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Abstract: Reference Hydrologic Networks (RHNs) can play an important 

role in monitoring for changes in the hydrological regime related to climate 

variation and change.  Currently, the literature concerning hydrologic 

response to climate variations is complex and confounded by the 

combinations of many methods of analysis, wide variations in hydrology, 

and the inclusion of data series that include changes in land-use, storage 

regulation, and water-use in addition to those of climate. This paper 

presents three case studies that illustrate a variety of approaches to the 

analysis of data from RHNs and uses these case studies, plus a summary of 

studies from the literature, to develop approaches for the investigation of 

changes in the hydrological regime at a continental or global scale and 

particularly for international comparison.  The paper presents 

recommendations for an analysis framework and the next steps to advance 

such an initiative. There is a particular focus in the paper on the desirability 

of establishing standardized procedures and methodologies for both the 

creation of new national RHNs and for the systematic analysis of data 

derived from a collection of RHNs.   
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Introduction 
Assessing the impacts of climate variations on the flows of streams and rivers is a 

challenge of great magnitude and importance. The response of a particular watershed to 

climatic change integrates not only the climate input, but also direct human influences 

such as land-use changes and changes in storage, as well as change and variability in the 

hydrology of the watershed. Confounding this are the many hydrological variables and 

indices that could be assessed whose relevance is not necessarily consistent amongst 

watersheds.  Also, published studies have used different periods of data and different 

statistical analysis methods. The literature on the hydrologic response to climate 

variations is therefore complex and often ambiguous.  Assembling and summarizing a 

variety of trend studies across diverse regions is neither simple nor does it provide the 

necessary clarity about hydrological response to climatic change. Policymakers are 

unlikely to consult hydrological research studies reported in the technical literature, and if 

they do, they are faced with a proliferation of messages and no clear consensus of 

historical changes. 

There is clearly a need to develop a synthesis of results obtained using a common 

analysis protocol such that the way in which a variety of watersheds respond to climate 

can be presented in a manner that overcomes the confusion of collected studies. We 

believe that Reference Hydrologic Networks (RHNs) can be used to overcome at least 

some of these problems.   

Streamflow data collected from RHNs can be used to quantify changes in the 

hydrological regime that may occur, for example, as a result of climate change (Hannah 

et al. 2011). In the context of climate change, there is a pressing need for RHNs, which 

attempt to filter out human influences by focusing on those catchments with undisturbed 

flow regimes that are gauged by stations that produce reliable hydrometric data. In a 

companion paper, Whitfield et al. (2012) give detailed descriptions of the commonalities 

and differences associated with RHNs that have been established in a number of 

countries where they have been used to monitor and identify any changes or patterns in 

the hydrological regime (see, for example, Lins and Slack 1999, Burn and Hag Elnur 

2002, McCabe and Wolock 2002, Burn et al. 2010, Stahl et al. 2010, Hannah et al. 2011).  
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Gauging stations forming an RHN should consist of catchments that: i) are near-

natural; ii) are unregulated; iii) contain long record lengths; iv) are active gauges; v) have 

good quality data; and vi) have adequate metadata (Pilon and Yuzyk 2000, Whitfield et al. 

2012). Many RHNs will have been designed to meet most or all of these criteria.  RHNs 

have been established in several jurisdictions as a subset of the existing national 

hydrometric network, including the United States (Slack and Landwehr 1992), Canada 

(Brimley et al. 1999, Harvey et al. 1999) and the United Kingdom (Bradford and Marsh 

2003).  There have also been several studies that report on the assembly of a data set of 

gauging stations with RHN-like characteristics including Stahl et al. (2010) for Europe, 

Wilson et al. (2010) for a pan-Nordic network and Rennermalm et al. (2010) for a pan-

Arctic network of gauging stations. Hannah et al. (2011) provide a useful discussion of 

the importance of data from RHNs as well as an interesting discussion of some of the 

challenges associated with establishing and maintaining a national RHN.   

For comparative purposes, hydrologic variables used in trend studies should be 

consistent. While many of the existing studies focus on hydrological variables that are 

regionally appropriate or convenient, there is not a universal hydrologic climate change 

signature that manifests itself in the same way across different geographical domains. In 

general terms, the variables that should be considered need to be relevant to the 

hydrology of the region.  As the world is hydrologically complex, it is not possible to 

select a single hydrological variable that meets these criteria in each and every region.  

However, a common framework is needed so that comparisons are made on variables that 

are considered appropriate across a range of environments. 

In addition to appropriate streamflow data and variables, the use of sound 

statistical data analysis techniques is required to identify any changes in the hydrological 

variables and to quantify the magnitude of any changes that are identified.  To assist with 

the comparison of results from different national RHNs, it is essential that there be some 

level of commonality in the analysis approaches and hydrological variables used in the 

analyses (Rennermalm et al. 2010).   

The objective of this paper is to evaluate the usefulness of RHNs in assessing the 

impacts of climate change on the hydrological regime on a regional, national, and 

international basis.  The paper presents several examples of national RHNs and their use 
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for detection of hydrologic changes related to climatic changes.  The examples are drawn 

from RHNs located in the United Kingdom, the United States, and Canada.  A section 

then explores lessons learned from these case studies as well as from a large selection of 

studies from the literature, and includes a summary of commonly used hydrologic trend 

testing methods along with suggestions on increasing standardization of the methods.  

Finally, the paper outlines the steps that could facilitate an international effort to conduct 

a coordinated assessment of changes in the hydrological regime using data from RHNs 

applied on a larger spatial scale than is currently possible. This effort could be very useful 

for future assessments of the impacts of climate change upon the varied hydrology of the 

world.  

 
Case Studies 

The following subsections contain three examples from our use of RHN data for the 

purpose of assessing climate driven change; they are typical of the literature on 

hydrologic response to climate change.  The first case study uses data from the United 

Kingdom the second uses data from both Canada and the United States and the third uses 

data from Canada. These examples involve the use of a variety of different hydrological 

variables and different techniques for analysis and interpretation. The research work for 

each of the examples was conducted independently by a subset of the authors of this 

paper and there has been no explicit attempt to standardize them; full presentations are 

available elsewhere (Hannaford and Marsh 2006, 2008, Hannaford and Harvey 2010, 

Hodgkins and Dudley 2006, Burn 2010).  These examples reflect only some of the 

diversity of approaches currently being used to determine trends. The Standardization of 

Climate-Related Hydrologic Trends section of the paper summarizes some of the 

characteristics for 128 hydrological trend studies present in the literature. The three 

examples presented herein, as well as the summary of studies in the standardization 

section, identify many inconsistencies in the use of data and statistical methods in the 

hydrologic trend literature. The lack of consistency has undoubtedly contributed to the 

ambiguous messages regarding the response of hydrological systems to climate change, 

as discussed in the introduction.  To this end, the standardization section identifies more 
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consistent approaches that can be applied on a larger spatial scale than has been 

previously possible. 

 

Case study #1 – The United Kingdom (UK) Benchmark Network 
The United Kingdom Benchmark Network contains over 130 gauging stations that have 

been identified for use in the detection, monitoring, and assessment of climate change 

(Bradford and Marsh 2003).  The Benchmark Network has been used extensively for 

trend analysis since its inception in 2003 – the following case study combines the results 

of three separate, but related, studies that have used the network (Hannaford and Marsh 

2006, 2008, Hannaford and Harvey 2010). 

 

Hydrological Variables  

The hydrological variables used in this case study were chosen because they are 

commonly used in the UK for comparing streams, and since they are used in engineering 

applications. Hannaford and Marsh (2006) focused on a water resources/low flows 

perspective, and considered widely-used indicators of annual runoff and low flow 

magnitude (7-day minimum; 30-day minimum) and duration (prevalence of low flows, i.e. 

number of days below Q90 and below Q70).  Note that Q90 denotes the value from the 

flow duration curve that is exceeded 90% of the time. In a companion study,  Hannaford 

and Marsh (2008) focused on flooding issues, and considered indicators of high flow 

magnitude (10-day maximum; 30-day maximum) and duration (prevalence of flows 

above Q10), as well as a true indicator of flood magnitude, the annual maximum 

instantaneous flow (Annual Maximum), and frequency (of Peaks-Over-Threshold, POTs). 

Hannaford and Harvey (2010) considered seasonal average flows, using the following 

standard classification of UK seasons, widely used and endorsed by the UK 

Meteorological Office: winter (Dec – Feb), spring (Mar – May), summer (Jun – Aug) and 

autumn (Sep – Nov).  
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Analysis Methods 

The analyses conducted on the UK Benchmark Network have been carried out in several 

separate studies over a seven year period, so a number of different analysis methods have 

been applied.  All studies used the Mann-Kendall non-parametric test for trend (Mann 

1945, Kendall 1975) and the Sen slope (also known as the Thiel-Sen slope and the 

Kendall-Theil robust line) to compute the magnitude of trends. This slope is computed as 

the median of all possible pairwise slopes in each data set (Helsel and Hirsch 1992). 

Hannaford and Marsh (2006, 2008) also use linear regression to compute significance 

and magnitude of trends. Significance levels for the regression gradient and Mann-

Kendall test statistic were established using both the conventional method and a 

permutation test, which does not require any distributional assumptions to be made 

(Kundzewicz and Robson 2004).  An additional advantage of the permutation test is that 

resampling can be carried out in blocks, which enables serial correlation to be accounted 

for. Further details of the permutation testing framework are provided in Hannaford and 

Marsh (2006, 2008).  However, long-term persistence (LTP) was not accounted for in 

either study.  Spatial correlation was not addressed explicitly as a major part of either of 

these studies: Hannaford and Marsh (2008) did consider whether the high flow trends 

were field significant at a national scale (using the approach of Douglas et al. 2000), but 

regional significance testing was not carried out.  

 More recently, Hannaford and Harvey (2010) applied an alternative methodology 

(following Stahl et al. 2010), whereby the magnitude of the Sen slope was used to assess 

trends; no significance testing was applied, as the aim was to examine spatial variation in 

the observed trends, rather than attribute statistical significance. Catchment areas were 

used in this study to present results, to show the effect of the varying catchment size in 

UK benchmarks (see Figure 1). 

In the studies of change in high and low flows, two study periods were used to 

reflect a trade-off between record length and network density, but the study periods used 

vary: Hannaford and Marsh (2006) considered 1963 – 2002 and 1973 – 2002, whilst 

Hannaford and Marsh (2008) considered 1959 – 2003 and 1969 – 2003.  In the later study 

on seasonal trends, Hannaford and Harvey (2010) employed an updated period of 1969 – 

2008. 
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Results 
The results of the trend analysis for the network of stations are summarized in Table 1. 

As different methodologies and study periods were used, an arrow is used to indicate 

compelling evidence of change (i.e., consistency of strong trends in this direction when 

using trend magnitude, or in terms of number and strength of significant trends when 

significance was tested), over the various study periods, whilst a very mixed pattern or no 

compelling evidence is indicated with a hyphen. 

 

Conclusions from Case Study 
In general, the evidence points to overall increases in river flow in many areas of the UK.  

Annual runoff has increased, and it is likely this is driven by observed increases in 

autumn and winter runoff.  Similarly, high flows have increased, although evidence for 

flood magnitude trends (in terms of annual maximum flow) are less compelling than 

changes in high flow magnitude, duration and frequency. There is very limited evidence 

for any pronounced change in low flows over the study periods.  Similarly, summer and 

spring runoff trends are rather weak and regional patterns very mixed.  One of the main 

findings of these studies is the geographical variation in observed trends.  Strong 

increases in runoff and high flows are generally confined to upland, maritime-influenced 

catchments in the north and west.  Hannaford and Marsh (2008) found strong correlations 

between high flow trends and the North Atlantic Oscillation index (NAO), so observed 

increases in high flows may reflect a shift towards a more predominantly positive NAO 

over the period of study, bringing wetter weather to areas exposed to westerly airflows.  

In the lowlands in the south and east of England, in contrast, the evidence for trends in 

any part of the regime is weaker, with very mixed patterns, and there is certainly limited 

evidence for any decrease in runoff in these areas.  Hannaford and Marsh (2006, 2008) 

and Hannaford and Harvey (2010) use selected long non-RHN records to put the recent 

trends in a long-term context, and note that recent trends may not be representative of 

trends over longer periods. Despite the recent increase in high flows, the evidence for any 

compelling long-term increase in flood magnitude in the UK is weak (Hannaford and 

Marsh 2008, Marsh and Harvey, in press).  
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Case Study #2 – Assessing a geographic area using United States Hydro-

Climatic Data Network and Canadian Reference Hydrometric Basin 

Network 

Daily mean streamflow data from rivers that drain relatively natural watersheds in eastern 

parts of the United States and Canada were used for this study, which includes results 

from Hodgkins and Dudley (2006) plus additional analysis. In the United States, data 

were obtained from the U.S. Geological Survey (USGS) Hydro-Climatic Data Network 

(HCDN), which includes data from 1,659 streamflow-gauging stations across the USA 

(Slack and Landwehr 1992). This network contains stations with good quality data whose 

basins are relatively free of human influences such as regulation, diversion, land-use 

change, or extreme ground-water pumping. Canadian streamflow data were obtained 

from the Canadian RHBN, which has similar criteria to the HCDN network (Brimley et 

al. 1999). The selected stations were chosen because the interest was in changes in the 

timing of winter-spring streamflows in eastern North America (east of 100º west 

longitude, north of 41° north latitude) that are substantially derived from snowmelt runoff. 

It was important to use data from both countries because of the large annual snowpack 

and potential for sensitivity to small changes in winter-spring temperatures on both sides 

of the border. Some 179 gauging stations met the criteria of this study including having at 

least 50 years of data through 2002 (Hodgkins and Dudley 2006). The number of 

appropriate stations fell to 140, 81, 41, and 25 for periods of 60, 70, 80, and 90 years, 

respectively. 

Hydrological Variables 

The center of volume date (Hodgkins and Dudley 2006) was used for a measure of 

streamflow timing during the annual period of snowmelt runoff at the selected 

streamflow-gauging stations. To compute this date, daily flow volumes from January 1 

through June 30 were summed and the date from the start of the season by which half or 

more of the volume flowed by a gauging station was computed.  
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Analysis Methods 

The Mann-Kendall non-parametric test was used to test for significance of temporal 

trends and the Sen slope was used to compute the magnitude of trends. There must be no 

serial correlation for the Mann-Kendall test p-values to be correct (Helsel and Hirsch 

1992). However, the existence of serial correlation does not affect the estimated value of 

the Sen slope (Yue et al. 2002). Serial correlation was analyzed by computing the 

Durbin-Watson statistic on the residuals of the Sen slope lines of data sets that had a 

significant temporal trend (p < 0.1). There was no significant positive serial correlation (p 

< 0.1) in the winter-spring center of volume dates from 1953-2002. Field significance for 

results was calculated by multiplying the minimum local p-value for a region by the 

number of local tests in that region. This method closely approximates the Walker test; 

this test avoids problems associated with some other field significance tests (Wilks 2006). 

The influence of long-term persistence on trend significance (Cohn and Lins 2005, 

Koutsoyiannis and Montanari 2007) was not considered. Estimates of the magnitude of 

trends vary little between tests that consider long-term persistence and those that do not 

(Cohn and Lins 2005). 

Results 
Approximately 32 percent of stations north of 44° north latitude had significantly earlier 

(p < 0.1) flows over 50, 60, 70, and 90 year periods through 2002; 64 percent had 

significantly earlier flows over the 80 year period; there were no significantly later flows 

for any time period examined (Figure 2a for the 50-year period, from Hodgkins and 

Dudley (2006)). In areas of eastern North America between 41° and 44° N, few stations 

had significantly earlier dates for any of the time periods studied. Results were field 

significant (p = 0.06) for the region north of 44° north latitude. 

Flows for all stations north of 44° became earlier by an average of 6.1, 4.4, 4.8, 

8.6, and 6.5 days for the 50 through 90 year periods, respectively. Most streamflow-

gauging stations north of 44° north latitude had earlier dates from 1953 to 2002 (Figure 

2b, from Hodgkins and Dudley (2006)). Some areas had a mix of earlier and later dates, 

including far eastern Canada (Nova Scotia and Newfoundland), and the western part of 
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the study area in the USA (central Wisconsin and southern Minnesota). The most 

common change was five to ten day earlier streamflows. 

Conclusions from Case Study 
Earlier snowmelt runoff is likely the primary cause of changes over time toward earlier 

winter-spring center of volume dates for rivers in eastern North America north of 44° 

(Hodgkins and Dudley 2006). Changes in precipitation patterns could also contribute to 

earlier flows. Warmer air temperatures would cause earlier flows through earlier 

snowmelt and increased ratios of winter rain to snow. Studies in North America using 

historical data have shown that air temperature in the few months before and during 

snowmelt explain much of the interannual variability in the timing of snowmelt-related 

streamflows (Stewart et al. 2005, Hodgkins et al. 2003). Some 52% of the interannual 

variability of center of volume dates in the far northeastern USA was explained by March 

through April air temperatures; January precipitation (the month with the highest 

correlation with center of volume data) explained 14% of the variability. Déry et al 

(2009) showed that the center of volume date in western Canada is a function of both the 

temperature and the amount of snowpack.  When snowpack is constant, the date becomes 

earlier with increased temperature; when the snowpack increases, the date becomes later. 

Increased snowpack is a function of air temperature and (or) precipitation changes and 

other physical changes such as solar radiation, wind, and humidity (Hodgkins and Dudley 

2006). Later flows documented in the USA and Canada may result from changes in 

precipitation patterns or from increased snowpack in these areas. 

 

Case Study #3 - Canadian Reference Hydrometric Basin Network 
The Canadian Reference Hydrometric Basin Network (RHBN) contains over 200 

gauging stations with a minimum record length of 20 years that have been identified for 

use in the detection, monitoring, and assessment of climate change (Brimley et al. 1999). 

This case study uses a sub-set of 109 stations with a record length of at least 40 years. 

Although the 109 stations are drawn from across Canada, there is a southern bias in the 

sub-network due to the lack of long duration records in the Canadian north.  Analysis on 

the stations was done using three (common) analysis periods: 1949 to 2008 (60 years); 
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1959 to 2008 (50 years); and 1969 to 2008 (40 years). Because of missing data for some 

stations and some variables, there were generally less than 109 stations available for the 

50 and 60 year analysis periods. 

Hydrological Variables 
A total of 17 hydrological variables were analyzed and include: monthly and annual flow; 

annual maximum flow magnitude and date of occurrence; and annual minimum 7-day 

average low flow magnitude and date of occurrence.  The collection of hydrological 

variables were selected to assess the trend characteristics of diverse elements of the 

hydrological regime of the study area including measures of the average water 

availability and its seasonal variability, the magnitude and timing of high flow events and 

the magnitude and timing of low flow events. This collection of hydrologic variables was 

chosen because they are commonly used in Canada to compare and contrast properties of 

the many hydrologic regimes.  These 17 variables are also commonly used in engineering 

assessments.   

Analysis Methods 
The Mann Kendall test was used to identify trends in hydrological variables. The 

presence of a positive serial correlation in a data set can increase the expected number of 

false positive outcomes for the Mann-Kendall test (von Storch and Navarra 1995).  The 

version of the trend test used incorporates a correction, developed by Yue et al. (2002), 

for serial correlation in the data. The calculated trend statistic can be used to determine 

the significance of a trend in a data set, which is referred to as the local significance level 

for an individual site. For a collection of sites, the global (or field) significance of the 

individual results at the collection of sites is evaluated using a bootstrap resampling 

technique (Burn and Hag Elnur 2002). Field significance allows the determination of the 

percentage of tests that are expected to show a trend, at a given local (nominal) 

significance level, purely by chance.  The resampling technique determines the critical 

value for the percentage of sites exhibiting a trend and addresses the impacts of intersite 

correlation. Based on this critical value, it is possible to determine whether the observed 

number of trends exceeds what is expected to occur by chance. Long term persistence 
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(LTP) was not accounted for in the trend analysis conducted for this case study.  Further 

details on the trend detection methodology used can be found in Burn et al. (2004).   

Results 
The results of the trend analysis for the network of stations across Canada are 

summarized in Table 2. The results in Table 2 show the direction of trends for 

hydrological variables that demonstrate field significance calculated for the entire 

network (i.e., variables for which there are a significant number of significant trends). 

Increasing and decreasing trends are analyzed separately and there can therefore be 

variables with both increasing and decreasing arrows (implying that for the variable there 

are an unusual number of increasing trends and an unusual number of decreasing trends). 

The results are presented for the 10% significance level (both local and field significance) 

because the intent of the analysis is exploratory and thus a less restrictive significance 

level was appropriate. 

Conclusions from Case Study 
Changes are occurring in the hydrological regime of the case study area.  Peak flow 

magnitudes are generally decreasing and occurring earlier in the year; the latter is related 

to an earlier onset of the spring freshet. Low flows are both increasing and decreasing 

with different patterns occurring in different parts of Canada.  The changes in the low 

flow regime can be partially explained by the hydrological processes that lead to low 

flow conditions and generally result in increasing low flows for the winter and decreasing 

low flows for the summer/fall.  There is a shift in timing of streamflow with an increase 

in winter/early spring and a decrease in late spring/summer. These results are consistent 

with other studies in Canada (Zhang et al. 2001, Burn and Hag Elnur 2002, Yue et al. 

2003, Ehsanzadeh and Adamowski 2007, Khaliq et al. 2008, Cunderlik and Ouarda 2009). 

Updates of trend analysis in this work using the most recent data (to 2008) provide 

additional insights into changes that are occurring and reveal increases in winter flow, 

especially January, and significant decreasing trends in low flow for the south-west 

portion of Canada (see also Burn et al. 2010). 
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Standardization of Climate-Related Hydrologic Trend 
Studies 
Consistent hydrologic data, variables, and analysis methods are required to facilitate the 

comparison of hydrological trends among gauging stations at regional, national, and 

international levels.  Greater standardization will ensure that trend analyses can be carried 

out consistently and results compared between Reference Hydrologic Networks, to 

facilitate judicious assessments of the evidence for climate-driven change upon the 

hydrological cycle – for example, in future Intergovernmental Panel on Climate Change 

(IPCC) reports. The three example case studies of using RHNs for assessing climate 

driven change, and the 128 studies reviewed for this paper, have both commonalities and 

differences in: i) the nature and type of data analyzed; ii) the data analysis period(s) 

used ; iii) the selection of hydrologic variables; and iv) the trend analysis methods used.  

The following sections discuss each of these issues in greater detail in the context of 

moving towards the development of standardized approaches. The role of RHNs is re-

evaluated in light of the case studies and literature assessed, and data issues are also 

considered (e.g., the effect of basin scale upon responses to climate change). 

The Role of Reference Hydrologic Networks 
 

Much of the published literature on historical hydrological trends does not make a clear 

distinction between trends due to changes in climate, land-use, or water use. RHNs 

should play a more prominent role in hydrological trend studies as RHNs function as a 

control for non-climatic anthropogenic influences. The 128 studies of climate change 

effects on hydrology summarized in Table 3 illustrate the scope of this issue; only around 

40% of the studies used stations that were either part of an RHN or were selected based 

on criteria similar to those used to identify an RHN.  A complete citation for each of the 

128 studies that are summarized in Table 3 is contained in the Supplemental Material.  It 

is a concern that the majority of the 128 trend studies from across the globe, summarized 

in Table 3, have not used data from an RHN, or from an RHN-like network, as a control 

against land-use, regulation, or water-use effects.  
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RHNs, by their guiding principles, enable predominantly climate related trends to 

be discerned from the impacts of other disturbances. In two of the example case studies 

presented herein, national RHNs were utilized and in one example, similar national 

RHNs in Canada and the United States allowed for cross border analyses to be completed. 

The UK case study used some non-RHN stations with long record lengths.  In this case, 

the longer term records were used to better understand the changes in the RHN stations 

from the perspective of longer term patterns and cycles, and the non-RHN sites were kept 

apart from the statistical analysis so they were not being compared with RHN sites. 

 Four recent studies explicitly explored the impacts of RHN stations on the results 

of trend analysis.  Hannaford and Marsh (2006) report on the 30-day minimum flow time 

series for the River Thames in the UK.  There is a significant decreasing trend in the 121 

year record for this site.  However, when the record is naturalized by accounting for non-

returning abstractions upstream of the gauging station, the trend direction is reversed.  

The naturalized flow sequence in comparison to the gauged record can be viewed as 

being analogous to comparing an RHN station with a non-RHN station, dramatically 

demonstrating the importance of using RHN stations in trend analysis.  Hodgkins et al. 

(2007) evaluated streamflow trends for RHN stations, stations gauging urbanized streams 

and stations gauging regulated streams.  They found generally different results for the 

urbanized and regulated streams in comparison to the results for RHN stations.  Vogel et 

al. (2011) examined changes in flood frequencies for close to 20,000 stations in the USA.  

When the results were separated in accordance with the regulation status of the station 

(regulated, non-regulated, and RHN), there were dramatic differences in the magnitudes 

of the temporal changes observed, further illustrating the confounding influence of land-

use change and regulation of streams. Finally, Lorenzo-Lacruz et al. (2012) conducted an 

analysis of streamflow trends across the Iberian Peninsula. Whilst the study did not use 

an RHN per se, regimes were classified into three categories (natural, regulated and 

highly regulated rivers). Whilst river regulation did not affect the overall sign of trends 

over the study domain, it did amplify the magnitude of trends and had a pronounced 

effect on seasonality of streamflows.  
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Data and Scale Issues of Reference Hydrologic Networks 
Standardization of hydrologic trend studies implies that all gauging stations included in 

the analyses should be part of a national RHN and that common, or at least similar, 

criteria should be used in the establishment of each RHN.  The latter attribute, while 

desirable, may not be completely attainable given the different national 

agencies/organizations involved in establishing national RHNs as well as possible 

differences in data collection protocols for different countries.  It is encouraging that most 

of the current national RHNs have been developed using similar criteria.   

An issue influencing the interpretation of trend results is the density and 

geographical patchiness of RHNs. Woo and Thorne (2006) point out that the density of 

stations in the Canadian RHBN is limited, especially in the north, with most of the 

hydrometric stations located in southern portions of Canada.  A decline in the number of 

active streamflow stations combined with the short record length from most northern 

rivers render it difficult to distinguish long-term trends from medium-term variability. In 

the UK, the primary issue is that the lowland areas of southern England are very densely 

populated, and attempting to define truly “pristine” RHN catchments would probably 

mean there would be no coverage in this area (Bradford and Marsh 2003); there is 

therefore a need to tolerate some degree of disturbance, which then means national-scale 

results must be viewed with caution. 

As noted by Whitfield et al. (2012), some researchers advocate selecting for trend 

studies only those gauging stations with a drainage area within a defined size range.  It is 

clearly important that scale issues are addressed in the interpretation of trend analysis 

results as different hydrological processes operate across a range of scales (Blöschl and 

Sivapalan 1995) and climate change may cause differing responses at different scales. 

However, it may frequently not be practical to restrict analysis to stations within a 

defined drainage area size range because of the limited number of RHN catchments with 

long term records. 

Analysis Period 
An important aspect of hydrologic trend studies that requires standardization is the 

analysis period.  The analysis periods used in the case studies presented herein, and many 

of the studies reviewed in Table 3, generally had a starting year around 1950 or later with 
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an ending year corresponding to the last year of data availability at the time that the 

analysis was conducted.  The selection of an analysis period often represents a trade-off 

between temporal versus spatial coverage with more stations being available for the 

shorter (more recent) analysis periods. The case studies used different (common) analysis 

periods to explore the temporal variation in trend results and examined longer records to 

put short-term trends into a fuller historical perspective.    

Trends are invariably sensitive to the analysis period used. Many authors have 

commented on the effects of “clustering” of notably wet and dry years within series and 

on the limitations of short study periods; trends over short periods may reflect part of 

longer-term quasi-periodic oscillations (Kundzewicz and Robson 2004, Chen and Grasby 

2009).   The influence of relatively short periods on trend responses is particularly 

important in the context of patterns of multi-decadal variability driven by large-scale 

teleconnections (Svensson et al. 2006, Woo and Thorne 2008).  In the UK case study, the 

influence of changes in large-scale atmospheric circulation (specifically, a shift towards a 

more prevalent positive NAO) over the analysis period was shown to be influential. 

Similar concerns exist for other large scale climate system features (ENSO, PDO, AMO, 

etc). 

While the end of the analysis period is generally the most recent year for which 

data are available, McCabe and Wolock (2002) describe a “moving window” approach 

that involves examining many analysis periods of differing lengths and obtain interesting 

insights from this analysis (see also Wilby (2006), Hannaford and Harvey (2010) and 

Rennermalm et al. (2010)). The need to select common analysis periods from different 

national RHNs will undoubtedly result in the exclusion of the most recent data for some 

of the locations and the exclusion of stations with short periods of record.  A balance is 

needed between obtaining complete overlap with the records for all sites and having a 

longer analysis period with some stations having missing data for part of the analysis 

period. Given that the majority of RHN records are from the latter half of the twentieth 

century, there is also an important role for studies of long (>100 year) streamflow records 

(e.g., Schmocker-Fackel and Naef 2010, Marsh and Harvey in press). These may be 

subject to anthropogenic disturbance and may contain inhomogeneities, (e.g., owing to 

changes in measurement practices over time), but they should still be used to complement 
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RHN studies, enabling recent trends to be placed in a fuller historical context. This is 

particularly important in the UK where the majority of gauging stations have records 

beginning in the 1960s and 1970s and trends may be affected by dry sequences near the 

start of the record and a very wet sequence near the end. The lack of long records also 

underlines the importance of data stewardship to preserve such datasets where they exist, 

and in efforts to unearth more. Effort could also be put into expanding the timeframe of 

RHN analyses through using reconstructed data (e.g., Wilby 2006) or, for a very long 

perspective, using analogues such as documentary evidence (e.g., Brázdil et al. 2006) or 

paleo reconstructions, though these methods introduce additional uncertainties. 

Variables to Analyze 
Since data are available at a daily temporal resolution for most RHNs, establishing a 

common set of hydrological variables to analyze is likely to be the easiest step in the 

standardization process.  There is consensus from many trend analysis studies that the 

hydrological variables investigated should encompass a comprehensive set of measures 

of the hydrological regime for the catchments in a defined area. Common variables to 

two of the three case studies were annual and monthly/seasonal streamflow, representing 

overall measures of water availability. Additional hydrological variables often included 

are measures of extremes; high flow, low flow, or both.  This can include measures of the 

magnitude, duration, timing and/or frequency of extreme flows.  The case studies herein, 

and other studies (e.g., Lins and Slack 1999, Burn and Hag Elnur 2002, Stahl et al. 2010), 

indicate that the consideration of an extensive collection of hydrological variables is 

essential to properly characterize the nature of changes occurring in the hydrological 

regime of the catchments within a study area. The selection of appropriate hydrological 

variables for studies seeking to detect and attribute climate change needs to be carefully 

considered.  The variables that are selected need to be reflective of the specific 

hydrological type of a region, as demonstrated by the use of a snowpack-based indicator 

in the second case study. Even in a small country like the UK, regimes vary significantly; 

whilst all watersheds are predominantly affected by precipitation rather than snow/ice, 

there are major differences in storages due to catchment geology, which may influence 

the response to any climate signal (Laizé and Hannah 2010). 
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Specific variables can be very useful in examining particular issues. It may not be 

desirable to standardize all hydrologic variables because different hydrologic processes 

dominate in different areas. For example, annual low flows occur in the winter in many 

northern rivers (in the northern hemisphere) due to long periods of snow and ice cover; in 

more southern areas, annual low flows occur primarily in the summer and fall. This is 

particularly true from a global perspective where hydrologic process variation is very 

much embedded within the climate system. Many favoured hydrologic variables, such as 

monthly flows, are not relevant in a global mix of perennial and ephemeral rivers.  It may 

be more appropriate to select specific variables for individual hydrologic regimes and 

only compare within that regime rather than to compare variables that are not specific 

between different regimes, as carried out in some regional studies (e.g., Hisdal et al. 2001, 

Khaliq et al. 2008, Déry et al. 2009). An additional consideration is that, in hydro-

climatic records, high background variability results in a low signal to noise ratio that 

may obscure the identification of trends. This could mean that climate changes may be 

exerting an influence on water availability and infrastructure before they can be formally 

detected, implying the need for indicators that can increase the signal to noise ratio 

(Ziegler et al. 2005, Wilby 2006).  Such indicators need to be used with similar caution; 

indicators need to be specific and robust within the local hydrology and only reported 

where they are informative. 

 

Trend Analysis Methods 
Hydrologic trend studies have used a variety of statistical analysis methods for computing 

trend significance and/or magnitude. The approaches used to identify trend significance 

in hydrologic variables generally involve either some version of the Mann-Kendall test or 

linear regression. From the 128 studies summarized in Table 3, 70% used the Mann-

Kendall test, 26% used linear regression and 11% used some other technique (several 

studies used multiple techniques, resulting in the values not summing to 100%).  Many of 

the studies in Table 3 (45%) have handled serial correlation (short term persistence) in 

the data through a form of prewhitening of the data or block resampling to account for the 

effects of serial correlation. Only 6% of the studies accounted for long term persistence.  

Field significance was applied in 22% of the studies summarized in Table 3. Trend 
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magnitudes were calculated using either linear regression or, more commonly, through 

the estimation of the Sen slope.   

 Traditionally, an approach based on the Mann-Kendall test was used in analyses 

of trend significance with refinements being made to the basic methodology to reflect the 

effects of (short term) serial correlation and cross correlation.  Cohn and Lins (2005) 

demonstrated that trend tests yield very similar estimates of trend magnitudes with and 

without the presence of short and long term persistence; however, concern about the 

presence of long term persistence in hydrologic data series calls into question the validity 

of data independence, which is a basic assumption of statistical significance tests 

(Koutsoyiannis and Montanari 2007, Hamed 2008, Chen and Grasby 2009).  In addition, 

Clarke (2010) argues that there is exaggerated attention given to the results of non-

parametric statistical significance tests, and that there should be greater attention to 

developing parameterized models and calculating uncertainties in model parameters. As a 

result, several studies (Milly et al. 2005, Milliman et al. 2008, Hodgkins 2009, Stahl et al. 

2010) have estimated only the trend slope for catchments and examined the geographic 

coherence and spatial patterns of trend slope magnitudes and avoided the issue of 

statistical significance.  There is not yet a clear consensus in the literature as to which of 

these general approaches to use; this issue of reporting statistical significance will need to 

be resolved in any coordinated international initiative to compare RHN studies.   

Most of the methods that are presently being used for assessing climate change 

trends in hydrology make the assumption of monotonic change. This is generally a poor 

assumption for non-linear systems, and coupled with the patterns of climate system 

variation supports the need for further research into detection methods that can better 

separate and assess these non-linear signals. There is also a need to examine time series 

for abrupt changes in streamflow (e.g. McCabe and Wolock 2002, Villarini et al. 2009) 

and to explore the factors causing the temporal changes in streamflow.  

Next Steps 
As outlined in the discussion above, there are several unresolved issues in developing 

standardized data and methodology that should be addressed before a more 

comprehensive analysis of hydrological trends and variability related to climate change is 

undertaken.  Before moving the process to a continental or near global scale, more 
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national RHNs must be developed.  Standardization of specific hydrological variables, 

where meaningful, is needed for analysis and standardization is needed for the trend 

analysis methodology used.  One potential avenue for reaching consensus and 

collaboration on these issues is to hold a special session at an international conference 

that will bring together experts in this area.  While such an approach would be useful in 

initiating such a process, there remains a place for the involvement of the International 

Hydrology Program (IHP) or the Commission on Hydrology of the World Meteorological 

Organization (WMO). These organizations may be helpful for promoting the need for 

more national RHNs and for ongoing collaboration of experts, following on from 

precedents such as the publication of WMO/UNESCO-IHP guidelines on trend testing 

methods (Kundzewicz and Robson 2004), which followed an international workshop held 

on the topic. One starting point may be to attempt a standardized analysis across those 

areas that currently have well developed RHNs defined using relatively similar criteria 

(i.e., North America and parts of Europe such as the UK and the Nordic countries). Such 

an approach could be useful in “tuning” an effective standardization approach that could 

then be applied globally as more RHNs are developed and mature. 

Policy makers need to become more confident with the results of hydrological 

change detection and attribution studies. Standardization and intercomparison of 

approaches could be useful in approaching this issue. While true standardization of 

methods will not be possible until consensus on an appropriate method is reached, 

intercomparison studies of widely used methods applied to standardized data sets would 

provide a useful comparative basis. The use of RHN catchments would allow for control 

of non-climatic anthropogenic influences such as land use change, regulation, and water 

abstractions. 

There is a need to develop documentation for users (scientists, resource managers, 

and others) so they have access to guidance on how to best use reference stations and 

networks in trend detection studies.  As part of this documentation, there is thus a need 

for: 

1. Documentation of trend statistics for selected reference stations for specific 

time intervals using methods of trend detection that are appropriate for these 

types of data, including common assessment tools/code. This might include 
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published statistics that users could then use as a reference for their analysis 

and versions of code. Alternative and newly developed methods could then be 

compared using these “baseline” reference data sets.  

2. A common approach for “hydrologic typing” needs to be documented since 

hydrological process differences have a large role in how systems respond to 

climate. Perhaps this entails documentation of hydrologic variables that are 

useful for different hydrological regimes (perennial, ephemeral, pluvial, nival, 

glacial, etc.). 

3. There should be a common interchange access format that supports data 

sharing, or conversely assessment software needs to be able to access multiple 

sources.  The simplest route forward would be for each contributor to 

exchange data in a common format, which would support metadata and 

information, and this would allow each country to develop tools to interact 

with their national data and the international data without translation. Studies 

reported in the literature should be shared in this format as supplementary data 

or provided to the Global Runoff Data Centre (GRDC) as a ‘specimen’ data 

set. 

 

Such developments would help the user ensure their data are suitable for its intended 

purpose and their assessment approach is comparable to those in common practice. This 

will support better interpretation of the data from these and other networks. Many small 

and/or less-developed countries depend on the global community for techniques, training 

and shared experience.  

 

Summary and Conclusions 
Reference Hydrologic Networks are effective data sets for the identification of the 

impacts of climate driven changes on streamflow.  The three case studies presented in 

this paper illustrate a variety of changes that have been found in stations drawn from 

different national RHNs.  The use of data from stations that are part of a national RHN 

assists with the attribution of the causes of trends by eliminating or minimizing many 

possible causes, such as reservoir regulation, land-use changes, or changes in the rate of 
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withdrawals from the catchment. The review of 128 hydrologic trend studies showed that 

only a minority of studies explicitly controlled for these direct anthropogenic watershed 

changes. 

There is a need for either more national RHNs and/or for an RHN-like screening 

process to be applied on a larger scale, perhaps using data held in a global database, such 

as the Global Runoff Data Centre (GRDC) in Koblenz, Germany.  There are also several 

methodological trend testing issues to be resolved including the hydrological variables to 

be analyzed, the analysis period to be used and, probably the most contentious issue, the 

usefulness of the concept of statistical significance in trend testing.  Should the 

geographic coherence of trend magnitudes from gauged streams be the primary measure 

of trends?  Since there is no clear consensus in the literature as to the most appropriate 

type of analysis to apply, it is recommended that a special session of an international 

conference be organized with the goal of resolving some of the issues outlined in this 

paper.  Such a meeting could be held under the auspices of the International Hydrology 

Program (IHP) or the World Meteorological Organization (WMO). Another pragmatic 

way forward advocated in this paper is an intercomparison of trends from across several 

existing, well-established reference hydrologic networks in North America and Europe, 

using consistent analysis methods, as a prototype for future efforts to use standardized 

trend testing methods on RHNs at a larger spatial scale. 

Historical assessment of climate related hydrologic changes is critical to 

understanding potential future changes and impacts. International hydrologic reference 

networks, that include catchments from a wide variety of climatic, topographic, and 

ecological regions, can form the basis for a wide variety of intercomparison studies of 

hydrological trends. With international cooperation and leadership, an established and 

documented international hydrologic reference network data set would exist that could 

serve as the basis for information on historical hydrological trends in future 

Intergovernmental Panel on Climate Change (IPCC) assessment reports. 
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 Table 1 Summary of Trend Results for data from 130 reference hydrometric stations 

from the UK Benchmark Network 

 

Hydrological Variable Analysis Period 

35 - 40 years up 

to 2000s 

Annual Runoff ↑ 

Low flow magnitude _ 

Low flow duration _ 

High flow magnitude ↑ 

High flow duration ↑ 

Annual maximum flow ↑ 

POT frequency ↑ 

Winter Runoff ↑ 

Spring Runoff _ 

Summer Runoff _ 

Autumn Runoff ↑ 
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Table 2 Summary of Trend Results for data from 109 stations from the Canadian RHBN 
Hydrological Variable Analysis Period 

1969 - 2008 1959 - 2008 1949 - 2008 

January mean discharge ↑ ↑ ↑ 

February mean discharge ↑ ↑  

March mean discharge ↑ ↑ ↑ 

April mean discharge ↑ ↑ ↑ 

May mean discharge ↓ ↓ ↓ 

June mean discharge ↓ ↓ ↓ 

July mean discharge   ↓ 

August mean discharge ↓ ↓ ↓ 

September mean discharge ↓ ↓ ↓ 

October mean discharge    

November mean discharge    

December mean discharge ↑   

Annual mean discharge ↓  ↓ 

Peak discharge ↓ ↓ ↓ 

Date of Peak  ↓ ↓ ↓ 

Low Flow ↑↓ ↓ ↑↓ 

Date of Low Flow Date ↓  ↓ 
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Table 3 Summary of trend studies drawn from the literature 

Continent # of Papers Network Status 

  RHN RHN ~ RHN + RHN + Non Non-RHN

Africa 4     4 

Asia 23  3   20 

Europe 26 2 5   19 

N. America 68 36 3 1 8 20 

S. America 3  1   2 

Other 4    1 3 

       

Total 128 38 12 1 9 68 

Note: 

RHN  = RHN (Reference Hydrologic Network) stations only 

RHN ~ = RHN-like (nearly natural; no impoundments; minimal land use change) 

RHN + = RHN plus RHN-like 

RHN + Non = RHN stations plus non-RHN stations 

Non-RHN = Non-RHN stations only (none or only some of the typical criteria for an 

RHN were explicitly considered) 
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Figure Captions 

Figure  Caption 

 1 Results of trend tests applied to the Benchmark Network, 1969 – 2008. a) 

winter, b) spring, c) summer, d) autumn. 

 2  Winter-spring streamflow timing trends in eastern North America, 1953-

2002. Upper panel indicates significance of changes and lower panel 

indicates magnitude of changes.  
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