a) No thinning.(b) Second thin-
ning. (c) Third thinning.(d) Fourth thinning.

Holocene climatic period (Rasmussen et al., 2006). We use
the same methodology as used on the H2O2 signal from the
Gomez core. These signals have a slightly greater noise to
annual cycle ratio than the Gomez H2O2, with regular fluc-
tuations and stretches of missing values, and much higher
variability in annual layer thicknesses.

To test the effect of sampling rate, we also run the analysis
on three thinned down versions of both signals: taking ev-
ery second point (2 mm); every third point (3 mm); and every
fourth point (4 mm). We refer to these as the second, third
and fourth thinnings. An alternative way to generate signals
of lower sampling rate would be to take averages of non-
overlapping intervals – not a moving average – and we would
expect our method to work better in that case.

There is very little trend in cycle length through this depth
range in the NGRIP core. In each case we estimate the over-
all average cycle length from the ACF of the entire signal to
use as the interval length when calculatingµ andσ , effec-
tively settingβ = 1. Figure8 shows ACFs for both signals:
(a) no thinning (estimated average cycle length 62 points);
(b) second thinning (32 points); (c) third (21 points); and (d)
fourth (16 points). In each case the ACF for NH4 is shown as
circles and for Ca as stars.

Figure9 shows a stretch of the classified log NH4 signal
(fourth thinning) forν = 0.5 with 9 cycles: (a) is the log sig-
nal with µ andµ ± σ shown as dotted lines; and (b) is the
standardised signal. Here there are two issues; the first is
caused by a single missing value and the second by a fluc-
tuation in the data (a “double peak”). Note that there are 3
ascending runs of length 1 – the reason why we could not
do a fifth thinning. An average of around 16 points per cycle
appears to be the limit for the classification method with this
cycle shape and length distribution.
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Fig. 9. A stretch of the classified log NH4 signal (fourth thinning)
from the NGRIP ice-core (1442.25–1442.87 m), forν = 0.5. Points
within an issue are black, points within peaks coloured red, de-
scending points orange, troughs blue, and ascending points green.
(a) The log signal withµ andµ ± σ shown as dotted lines.(b) The
standardised signals.
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Fig. 10.A stretch of the classified log Ca signal (second thinning)
from the NGRIP ice-core (1444.10–1444.53 m), forν = 0.5. Points
within an issue are black, points within peaks coloured red, de-
scending points orange, troughs blue, and ascending points green.
(a) The log signal withµ andµ ± σ shown as dotted lines.(b) The
standardised signals.

Figure10 shows a stretch of the classified Ca signal (sec-
ond thinning) forν = 0.5 with 7 cycles. There is one issue –
a probability of 10 % is assigned to there being two troughs
in this section.

The probability distributions for the resulting chronolo-
gies for the second and fourth thinning of both signals are
summarised in Fig.11 over a range of eightν values. The
no-thinning and third thinning cases are similar. The range
of ν was chosen in each case as the interval over which the
count is “most stable” – in that the probability distributions
are most similar. In each case a cursory check on the model’s
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Fig. 11.The effect ofν on the probability distribution obtained for
the number of annual troughs in the dating of the NGRIP ice-core
(1440.49–1464.81 m) using its log NH4 and Ca signals. Each circle
has area proportional to the probability of a particular number of
troughs.(a) NH4, second thinning.(b) NH4, fourth thinning.(c)
Ca, second thinning.(d) Ca, fourth thinning.

choice of “certain” runs, and the probabilities assigned to re-
sulting issues, was made to confirm that they are sensible.
These ranges were chosen by eye and vary for each thinning;
for the most part this is due to the effect of the sampling
rate on the visibility of the fluctuations and identification of
annual cycles. Choices ofν below these intervals generally
overestimate the count – classifying fluctuations as “certain”
cycles. Choices ofν above these intervals generally under-
estimate the count – missing out whole cycles in the classi-
fication of “certain” runs. One way to stabilise the “certain”
cycle count would be to do one run of the classification pro-
cess, model the “certain” run lengths, check for outliers in the
distribution (abnormally short or long runs), and assign these
as issues. Note that the Ca count is generally higher than the
NH4 count and has a greater uncertainty; this is due to a num-
ber of extra potential annual cycles present in the Ca signal
when compared to the NH4 signal, suggesting that a bivariate
implementation, as outlined in Sect.8, would be beneficial.
However, in multivariate datasets the different nominal reso-
lution of individual components must also be considered.

The GICC05 chronology (Rasmussen et al., 2006) assigns
420 certain years and 3 uncertain years between 1439.92 m
and 1465.52 m for the NGRIP core, which is consistent with
our results.

For comparison, after correcting for the slight decreasing
trend in the “trough to trough” log cycle lengths from the
most probable NH4 chronology and modelling them as Gaus-
sian, the probability of a random annual layer being either
double or half the mean thickness at any given depth is ap-
proximately 2.3 %.
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Fig. 12. Two portions of the classified log nss-S signal from the
Gomez ice-core forν1 = 0.85,ν2 = 0.5, andβ = 10. Points within
an issue are black, points within peaks coloured red, descending
points orange, troughs blue, and ascending points green.(a) At the
start of the core.(b) Towards the end of the core.

7 Gomez: non-sea-salt sulphur

To show how our classification process can be adapted for
asymmetry, we re-date the Gomez ice-core using its non-sea-
salt sulphur (nss-S) signal. This signal is challenging because
the shape of its annual cycles changes with depth – from wide
noisy troughs at the top of the core to cycles similar to those
of the example H2O2/NH4/Ca signals at the bottom. A loga-
rithmic transformation improves symmetry at the bottom of
the core but not at the top, so the nss-S signal is not trans-
formed for this analysis. Instead, we make a minor adaptation
to the method.

The standardisation method presented above effectively
estimates a local mean and standard deviation for each depth;
points that exceed a given number (ν

√
2) of standard devia-

tions from the mean are then classified aspotentialpeaks and
troughs. As symmetry cannot be induced throughout the nss-
S signal, we require a more robust method of classification –
we use local quantiles or percentiles. Along interval lengths
estimated from the ACF of the nss-S, as above, we calculate
the localν1-th andν2-th quantiles at each depth. Data points
above theν1-th quantile are then classified as potential peaks,
and data points below theν2-th quantile are classified as po-
tential troughs. From this point on the method continues as
in previous sections.

In the regression model for the nss-S, log “certain” run
lengths of the A and D (“central”) classifications are found
to be equivalent, whereas P and T classifications show a sta-
tistically significant difference (p < 1 %). There is also a sta-
tistically significant interaction between the depth index and
the classification factor (p < 1 %). This fits a steeper gradient
to the trough log lengths relative to the other classifications –
modelling the change in cycle shape down the core.
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Fig. 13.Bar plot showing the probability distribution of the number
of annual troughs – a summary of the chronology – in the dating of
the Gomez core using its nss-S signal forν1 = 0.85, ν2 = 0.5, and
β = 10.

Figure12shows sections of classified nss-S with 7 cycles,
(a) at the start of the core, and (b) towards the end of the core.

Figure13 shows the resulting probability distribution for
the chronology atν1 = 0.85 andν2 = 0.5, which has more
uncertainty than that found from the H2O2. The most likely
chronology (p = 0.4) has a one-to-one trough correspon-
dence with the most likely reconstruction found from the
H2O2 signal and the manual count. This is true over the range
0.8 ≤ v1 ≤ 0.9 and 0.4 ≤ v2 ≤ (v1 − 0.3).

8 Conclusions

With regards to developing an automated method for de-
termining the annual layer chronology in an ice-core with
a strong annual signal, we have presented methods to

– split the signal into sections with a deterministic cycle
count and those that need more attention, using a tuning
parameter,ν,

– display possible reconstructions for the uncertain sec-
tions that could be used as visual aids for manual count-
ing, and

– assign probability measures to each reconstruction
based on its length and the classification of the border-
ing deterministic sections,

which together provide a stable count with an uncertainty
measure on signals from the Gomez and NGRIP ice-cores.
Some of the work carried out for the examples would need to
be repeated for each ice-core, for example, to determine the
best value ofβ for a particular case, or to assess the data for
trends in layer thickness, which can arise for climatic as well
as glaciological reasons.

The log H2O2 signal from the Gomez core has symmetri-
cal cycles, and the choice ofν = 1/

√
2 splits each cycle into

four equal parts with equivalent length distributions. These

parts are analogous to seasons as the annual cycles are di-
rectly correlated to sunlight, and allow other variables to be
discussed in seasonal terms.

These methods could be adapted for use on much longer
datasets, thereby reducing manual effort and providing a ro-
bust methodology. Future work to develop this method for
broad application in physical science research, including but
not limited to ice-core palaeoclimate research, may involve
extending the methodology to take in information from mul-
tivariate datasets with more uncertain annual cyclicity and
being able to provide solutions for optimally fitting annual
chronologies between fixed points of known age.

If the classification method can be extended to a multivari-
ate framework – using multiple signals to group depths into
“certain” runs described by length and label – then the same
method of assigning probabilities to issues can be utilised. In
the univariate example we split the signal into three groups
along the real line; it is possible to split two out-of-phase
standardised signals into four groups in the bivariate plane.
Plottingx′ againsty′ the points can be collected into quad-
rants:Q1 wherex′ > 0 andy′ > 0, Q2 wherex′ < 0 and
y′ > 0, Q3 wherex′ < 0 andy′ < 0, andQ4 wherex′ > 0
andy′ < 0. These could be treated as potential runs as above,
and the method would be the same from that point.

We attempt to show that this process is robust to the tuning
parameters. Plots are provided to show the effect of chang-
ing ν on the resulting probability distributions for the cycle
count. In practice, since this method does not aim to give
definitive probabilities, it could be argued that the robust-
ness of the classification method, and of the issues found,
is of more importance. In all four analyses, different issues
arise when varyingν in the ranges presented; see Fig.11 for
an example. However, in all cases where one value ofν has
an issue over a depth range where another value ofν gives
a “certain” count (see Fig.3), the reconstruction that corre-
sponds to the “certain” runs always has very high probability
and in most cases is assigned a probability of 1 after nor-
malisation. Thus the key message about which parts can be
confidently classified, and which are genuinely uncertain, is
highly robust.

We are currently developing a method that uses a model-
based statistical approach to make inferences about a
chronology in much more detail. It is more computationally
demanding than the method described here and uses a more
flexible model formulation than that described inWheat-
ley et al.(2012). One possible strategy would be to use the
method presented here to define and investigate issues; those
issues that cannot be readily resolved (i.e. where no single
reconstruction is obviously correct, based on run-lengths)
could then be analysed in more detail, using the model-based
approach to refine the chronology and the probabilities.

Our run classification process requires a signal with a
strong seasonal component and would need to be adapted
for use on noisier signals such as ECM or visual stratig-
raphy. The PEAK tools ofWeber et al.(2010) achieve a
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similar goal and work with great effect on noisy data. The
“zero-crossing method” algorithm iteratively finds the points
at which a signal crosses a wide interval Gaussian moving
average, and the “frequency truncation method” algorithm
similarly finds the zero-crossing points in the signal after
high-frequency noise and low-frequency shifts have been re-
moved via Fourier transformation. In the nomenclature of the
present paper, these methods essentially segment the signal
into “certain” runs representing peaks and troughs. Both of
these methods have user-defined parameters that represent
minimum layer thickness and a minimum amplitude toler-
ance which are adjusted to tune the count visually, along with
the smoothing or frequency parameters. These methods pro-
vide a point estimate layer count, along with valuable infor-
mation about the positioning of layer markings and the cycle
lengths. Their most recent paper does not address missing
values or provide a measure of uncertainty.
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