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Abstract

Large systematic risks, such as those arising from natural catastrophes, cli-
matic changes and uncertain trends in longevity increases, have risen in
prominence at a societal level and, more particularly, have become a highly
relevant issue for the insurance industry. Against this background, the com-
bination of reinsurance and capital market solutions (insurance-linked secu-
rities) has received an increasing interest. In this paper, we develop a general
model of optimal risk-sharing among three representative agents – an insurer,
a reinsurer and a financial investor, making a distinction between systematic
and idiosyncratic risks. We focus on the impact of regulation on risk transfer,
by differentiating reinsurance and securitisation in terms of their impact on
reserve requirements. Our results show that different regulatory prescriptions
will lead to quite different results in terms of global risk-sharing.

Keywords: Reinsurance, Risk sharing, Risk measures, Longevity risk,
Insurance-Linked securities
JEL and IME codes: G22 ; IM51 ; IM53

The convergence of the insurance industry with capital markets has be-
come ever more important over recent years (see, for instance, the papers by
Cowley and Cummins (2005), Cummins (2004) and (2008) or Cummins and
Weiss (2009) or the recent handbook by Barrieu and Albertini (2009)). Such
convergence has taken many forms. And of the many convergence attempts,
some have been more successful than others. The first academic reference to
the use of capital markets in order to transfer insurance risk was in a paper by
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Goshay and Sandor (1973). The authors considered the feasibility of an or-
ganised market, and how this could complement the reinsurance industry in
catastrophic risk management. In practice, whilst some attempts have been
made to develop an insurance future and option market, the results have, so
far, been rather disappointing. In parallel to these attempts, however, the
Insurance-Linked Securities (ILS) market has been growing rapidly over the
last 15 years. There are many different motivations for ILS, including risk
transfer, capital strain relief, boosting of profits, speed of settlement, and
duration. Different motives mean different solutions and structures, as the
variety of instruments on the ILS market illustrates.

Among the key challenges faced by the insurance industry, the management
of longevity risk, i.e. the risk that the trend of longevity improvements sig-
nificantly changes in the future, is certainly one of the most important. Ever
more capital has to be accumulated to face this long-term risk, and new
regulations in Europe, together with the recent financial crisis, only amplify
this phenomenon. Under the Solvency II rules, put forward by the Euro-
pean Commission, the more stringent capital requirements that have been
introduced for banks should also be applied to insurance company opera-
tions (see Eling et al. (2007); Harrington (2009); and Geneva Association
(2010)). Moreover, in addition to this risk of observing a significant change
in the longevity trend, the insurance sector is facing some basis risk, as the
evolution of the policyholders’ mortality is usually different from that of the
national population, due to selection effects. These selection effects have dif-
ferent impacts on different insurance companies’ portfolios, as mortality levels
and speeds of decrease and increase are very heterogeneous in the insurance
industry. This makes it hard for insurance companies to rely on national, or
even industry, indices, in order to manage their own longevity risk. Hence, it
has become more and more important for insurance companies and pension
funds to find a suitable and efficient way to deal with this risk. Recently,
various risk mitigation techniques have been attempted. Reinsurance and
capital market solutions, in particular, have received an increasing interest
(see for instance Blake and Burrows (2001) and Blake et al. (2006)). Even
if no Insurance-Linked Securitisation (ILS) related to longevity risk has yet
been completed, the development of this market for other insurance risks has
been experiencing a continuous growth for several years, mainly encouraged
by changes in the regulatory environment and the need for additional capital
from the insurance industry. Today, longevity risk securitisation lies at the
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heart of many discussions, and is widely seen as a potentiality for the future.

The classical and standard framework of risk sharing in the insurance in-
dustry, as studied, for instance, by Borch (1960) and (1962), involves two
types of agents: primary insurers and a pool of reinsurers. The risk is shared
among different agents of the same type, but with both differing sizes and
utility functions. The possible financial consequences of some risks, such as
large-scale catastrophes or dramatic changes in longevity trends, however,
make this sharing process difficult to conduct within a reinsurance pool. In
this case, capital markets may improve the risk-sharing process. Indeed,
non-diversifiable risks for the insurance industry may be seen as a source of
diversification for financial investors, such as a new asset class, enhancing
the overall diversification of traditional investment portfolios, particularly in
case of low correlations with overall market risk. Even if the correlation is
not necessarily low, which may be the case for changes in longevity, the non-
diversifiable insurance risks may be shared by a larger population of financial
investors, instead of being assumed by reinsurers only. In the first section
of the paper, we focus on some insurance risks (for instance, longevity and
mortality risks), and, from a general point of view, study the optimal strat-
egy of risk-sharing and risk-transfer between three representative agents (an
insurer, a reinsurer and an investor), taking into account pricing principles
in insurance and finance within a unified framework. Comments on an opti-
mal securitisation process and, in particular, on the design of an appropriate
alternative risk transfer are made. In the second section, we focus on the
impact of regulation upon risk transfer, by differentiating reinsurance and
securitisation in terms of their impact upon reserves. More precisely, we will
study the bias introduced by the regulatory framework, and the subsequent
impact upon the aforementioned risk transfer techniques.

1. Complementarity of reinsurance and securitisation in insurance
risk management

1.1. Framework

In the following section, we consider a simplified economy composed of
three different types of agent, namely an insurer, a reinsurer and a represen-
tative investor. The problem we would like to study is the risk-transfer of
some insurance risk between the three types of agents, which is initially sup-
ported by the insurer. The various decisions will take place over a normalised
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time horizon [0, 1], and, for the sake of simplicity, we neglect interest rates
because they are unessential to the analysis. We also introduce a probability
space (Ω, F,P) where P represents a prior probability measure, typically the
historical or statistical probability measure. The expected value under the
probability measure P is simply denoted as E (.). We first need to introduce
the various agents and their respective exposure to this insurance risk.

1.1.1. The exposure of the insurer

We consider the following simplified framework: we assume that a repre-
sentative insurance company is offering some insurance contracts, and makes
some payments when a given event occurs (for instance when the insured
dies in the case of a life insurance policy). It is, therefore, exposed to some
insurance risk. Let us be more specific regarding the overall exposure of
the insurer to this insurance risk, introducing a distinction, in the nature of
the risk itself, between Θ representing the systematic component of the risk,
and Θ⊥ the specific or idiosyncratic component of the risk in the insurer’s
portfolio:

X̂ = E
(
X̂/Θ

)
+
(
X̂ − E

(
X̂/Θ

))
.
= X (Θ) +X

(
Θ⊥)

where X
(
Θ⊥) and X (Θ) are independent. X (Θ) represents the part of the

insurer’s exposure that is related to the global insurance risk, while X
(
Θ⊥)

represents the part of the exposure that is related to the specific nature of
the insurer’s portfolio, hence, the part that can be diversified within a larger
portfolio.

The insurer will transfer part of its exposure to the reinsurance company.
The characteristics of the reinsurance risk transfer will be determined later.

1.1.2. The problem for the reinsurer

In the economy we consider, there is a representative reinsurance com-
pany. It has an initial portfolio with a random value at time 1 equal to WR.
The reinsurer is providing reinsurance cover to the insurer for an amount
Ĵ against the payment of a reinsurance premium κ. The reinsurer can also
transfer part of its risk to the capital markets by sponsoring a insurance-
related bond.
This bond is written on a contingent payoff of M (Θ). Note that the risk
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covered by the bond is the systematic part only. The idiosyncratic part of
the risk is not transferred to the capital markets. Therefore, the type of
structure we consider in this paper is index-based. The product is based
upon the global insurance risk that can be measured, for instance, using a
global index on the population in case of life insurance risk, or a parametric
index in case of non-life insurance risks. This avoids issues of asymmetric
information between the reinsurer and the investor1. The financial investors
will be willing to add these products to their existing financial portfolio to
enhance diversification. The reinsurer will be interested in issuing such prod-
ucts if they can help her with transferring the non-diversifiable part of the
insurance risk. Considering a bond based upon an index enables the issuer
to filter out the non-diversifiable risk from the rest, and to end up with a
portfolio to which there is a solely asymptotic relationship to the diversifiable
part of the risk. At this stage, there is a trade-off between the mitigation
of the non-diversifiable risk and the introduction of some basis risk for the
issuer. By π we denote the initial price of such a (zero-coupon) bond paid at
time 0 by the investor.

The exposure for the reinsurer is, therefore

WR − Ĵ + κ−M (Θ) + π

The problem is now a question of how to determine the optimal character-
istics for both risk transfers ((Ĵ , κ) and (M (Θ) , π)) under the participation
constraints imposed by the insurer and by the investor.

1.1.3. Decision criterion

To make their decision, we assume that each agent will use a conserva-
tive choice criterion, which is based upon regulatory constraints, i.e. a risk

1Note that this type of approach allows the reinsurer to transfer some of his risk to
some agents in the capital markets, likely to be outside of the insurance industry.
The considered structure is that of a bond with contingent payoff M . It will typically
involve the constitution of a collateral account at the beginning of the transaction using
the initial payment by the investor, bringing an additional protection against any default
in the transaction. The structure could also be that of a swap, where M represents the
contingent cash flow in this case.
Note also, that the risk transfer using the capital markets imposes some constraint upon the
type of risk covered by the transaction (systemic part of the risk, and not the idiosyncratic
risk). Indeed, this makes the bond a financial contract, and not an insurance contract based
upon the actual losses of the protection seeker.
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measure. More precisely, the different agents considered assess their risk
using a convex risk measure, denoted by ρa (where a = I, R or B). For
the sake of simplicity, after the presentation of the general problem, we will
consider entropic risk measures in order to derive explicit formulae for the
different quantities involved. Denoting by γa (> 0) the risk tolerance coeffi-
cient of agent a (a = I, B,R), her entropic risk measure associated with any
terminal investment payoff Ψ is expressed as:

ρa (Ψ) = γa lnE
[
exp

(
− 1

γa
Ψ

)]
(1)

We also consider a financial market, typically represented by a set V of
bounded terminal gains2 at time 1, which is our time horizon, resulting from
self-financing investment strategies with a null initial value. The key point is
that all agents in the market agree on the initial value of every strategy. In
other words, the market value at time 0 of any strategy is null. In particular,
an admissible strategy is associated with a derivative contract with a given
bounded terminal payoff Φ only if its forward market price at time 1, qm (Φ),
is a transaction price for all agents in the market. Then, Φ − qm (Φ) is the
bounded terminal gain at time 1 and is an element of V . A typical example of
admissible terminal gains is the terminal wealth associated with transactions
based on options. Moreover, in order to have coherent transaction prices,
we assume, in the following, that the market is arbitrage-free. We do not
necessarily require the financial market to be complete.

The set V , previously defined, has also to satisfy some properties to be coher-
ent with some investment principles. The first principle, being the ”minimal
assumption”, is the consistency with the diversification principle. In other
words, any convex combination of admissible gains should also be an admis-
sible gain, and, therefore, the set V is always taken as a convex set.

Assuming that the various agents have access to the financial market, each
of them will have to determine his or her optimal financial investment by
solving the following hedging/investment problem:

min
ξ∈V

ρa (Ψ− ξ)

2i.e. the net potential gain corresponds to the spread between the terminal wealth
resulting from the adopted strategy and the capitalised initial wealth.

6



where Ψ is agent a’s initial exposure (where a = I, R or B) and ξ denotes the
(bounded) terminal gain of a given financial contract. The functional value
of this optimisation problem characterises a new convex risk measure, which
corresponds to the risk measure agent a will have after having optimally
chosen her financial investment, or hedge, on the market. It is called the
market modified risk measure of agent a and is denoted by ρma . In the entropic
framework, we get:

ρma (Ψ) = γa lnEQ̂

[
exp

(
− 1

γa
Ψ

)]
where Q̂ is the minimal entropy probability measure, defined as the prob-
ability measure minimising the relative entropy with respect to the prior
probability measure P, i.e.

Q̂ =argminEP

(
dQ
dP

ln
dQ
dP

)
or equivalently it is the probability measure that is the closest to the original
measure in the entropic sense3.
Therefore, in the following, the risk measure to consider when dealing with
any agent is his market modified risk measure, instead of the original one.
This allows the agents to take into account simultaneous optimal investment
decisions in the financial market, when the agent also trades in the reinsur-
ance and the ILS market. In terms of probability measures, this means that
we will not work directly with the historical probability measure P, but in-
stead with the minimal entropy probability measure Q̂, which is common to
all agents, as they have the same access to the financial market.

1.2. Optimal risk transfers

Our risk-sharing model assumes that the reinsurer is the main actor in the
risk-sharing transactions. She takes initiatives and minimises her modified
risk measure ρmR , under the participation constraints of the insurer and of the
investor. She also takes optimal decisions concerning the additional financial
risk that she faces (as implied by the modified risk measure). However, as
shown in the appendix, the same risk-sharing arrangements are observed

3For more details, please refer to Barrieu and El Karoui (2003).
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if the insurer leads the transactions, instead of the reinsurer. The results
are independent of who leads the transactions, the insurer or the reinsurer.
A natural question for the reinsurer is then how to optimally mix the risk
assumption with the issue of a certain amount of zero-coupon bonds, of the
type previously described. Let us assume that, at this stage, the different
agents assess their risk using entropic risk measures, and that all of them have
access to the financial market so as to invest and hedge optimally. Denoting,
as previously, ρma for a = I, B,R to be the market modified risk measure of
the insurer, the buyer and the reinsurer respectively, by Wa we denote the
initial position of agent a (a = I, B,R), by Ĵ the amount covered by the
reinsurance contract, by κ the premium of the reinsurance contract, by M
the contingent payoff of the insurance bond, and by π the price of the bond;
we have the following problem:

min
Ĵ ,M,π,κ

ρmR

(
WR − Ĵ −M (Θ) + π + κ

)
s.t. ρmI

(
WI − X̂ + Ĵ − κ

)
≤ ρmI

(
WI − X̂

)
ρmB (WB +M (Θ)− π) ≤ ρmB (WB)

From here, we can obtain some bounds on the prices, using the cash invari-
ance property of the various risk measures:

π∗ (M (Θ)) = ρmB (WB)− ρmB (WB +M (Θ))

κ∗
(
Ĵ
)

= ρmI

(
WI − X̂

)
− ρmI

(
WI − X̂ + Ĵ

)
Using these constraints, and the cash translation invariance property of the
various risk measures, the optimisation problem can be rewritten as:

min
Ĵ ,M

{
ρmR

(
WR − Ĵ −M (Θ)

)
+ ρmI

(
WI − X̂ + Ĵ

)
+ ρmB (WB +M (Θ))

}
Remark 1. As a first step, for the sake of simplicity, we assume that the
initial positions are non-random. Otherwise, we can, instead, consider the
following normalised risk measure:

ρm (Ψ) , ρm (W −Ψ)− ρm (W )

Note that in the entropic framework, ρm remains an entropic risk measure.
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Considering the initial wealths as a constant, we have:

min
Ĵ ,M

{
ρmR

(
−Ĵ −M (Θ)

)
+ ρmI

(
−X̂ + Ĵ

)
+ ρmB (M (Θ))

}
(2)

Note that we can also decompose the compensation Ĵ into two parts:

Ĵ = E
(
Ĵ/Θ

)
+
(
Ĵ − E

(
Ĵ/Θ

))
.
= J (Θ) + J

(
Θ⊥)

where J
(
Θ⊥) and J (Θ) are independent. J (Θ) represents the part of the

compensation related to the systematic component of the risk, whilst J
(
Θ⊥)

represents the part of the compensation related to the specific nature of the
reinsured portfolio.

1.2.1. Entropic framework

Let us now try to solve this optimisation problem in the particular situa-
tion where the three agents have entropic risk measures and constant initial
wealth.

ρma (Ψ) = γa lnEQ̂

[
exp

(
− 1

γa
Ψ

)]
Proposition 1.1. In the entropic framework, the optimal characteristics are
(up to a constant):
For the reinsurance contract:

J
∗ (

Θ⊥) = γR
γR + γI

X
(
Θ⊥) and J∗ (Θ) =

γR + γB
γI + γR + γB

X (Θ)

and for the bond:

M∗ (Θ) = − γB
γI + γR + γB

X (Θ)

Proof: To solve the optimisation Programme (2), we proceed in two steps:

• First, we fix the compensation Ĵ , and solve the optimisation for M :

min
M

{
ρmR

(
−Ĵ −M (Θ)

)
+ ρmI

(
−X̂ + Ĵ

)
+ ρmB (M (Θ))

}
= min

M

{
ρmR

(
−Ĵ −M (Θ)

)
+ ρmB (M (Θ))

}
9



In the entropic framework, the optimisation Programme (2) becomes:

min
M

{
γR lnEQ̂

[
exp

(
− 1

γR

(
−Ĵ −M (Θ)

))]
+ γB lnEQ̂

[
exp

(
− 1

γB
M (Θ)

)]}
Taking conditional expectations with respect to Θ, we get:

min
M

{
γR lnEQ̂

[
EQ̂

[
exp

(
− 1

γR

(
−Ĵ −M (Θ)

))
/Θ

]]
+ γB lnEQ̂

[
exp

(
− 1

γB
M (Θ)

)]}
Using the decomposition of Ĵ and the independence property between
J (Θ) and J , we have:

γR lnEQ̂

[
EQ̂

[
exp

(
− 1

γR

(
−Ĵ −M (Θ)

))
/Θ

]]
= γR lnEQ̂

[
exp

(
− 1

γR
(−J (Θ)−M (Θ))

)
EQ̂

[
exp

(
1

γR
J
(
Θ⊥))]]

= γR lnEQ̂

[
exp

(
− 1

γR
(−J (Θ)−M (Θ))

)]
+ c

where c = γR lnEQ̂

[
exp

(
1
γR
J
(
Θ⊥))] is independent of the optimisa-

tion problem. Hence, the programme becomes:

min
M

{
γR lnEQ̂

[
exp

(
− 1

γR
(−J (Θ)−M (Θ))

)]
+ γB lnEQ̂

[
exp

(
− 1

γB
M (Θ)

)]}
Using Proposition 2.1 in Barrieu-El Karoui (2005), we obtain:

M∗ (Θ) =
γB

γR + γB
(−J (Θ)) + constant

• Then, we fix the contingent payoff M and work on the compensation
Ĵ :

min
Ĵ

{
ρmR

(
−Ĵ −M (Θ)

)
+ ρmI

(
−X̂ + Ĵ

)
+ ρmB (M (Θ))

}
= min

Ĵ

{
ρmR

(
−Ĵ −M (Θ)

)
+ ρmI

(
−X̂ + Ĵ

)}
In the entropic framework, the optimisation Programme (2) becomes:

min
Ĵ

{
γR lnEQ̂

[
exp

(
− 1

γR

(
−Ĵ −M (Θ)

))]
+ γI lnEQ̂

[
exp

(
− 1

γI

(
−X̂ + Ĵ

))]}
10



We can then treat the compensation J
(
Θ⊥) and J (Θ) separately:

min
J(Θ)

min
J(Θ⊥)

 γR lnEQ̂

[
exp

(
− 1

γR

(
−
(
J (Θ) + J

(
Θ⊥))−M (Θ)

))]
+γI lnEQ̂

[
exp

(
− 1

γI

(
−X̂ +

(
J (Θ) + J

(
Θ⊥))))]


Taking into account conditional expectations with respect to Θ, we get:

min
J(Θ)

min
J(Θ⊥)

 γR lnEQ̂

[
EQ̂

[
exp

(
− 1

γR

(
−Ĵ −M (Θ)

))
/Θ

]]
+γI lnEQ̂

[
EQ̂

[
exp

(
− 1

γI

(
−X̂ + Ĵ

))
/Θ

]] 
Using the decomposition of Ĵ and X̂ and the independence property
between J (Θ) and J on the one hand, and between X (Θ) and X on
the other hand, we have:

γR lnEQ̂

[
EQ̂

[
exp

(
− 1

γR

(
−
(
J (Θ) + J

(
Θ⊥))−M (Θ)

))
/Θ

]]
= γR lnEQ̂

[
exp

(
− 1

γR
(−J (Θ)−M (Θ))

)
EQ̂

[
exp

(
1

γR
J
(
Θ⊥))]]

= γR lnEQ̂

[
exp

(
− 1

γR
(−J (Θ)−M (Θ))

)]
+ c

and

γI lnEQ̂

[
EQ̂

[
exp

(
− 1

γI

(
−X̂ + Ĵ

))
/Θ

]]
= γI lnEQ̂

[
exp

(
− 1

γI
(−X (Θ) + J (Θ))

)
EQ̂

[
exp

(
− 1

γI

(
−X

(
Θ⊥)+ J

(
Θ⊥)))]]

= γI lnEQ̂

[
exp

(
− 1

γI
(−X (Θ) + J (Θ))

)]
+ c′.

Both c = γR lnEQ̂

[
exp

(
1
γR
J
(
Θ⊥))] and c′ = γI lnEQ̂

[
exp

(
− 1

γI

(
−X

(
Θ⊥)+ J

(
Θ⊥)))]

are independent of the optimisation problem in J . Hence the pro-
gramme becomes:

min
J

{
γR lnEQ̂

[
exp

(
− 1

γR
(−J (Θ)−M (Θ))

)]
+ γI lnEQ̂

[
exp

(
− 1

γI
(−X (Θ) + J (Θ))

)]}
11



Using a simple change in variables J ′ .
= J −X, we obtain from Propo-

sition 2.1 in Barrieu-El Karoui (2005):

J ′∗ (Θ) =
γI

γR + γI
(−X (Θ)−M (Θ)) + constant

Hence

J∗ (Θ) =
γR

γR + γI
X (Θ)− γI

γR + γI
M (Θ) + constant

Conditioning now, with respect to Θ⊥, we have to minimise with re-
spect to J and J :

min
J,J

 γR lnEQ̂

[
EQ̂

[
exp

(
− 1

γR

(
−Ĵ −M (Θ)

))
/Θ⊥

]]
+γI lnEQ̂

[
EQ̂

[
exp

(
− 1

γI

(
−X̂ + Ĵ

))
/Θ⊥

]] 
Using the decomposition of Ĵ and X̂ and the independence property,
between J (Θ) and J on the one hand, and between X (Θ) and X on
the other hand, we have:

γR lnEQ̂

[
EQ̂

[
exp

(
− 1

γR

(
−Ĵ −M (Θ)

))
/Θ⊥

]]
= γR lnEQ̂

[
exp

(
1

γR
J (v)

)
EQ̂

[
exp

(
− 1

γR
(−J (Θ)−M (Θ))

)]]
= γR lnEQ̂

[
exp

(
1

γR
J
(
Θ⊥))]+ c

and

γI lnEQ̂

[
EQ̂

[
exp

(
− 1

γI

(
−X̂ + Ĵ

))
/Θ⊥

]]
= γI lnEQ̂

[
exp

(
− 1

γI

(
−X

(
Θ⊥)+ J

(
Θ⊥)))EQ̂

[
exp

(
− 1

γI
(−X (Θ) + J (Θ))

)]]
= γI lnEQ̂

[
exp

(
− 1

γI

(
−X

(
Θ⊥)+ J

(
Θ⊥)))]+ c′

where the two constants c = γR lnEQ̂

[
exp

(
− 1

γR
(−J (Θ)−M (Θ))

)]
and c′ = γI lnEQ̂

[
exp

(
− 1

γI
(−X (Θ) + J (Θ))

)]
are independent of

12



the optimisation problem in J . Hence the programme becomes:

min
J

{
γR lnEQ̂

[
exp

(
1

γR
J
(
Θ⊥))]+ γI lnEQ̂

[
exp

(
− 1

γI

(
−X

(
Θ⊥)+ J

(
Θ⊥)))]}

We then get:

J
∗ (

Θ⊥) = γR
γR + γI

X
(
Θ⊥)

• Finally, using the various results, we have (up to a constant):

J∗ (Θ) =
γR + γB

γI + γR + γB
X (Θ)

and
M∗ (Θ) = − γB

γI + γR + γB
X (Θ)

�

Remark 2. (i) It is interesting to note that Ĵ is a proper reinsurance compen-

sation, provided that X̂ is positive, i.e. the insurer experiments with some
losses with a positive amount, then 0 < Ĵ < X̂, and the compensation is
positive but smaller than the losses of the insurer.
(ii) Note also that the amount of risk taken by the reinsurer, Ĵ +M (Θ) is

also reasonable from an insurance point of view as 0 < Ĵ + M (Θ) < X̂.
Moreover, since M (Θ) is negative, this contingent payoff is smaller than the
risk directly transferred by the insurer. The issue of the bond is, therefore,
helping the reinsurer by reducing its exposure.
(iii)The results in Proposition 1.1 are obtained up to constant terms that do
not play a role in the rest of the analysis, since they do not alter the risk-
sharing process. These constant terms represent ”side payments” that the
reinsurer - who organises the risk-transfer process - must accept in order to
induce participation by the insurer and the investor. They reflect the impact
of the two participation constraints faced by the optimising reinsurer.

1.2.2. Comments on the pricing and feasibility of the securitisation

The pricing of such an insurance bond is not trivial. We cannot use a
standard risk-neutral pricing, since the market containing this new security
is clearly not complete; and, even if no arbitrage is assumed, this particular
security is not attainable by a replicating portfolio. A direct consequence is

13



that the pricing rule one may obtain is not unique, but, in fact, depends on
the decision criterion of the different agents. Typically, the buyer will have a
maximum price, πB, which he does not want to exceed for a given product,
whilst the seller will have a minimum price πR below which he does not want
to sell the product. A transaction will take place if the minimum seller’s
price is less than the maximum buyer’s price. Moreover, any price within
this range can be an acceptable transaction price. One may then discuss the
interest of various decision criteria. Assuming that both agents (the investor
and the reinsurer) have access to the financial market, each of them will base
his decision on his market modified risk measure, which corresponds to the
risk measure agent a will have after having optimally chosen her financial
investment, or hedge, on the market.

In this framework, the buyer will impose an upper bound to the transaction
price by looking at the following relationship, since he wants to reduce his
risk by performing the transaction:

ρmB (M (Θ)− π) ≤ ρmB (0)

Hence, by binding this constraint at the optimum, we obtain the maximum
buyer’s price, as:

πB (M) = ρmB (0)− ρmB (M (Θ))

The issuer imposes a lower bound to the transaction price, since he wants to
reduce his risk by performing the transaction:

ρmR

(
−Ĵ −M (Θ) + π + κ

)
≤ ρmR

(
−Ĵ + κ

)
Hence, by binding this constraint at the optimum, we obtain the minimum
seller’s price as:

πR (M) = ρmR

(
−Ĵ −M (Θ)

)
− ρmR

(
−Ĵ

)
For a transaction to take place, one should have:

πR (M) ≤ πB (M)

and any price π in the range [πR, πB] would be acceptable as a transaction
price. The following result ensures the feasibility of the securitisation:

14



Proposition 1.2. The indifferent buyer’s price is always higher than the
indifferent seller’s price, ensuring the feasibility of the insurance bond trans-
action.

Proof: Let us consider πB − πR
.
= πB (M)− πR (M). We have:

πB − πR = −γB lnEQ̂

[
exp

(
− 1

γB
M∗

)]
+ γR lnEQ̂

[
exp

(
1

γR
Ĵ∗

)]
− γR lnEQ̂

[
exp

(
1

γR

(
Ĵ∗ +M∗

))]
Using the optimal values for M∗ and Ĵ∗, we have:

πB − πR = −γB lnEQ̂

[
exp

(
1

γI + γR + γB
X

)]
+γR lnEQ̂

[
exp

(
1

γR

(
γR + γB

γI + γR + γB
X +

γR
γI + γR

X

))]
−γR lnEQ̂

[
exp

(
1

γI + γR + γB
X +

1

γI + γR
X

)]
Using the independence between X and X, the formula can be simplified as:

πB − πR = −γB lnEQ̂

[
exp

(
1

γI + γR + γB
X

)]
+γR lnEQ̂

[
exp

(
1

γR

(
γR + γB

γI + γR + γB
X

))]
−γR lnEQ̂

[
exp

(
1

γI + γR + γB
X

)]
which can be rewritten as:

πB − πR = − (γB + γR) lnEQ̂

[
exp

(
1

γI + γR + γB
X

)]
+γR lnEQ̂

[
exp

(
1

γR

(
γR + γB

γI + γR + γB
X

))]
or equivalently:

πB − πR = − (γB + γR) lnEQ̂

[
exp

(
1

γB + γR

(
γB + γR

γI + γR + γB
X

))]
+γR lnEQ̂

[
exp

(
1

γR

(
γR + γB

γI + γR + γB
X

))]
15



Denoting by χ
.
= γB+γR

γI+γR+γB
X, it becomes:

πB − πR = − (γB + γR) lnEQ̂

[
exp

(
1

γB + γR
χ

)]
+ γR lnEQ̂

[
exp

(
1

γR
χ

)]
We can prove that the function f (γ)

.
= γ lnEQ̂

[
exp

(
1
γ
χ
)]

is strictly de-

creasing. Since γB + γR > γR, we immediately obtain the desired result:

πB − πR > 0

�

2. Impact of regulatory constraints

In this section, we are interested in studying the impact of having dif-
ferent regulatory constraints for risk transfer, when using reinsurance and
alternative risk transfer solutions. We consider differing regulatory frame-
works, introducing, in particular, some asymmetry regarding the treatment
of the reinsurance and the mortality bond for the reinsurer. The risk measure
of the reinsurer is no longer

ρmR

(
−Ĵ −M (Θ) + π + κ

)
but becomes either asymmetric or weighted in the following way:

ρmR

(
−Ĵ + κ

)
+αρmR (−M (Θ) + π) or ρmR

(
−Ĵ + κ+ α (−M (Θ) + π)

)
where α is a specific weight applied for alternative risk transfer solutions. α
may be greater than 1 but also smaller, depending on the regulatory con-
straint and on the level of retention imposed upon the reinsurance company.

As proved in the next two subsections, the following result holds true, empha-
sising the impact of the regulatory framework upon the reinsurance market
and the risk transfer capacity. Therefore, a poor regulatory constraint may
lead to a negative impact on reinsurance capacity.

Proposition 2.1. Depending on the type of regulatory constraint, the rein-
surance capacity can be increased or decreased.
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2.1. Distinct regulatory treatments

Let us first consider the situation where the risk measure of the reinsurer
is expressed as:

ρmR

(
−Ĵ + κ

)
+ αρmR (−M (Θ) + π)

In this case, there is a distinct regulatory treatment for both risk transfer
solutions and the optimisation programme becomes:

min
Ĵ ,M,π,κ

ρmR

(
−Ĵ + κ

)
+ αρmR (−M (Θ) + π)

s.t. ρmI

(
−X̂ + Ĵ − κ

)
≤ ρmI

(
−X̂

)
ρmB (M (Θ)− π) ≤ ρmB (0)

We bind both constraints at the optimum, and use the cash translation in-
variance property to get:

π∗ (M (Θ)) = ρmB (0)− ρmB (M (Θ))

κ∗
(
Ĵ
)

= ρmI

(
−X̂

)
− ρmI

(
−X̂ + Ĵ

)
Therefore, the optimisation problem becomes:

min
Ĵ ,M

{
ρmR

(
−Ĵ

)
+ ρmI

(
−X̂ + Ĵ

)
+ αρmR (−M (Θ)) + αρmB (M (Θ))

}
or equivalently:

min
Ĵ

{
ρmR

(
−Ĵ

)
+ ρmI

(
−X̂ + Ĵ

)}
+ αmin

M
{ρmR (−M (Θ)) + ρmB (M (Θ))}

Both optimisation problems are now disjointed, and can, thus, be solved
separately. In the entropic framework, the following result prevails:

Proposition 2.2. With differential regulatory constraints acting upon the
risk measure for different activities, in the entropic framework, the optimal
reinsurance cover is given by:
For the reinsurance contract:

Ĵ∗ =
γR

γR + γI
X̂

and the optimal contingent payoff for the bond is:

M∗ (Θ) = 0

17



Proof: This is an immediate consequence of Proposition 2.1 in Barrieu-El
Karoui (2005). �
It is, therefore, optimal not to issue any bond. Comparing this result with
the previous one where no distinction in the regulatory treatment is intro-
duced (Proposition 1.1), we can see a reduction in the reinsurance capacity.
This result is highly meaningful. Separating both regulatory treatments for
traditional reinsurance and risk transfer through capital market solutions
would have an overall negative impact on reinsurance capacity. A regulation
trying to address the securitisation activity independently of the insurance-
reinsurance activity would introduce severe distortions in the insurance mar-
ket. Indeed, whatever the value of α in our model, securitisation is brought
to zero. Even with α < 1, meaning a more favourable treatment of insur-
ance securitisation, when compared to reinsurance transfer, securitisation
disappears. The reason is that the link between securitisation and insurance
risk is broken. The diversification effect of the entropic risk measure is lost.
This underlines the non-speculative motivation behind the sponsorship of an
ILS instrument as well as the complementary role of both solutions in risk
transfer.

2.2. Similar regulatory treatment with different weights

Let us now consider the situation where the risk measure of the reinsurer
is expressed as:

ρmR

(
−Ĵ + κ+ α (−M (Θ) + π)

)
In this case, there is a similar regulatory treatment, but different weights
are applied depending upon the risk transfer methods, and the optimisation
programme becomes:

min
Ĵ ,M,π,κ

ρmR

(
−Ĵ + κ+ α (−M (Θ) + π)

)
s.t. ρmI

(
−X̂ + Ĵ − κ

)
≤ ρmI

(
−X̂

)
ρmB (M (Θ)− π) ≤ ρmB (0)

We bind both constraints at the optimum, and use the cash translation in-
variance property to get:

π∗ (M (Θ)) = ρmB (0)− ρmB (M (Θ))

κ∗
(
Ĵ
)

= ρmI

(
−X̂

)
− ρmI

(
−X̂ + Ĵ

)
18



Therefore, the optimisation problem becomes:

min
Ĵ ,M

{
ρmR

(
−Ĵ − αM (Θ)

)
+ ρmI

(
−X̂ + Ĵ

)
+ αρmB (M (Θ))

}
In the entropic framework, the following result prevails:

Proposition 2.3. With a regulatory constraint acting upon the securitisation
activity, in the entropic framework, the optimal reinsurance cover is given by:
For the reinsurance contract:

J
∗ (

Θ⊥) = γR
γR + γI

X
(
Θ⊥) and J∗ (Θ) =

γR (γR + αγB)

γR (γR + αγB) + γI (γR + (α− 1) γB)
X (Θ)

and the optimal contingent payoff for the bond is:

M∗ (Θ) = − γBγR
γR (γR + αγB) + γI (γR + (α− 1) γB)

X (Θ)

Proof: In the entropic framework, this optimisation problem is equivalent
to that of Proposition 1.1, i.e.

min
Ĵ ,M

{
ρmR

(
−Ĵ −M (Θ)

)
+ ρmI

(
−X̂ + Ĵ

)
+ ρmB (M (Θ))

}
with a modified risk tolerance coefficient for the investor: γ̂B ≡ αγB instead
of γB and a modified nominal amount M̂ (Θ) ≡ αM (Θ) instead of M (Θ),
as

αρmB (M (Θ)) = αγB lnEQ̂

[
exp

(
− 1

γB
M (Θ)

)]
= αγB lnEQ̂

[
exp

(
− 1

αγB
αM (Θ)

)]
Therefore, all the previous results of Proposition 1.1 still hold true and in
particular the risk-sharing of the idiosyncratic risk is not affected, but that
of the systematic risk is given now as:

M∗ (Θ) = − 1

α

αγB
γR + αγB

J∗ (Θ)

Hence the result. �
The impact of the level of regulation α is not simple as shown in the propo-
sition below:
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Proposition 2.4. A stricter regulation, limiting the beneficial effect of secu-
ritisation (α < 1) will decrease the amount of bond to be transferred as well
as the reinsurance supply. Setting α > 1 will, in contrast, increase the regula-
tory efficiency of transfers to the capital market and increase the reinsurance
capacity.

Proof: As far as the reinsurance cover is concerned, let us consider the
following function of α:

f(α) =
1

γR(γR+αγB)
γR(γR+αγB)+γI(γR+(α−1)γB)

=
γR (γR + αγB) + γI (γR + (α− 1) γB)

γR (γR + αγB)

= 1 +
γI (γR + (α− 1) γB)

γR (γR + αγB)

The derivative of f with respect to α is given by:

f ′ (α) =
γBγIγR (γR + αγB)− γI (γR + (α− 1) γB) γRγB

(γR (γR + αγB))
2

=
α (γ2

BγIγR − γRγ
2
BγI) + γBγIγ

2
R − γIγ

2
RγB − γIγ

2
BγR

(γR (γR + αγB))
2

=
−γIγ

2
BγR

(γR (γR + αγB))
2 < 0

Hence J∗ (Q) = 1
f(α)

X (Q) is an increasing function of α. The optimal rein-
surance coverage will, therefore, decrease with a stricter regulation, i.e. when
α becomes smaller, and, in particular, smaller than 1.
As far as the nominal of the bond is concerned, let us consider the following
function of α:

g(α) = γR (γR + αγB) + γI (γR + (α− 1) γB)

This function is increasing in α. Therefore, M∗ (Q) = − 1
g(α)

X (Q) is an
increasing function of α. �

Remark 3. Note that we cannot solve in M the optimisation problem for the
limit case α = 0, as any value for M could be optimal since the programme
no longer depends upon M .
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Appendix: what happens if the insurer initiates the transactions?4

Let us consider the case where the insurer directly transfers some share
of the systematic risk to the investor. In this case, the insurer initiates
the transaction under the participation constraints for the reinsurer and the
investor. He shares the systematic risk with the reinsurer, on one hand, and
with the investor, on the other. Simultaneously, the specific risk is shared
between the insurer and the reinsurer.
In this case we have the following problem:

min
Ĵ ,M,π,κ

ρmI

(
WI − X̂ + Ĵ −M (Θ) + π − κ

)
s.t. ρmR

(
WR − Ĵ + κ

)
≤ ρmR (WR)

ρmB (WB +M (Θ)− π) ≤ ρmB (WB)

From here, we can obtain some bounds on the prices, using the cash invari-
ance property of the various risk measures:

π∗ (M (Θ)) = ρmB (WB)− ρmB (WB +M (Θ))

κ∗
(
Ĵ
)

= ρmR

(
WR − Ĵ

)
− ρmR (WR)

Using these constraints and the cash translation invariance property of the
various risk measures, the optimisation problem can be rewritten as:

min
Ĵ ,M

{
ρmI

(
WI − X̂ + Ĵ −M (Θ)

)
+ ρmR

(
WR − Ĵ

)
+ ρmB (WB +M (Θ))

}
Considering the initial wealths as constant, we have:

min
Ĵ ,M

{
ρmI

(
−X̂ + Ĵ −M (Θ)

)
+ ρmR

(
−Ĵ

)
+ ρmB (M (Θ))

}
As before, we can also decompose the compensation Ĵ into two parts:

Ĵ = E
(
Ĵ/Θ

)
+
(
Ĵ − E

(
Ĵ/Θ

))
.
= J (Θ) + J

(
Θ⊥)

4We thank Martin Boyer for suggesting this alternative approach.
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where J
(
Θ⊥) and J (Θ) are independent. J (Θ) represents the part of the

compensation related to the systematic component of the risk, while J
(
Θ⊥)

represents the part of the compensation related to the specific nature of the
insured portfolio.

Let us now try to solve this optimisation problem in the particular situation
where the three agents have entropic risk measures.

Proposition A.1. In the entropic framework, the optimal characteristics
are (up to a constant):
For the reinsurance contract:

J
∗ (

Θ⊥) = γI
γR + γI

X
(
Θ⊥) and J∗ (Θ) =

γR
γI + γR + γB

X (Θ)

and for the bond:

M∗ (Θ) = − γB
γI + γR + γB

X (Θ)

Proof: To solve the optimisation Programme, we proceed in two steps:

• First, we fix the compensation Ĵ , and solve the optimisation for M :

min
M

{
ρmI

(
−X̂ + Ĵ −M (Θ)

)
+ ρmR

(
−Ĵ

)
+ ρmB (M (Θ))

}
= min

M

{
ρmI

(
−X̂ + Ĵ −M (Θ)

)
+ ρmB (M (Θ))

}
In the entropic framework, the optimisation Programme (2) becomes:

min
M

{
γI lnEQ̂

[
exp

(
− 1

γI

(
−X̂ + Ĵ −M (Θ)

))]
+ γB lnEQ̂

[
exp

(
− 1

γB
M (Θ)

)]}
Taking conditional expectations with respect to Θ, we get:

min
M

{
γI lnEQ̂

[
EQ̂

[
exp

(
− 1

γI

(
−X̂ + Ĵ −M (Θ)

))
/Θ

]]
+ γB lnEQ̂

[
exp

(
− 1

γB
M (Θ)

)]}
Using the decomposition of Ĵ , and the independence property between J (Θ)
and J , we have:

γI lnEQ̂

[
EQ̂

[
exp

(
− 1

γI

(
−X̂ + Ĵ −M (Θ)

))
/Θ

]]
= γI lnEQ̂

[
exp

(
− 1

γI
(−X (Θ) + J (Θ)−M (Θ))

)
EQ̂

[
exp

(
1

γI
(X − J)

(
Θ⊥))]]

= γI lnEQ̂

[
exp

(
− 1

γI
(−X (Θ) + J (Θ)−M (Θ))

)]
+ c
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where c is a constant independent of the optimisation problem. Hence, the
programme becomes:

min
M

{
γI lnEQ̂

[
exp

(
− 1

γI
(−X (Θ) + J (Θ)−M (Θ))

)]
+ γB lnEQ̂

[
exp

(
− 1

γB
M (Θ)

)]}
Using Proposition 2.1 in Barrieu-El Karoui (2005), we obtain:

M∗ (Θ) =
γB

γI + γB
(−X (Θ) + J (Θ)) + constant

• Then, we fix the contingent payoff M and work on the compensation Ĵ :

min
J

{
ρmI

(
−X̂ + Ĵ −M (Θ)

)
+ ρmR

(
−Ĵ

)
+ ρmB (M (Θ))

}
= min

J

{
ρmI

(
−X̂ + Ĵ −M (Θ)

)
+ ρmR

(
−Ĵ

)}
In the entropic framework, the optimisation Programme becomes:

min
Ĵ

{
γI lnEQ̂

[
exp

(
− 1

γI

(
−X̂ + Ĵ −M (Θ)

))]
+ γR lnEQ̂

[
exp

(
− 1

γR

(
−Ĵ

))]}
We can then treat the compensation J

(
Θ⊥) and J (Θ) separately:

min
J(Θ)

min
J(Θ⊥)

 γI lnEQ̂

[
exp

(
− 1

γI

(
−
(
X (Θ) +X

(
Θ⊥))+ (

J (Θ) + J
(
Θ⊥))−M (Θ)

))]
+γR lnEQ̂

[
exp

(
− 1

γR

(
−
(
J (Θ) + J

(
Θ⊥))))]


Taking conditional expectations with respect to Θ, we get:

min
J(Θ)

min
J(Θ⊥)

 γI lnEQ̂

[
EQ̂

[
exp

(
− 1

γI

(
−X̂ + Ĵ −M (Θ)

))
/Θ

]]
+γR lnEQ̂

[
EQ̂

[
exp

(
− 1

γR

(
−Ĵ

))
/Θ

]] 
Using the decomposition of Ĵ and X̂ and the independence property between
J (Θ) and J , on the one hand, and between X (Θ) and X, on the other hand,
we have:

γI lnEQ̂

[
EQ̂

[
exp

(
− 1

γI

(
−
(
X (Θ)− J (Θ) +X

(
Θ⊥)− J

(
Θ⊥))−M (Θ)

))
/Θ

]]
= γI lnEQ̂

[
exp

(
− 1

γI
(−X (Θ) + J (Θ)−M (Θ))

)
EQ̂

[
exp

(
1

γI

(
X

(
Θ⊥)− J

(
Θ⊥)))]]

= γI lnEQ̂

[
exp

(
− 1

γI
(−X (Θ) + J (Θ)−M (Θ))

)]
+ c
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and

γR lnEQ̂

[
EQ̂

[
exp

(
− 1

γR

(
−Ĵ

))
/Θ

]]
= γR lnEQ̂

[
exp

(
− 1

γR
(−J (Θ))

)
EQ̂

[
exp

(
− 1

γR

(
−J

(
Θ⊥))]]]

= γR lnEQ̂

[
exp

(
− 1

γR
(−J (Θ))

)]
+ c′

where c and c′ are two constants independent of the optimisation problem in
J . Hence, the programme becomes:

min
J

 γI lnEQ̂

[
exp

(
− 1

γI
(−X (Θ) + J (Θ)−M (Θ))

)]
+γR lnEQ̂

[
exp

(
− 1

γR
(−J (Θ))

)] 
We obtain from Proposition 2.1 in Barrieu-El Karoui (2005):

J∗ (Θ) =
γR

γI + γR
(−X (Θ)−M (Θ)) + constant

Conditioning, now, with respect to Θ⊥, we have to minimise with respect to
J and J :

min
J(Θ)

min
J(Θ⊥)

 γI lnEQ̂

[
EQ̂

[
exp

(
− 1

γI

(
−X̂ + Ĵ −M (Θ)

))
/Θ⊥

]]
+γR lnEQ̂

[
EQ̂

[
exp

(
− 1

γR

(
−Ĵ

))
/Θ⊥

]] 
Using the decomposition of Ĵ and X̂ and the independence property between
J (Θ) and J , on the one hand, and between X (Θ) and X, on the other hand,
we have:

γI lnEQ̂

[
EQ̂

[
exp

(
− 1

γI

(
−X̂ + Ĵ −M (Θ)

))
/Θ⊥

]]
= γI lnEQ̂

[
exp

(
1

γI

(
X (Θ)− J (Θ)

))
EQ̂

[
exp

(
− 1

γI
(−X (Θ) + J (Θ)−M (Θ))

)]]
= γI lnEQ̂

[
exp

(
1

γI

(
X

(
Θ⊥)− J

(
Θ⊥)))]+ c
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and

γR lnEQ̂

[
EQ̂

[
exp

(
− 1

γR

(
−Ĵ

))
/Θ⊥

]]
= γR lnEQ̂

[
exp

(
− 1

γR

(
−J

(
Θ⊥)))EQ̂

[
exp

(
− 1

γR
(−J (Θ))

)]]
= γR lnEQ̂

[
exp

(
− 1

γR

(
−J

(
Θ⊥)))]+ c′

where c and c′ are two constants independent of the optimisation problem in
J . Hence, the programme becomes:

min
J

{
γI lnEQ̂

[
exp

(
1

γI

(
X

(
Θ⊥)− J

(
Θ⊥)))]+ γR lnEQ̂

[
exp

(
− 1

γR

(
−J

(
Θ⊥)))]}

We then get:

J
∗ (

Θ⊥) = γR
γR + γI

X
(
Θ⊥)

• Finally, using the various results, we have (up to a constant):

J∗ (Θ) =
γB + γR

γI + γR + γB
X (Θ)

and
M∗ (Θ) = − γB

γI + γR + γB
X (Θ)

�
Remark 4. We note that the results are unchanged. The same amount of
systematic risk is transferred to the capital market, and the reinsurer retains
the same net amount of this risk. The same risk-sharing transaction is also
observed between the insurer and the reinsurer concerning the specific risk.
Hence, our results also apply to the case where a large insurer is directly in
contact with the investors in order to transfer a part of his endowed system-
atic risk to the capital market.
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