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Abstract

We study the no-arbitrage theory of voluntary disclosure (Dye
(1985), Ostaszewski and Gietzmann (2008)), generalized to the setting
of n �rms, simultaneously and voluntarily, releasing at the interim-
report date �partial�information concerning their �common operating
conditions�. Each of the �rms has, as in the Dye model, some (known)
probability of observing a signal of their end of period performance,
but here this signal includes noise determined by a �rm-speci�c preci-
sion parameter. The co-dependency of the �rms results entirely from
their common operating conditions. Each �rm has a disclosure cuto¤,
which is a best response to the cuto¤s employed by the remaining
�rms. To characterize these equilibrium cuto¤s explicitly, we intro-
duce n new hypothetical �rms, related to the corresponding actual
�rms, which are operationally independent, but are assigned re�ned
precision parameters and amended means. This impounds all existing
correlations arising from conditioning on the other potentially avail-
able sources of information. In the model the actual �rms�equilibrium
cuto¤s are geometric weighted averages of these hypothetical �rms.
We uncover two countervailing e¤ects. Firstly, there is a bandwagon
e¤ect, whereby the presence of other �rms raises each individual cuto¤
relative to what it would have been in the absence of other �rms. Sec-
ondly, there is an estimator-quality e¤ect, whereby individual cuto¤s
are lowered, unless the individual precision is above average.

1
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1 Introduction

The 1985 Dye theory of a single �rm relates how private (certain) infor-
mation about end of period value, acquired �partially�, i.e. with a (known
ex-ante) probability q; is voluntarily released as an investor relations (IR)
announcement to investors at a (known ex-ante) interim-report date with
the aim of achieving a valuation upgrade. It establishes that in equilibrium
the �rm adopts a simple �cuto¤ strategy�, when deciding whether or not to
release that private information. This research explores how the simple cuto¤
strategy is revised when there are n �rms with correlated economic activity,
partially acquiring noisy private information in advance of a common (si-
multaneous) interim-report date. The current setting is quite di¤erent from
that of the lone �rm, since now the voluntary release of information by the
ith-�rm tells investors something about the other n� 1 �rms.
A further novel feature here is that the �rms face varying levels of noise in

their observations and have di¤ering (known) precision, so there are compet-
ing disclosures of varying precision. There are now two new general e¤ects
at work in this multi-�rm setting; good news about the (common) operating
environment released by one �rm implies other (correlated) �rms are also
facing �good�conditions. Secondly, since an investor may now receive mul-
tiple disclosures about the common operating environment, the investor can
choose to assign greater weight to those disclosures that are more precise, and
hence this may in turn in�uence �rms with imprecise observations to increase
disclosure (when their investor weighting is �low�). Thus, interestingly, the
e¤ect of moving from the lone to the n �rm setting shows that, while some
�rms may rationally choose to disclose less (adopt higher cuto¤s), others may
choose to disclose more (adopt lower cuto¤s). Hence the multi-�rm model
allows us to understand how variation in the precision, with which �rms esti-
mate their common operating environment, has an important e¤ect on how
the simple Dye cuto¤ needs to be modi�ed.
A related class of models is based on costly state veri�cation (CSV); the

idea, due to Townsend (1979), modeled via an Arrow-Debreu pure exchange
economy, identi�es a cuto¤ for veri�ed disclosures about some numeraire,
typically describing either consumption or an insurance claim and so �after
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veri�cation �known with certainty (in contrast to our noisy, albeit truth-
ful, disclosure). As the name indicates the CSV cuto¤, while analogous
to the Dye IR cuto¤, is instead determined by costs of disclosure. The
original multi-agent version in Townsend (1979) was extended in Krasa and
Villamil (1994) which also analyses, though in a di¤erent setting, agent co-
dependency. Pursuing the IR approach, Dye and Sridhar (1995) studied
disclosure in a multi-�rm setting with a correlation between the informa-
tion endowments of the �rms, created by an unobservable event, acting as
a probabilistic coordination device. Since in this IR setting the information
endowments are independent and the unobservable e¤ect contains no infor-
mation about the economic activity of the �rms, that model �precludes any
common �industry e¤ects� regarding the �rms�cash �ows�, as the authors
acknowledge (page 161, footnote 9). Indeed, by introducing a second in-
terim reporting date, that paper�s focus is instead on how early voluntary
disclosures precipitate subsequent additional disclosures.
Recently the Dye-Sridhar model has been revisited by Acharya, DeMarzo

and Kremer (2011). These authors return to the single �rm paradigm, but
with a second interim report date. They consider a further (noisy) public
signal of the �rm�s true value, modeled to be equivalent to the �rm�s ear-
lier private observation, but with its �rm-speci�c noise removed rather than
�ltered. (So this signal is correlated with the possible earlier signal.) They
then study the public-news e¤ect on disclosure strategy. Near the end of
their paper, they suggest that the arrival of such a public signal may be
interpreted as a second �rm�s information release and propose conjectures,
concerning bad news from the second �rm precipitating disclosure by the
�rst. (See their Section IV.B.) They report that �the construction of the
[two-�rm] equilibrium presents a signi�cant computational challenge.�
By contrast this research, building on the no-arbitrage disclosure the-

ory established in Ostaszewski and Gietzmann (2008), constructs explicitly
a natural, equilibrium, n-�rm extension (the constituent �rms de�ning an
industrial sector) of the Dye 1985 theory, with noisy information, in which
the �rm equity-values1 are modeled as one-period log-normal distributions
(consistently with the Black-Scholes benchmark); a further co-dependency
between the �rms capturing the common �industrial sector e¤ects�(or com-

1The Dye theory is suited to an equity-valuation focus, as use of the Dye cuto¤ can
be justi�ed by no-arbitrage arguments �as discussed in Section 2.1, especially equation
(8). This distinguishes the approach from the alternative focus on how disclosure costs
determine a cuto¤ �see Bayer et al. (2010) for an overview of this literature.
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mon operating conditions) is again modeled in a Black-Scholes framework
(i.e. log-normally). We will view a �rm�s end of period return as composed
of an idiosyncratic contribution (independent of other �rms) and a sector
contribution, moderated in the case of �rm i by a �rm-speci�c �loading�co-
e¢ cient (loading index), �i, assumed non-zero. We refer to this common
contribution simply as the sector e¤ect. (It is useful to regard it mathemat-
ically as a shared resource, appearing as if it were an (n+ 1)-st asset/�rm.)
At a common interim date the n �rms partially acquire private information
about the end of period sector e¤ect. Hence, as above, a disclosure by any
one �rm, permits inferences about the sector and thereby also about other
�rms. Consequently, the incremental e¤ect of adding any one �rm into an
industrial sector formed from the remaining n � 1 �rms will be a dominant
feature of the n equilibrium-cuto¤s (see the incremental inclusion e¤ect be-
low). Our main concern is how this co-dependency determines the nature
of the n �rms�cuto¤s for disclosing their privately observed (noisy) �sector
information�. Indeed, we trace the in�uence on cuto¤ levels of the �rms�es-
timate of the sector e¤ect, observed partially (by �rm i with probability qi)
with noise a log-normal multiplicative input, having an underlying Gaussian
of mean zero and standard deviation �i (equivalently, precision pi := 1=�2i ).
At the heart of our approach is a decoupling theorem which replaces

the n co-dependent �rms with n independent �rms, where critically these
new hypothetical �rms are assigned a modi�ed (re�ned) precision and an
adjusted mean, which subsume all co-dependency e¤ects, and result from
partial correlation analysis (cf. Kendall and Stuart (1976)), for which see
Appendix 5. Furthermore, the n hypothetical �rms allow development of
intuition for moving from the lone to the n-�rm industry sector.
The relative ease with which the n-�rm cuto¤ can then be explicitly

calculated (see (1)) allows one to check how varying �rm-precision a¤ects
the likelihood of non-release of information, which is of itself price-sensitive,
since investors revise expectations, when no news is released. Firstly, when
the correlation is positive (all �i > 0), a good-news bandwagon e¤ect is
shown to hold: ceteris paribus �rms all choose a higher cuto¤ (relative to the
lone �rm case) reducing the probability that they will release private news.
Secondly, there is an intuitively clear estimator-quality e¤ect which leads to
�rms being partitioned into below- and above-average precision (over the n-
�rm population). Those with below-average precision are shown to adopt a
lower cuto¤(relative to the single �rm case), and thus ceteris paribus increase
the probability that they will release private news, with the converse holding
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for the above-average quality e¤ect.
The i-th �rm announces its observed value provided it exceeds its own

observation cuto¤ i; whose logarithm is given by the following �weighted
sum�of all the hypothetical �rm log-cuto¤s (�hyp-�rm�below). We call this
weighted sum the i-th multi-agent induced cuto¤ .

log-cuto¤�rm i

= load-adjusted_precision-weighti � log-cuto¤hyp-�rm i

+

nX
j=1

load-adjusted_competitive-precision-weightj � log-cuto¤hyp-�rm j

More precisely, denoting below by gj the lone-�rm Dye-cuto¤ of the hypo-
thetical �rm j, one has

log i =
log gi
�i��i

+
Xn

j=1

�j
�0

log gj
�j��j

;

or, combining the weights, one has:

log i =
1

�0

0@ log gi

�i �
�

��i
�0+�i

� +X
j 6=i

log gj
�j � ��j�j

1A : (1)

Here, as above, �j is the power-loading coe¢ cient re�ecting the dependence
of �rm-j returns on the sector (factor) returns X; taken functionally to be
X�j . The weights in this sum, constructed from coe¢ cients �i and ��i,
shortly to be de�ned below in (2) and (3), include the proportionate e¤ects
of a �rm�s precision pi both as compared with its competitors and also as
compared against the sector-e¤ect�s precision p0. The proportionate ratio is
determined by two familiar estimates (regression coe¢ cients) that are used
by investors to infer the underlying (hidden) sector value conditional upon
the observed disclosures made by all the �rms in the sector. The two sets of
coe¢ cients are as follows:
i) One set consists of

�i = pi=p; where p = p0 + p1 + :::+ pn; (2)

constructed from the entire set of �rms (all the �rms plus the sector �viewed
as an additional asset with its own variance, or precision p0).
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ii) The other set consists of

��i = pi=(p� pi); (3)

where the minus signi�es omission, is constructed so that this coe¢ cient for
�rm i is obtained by excluding/omitting that �rm from the sector.
Referring to a �rm�s competitors as its �competition�, call the ratio:

��i=�i

the �rm-competition inclusion e¤ect (fiCI); this measures a �rm�s incremen-
tal e¤ect on total forecast precision. The related coe¢ cient

��i=(�0 + �i);

will be referred to as the �rm-sector inclusion e¤ect (fiSI). A slight re-
arrangement allows us to see the intuition for the terminology above:

��i
�i
=
pi=(p� pi)
pi=p

=
p

p� pi
; or equivalently

p�i + pi
p�i

; where p�i = p� pi;

where p�i (minus for omission, again) refers to summing over the competitors
of �rm i: Likewise,

��i
�0 + �i

=
p

p� pi

�
pi + p0
pi

is, on the right-hand side, the ratio of the previously introduced �rm-competition
inclusion e¤ect (fiCI) to a correlation (i.e. sector-on-�rm) e¤ect on a �rm�s
precision.
Thus, for instance when n = 2; one obtains a familiar regression coe¢ -

cient:

�1 =
p1

p0 + p1 + p2
=

��21
��20 + ��21 + ��22

; (4)

and its associate

��1 =
p1

p0 + p2
=

��21
��20 + ��22

(i.e. denominator omits �rm i = 1); (5)

giving

fiCI =
��i
�i
=
p0 + p1 + p2
p0 + p2

:
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The paper is developed as follows. In subsection 2.1 we brie�y review
the Dye voluntary disclosure cuto¤ strategy for a single �rm and a single
investor, when a manager observes operations with certainty. Here the op-
timal, voluntary, upper-tailed disclosure strategy of �rm i (disclosing high
enough value, say above some cuto¤ i) is termed a i strategy. In sub-
section 2.2 we introduce greater reality into the above setting by assuming
the manager can only observe the realization of some random variable Ti
that is a value-relevant signal, based on common operating conditions in the
industrial sector.
Since investors are concerned with their equity stake in a �rm, we in-

vestigate the Dye theory as it applies to the bench-mark Black-Scholes log-
normal model of risky-asset values albeit in a one-period setting (a framework
inspired by the CAPM). The corresponding disclosure cuto¤ relates to in-
vestors�estimates of equity value. This translates to a disclosure cuto¤ for
signals about returns. We �nd that passing back and forth (via logarithms)
between the additive arithmetic averaging of classical linear regression in
respect of normal returns and its log-normal counterpart �a multiplicative
geometric averaging of asset values �is straightforward and intuitive. The
non-linearity of the logarithm turns out to be highly tractable.
To help this back and forth argumentation, we follow the notation con-

vention that log-normally distributed random variables are denoted by upper
case letters and related underlying normally distributed variables by lower
case letters. Consistently with this, we use �N and �LN and generally �F
to distinguish between various probability laws (distribution functions): nor-
mal, log-normal, general.
Section 3 introduces the �factor model�of a sector �rst informally and

then in general terms in order to identify the equilibrium conditions for the
cuto¤s.
Section 4 specializes �rm values and signals about values to be log-normal;

the driver here is one �sectorial�factor, denoted X; common to all �rms in
the sector, which accounts for the entire correlation structure of the model
(albeit varying across �rms via the loading index �i) and so characterizes the
�state of the sector�. Working in the n-�rm setting, Section 5 gives all the
general results concerning the cuto¤s. We summarize conclusions in Section
6.
There follows a more technical account in the appendices. Appendices

1-7 are devoted to developing some routine Black-Scholes type calculations.
We derive the form of the relevant log-normal regression function (a geomet-
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ric average), from which we deduce a key conditional hemi-mean formula.
These permit us to prove our main Existence Theorem, on the existence and
uniqueness of cuto¤s for the signals. This relies on some partial covariance
calculations which relate more directly to the �precision matrix�of Section 4
than to the standard covariance matrix. Appendix 8 derives the Indi¤erence
Principle characterizing a �rm�s cuto¤ conditional on the cuto¤ behaviour of
the remaining �rms.

2 The Disclosure Environment

We begin with a brief review of the Dye voluntary disclosure theory in its
original form (possible private information on the next mandatory report of
�rm value) and its generalization to the context of a noisy signal of value,
and then we introduce multi-�rm disclosure cuto¤s - the main point here is
that the equilibrium disclosure of one �rm will now depend on parameters of
other �rms.

2.1 The Dye Cuto¤: noiseless scenario

The Dye disclosure model assumes three distinctive times, which we label
� = �1; 0; 1: ex-ante, interim-report date (e.g. a conference call) and ter-
minal date (e.g. �end of year�). (The dates � = �1 may also be interpreted
as timings just before and just after a known moment in time when the
manager of a �rm may make a voluntary disclosure.) In the model a ran-
dom variable F , relating to �rm valuation , has density 'F (x); an associated
distribution function �F (x) and an ex-ante (i.e. at time � = �1) expected
value mF . A realization of the random variable is observed by management
at the interim time with a probability q; drawn independently of F; and
known to the market. Management�s decision whether or not to disclose an
observed realization of �rm value x is a voluntary (strategic) decision. Dye
(1985) establishes that under continuity and positivity of 'F there exists a
unique threshold value  at which management will be indi¤erent between
disclosure or non-disclosure. Here  will be called the Dye cuto¤ . The indif-
ference point is characterized by equality between a credibly disclosed value
 and the valuation formed by investors when they face the non-disclosure
event (ND); denoted formally E[F jND()]; since investors at equilibrium
all conjecture that the cuto¤ policy is determined by : The latter is the
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computed expected value of the �rm, conditioned on the absence of informa-
tion (non-disclosure). This expression is a consequence of Dye�s assumption
that �investors cannot discern whether [the manager] has received informa-
tion but chosen not to release it or whether the manager has not received
information�(Dye 1985, §3). That is, the indi¤erence is described by what
we term the Dye indi¤erence equilibrium equation, or more brie�y the Dye
Equation:

 = E[F jND()]: (6)

Under the assumptions above, this implicit de�nition of a cuto¤ value  in
fact determines it uniquely.
We retain Dye�s (1985) assumptions (see his §3) that �the current share-

holders prefer a disclosure policy which maximizes the [interim]-period [i.e.
� = 0] price of the �rm� and that �this disclosure policy is adopted� by
management2.
Based on the assumption of a rational expectations equilibrium (in respect

of a conjectural threshold value  for the manager�s cuto¤), Jung and Kwon
(1988) derive (their equation (7)) the equation satis�ed by  to be

1� q
q
(mF � ) = HF (); (7)

where

HF (t) := E[(t� F )+] =
Z
(t� x)+d�F (x) =

Z
x�t
�F (x)dx:

HF (t) is the �lower �rst partial moment below a target t�, well-known in risk
management3. As this function is central to the Dye calculus, in our analysis
we refer to it brie�y as the hemi-mean function.
Henceforth this paper takes the distribution �F of the Dye framework

above as one that fully re�ects the market price of risk at the three times
� = �1; 0; 1; as above. That is, any contingent contract traded on the market
is priced by computing an expectation of the claim under this distribution
�F . This presumes the so-called complete market hypothesis to the extent

2The alignment of managerial and investor interests in respect of truthful disclosure
is arranged in Townsend (1979) and in Krasa & Villamil (1994) through the inclusion of
incentive compatibility conditions.

3See for example McNeil, Frey and Embrechts (2005), Section 2.2.4.
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of asserting that the distribution itself is an observable, i.e. there is a suf-
�cient range of traded instruments to select a distribution from a proposed
parameterized family, and so to identify the density of what is called the
risk-neutral measure (for which see Bingham & Kiesel (2004)). We regard
the risk-neutral measure as a summary of an underlying equilibrium market
model such as is described by Dana-Jeanblanc (2003).
The equilibrium choice of  dictated by the Dye equation is then equiv-

alent to the selection of the unique exercise-value  of the put E[( � F )+]
consistent with the no-arbitrage valuation of the �rm at E[F ] on the ex-ante
date, when its manager is known to use some disclosure cut-o¤  at the
later interim date (for which see Ostaszewski & Gietzmann 2008 and also
Gietzmann & Ostaszewski 2011). This is because (6) is equivalent to

E[F ] = �DE[F jD] + (1� �D); (8)

where D = D() is the disclosure event complementary to ND() above and
�D is the probability of D().
The equilibrium choice of  is also characterized by theMinimum Princi-

ple of Valuation established in Ostaszewski & Gietzmann (2008) in the form
that investors �discount the value of the �rm down to the lowest possible
value consistent with whatever discretionary disclosure is made�, which is a
re-interpretation of the Grossman and Hart (1980) unravelling result.
The Dye cuto¤ is thus an optimal put-strike (cuto¤) in the no-arbitrage

sense (i.e. in the �risk-neutral valuation�sense of �nance). Indeed, the Dye
model creates a formal �option to disclose� with its cuto¤ playing a role
analogous to that of a �nancial put�s strike price. This justi�es referring
to the Dye cuto¤ as an optimal cuto¤ in the no-arbitrage sense. Moreover,
recognition of this equivalence allows us to trace the dependence of the Dye
disclosure option through the dependence of a put on its strike price (cuto¤).
The hemi-mean function has the traditional hockey-stick shaped payo¤

(in view of put-call duality): it is call-like. The standard Black-Scholes put
option is thus a central tool. (See Appendices 2 and 7.)

As a guide to intuition, the following result identi�es the statics of the
cuto¤ in a simple context; this generalizes an observation of Penno (1997)
for the special Gaussian case.

Location-scale cuto¤ standardization theorem4. Let �F (x) be an

4Proof available from the authors.
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arbitrary zero-mean, unit-variance, cumulative distribution de�ned on R. For
the location and scale family of distributions �F (

x��
�
), with mean � and

variance �2; the Dye cuto¤ (�; �; �) satis�es

(�; �; �) = �� ��(�); where � = 1� q
q
;

so that
�(�) = �(0; 1; �) < 0

is the cuto¤ when standardizing to zero mean and unit variance and is a
function only of the odds �. The standardized cuto¤ �(�) is a convex and
decreasing function of � satisfying

� = HF (��)=�;

where HF (x) =
R x
�1�F (t)dt is the corresponding hemi-mean function.

Thus, ceteris paribus, the larger is the precision (equivalently, the smaller
is the variance �2) the closer the cuto¤  is to the mean �.

2.2 Modi�ed Dye Cuto¤: noisy scenario

In a multi-�rm environment there is scope to study di¤erences in disclosure
strategy arising from underlying di¤erences between the �rms. We model
the di¤erences by choosing to assume that if the manager of �rm i observes
a signal Ti of �rm value he/she does so with noise and the primary source of
di¤erence between managers will be the manager-speci�c noise. We follow
the standard Dye assumption that all disclosures are truthful �what di¤ers
here is the �quality� of those (forecast) disclosures, since some may have
relatively low precision. We also note that we implicitly assume that the
underlying information endowment variables Ii which take the value 0 or 1
according as �rm i does not/does receive its signal Ti are also independent
of all of the preceding random variables.
The noisy signal setting can fortunately be analyzed with a straightfor-

ward modi�cation to the Dye calculus requiring two steps. First, we observe
that the single-�rm framework above can embrace observation of a noisy
signal by a re-interpretation of F ; that is, F may validly be replaced by a
noisy signal of the true value F , say by T = T (F; "); where " models noise.
Then one may deduce the existence of a cuto¤ T above which a noisy signal
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T would, in equilibrium, be voluntarily disclosed. Given a disclosure in such
an environment, investors would then form expectations conditioning on the
reported noisy signal, and the market values the �rm as E[F jT ] rather than
as E[F ]: That is, referring to the regression function �F (t) := E[F jT = t];
the valuation assigned to the �rm is given by the estimator F est := �F (T ):
If, however, no disclosure occurs, then the market valuation is �F (T ): The
classic Dye disclosure calculus remains valid in this more complex noisy set-
ting, provided the F in Dye�s model is re-interpreted, not as the true �rm
value, but as F est, the estimated �rm value given T . This requires that �F (t)
be a strictly increasing function5. Similarly, all that needs doing in the Jung
and Kwon equation is to replace HF by another, related, hemi-mean function
HF est ; this yields a cuto¤ F est for the estimator F

est; de�ned implicitly by
the amended Jung and Kwon equation. Then F est = �F (T ) with T the
disclosure cuto¤ for the actual signal T:

3 Simultaneous Dye equations with multiple
conditioning

In this section we consider a sector of n �rms and apply to it the Dye theory
with the noisy signals of the last sub-section, to yield a set of n simultaneous
Dye equations in n Dye cuto¤s. We assume a common time structure for the
�rms: the interim-report date is identical for all companies. That is, their
voluntary disclosure/non-disclosure occurs simultaneously.
We begin informally (see below for a formalization) and assume that each

�rm i in the sector has a probability qi of seeing a noisy signal Ti of what
is the common �sector value�X. Each �rm i selects a disclosure cuto¤ i
for Ti and we consider the equilibrium pro�le of choices  = (1; 2; :::; n)
of cuto¤s which leads to each manager i being indi¤erent between disclosing
and not disclosing an observation of Ti = i conditional on all the other �rms
j observing Tj = j and making a disclosure of j:
In our model it will be the case � detailed in the next section � that

equity value is proportional to sector value. Hence, the equilibrium condition,
generalizing (6), is that for each i :

E[XjTj = j for all j] = E[XjNDi()]: (9)

5This establishes a condition validating the replacement of X by E[XjT ], suggested
also by Acharya et al. (2011) in their footnote 2.
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See Appendix 8 for a formal approach. Here NDi() denotes non-disclosure
by �rm i while all the remaining �rms j (i.e. 8j 6= i) disclose the received
signal Tj = j. That is , the valuation is unaltered if �rm i switches from
disclosing its cuto¤ i to non-disclosure while the remaining �rms continue
to disclose their Dye cuto¤s.
Denote by 1T1<1 the indicator of the event that T1 < 1 and introduce

the regression function

�X(t1; ::; tn) := E[XjTi = ti (8i)g;

so that the left-hand side of equation (9) is then �X(1; :::; n): Since

Pr(T1 < 1jND1()) = E[1T1<1jTj = j(8j > 1)];

the conditional expected value on the right in that equation reduces for i = 1
to

(1� q1)E[�X(T1; 2; :::; n)jND0
1()] + q1E[�X(T1; 2; :::; n)1T1<1jND1

1()]

(1� q1) + q1E[1T1<1 jND1()]
;

where the superscript indicates conditioning on the information endowment
variable Ii being 0 or 1 (cf. Sect. 2.2). Here we have used the conditional
mean formula (law of iterated expectation) to obtain

E[XjTj = j(8j > 1)] = E[E[Xj(Tj = j(8j > 1)); T1jTj = j(8j > 1)]
= E[�X(T1; 2; :::; n)jTj = j 8j > 1]:

Setting
�1(2; :::; n) := E[�X(T1; 2; :::; n)jND1()]; (10)

after a simple manipulation the Dye equation takes the form

1� q1
q1

(�1(2; :::; n)� �X(1; :::; n)) (11)

=

Z
t1<1

(�X(1; :::; n)� �X(t1; 2:::; n))d�T1(t1j2:::; n):

Here the the right-hand side may be viewed as a generalized lower partial mo-
ment, or brie�y the hemi-mean function of the estimatorX1 = �X(T1; 2; :::; n);
assuming that the regression function �X is strictly monotone in each vari-
able. Hence,

�1(2; :::; n) = E[X1j(Tj = j(8j > 1))] = E[�X(T1; 2; :::; n)jND1()]:
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The change of variable t1 ! x1 given by x1 = �X(t1; 2; :::; n); transforms
the Dye equation for 1 (as a function of 2; :::; n) to an equation for the
transform X1 of 1 in the original Dye format of Section 2.1:

1� q1
q1

(�1(2; :::; n)� x1) = HX1(x1);

with solution x1 = �X(1(2; :::; n); 2; :::; n); where

HX1(t) :=

Z
x1<t

(t� x1)d�X1(x1j2:::; n):

The transformed equation has a unique solution x below �1(2; :::; n); since
HX1(x1) is positive, increasing and convex (�call-shaped�), whereas the linear
expression on the left-hand side is decreasing in x1. Thus, just as before,
determination of the cuto¤ reduces to determination of the hemi-mean func-
tion.
The approach above, specialized to a log-normal setting in the next sec-

tion, allows us to reduce the hemi-mean function of T1 to the standard Black-
Scholes put option associated with X1; we note that the hemi-mean function
of T1 would be recognized by Fishburn (1977) as a general risk-measure (for
below-target t risk).

4 Modeling inter-�rm correlation

So far the analysis has been conducted in a general setting. We turn now
to the benchmark model of mathematical �nance, the Black-Scholes model,
based on Brownian motion as driving noise, so on an underlying normal/Gaussian
error structure and so log-normal distributions; see e.g. Bingham & Kiesel
(2004) Ch. 5-6. Other workable exponential variates that permit the bene�ts
of a multiplicative structure could be considered.
The model setting of a sector comprises �rms i = 1; 2; :::; n and their

values at terminal time � = 1 are represented at the ex-ante time � = �1 by
the random variables F1; F2; :::; Fn, which are decomposed into two factors.
One factor captures the �sector�correlation e¤ect and the other a �rm-speci�c
e¤ect so that, on incorporating a �rm-speci�c sector loading index �i; one
has

Fi := fiX
�iZi;

14



where fi is a scale factor6 and X;Z1; Z2; :::; Zn are log-normal independent
random variables with unit mean so that E[Fi] is the ex-ante expected ter-
minal value. (So by Appendix 2, E[Fi] = fi exp[12�i(�i � 1)�

2
0)]:)

Hence, at the interim date, since X and Zi are independent, investors
value �rm i at

E[Fijall disclosures] = E[fiX�iZij:::] = fiE[X�ij:::]; (12)

i.e. proportionally to their estimate of X�i :
In modeling the varying disclosures by �rms, there could be multiple

sources of variation driving di¤erences in disclosure (cf. Section 2.2). In order
to provide stepwise development of intuition, we specialize our focus to the
case where the �rm-speci�c factors Zj are all independent (so uncorrelated),
and thus investors are concerned about the correlation between the signals
Tj to the extent that they provide (conditioning) information on sectorial
performance. Within this framework, we are able to derive some remarkably
clear intuitive results, which we suggest provide solid foundations for analysis
of environments with more complex correlations between all the variables.
Formally, assume the manager of �rm i receives with probability qi a

signal Ti about the terminal value of the sector condition, X. We introduce
manager-speci�c noise in the form of a multiplicative factor Yi so that:

Ti = XYi;

where X (also referred to below as Y0, for notational convenience), Yi; Zj are
all independent7. The value of Ti; if disclosed (that is to say: observed and
above the optimal cuto¤), is then conditioned upon in equation (12). We
assume that X; Yi are also log-normal with unit mean and that

Yi = e
�ivi� 1

2
�2i ; for i = 0; 1; 2; :::; n;

with v0; v1; :::; vn independent N(0; 1) variables. That is, the co-dependence
of the signals T1; :::; Tn is explained by v0 (which corresponds to a �sector-
wide�e¤ect). Equations such as these are to be viewed as de�ning a trans-
formation, which provides a natural link between our work in the log-normal

6This scale factor allows us to study �rms standardized to unit mean.
7So Ti is standardized to have unit mean. For �i 6= 0; this is equivalent to a signal

generated from X�i by multiplication with noise; it su¢ ces to replace such a signal by an
alternative version obtained by a suitable power and scaling transformation .
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domain and standard regression theory, for which see Bingham & Fry (2010).
We refer to the parameters �i as volatilities. This is informed by viewing Yi as
being the time � = 1 discounted value of a Black-Scholes asset with dynamic

Yi(�) = e
�ivi(�)� 1

2
�2i �;

where � measures time and vi(�) is a standard Wiener process (Brownian mo-
tion). Thus the earlier symbol vi is interpreted as vi(1); i.e. the time � = 1
sampled-value of the process. This view entitles us to interpret the parame-
ters �i as volatilities of the corresponding returns dYi(�)=Yi(�) evaluated at
time � = 1:
It follows from our assumptions that

Ti = Y0Yi = e
�0v0� 1

2
�20e�ivi�

1
2
�2i = e�0iwi�

1
2
�20i ;

where
�0iwi = �0v0 + �ivi (13)

and wi � N(0; 1). We will need to know that the correlation �ij correspond-
ing to the covariance cov(wi; wj) is (as in Lemma A1.1)

�ij = cov(�0v0 + �ivi; �0v0 + �jvj) =
�20

�0i�0j
: (14)

Under our modeling of co-dependance the correlation matrix (�ij)i;j�n; which
would appear to introduce a standard but intractable formalism, turns out
to be equivalent to a very simple precision matrix:26664

p1 + p0 p2 ::: pn
p1 p2 + p0 pn
...

. . .
...

p1 p2 ::: pn + p0

37775 :
See Appendix 4 for further details.

5 Log-normal Simultaneous Dye equations

Having now modeled the correlation structure of the signals received by the
�rms, we next begin an analysis of the simultaneous system of Dye equations.
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Since these refer to conditioning on the signals of other �rms, we are �rst led
to considering the form of the multi-�rm regression function.
For the above log-normal noisy signals model it is straightforward to show

(see Appendix 3) that the regression function introduced in Section 4 has a
simple multiplicative power format:

�X(t1; t2; :::; tn) := E[XjT1 = t1; :::; Tn = tn] = Kt�11 :::t�nn ;

and, more generally, after inclusion of an � loading exponent:

��X(t1; t2; :::; tn) := E[X�jT1 = t1; :::; Tn = tn] = K�t
��1
1 :::t��nn ;

for some explicitly derived constants K;K� (given in (16) and (17) in Prop.
A3.3), i.e. these are independent of the variables ti (with the �i being the
classical linear regression coe¢ cients for the underlying normal random vari-
ables, as per (2) in Section 1). Likewise �1(:); de�ned in Section 4 by equation
(10), also has a power format; more generally, with � replacing the loading
index �1 of �rm 1, one has:

��1 (2; :::; n) : = E[K�T
��1
1 :::T��nn jT2 = 2; :::; Tn = n]

= K�
��2
2 :::��nn E[T��11 jT2 = 2; :::; Tn = n]

= K�
��2
2 :::��nn L�1

��2�1�1
2 :::

��n�1�1
n :

Here again the further constants L�i are explicitly derived (in Appendix 6),
whereas the �j�i are again classical linear regression coe¢ cients corresponding
to omitting �rm i, as per (3) in Section 1 �see equation (15) in Appendix 1
below. Thus the Dye equations may be shown to have a tractable form after
transforming t1 and T1 to s1 and S1 via

s1 = �X�(t1; 2; :::) = K�t
��1
1 ��22 :::��nn :

Here 2; :::; n are multi-�rm equilibrium Dye cuto¤s and t1 is a free variable.
Then

S1 = S1(2; :::; n) = K�(1(2; :::n))
��1��22 :::��nn ;

where 1(:::) is the Dye cuto¤ for �rm 1 when the remaining �rms follow a
j cuto¤ strategy. From these explicit formulas we develop the simultaneous
log-normal Dye equations and solve them in Appendix 7.
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6 Hypothetical-�rm induced cuto¤s

This section introduces the lone n hypothetical �rms of Section 1 as a tool in
deriving and interpreting the multi-agent induced cuto¤s. We then deduce
the bandwagon and estimator-quality e¤ects that sector correlation has on
the actual individual �rm cuto¤s.
We write w for the vector (w1; :::; wn) of the underlying normal random

variables de�ned by (13) and w�i for the same vector with i-th component
omitted. After some analysis conducted in Appendix 7, it transpires that the
following change of variable:

y1 = 
�1�1
1 =

�
L�1

�1(�2�1��2)
2 ::

�1(�n�1��n)
n

�
; ::: etc., mutatis mutandis,

transforms and uncouples the Dye equations of Section 3 in the log-normal
setting to a system in new variables yi:

1� qi
qi

(1� yi) = HLN
�
yi; �i�i�0i

q
1� �2i

�
; with �20i = �

2
0 + �

2
i ;

where 1��2i is the partial covariance of wi given (w)�i; as de�ned in Appendix
5 (and given by an explicit formula there) and HLN is the log-normal hemi-
mean function given explicitly by:

HLN(t; �) := t�

�
ln t+ 1

2
�2

�

�
� �

�
ln t� 1

2
�2

�

�
:

We call �i�0i
p
1� �2i the re�ned volatility and refer to the corresponding

precision as the re�ned precision. To standardize, we let ̂ = ̂LN(�; �) solve
the single Dye equation

�(1� ̂) = HLN(̂; �); with � :=
1� q
q
:

Thus the decoupled system has solution

̂i := ̂LN

�
�i; �i�0i

q
1� �2i

�
:

From here one deduces the following result which yields the i-th multi-agent
induced cuto¤ of the Introduction; see Appendix 7 for the derivation.
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The Existence Theorem (Multi-�rm Dye Equations). In the set-
ting of this section, the simultaneous Dye equations have a unique solution
and the disclosure cuto¤ i for the signal Ti is given by

log i =
log gi
�i��i

+
1

�0

�
�1

�1��1
log g1 +

�2
�2��2

log g2 + :::+
�n

�n��n
log gn

�
;

where

gi = ̂LN(�i; �i�i�0i

q
1� �2i )L�i and �i =

1� qi
qi

(the odds),

L�i = exp

�
(n� 1)�i + �i(�i � 1)

2(p� pi)

�
exp

�
�n�i + �i(�i � 1)

2p

�
;

(the �amended mean��an adjustment coe¢ cient for the cuto¤),

and where:
̂LN(�; �) denotes the solution of the following equation in y :

�(1� y) = HLN(y; �);

�i = pi=p (the regression coe¢ cient of wi),
��i = pi=(p � pi) (the regression coe¢ cient resulting from the removal of
�rm-i�s contribution from the total precision),
1� �2i is the partial covariance of wi given the remaining variates wj.

We can now trace the e¤ect of sector correlation on multi-�rm cuto¤s via
the partial covariance and the mean-adjustment coe¢ cients. In view of the
cuto¤s gi appearing in the theorem, we refer to a �rm with re�ned volatility
�i�0i

p
1� �2i and with amended mean L�i as �rm-i�s related hypothetical

�rm.

Bandwagon In�ator Theorem. The presence of correlation increases
the precision parameter of the cuto¤ and hence raises the cuto¤:

̂LN(�i; �0i) < ̂LN(�i; �i�0i) < ̂LN

�
�i; �i�0i

q
1� �2i

�
:

Proof. Indeed, �0i > �i�0i (as �i < 1) and also �2i is increasing in pi (see
Appendix 5). The result now follows, since ̂LN(�; �) is decreasing in � (by
the cited result of Jung and Kwon (1988)). �
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When the correlation is positive, there is also a counter-veiling precision
e¤ect on the related hypothetical �rm�s cuto¤when the actual �rm has below-
average precision.

Estimator-Quality Theorem. Suppose that n � 2 and �i > 0 for
all i. The amended mean of the hypothetical �rm i is increasing in pi with
bounds given by

exp

�
� �i
2(p� pi)

�
< L�i < exp

 
�i
�
1 + �i�1

n�1
�

2pav,�i

!
; where pav,�i :=

p� pi
n� 1 ;

and in particular if the loading index is identical for all �rms, then

L�i < L�j i¤ pi < pj:

Otherwise, if 0 < �i < �j and pi < pj; then also L�i < L�j.
The amended mean is a strict de�ator, i.e. L�i < 1; i¤ pi is below the

loading-adjusted competitor average, i.e.

pi <
p

n� 1 + �i
:= pav,i

so that for �i = 1 one has pav,-i = p=n:

Proof. The �rst claim is clear as the factor exp
�
(n�1)�i+�i(�i�1)

2(p�pi)

�
is

independent of pi and in the second factor the expression �i(�i + n � 1) is
positive for �i > 0 (for n � 1): The substitutions pi = 0 and the limit as
pi ! +1 yield the bounds quoted.
Noting (for pj > 0 all j) that

2 logL�i =
(n� 1)�i + �i(�i � 1)

(p� pi)
� n�i + �i(�i � 1)

p

= �i
p(n� 1) + p(�i � 1)� (p� pi)[n+ (�i � 1)]

p(p� pi)

= �i
pi[n� 1 + �i]� p

p(p� pi)
;

one has, since �i > 0; that L�i < 1 i¤

pi <
p

n� 1 + �i
:= pav,i:
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Furthermore, the same calculation shows that L�i < L�j i¤

�i
pi[n� 1 + �i]� p

p(p� pi)
< �j

pj[n� 1 + �j]� p
p(p� pj)

i¤

�i(p� pj) (pi[n� 1 + �i]� p) < �j(p� pi) (pj[n� 1 + �j]� p) :

Thus if 0 < �i � �j and pi < pj then one has �i(p� pj) < �j(p� pi) and
also as n � 1 that pi[n� 1 + �i]� p < pj[n� 1 + �j]� p; so that L�i < L�j:
If 0 < �i = �j = �; writing pav for pav,i the inequality reduces to

(p� pj) (pi � pav) < (p� pi) (pj � pav)

or, on expansion, to
pav(pj � pi) < p(pj � pi):

But, n � 2 so one has 1 < n � 1 + � and so pav < p: Thus L�i < L�j i¤
pi < pj:

Remark. For pj > 0; the expression �j(p � pi) (pj[n� 1 + �j]� p) is
increasing in �j. Thus it is possible to have L�i > L�j holding when pj > pi;
but for �j su¢ ciently small and positive.

7 Conclusion

Moving from the case where an investor evaluates only one signal from a �rm
operating in a given sector, to a case where the investor evaluates multiple
signals from n �rms all operating in the same sector a¤ects the nature of the
optimal disclosure policy. In terms of the type of information that is disclosed
in this one-shot game, the �rst e¤ect that we identify is referred to as the
bandwagon e¤ect. With multiple �rms the chance of any one �rm disclosing
good news has the e¤ect on all the �rms of increasing their disclosure cuto¤s
(i.e. the cuto¤s below which the �rms do not disclose); this is because of the
sector correlation.
The second e¤ect arises because we model the managers of the �rms as

disclosing �competing� estimates of the common sector conditions, though
with di¤erent precisions. In such a case of multiple signals of di¤ering pre-
cision we show how the investor will direct attention to the more precise
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estimates that are disclosed. The key di¤erentiating level of precision is
shown to be the average precision across all �rms; thus it is natural to refer
to above average-precision �rms, having (ceteris paribus) a higher cuto¤ and
disclosing less, and to below-average �rms, having a lower cuto¤ and needing
to disclose more.
Acknowledgements. We are grateful to collegues for useful discussions,

especially to Sudipto Bhattacharya, to whose memory this paper is dedicated,
to Nick Bingham, Amol Sasane, Michael Schroeder and Jeroen Suijs. We are
also grateful to the Editor, Anne Villamil, and to the anonymous Referee for
their comments.

References

Acharya, V.V., DeMarzo, P.M., Kremer I., (2011), �Endogeneous information
�ows and the clustering of announcements�, American Economic Review,
December 2011, v. 101, iss. 7, pp. 2955-79.
Bayer, A., Cohen, D.A., Lys, T.Z., Walther, B.R., (2010) �The �nancial
reporting environment: Review of the recent literature�, J. Accounting and
Economics, 50, 296-343.
Bingham, N. H. and Fry, J.M., Regression: Linear Models in Statistics,
SUMS, Springer, 2010.
Bingham, N. H. and Kiesel, R, Risk-neutral valuation, 2nd edition, Springer,
2004.
Dana, R.-A., and Jeanblanc, M., (2003), �Financial markets in continuous
time�, Springer.
Dye, R.A., (1985), �Disclosure of Nonproprietary Information�, Journal of
Accounting Research, 23, 123-145.
Dye, R.A. and Sridhar, S., (1995), �Industry-Wide Disclosure Dynamics�,
Journal of Accounting Research, 33, 157-174.
Farrell, J., (1986), �Voluntary disclosure: robustness of the unraveling re-
sult and comments on its importance�, in: Grieson, R. (Ed.), Antitrust and
Regulation. Lexington Books, New York, pp. 91�103.
Fishburn, P. C., (1977), �Mean-risk analysis with risk associated with below-
target returns�, American Economic Review, 67.2, 116-126.
Gietzmann, M., and Ostaszewski, A, (2011), �Why managers with low fore-
cast precision select high disclosure intensity: an equilibrium analysis�, work-
ing paper.

22



Grossman, S., and O. Hart, (1980) �Disclosure Laws and Take-over bids�,
Journal of Finance, 35, 323-34.
Jung, W. and Y. Kwon, (1988), �Disclosures when the market is unsure of
information endowment of managers�, Journal of Accounting Research, 26,
146 - 153.
Kendall, M. G. and Stuart, A., (1979), �The advanced theory of statistics:
Vol. 2. Inference and relationship�. 4th ed., Gri¢ n.
Kendall, M. G. and Stuart, A. (1976), �The advanced theory of statistics:
Vol. 3. Design and analysis, and time-series� 3rd ed. Hafner Press.
Krasa, S., and Villamil, A.P., (1994), �Optimal Multilateral Contracts.�Eco-
nomic Theory, Vol. 4, No. 2 (Mar.), 167-187.
McNeil, A.J., Frey, R., and Embrechts, P., �Quantitative Risk Management�,
Princeton University Press, (2005)
Ostaszewski, A., and Gietzmann, M., (2008), �Value Creation with Dye�s
Disclosure Option: Optimal Risk-Shielding with an Upper Tailed Disclosure
Strategy�, Review of Quantitative Finance and Accounting, Vol 31, Issue 1,1-
27.
Penno, M.C., (1997), �Information Quality and Voluntary Disclosure�, The
Accounting Review, 72, 275-284.
Townsend, R. M., (1979), �Optimal Contracts and Competitive Markets with
Costly State Veri�cation�, Journal of Economic Theory, 21, 265-293.

A1. Some parameter interrelations

Below we collect a number of useful relations between various parameters.
Recall that �i and ��i were introduced by equations (2) and (3) in §1. We
will also need

�j�i := pj=(p� pi); (15)

so that ��i = �i�i:

Lemma A1.1. For �20i := �
2
0 + �

2
i as above, one has for i; j distinct

Ti = e
�0iwi� 1

2
�20i with �ij := cov(wi; wj) =

�20
�0i�0j

;

where wi is of zero mean and unit variance.
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Proof. Since Ti = XYi = e�0v0�
1
2
�20e�ivi�

1
2
�2i (for i = 1; 2); we may write

Ti = e
�0iwi� 1

2
�20i ; with �20i := �

2
0 + �

2
i ;

where wi = (�0v0 + �ivi)=�0i: Now wi has mean zero and unit variance, as
var(�0v0 + �ivi) = �

2
0 + �

2
i = �

2
0i: Hencefor distinct i; j

�ij := E[wiwj] = cov(wi; wj) = cov(
�0v0 + �ivi

�0i
;
�0v0 + �jvj

�0j
) =

�20
�0i�0j

:

Lemma A1.2. One has

�j�i � �j = �
j
�i�i:

Proof. Indeed, one has

�j�i � �j =
pj

p� pi
� pj
p
= pj

p� (p� pi)
p(p� pi)

=
pipj

p(p� pi)
= �j�i�i:

For the n = 2 case, write temporarily h1 := ��1 and h2 := �2�1 = p2=(p0+
p2); then we have:

Lemma A1.3. In the n = 2 case with � = �12 as in Lemma A1.1,

��01
�02

= h2:

Proof. One has, on dividing by �20�
2
2 in the last step, that

��01
�02

=
�20
�202

=
�20

�20 + �
2
2

=
p2

p0 + p2
:

In what follows note that, since hi � 1; one has h1h2 = 1 i¤ h1 = h2 = 1
in which case either �22 = 0 or p0 = 0: These correspond to one of the two
degenerate cases of either in�nite precision of managerial vision (no noise in
the observation), or in�nite variance in the sectorial factor.

Lemma A1.4. In the n = 2 case, one has

1� �2 = 1� h1h2;
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so in particular the two signals are perfectly correlated i¤ h1h2 = 1 i¤ p0 = 0:

Proof. Noting that

�201 =
1

p0
+
1

p1
=
p0 + p1
p0p1

;

one has

�2 =
�40

�201�
2
02

=
p1

p0 + p1
� p2
p0 + p2

= h1h2:

So that �2 = 1 i¤ p1p2 = p20 + p0p2 + p1p0 + p1p2 i¤ 0 = p0(p0 + p1 + p2):

Lemma A1.5. For i; j distinct one has:

�20
�20i

=
pi

(p0 + pi)
and �2ij =

pi
(p0 + pi)

pj
(p0 + pj)

:

Proof. By Lemma A1.1

�20
�20i

=
1=p0

(1=p0) + (1=pi)
=

1

1 + p0
pi

=
pi

(p0 + pi)
;

hence in particular

�2ij =
�20
�20i

�20
�20j

=
pi

(p0 + pi)

pj
(p0 + pj)

:

Lemma A1.6 When n = 1 one has

e
1
2
�1(�1�1)�201K1 = e

1
2
�1(�1�1)�201 exp

�
1

2(p0 + p1)

�
= 1:

Proof. Since

�201 = �
2
0 + �

2
1 =

1

p0
+
1

p1
=
p0 + p1
p0p1

;

one has

�1(�1 � 1)�201 = � p1
p0 + p1

p0
p0 + p1

p0 + p1
p0p1

= � 1

p0 + p1
:
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A2. Log-normal preliminaries

Wewill always represent a unit-mean log-normal variable in the formX = e�u�
1
2
�2

with u standard normal. Then

Pr(X � x) = �LN(x; �) := �N
�
log(x) + 1

2
�2

�

�
;

where �N is the standard normal (cumulative) distribution and �LN the log-
normal. It follows from the Black-Scholes formula for a put with strike x and
unit time to expiry on the underlying Xt = e

�wt� 1
2
�2t that

HLN(x; �) =

Z
t<x

�LN(t; �)dt =

Z
t<x

(x� t)d�LN(t; �)

= E[(x�X)+]

= x�N

�
log(x) + 1

2
�2

�

�
� �N

�
log(x)� 1

2
�2

�

�
:

Consider now the power transformation Y = X� for 0 < � < 1; then with
s = ��;

Y = e��u�
1
2
��2 = e�

1
2
�(1��)�2esu�

1
2
s2

= e�
1
2
�(1��)�2Z:

That is, the new variable has reduced mean

m = m(�; �) := e
1
2
�(��1)�2 ;

and is the product of this new mean by a log-normal Z with mean 1 and
log-variance �2�2: Now log Y = 1

2
�(�� 1)�2 + logZ; so

Pr(Y � x) = Pr

�
��u� 1

2
��2 � log x

�
= Pr

�
u �

log(x) + 1
2
��2

��

�
= Pr

�
u �

log(x=m)� 1
2
�2�2

��

�
= �LN(x=m; ��):

Thus one should bear in mind that if Y = X� for X log-normal with unit
mean and log-variance �2; then

�Y (x) = �LN(xe
1
2
�(1��)�2 ; ��):
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Finally, we must �nd HY (�) =
R
x<�
�Y (x)dx =

R
x<�
�LN(x=m; ��)dx:

Put t = x=m, then

HY (�) : =

Z
x<�

�Y (x)dx =

Z
x<�

�LN(x=m; ��)dx

= m

Z
t<�=m

�LN(t; ��)dt = mHLN(�=m; ��):

We record this result as:

Proposition A2.1 (Exponent e¤ect). If X is log-normal with volatil-
ity �, then X� has volatility �� and hemi-mean function

HX�(t) = mHLN(t=m; ��); for m = e�
1
2
�(1��)�2 :

A3. Log-normal Regression

Recall from Appendix 1 that Ti = e�0iwi�
1
2
�20i : To study conditioning on

Ti; we take logarithms to pass to the underlying normal variates: � i :=
log Ti +

1
2
�20i = �0iwi = �0v0 + �ivi; and likewise pass from X = Y0 =

e�0v0�
1
2
�20 to � := logX + 1

2
�20 = �0v0: For completeness and to explain our

methodology here, we derive a classical regression result concerning these
underlying normal variates. We write

�est := E[�j� 1; :::; �n] = �1� 1+:::+�n�n;= �1(�0v0+�1v1)+:::+�n(�0v0+�nvn);

and our �rst result con�rms the coe¢ cients �i as validly given in the Intro-
duction.

Proposition A3.1. For the coe¢ cient �i de�ned in (2) it is the case
that

E[�j� 1; ::; �n] = �1� 1 + :::+ �n�n:
Proof. Indeed,

�est := E[�j� 1; :::; �n] = �1� 1 + :::+ �n�n:

Hence

E[� 1�est] = E[�1(�0v0 + �1v1)(�0v0 + �1v1) +
+�2(�0v0 + �1v1)(�0v0 + �2v2) + :::+ �n(�0v0 + �1v1)(�0v0 + �nvn)]

= �1(�
2
0 + �

2
1) + �2�

2
0 + :::+ �n�

2
0:
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But, by the conditional mean formula,

E[� 1�est] = E[� 1E[�j� 1; :::; �n]] = E[E[� 1�j� 1; :::; �n]]
= E[� 1�] = E[(�0v0 + �1v1)�0v0] = �20:

Comparing, we obtain

�1(�
2
0 + �

2
1) + �2�

2
0 + :::+ �n�

2
0 = �

2
0:

Dividing by �20 and setting ki = �i=pi; we obtain

k1(p0 + p1) + k2p2 + :::+ knpn = 1:

More generally, for each i

k1p1 + :::+ ki(p0 + pi) + :::+ knpn = 1;

with solution ki = 1=p, as asserted.

Proposition A3.2 It is the case that

E[XjT1 = t1; :::; Tn = tn] = Kt�11 :::t�nn ;

where

K = exp

�
1

2pav

�
; with pav :=

p0 + :::+ pn
n

: (16)

Proof. Taking logarithms of the corresponding normal regression for-
mula, we observe that the regression function E[XjT1; :::; Tn] has the form:

KT1
�1 :::Tn

�n ;

for some constant K or, since Ti = XYi with Y0 for X;

KY �1+:::+�n0 Y �11 :::Y
�n
n = KY 1��00 Y �11 :::Y

�n
n :

Since E[Y i ] = E[evi�
1
2
�2i ] = e

1
2
�2i (�1) = e

1
2
(�1)=pi ; by independence and

the conditional mean formula, one has

1

= E[X] = E[E[XjT1; :::; Tn]];
= E[KT �11 :::T �nn ]; using E[XjT1; :::; Tn] = KT �11 :::T �nn
= KE[Y 1��00 ]E[Y �11 ]:::E[Y �nn ]; using T �11 :::T

�n
n = Y �1+::+�n0 Y �11 :::Y

�n
n ;

= K exp
1

2

�
(�0 � 1)�0

p0
+
�1(�1 � 1)

p1
+ :::+

�n(�n � 1)
pn

�
;
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since �0+�1+:::+�n = 1; so that (�1+:::+�n)(�1+:::+�n�1) = ��0(1��0):
But, since �i = pi=p;

�i(�i � 1)
pi

=
1

p

�
pi
p
� 1
�
=
pi � p
p2

;

one has

(�0 � 1)�0
p0

+
�1(�1 � 1)

p1
+ :::+

�n(�n � 1)
pn

=
p0 � p
p2

+
p1 � p
p2

+ :::+
pn � p
p2

=
p� (n+ 1)p

p2
=
�np
p2

= �n
p
:

So, we may now identify K from:

1 = K exp

�
� n
2p

�
:

In fact we have also shown

Ke
1
2
(�1+:::+�n)(�1+:::+�n�1)�20

Y
i
e
1
2
�i(�i�1)�2i = 1:

In particular for n = 1 one has

Ke
1
2
�1(�1�1)�20i = 1:

More generally one has the following.

Proposition A3.3 It is the case that

E[X�jT1 = t1; :::; Tn = tn] = K�t
��1
1 :::t��nn

where

K� = exp

�
�+ �(�� 1)=n

2pav

�
; with pav :=

p0 + :::+ pn
n

; as before. (17)

Proof. As before, one has

�E[�j� 1; :::; �n] = E[��j� 1; :::; �n] = ��1� 1 + :::+ ��n�n:
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Taking logarithms of the corresponding normal regression formula, we ob-
serve that the regression function E[X�jT1; :::; Tn] has the form, for K� some
constant:

K�T1
��1 :::Tn

��n ;

or, as Ti = XYi and writing Y0 for X;

K�Y
��1+::+��n
0 Y ��11 :::Y ��nn = K�Y

�(1��0)
0 Y ��11 :::Y ��nn :

Note that

��i(��i � 1) =
�pi
p

�pi � p
p

or
��i(��i � 1)

pi
= �

�pi � p
p2

:

Since E[Y i ] = E[evi�
1
2
�2i ] = e

1
2
�2i (�1) = e

1
2
(�1)=pi ; one has

E[X�] = e
1
2
�(��1)=p0 ;

and so, by independence and the conditional mean formula,

e
1
2
�(��1)=p0

= E[X�] = E[E[X�jT1; :::; Tn]];
= E[K�T

��1
1 :::T��nn ]; using E[X�jT1; :::; Tn] = K�T

��1
1 :::T��nn

= K�E[Y �(1��0)0 ]E[Y ��11 ]:::E[Y ��nn ]; using T��11 :::T��nn = Y ��1+:::+��n0 Y ��11 :::Y ��nn ;

= K� exp
�

2

�
(�1 + :::+ �n)(��1 + :::+ ��n � 1)

p0
+
�1(��1 � 1)

p1
+ :::

+
�n(��n � 1)

pn

�
;

Now �
(p1 + :::+ pn)(��1 + :::+ ��n � 1)

pp0
+
�1(��1 � 1)

p1
+ :::+

�n(��n � 1)
pn

�
=

�
(p� p0)
p0

(�p1 + :::+ �pn � p)
p2

+
(�p1 � p)

p2
+ :::+

(�pn � p)
p2

�
=

1

p2p0
[(p� p0)(�p1 + :::+ �pn � p) + p0(�p1 � p) + :::+ p0(�pn � p)]

=
1

p2p0
[(p� p0)(�p1 + :::+ �pn � p) + p0(�p1 � p) + :::+ p0(�pn � p)]
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But

(p� p0)(�p1 + :::+ �pn � p) + p0(�p1 � p) + :::+ p0(�pn � p)
= p0(��p1:::� �pn + p+ �p1 � p+ :::+ �pn � p) + p(�p1 + :::+ �pn � p)
= p0(p� p:::� p) + p(�p1 + :::+ �pn � p) = p(p0(1� n) + �(p� p0)� p)
= p[p0(1� n) + p(�� 1)� �p0] = p2(�� 1) + pp0((1� n)� �):

So

exp
1

2

�(�� 1)
p0

= K� exp
�

2p2p0
fp2(�� 1)� pp0(n� 1 + �)g

= K� exp
�

2

�
�� 1
p0

� n� 1 + �
p

�
:

Finally, we have identi�ed K� as

K� = exp
�

2

�
�� 1
p0

�
�
�� 1
p0

� (n� 1) + �
p

��
= exp

n� + �(�� 1)
2p

= exp
�+ �(�� 1)=n

2(p=n)
:

A4. The precision matrix

In each of the next two appendices, we will refer to the matrix

Pn(x) = Pn � xI;

or Pn�1(x); the principal sub-matrix omitting the last row and column, where

Pn :=

26664
p1 p2 ::: pn
p1 p2 ::: pn
...

...
. . .

...
p1 p2 ::: pn

37775 :
In applications we shall have pi > 0 for all i; since pi will be the precision
parameter 1=�2i : In one context, we shall see that Pn(�p0) is related to the
covariance matrixQn = (�ij)i;j�n: In a further context we shall see that Pn(p);
with p = p0 + ::: + pn the total precision, is at the heart of the equilibrium
conditions for the multiple Dye cuto¤s. It is easy to solve the equation
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Pn(�q)x = s; but to see that the solution is unique we �rst check when such
a system is non-singular.

Proposition A4.1. For any n; the characteristic function of the matrix
Pn is

det(Pn � xI) = (�1)nxn�1(x� p1 � :::� pn);
equivalently

det(Pn + xI) = x
n�1(x+ p1 + :::+ pn):

Proof. As P is the (singular) matrix all of whose rows are (p1; :::; pn); it
has rank 1 and so nullity n� 1; hence has only one non-zero eigenvalue, say
��; the others being zero (with multiplicity n � 1, since the null space is the
eigenspace to the eigenvalue 0). Hence, since the trace of P is the sum of the
eigenvalues,

�� = tr(P ) = p1 + :::+ pn:

Thus the characteristic polynomial of P is seen to be

det(P � xI) = (�1)nxn�1(x� ��) = (�1)nxn�1(x� p1 � :::� pn):

The leading coe¢ cient is veri�ed by a comparison of both sides (which also
identi�es �� as the trace of P ). �

The following result, used several times in the paper, is an immediate
corollary.

Proposition A4.2. The simultaneous system of equations

p1x1 + :::+ (pi + q)xi + :::+ pnxn = si;

has, for any non-zero parameter q such that pq := q + p1 + ::: + pn 6= 0;
the unique solution

xi =
si
q
� c; where c = 1

qpq
(p1s1 + :::+ pnsn):

Proof. The solution formula is easily checked. By Proposition 1, the
solution is unique as det(Pn + qI) = qn�1(p1 + :::+ pn + q) 6= 0. �

In particular we have:
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Proposition A4.3. For p = p0+ p1+ :::+ pn 6= 0 and p�n = p� pn 6= 0;
one has

Pn(�p0)�1 =

264
p�p1
p0p

� p2
p0p

::: � pn
p0p

...
. . .

...
� p1
p0p

::: p�pn
p0p

375 ; and likewise
Pn�1(�p0)�1 =

264
p�n�p1
p0p�n

� p2
p0p�n

::: � pn�1
p0p�n

...
. . .

...
� p1
p0p�n

::: p�n�pn�1
p0p�n

375 :
Proof. For the purposes of this proof only, let m denote one of the

numbers n or n � 1: Correspondingly, let �p := p0 + p1 + ::: + pm; which
denotes p or p�n; as the case may be. Inversion of Pm(�p0) = Pm + p0I is
equivalent to solving (Pm+p0I)x = s specializing s one by one to the natural
base vectors. Writing s = (s1; :::; sm)T ; we solve the equations:

p1x1 + :::+ (pi + p0)xi + :::+ pmxm = si:

Putting
xi =

si
p0
+ c;

one �nds that c must satisfy for each i the equation

�pc+ si +
1

p0
(p1s1 + :::+ pmsm) = si;

implying that

c = �(p1s1 + :::+ pnsn)
�pp0

; and

xi =
si � ((p1=�p)s1 + :::+ (pn=�p)sn)

p0
:

Now specialize s to each of ej = (0; :::1; 0; :::; 0)T (viewed as columns of
the identity matrix). Fixing on ej; take s with si = 0 unless i = j; and
sj = 1; which yields

xi = � pj
p0�p
; for i 6= j;

xj =
1

p0
� pj
p0�p

=
�p� pj
p0�p

:
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Thus, the inverse matrix is264
p�p1
p0�p

� p2
p0�p

::: � pm
p0�p

...
. . .

...
� p1
p0�p

::: p�pm
p0�p

375 :
A5. Partial covariance - Schur complement

We establish in this appendix an explicit formula for the variance of the
distribution of any of the signals Ti conditional on the remaining signals Tj
for j 6= i; known in Statistics as the partial covariance of the signal Ti given
the remaining signals Tj for j 6= i: For the general, matrix, partial covariance
see Bingham & Fry (2010), Note 4.27, p.120 (cf. Kendall & Stuart (1979)
Vol. 2 Ch. 27 and Kendall & Stuart (1974), Vol. 3 §§46.26-28). We brie�y
recall that the (symmetric) covariance matrix Q = (�ij)i;j�n; represents the
covariance structure of the Hilbert space spanned by the normal random
variables w1; ::::; wn (with covariance as the inner product). The conditional
distribution of wi given wj for j 6= i is normal with variance given by the
partial covariance matrix, known in Linear Algebra as the Schur complement,
which is a scalar here.
Let Q�i be obtained from Q by omitting the i-th row and column, and

let ~��i denote the i-th row (�i1; :::; �i;n) with its i-th entry omitted. Then the
Schur complement (of Q�i in Q) is given by he expression

�ii � ~��iQ�1�i~�T�i = 1� ~��iQ�1�i~�T�i;

so that putting

�i :=
q
~��iQ

�1
�i~�

T
�i;

the Schur complement becomes

1� �2i :

(In this notation the specialization to the n = 2 case yields Q�i = (1) and
~��i = (�), so that �i = � = �12, for i = 1; 2; as per Lemma A1.1.) The
conditional mean of the conditional distribution of wi is ��iQ

�1
�iw�i; where

w�i denotes the column (w1; :::; wn)T with i-the entry omitted. The inverse
matrix Q�1�i exists, since here Q is positive de�nite (see the Theorem A5.1
below). Furthermore, since Q�1�i is positive de�nite, x

TQ�1�ix > 0 for non-zero
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vectors x and so �2i < 1: So one might thus expect �
2
i to be decreasing in pj

for any j 6= i; such is the case �again see Theorem A5.1.

In the current situation it will be enough (by symmetry) to consider the
distribution of E[TnjT1; :::; Tn�1]; or equivalently that of E[wnjw1; :::; wn�1];
where we recall that Ti = e�0iwi�

1
2
�20i ; with �0iwi = �0w0 + �ivi: Put

wn�1n := E[wnjw1; :::; wn�1] =
X

j<n
�jwj:

Then, by de�nition and by the conditional mean formula,

�in = E[wiwn] = E[E[wiwnjw1; :::; wn�1]] = E[wiE[wnjw1; :::; wn�1]]
= E[wiwn�1n ] =

X
j<n

�j�ij:

We solve the system of n� 1 equations in the �j for i < nX
j<n

�ij�j = �in;

which in matrix form is Q�n� = ~��n by computing explicitly � = Q
�1
�n~��n:

(Note that ~��n := (�1n; :::; �n�1;n):) Here, as before Q�n denotes the principal
submatrix of the covariance matrix Qn with n-th row and column omitted:

Q�n := (�ij)i;j<n:

Theorem A5.1. Provided all the precisions pi are �nite and positive,
the regression equation

E[wnjw1; :::; wn�1] = �1w1 + :::+ �n�1wn�1;

which is equivalent to the solution of the system Q�n� = ~��n; has non-
singular matrix Q�n and the equivalent system of equations, for i = 1; 2; :::; n�
1;

�i1�1 + :::+ �i + ::: = �in;

has the unique solution:

�i =
pi + p0
p

�in:

Moreover, the partial covariance corresponding to conditioning wn on w1; ::; wn�1
is

1� �2n;
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where

�2n =
pn�1

p0p�n(p0 + pn�1)

�Xn�1

i=1
pi(p�n � pi) +

X
i<j<n

(pi + pj)

r
pipj

(p0 + pi)(p0 + pj)

�
;

and
p�n = p0 + p1 + :::+ pn�1 = p� pn:

The expression for �2n is increasing in pi for each i < n; and so the partial
covariance itself decreases with pi:

Proof. We use Proposition A4.2 to solve the system of equations. In
a later step we will need the equivalent matrix formulation to obtain the
partial covariance, so we develop a matrix notation in parallel. Recall from
Lemma A1.1 that

�ij =
�20

�0i�0j
; for i 6= j; and �ii = 1:

Multiply the i-th equation through by �0i and (with n regarded as �xed) set

� =
�20
�0n

= �0i�in:

Then the i-th equation becomes

�20
�01
�1 + :::+ �0i�i + ::: = �:

The corresponding elementary matrix S (which reduces Q� = s; to SQ� =
Ss) has the diagonal format

S =

26664
�01

�02
. . .

�0m

37775 :
Now put �i = bi=�0i; to obtain

�20
�201
b1 + :::+ bi + ::: = �:
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Equivalently, we have in matrix format SQS�1b = Ss; where

� = S�1b =

26664
1=�01

1=�02
. . .

1=�0m

37775 b:
But, by Lemma A1.5, �20/�

2
0i = pi/ (pi + p0); so putting xi = bi=(pi + p0);

we have for each i < n that

p1x1 + :::+ (pi + p0)xi + ::: = �:

Equivalently, in matrix form we have P 0x = SQS�1Rx = Ss; where

b = Rx :=

26664
p1 + p0

p2 + p0
. . .

pm + p0

37775x,
and

P 0 = Pm(�p0) := Pm + p0I =

264 p1 + p0 p2 ::: pm
...

. . .
...

p1 ::: pm + p0

375
As in Proposition A4.2, we spot the obvious constant solution xi = � to these
equations with � satisfying

(p0 + :::+ pn�1)� = �:

So � = �=p�n; where p�n = p0 + :::+ pn�1 = p� pn; and so, by Lemma A1.1

�i =
bi
�0i

=
pi + p0
p�n

�

�0i
=
pi + p0
p�n

�20
�0i�0n

=
pi + p0
p�n

�in:

As for uniqueness, the coe¢ cient matrix of the equations in xi has determi-
nant

det[P + p0I] = p�np
m�1
0 > 0;

(by Proposition A4.1), so this is non-singular for 0 < pi <1:
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Note also that

detQ = (p0 + p1):::(p0 + pn�1) det[P + p0I] = p�np
m�1
0 (p0 + p1):::(p0 + pm):

From Proposition A4.3 the inverse matrix of P := Pn�1 + p0I is

P�1 =

264
p�n�p1
p0p�n

� p2
p0p�n

::: � pn�1
p0p�n

...
. . .

...
� p1
p0p�n

::: p�n�pn�1
p0p�n

375 :
Hence, since P = SQ�nS�1R; we may now invert Q�n explicitly as

Q�1�n = S
�1RP�1S;

and this equals26664
1

p1+p0
1

p2+p0

:::
. . .

1
pn�1+p0

37775
26664

p�n�p1
p0p�n

� p2
p0p�n

� pn�1
p0p�n

� p1
p0p�n

�p�p2
p0p�n

...
. . .

...
� p1
p0p�n

p�n�pn�1
p0p�n

37775

=

266664
(p�n�p1)(p1+p0)

p0p�n
� p2
p0p�n

� pm
p0p�n

� p1
p0p�n

(p�n�p2)(p2+p0)
p0p�n

...
. . .

...
� p1
p0p�n

(p�n�pm)(pn�1+p0)
p0p�n

377775
We now compute the Schur complement (see below for some substitutions)

38



to be

1�
� �1n
�01

::: ::: �mn
�0m

�
266664

(p�n�p1)(p1+p0)
p0p�n

� p2
p0p�n

� pm
p0p�n

� p1
p0p�n
...

. . .
� p1
p0p�n

(p�n�pn�1)(pn�1+p0)
p0p�n

377775
26664
�01�1n
...
...

�0m�mn

37775
= 1�

X
i

(p�n � pi)(pi + p0)
p0p�n

�2in �
X

i<j
�in�jn

�
pi

p0p�n
+

pj
p0p�n

�
= 1�

X
i

(p�n � pi)(pi + p0)
p0p�n

�40
�20i�

2
0n

�
X

i<j

�40
�0i�0j�20n

�
pi + pj
p0p�n

�
= 1�

X
i

(p�n � pi)(pi + p0)
p0p�n

pipn�1
(p0 + pi)(p0 + pn�1)

�
X

i<j
�ij
�20
�20n

�
pi + pj
p0p�n

�
= 1�

X
i

(p�n � pi)
(p0 + pn�1)

pipn�1
p0p�n

�
X

i<j
�ij

pn�1
(p0 + pn�1)

�
pi + pj
p0p�n

�
= 1� pm

p0p�n(p0 + pm)

�Xn�1

i=1
pi(p�n � pi) +

X
i<j<n

(pi + pj)

r
pipj

(p0 + pi)(p0 + pj)

�
:

Thus, setting

�2n =
pm

p0�p(p0 + pm)

�Xm

i=1
pi(�p� pi) +

X
i<j�m

(pi + pj)

r
pipj

(p0 + pi)(p0 + pj)

�
;

yields the partial covariance corresponding conditioning wn on w1; ::; wn�1 as

1� �2n:

Above in our calculations, we used Lemma A1.5. Finally, we note that as
p0 > 0 and pj > 0 both of

pi
(p0 + pi)

= 1� p0
(p0 + pi)

and
pipj

(p0 + pi)(p0 + pj)

are increasing in pi for i < n: Hence, so is the expression

pi(�p� pi) + (pi + pj)
r

pipj
(p0 + pi)(p0 + pj)

;

as (p�n � pi) is positive and independent of pi:
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A6. Conditional hemi-mean formula

We use the results of the preceding subsections to derive the form of the hemi-
mean function corresponding to the conditional distribution of one signal Ti
given the value of the other signals Tj: The particular case cited in the result
below will be important in later research.

Theorem A6.1 (Conditional hemi-mean formula). One has

E[T�1�11 jT2; :::; Tn] = L�1T
�1(�2�1��2)
2 :::T

�1(�n�1��n)
n ;

where L�1 = exp

�
(n� 1)�1 + �1(�1 � 1)

2(p� p1)

�
exp

�
�n�1 + �1(�1 � 1)

2p

�
;

and �j�1 =
pj

p� p1
; for j > 1:

More generally,

E[T�i�ii j(T )�i] = L�i
Y

j 6=i
T
�i(�

j
�i��j)

j ;

where L�i = exp

�
(n� 1)�i + �i(�i � 1)

2(p� pi)

�
exp

�
�n�i + �i(�i � 1)

2p

�
;

and �j�i =
pj

p� pi
:

Hence, for any ;

E[T�i�ii 1Ti<j(T )�i] = L�i
Y

j 6=i
T
�i(�

j
�i��j)

j �LN(
�i�i=L�i

Y
j 6=i
T
�i(�

j
�i��j)

j ; �i�i�0i

q
1� �2i );

and in particular, since �j�i � �j = �
j
�i�i;

E[(�i�ii �T�i�ii )1Ti<j(T )�i] = �ii �N
�
G+i (:::; T

�j�i
j ; :::)

�
�L�i

Y
j 6=i
T
�i�

j
�i�i

j �N

�
G�i (:::; T

�j�i
j ; :::)

�
;

where, for t = (t1; :::; tn)

G�i (t) =

P
j 6=i log(

�i�i
i =L�it

�i�i
j )� 1

2
�2i�

2
i�
2
0i�i

�i�i�0i
p
1� �2i

:

Proof. For any � > 0; the random variable S = T �1 has mean m =
m(�; �01) and volatility ��01: Hence, by Prop. A2.1 (Exponent e¤ect),

HS(
�) = mHLN(

�=m; ��01):
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The distribution of S conditional on T2 = t2; :::; T2 = tn (for any t2; :::; tn)
has a mean � = ��1 (depending on t2; :::; tn to be determined below) and a
volatility ��01

p
1� �21; with 1��21 the partial covariance of T1 on (T2; ::; Tn);

because that is the e¤ect on normal variates of conditioning (see Appendix
A5). Thus putting � = ��1 := m��1 we have for any  > 0 that

HSjt2:::(
�) = E[(� � T �1 )1T1<jT2 = t2; :::; Tn = tn]

= m�HLN(
�=m�; ��01

q
1� �21)

= ��N

 
log(�=�) + 1

2
�2�201�1

��01
p
1� �21

!

���N

 
log(�=�)� 1

2
�2�201�1

��01
p
1� �21

!
: (18)

This leaves open the determination of the �constant�� = ��1: But minus the
second term has the value

E[T �1 1T1<jT2 = t2; :::; Tn = tn]:

So, taking the limit as  ! +1; we obtain

� = ��1 = E[T �1 jT2 = t2; :::; Tn = tn]:

Writing �� for �; now apply Proposition A3.3 to the n � 1 �rms 2; 3; :::n
to obtain ***some kind of typo here; maybe: X� under the expectation, or
maybe asserting the intended result with a�writing of ��1 for �1 ***

E[T��1 jT2 = t2; :::; Tn = tn] = A�1t
��2�1
2 :::t

��n�1
n ;

where we recall the regression weights referred to above are �j�1 = pi/ (p�p1)
and the constant A�1 is the n� 1 �rm analogue of the constant K� derived
for Proposition A3.3 so is

A�1 = exp

�
(n� 1)�1 + �1(�1 � 1)
2(p0 + p2 + :::+ pn)

�
:

Now, by the conditional mean formula, **and Proposition A3.3 to the n� 1
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�rms 2; 3; :::n **

A�1t
��2�1
2 :::t

��n�1
n = E[X�jT2 = t2; :::; Tn = tn]

= E[E[X�jT1; T2 = t2; :::; Tn = tn]jT2 = t2; :::; Tn = tn]
= E[K�T

��1
1 t��22 :::t��nn jT2 = t2; :::; Tn = tn]

= K�t
��2
2 :::t��nn E[T��11 jT2 = t2; :::; Tn = tn]

and so ** with � replaced by ��1; and taking � = �1 ** ** note tn below
was t2 in error **

��1 = (A�1K
�1
�1
)t
�1(�2�1��2)
2 :::t

�1(�n�1��n)
n

= exp

�
(n� 1)�1 + �1(�1 � 1)
2(p0 + p2 + :::+ pn)

�
exp

�
�n�1 + �1(�1 � 1)

2p

�
t
�1(�2�1��2)
2 :::t

�1(�n�1��n)
n

= exp

�
(n� 1)�1 + �1(�1 � 1)

2(p� p1)

�
exp

�
�n�1 + �1(�1 � 1)

2p

�
t
�1(�2�1��2)
2 :::t

�1(�n�1��n)
n ;

as required. The rests is now clear from (18) above.

A7. Existence theorem

With the notation of Appendix A6 we �rst prove a straightforward result
(obtained by a series of canceling factorizations). This is where the related
hypothetical �rms arise.

Theorem A7.1 (Uncoupling Theorem). The substitution

y1 = 
�1�1
1 =L�1

�1(�2�1��2)
2 ::

�1(�n�1��n)
n

reduces the Dye equation (11), namely

�1 (�
�1
1 (2; :::; n)� ��1X (1(2); 2; :::; n)

=

Z
t1<1

(��1X (1; 2; :::; n)� �
�1
X (t1; 2; :::; n))d�T1(t1j2; :::; n);

to the standard form

�1(1� y1) = HLN(y1; �1�1�01
q
1� �21);
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where 1� �21 is the partial covariance of w1 on w2; :::; wn:

Proof. Recall that ��X(t1; :::; tn) = K�t
��1
1 :::t��nn ; so that we should trans-

form the Dye equation for � = �1 using

X1 = ��X(T1; 2; ::; n) = K�T
��1
1 ��22 :::��nn ; and

x1 = �X(t1; 2; :::; n) = K�t
��1
1 ��22 :::��nn :

Furthermore, in the notation of Section 3

E[T��11 jT2 = 2; :::; Tn = n] = ��1 = L�1
�(�2�1��1)
2 :::

�(�n�1��1)
n :

Hence,

��1 (2; ::; n) := E[K�T
��1
1 ��22 :::��nn jT2 = 2; :::; Tn = n] = K���1

��2
2 ::::::��nn :

The transformations above yield

�1 (�1(2)� x1) = HX1(x1):

However, since the factor K�
��2
2 ::::::��nn is in fact common, it is preferable

to use the transformations

S1 = T
��1
1 and s1 = t

��1
1 :

Indeed, on substitution we obtain

�1
�
K�

��2
2 :::��1n ���1 �K�

��1
1 :::��nn

�
=

Z
t1<1

[K�
��1
1 :::��nn �K�t

��1
1 ��22 :::��nn ]d�T1(t1j2);

so that after cancelling by K�
��2
2 :::��nn the Dye equation reads:

�1
�
��1 � ��11

�
=

Z
t1<1

[��11 � t��11 ]d�T1(t1j2) = HS1j2:::(
��1
1 ):

But

HS1j2:::(
��1
1 ) = ��11 �N

 
log[��11 =��1] +

1
2
�2�21�

2
01(1� �21)

��1�01
p
1� �21

!

���1�N

 
log[��11 =��1]� 1

2
�2�21�

2
01(1� �21)

��1�01
p
1� �21

!
:
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So putting

y1 = 
��1
1 =L�1

�(�2�1��2)
2 ::

�(�n�1��n)
n ;

we obtain

�1
�
��1 � ��11

�
= y1��1�N

 
log y1 +

1
2
�2�21�

2
01�1

��1�01
p
1� �21

!
� ��1�

 
log y1 � 1

2
�2�21�

2
01�1

��1�01
p
1� �21

!
:

Dividing by ��1 yields

�1(1� y1) = HLN
�
y1; ��1�01

q
1� �21

�
:

More generally:

�i(1� yi) = HLN
�
yi; ��i�0i

q
1� �2i

�
:

Above 1��2i denotes as usual the partial covariance appropriate to condition-
ing of wi on the remaining variables wj for j 6= i (equivalently: conditioning
Ti on the remaining signals, i.e. on Tj for j 6= i). (In the two-�rm case
1� �2i = 1� �2:) For the general case, recall that since

Ti = e
�0iwi� 1

2
�20i ; with �0iwi = �0v0 + �ivi; �20i = �

2
0 + �

2
i

one has, as before,

�ij = cov(wi; wj) = cov(
�0v0 + �ivi

�0i
;
�0v0 + �jvj

�0j
) =

�20
�0i�0j

; i 6= j;

and of course

�ii = cov(wi; wi) = cov(
�0v0 + �ivi

�0i
;
�0v0 + �ivi

�0i
) =

�20 + �
2
i

�0i�0i
= 1:

(This specializes in the n = 2 case, to �12 = �:)

In our multi-�rm model our starting point are the n equations, which
follow (by cross-multiplication) from the preceding theorem:

�i�ii = ̂iL�i
Y

j 6=i

�i(�

j
�i��j)

j = ̂iL�i
Y

j 6=i

�i�i�

j
�i

j ; for i = 1; :::; n:
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On taking logarithms, these reduce to the log-linear system:

xi �
X

j 6=i
�j�i xj = Ai :=

1

�i�i
log (̂iL�i) =

p

�ipi
log (̂iL�i) ;

with xi = log i; in view of Lemma A1.2 (as in Proposition A4.3). The more
revealing re-statement is obtained by recalling that as in (15)

�j�i = pj/ (p� pi);

so that substituting this and then cross-multiplying by (pi � p)=p = �i � 1
yields

(�i � 1)xi +
X

j 6=i
�jxj = bi :=

(pi � p)
�ipi

log (̂iL�i) :

On the left-hand side this presents a weighted average of the unknowns xi,
pointing towards a solution that is also a weighted average of the right-hand
side constants, the bi�s. These are the cuto¤s of the related hypothetical �rms
mentioned in the introduction.
We show that the system has non-singular coe¢ cient matrix i¤ the model

is non-degenerate for 0 < p0 < 1 (assuming all other pi are �nite and
positive), so that as before one may solve for log i:
Put hii = 1; hij = ��j�i = pj=(pi � p); then H = (hij) is the coe¢ cient

matrix, above. We assume none of the parameters pi is in�nite.

Theorem A7.2 (Regression-adjusted univariate cuto¤s)

detH =
p0p

n�1

(p� p1)(p� p2):::(p� pn)
=
�0��1:::��n
�1:::�n

;

with ��i = pi=(p� pi):

Hence H is �nite i¤ each pi is �nite for i � 0 and
Pn

j=0; j 6=i pj > 0 for
each i > 0: Under these circumstances it is non-singular i¤ p0 > 0; in which
case the unique solution is given by the �i-weighted averaging of the terms
(log gi)=�i��i:

log i =
log gi
�i��i

+
1

�0

�
�1

�1��1
log g1 +

�2
�2��2

log g2 + :::+
�n

�n��n
log gn

�
;
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where the loading �i re�ects the dependence of �rm fi on the operating en-
vironment. That is, the Dye disclosure cuto¤ for the signal Ti is

i = g
(1+�i)=��i
i

Yn

j 6=i
g
�j=�0��j
j ; where ��i =

pi
p� pi

and

gi = ̂LN

�
�i; �i�i�0i

q
1� �2i

�
L�i; �i =

1� qi
qi

;

L�i = exp

�
(n� 1)�i + �i(�i � 1)

2(p� pi)

�
exp

�
�n�i + �i(�i � 1)

2p

�
;

and where:
�i is the regression coe¢ cient of wi
��i is a regression coe¢ cient resulting from the removal of �rm-i�s contribu-
tion to total precision
1� �2i is the partial covariance of wi on the remaining variates wj, and
L�i is the relative adjustment coe¢ cient while  = ̂LN(�; �) solves

�(1� ) = HLN(; �):

Remarks: 1. For each i the weights applied to (log gj)=�j��j have the
same sum:

1 +
1� �0
�0

=
1

�0
=
p

p0
:

2. Note that

pi
p

p� pi
�ipi

logL�i =
pi
p

p� pi
�ipi

� �i
2

�
�i + (n� 2)� pi=(p� pi)

p

�
=

�
(p� pi)[�i + (n� 2)] + p� pi � p

p2

�
=

(p� pi)[�i + (n� 1)]� p
p2

Proof. Rewriting the given system i = 1; :::; n with n � 2;

xi +
X

j 6=i

pj
pi � p

xj =
p

�ipi
log gi; with gi = ̂iL�i;

this time in the form

(pi � p)xi +
X

j 6=i
pjxj = Bi :=

p(pi � p)
�ipi

log gi;
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we see that the coe¢ cient matrix is now Pn � pI; where Pn is the (full)
precision matrix. By Proposition A4.1,

detH =
(�1)npn�1(p� p1 � :::� pn)
(p� p1)(p2 � p):::(pn � p)

=
p0p

n�1

(p1 � p)(p2 � p):::(pn � p)
;

as asserted.
Finally, by Proposition A4.2, as pq := �p + p1 + ::: + pn = �p0 6= 0; the

solution format is

xi = log i = �
Bi
p
� c = (p� pi)

�ipi
log (gi)� c =

log gi
�i��i

� c

with

�c = � 1

qpq
(p1s1 + :::+ pnsn) =

1

pp0
(p1B1 + :::+ pnBn)

=
1

pp0
(:::+

p(pi � p)
�i

log (gi) + ::) =
1

p0
(:::+

(pi � p)
�i

log (gi) + :::)

=
p

p0
(:::+

(pi � p)=pi
�ip=pi

log (gi) + ::) =
1

�0
(:::+

�i
�i��i

log (gi) + :::)

i.e.

xi = log i =
log gi
�i��i

� c; i = 1; :::; n;

with

�c = 1

�0

�
�1

�1��1
log g1 +

�2
�2��2

log g2 + :::+
�n

�n��n
log gn

�
;

which is indeed a constant (i.e. independent of i).

A8. The indi¤erence condition

In this Appendix we deduce the Indi¤erence Principle which we used in
Section 3 as the equilibrium condition identifying the �rms�cuto¤s i.

De�nition. For the manager of �rm i and any random variable T; con-
sider the experiment that with probability qi the random variable T may be
observed, and let NDi(T; �) denote the event that either T is not observed
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by manager i or T is observed but not disclosed by i because T � �: We
write below NDi(i) for NDi(Ti; i):

De�nition. Say that given �i the cuto¤ i is rational for �rm i if

E[Xj(8i 6= j)NDi(i); Tj = j] = E[Xj(8i)NDi(i)]:

We show below that given �i there is a unique i = i(�i) which is
rational for �rm i: Granted this, we say that the cuto¤ pro�le  = (1; :::n)
is individually rational if j for all j satis�es

j = j(�j):

Theorem (Indi¤erence Principle). Suppose that each regression func-
tion �j(t) := E[Xj(8i 6= j)NDi(i); Tj = t] is strictly increasing and that
Sj := E[Xj(8i 6= j)NDi(i); Tj] has a strictly positive, continuous density
function. Then for each �i there exists a unique value i := i(�i) such
that

E[Xj(8i 6= j)NDi(i); Tj = j(�j)] = E[Xj(8i)NDi(i)]:

Suppose that  = (1; :::n) is individually rational, i.e. satis�es for all j

j = j(�j):

Then for each i one has

E[XjNDi(i); T�i = �i] = E[XjT = ]; where T = (T1; :::; Tn):

Proof. De�ne

V (1; :::; n) := E[Xj(8i)NDi(i)]: (19)

The expression will also be written as

V (i; �i):

Furthermore, put

�j(tj; �j) := E[Xj(8i 6= j)NDi(i); Tj = tj]:
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We have assumed (similarly as in the main part of the paper) that �j(tj; �j)
is strictly increasing in tj. We put

Sj := �j(Tj; �j) = E[Xj(8i 6= j)NDi(i); Tj]: (20)

We have assumed that Sj has a strictly positive, continuous density function.
Hence, Theorem 3 (The Minimum Principle) of Ostaszewski and Gietzmann
(2008) �see Section 2.1 �may be applied to the (single) random variable Sj,
and so there exists for any �j a unique

Sj = Sj(�j)

satisfying both
Sj = argmins E[SjjNDj(Sj; s)];

and additionally
Sj = E[SjjNDj(Sj; Sj)]: (21)

We may now de�ne j (and express its dependence on �j by writing j(�j))
by setting

Sj = �j(j; �j): (22)

Then tj � j i¤ sj � Sj ; where sj := �j(tj; �j); because �j(:; �j) is
assumed increasing. So

Sj � Sj i¤ (8i 6= j)NDi(i) and Tj � j;

and so
NDj(Sj; Sj) i¤ (8i 6= j)NDi(i) and NDj[Tj; j];

i.e.
NDj(Sj; Sj) i¤ (8i)NDi(i): (23)

So, using the conditional expectation formula (�tower law�) in the last but
one line below, one has

�j(j; �j) = Sj ; by (22),

= E[SjjNDj(Sj; Sj)]; by (21),

= E[Sjj(8i)NDi(i)]; by (23),

= E[E[Xj(8i 6= j)NDi(i); Tj]j(8i)NDi(i)]; by (20),

= E[Xj(8i)NDi(i)] (tower law)

= V (j(�j); �j); by (19).
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Combining the �rst and last elements of this chain of equation, for given �j
the cuto¤ j identi�ed above satis�es

�j(j; �j) = V (j(�j); �j);

or, using their de�nitions,

E[Xj(8i 6= j)NDi(i); Tj = j] = E[Xj(8i)NDi(i)]: (24)

We now consider a pro�le  = (1; :::; n) satisfying individual rationality,
that is for each j one demands that

j = j(�j):

Assuming such a pro�le  exists, and assuming Tj = j is observed by all
j; one may unravel the non-disclosure conditioning by �xing the conditions
Tj = j one by one and using (24) inductively for multi�rm environments
with successively fewer �rms. This yields:

V (1; :::; n)

= E[Xj(8i > 1)NDi(i); T1 = 1]

= E[Xj(8i > 2)NDi(i); T2 = 2; T1 = 1]

= :::

= E[XjNDn(n); :::; T2 = 2; T1 = 1]

= E[XjTn = n; :::; T2 = 2; T1 = 1]:

In particular, we notice from the last two lines that

E[XjNDn(n); :::; T2 = 2; T1 = 1] = E[XjTn = n; :::; T2 = 2; T1 = 1];

with analogous switches between disclosing and non-disclosing holding for
other �rms (by symmetry). But this is just the indi¤erence principle (9)
(�equilibrium condition�) of Section 3. �
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