CORE

A Bootstrap Stationarity Test for Predictive Regression Invalidity*

Iliyan Georgiev ${ }^{a}$, David I. Harvey ${ }^{b}$, Stephen J. Leybourne ${ }^{b}$ and A.M. Robert Taylor ${ }^{c}$
${ }^{a}$ Department of Statistical Sciences, University of Bologna
${ }^{b}$ School of Economics, University of Nottingham
${ }^{c}$ Essex Business School, University of Essex

Abstract

In order for predictive regression tests to deliver asymptotically valid inference, account has to be taken of the degree of persistence of the predictors under test. There is also a maintained assumption that any predictability in the variable of interest is purely attributable to the predictors under test. Violation of this assumption by the omission of relevant persistent predictors renders the predictive regression invalid, and potentially also spurious, as both the finite sample and asymptotic size of the predictability tests can be significantly inflated. In response we propose a predictive regression invalidity test based on a stationarity testing approach. To allow for an unknown degree of persistence in the putative predictors, and for heteroskedasticity in the data, we implement our proposed test using a fixed regressor wild bootstrap procedure. We demonstrate the asymptotic validity of the proposed bootstrap test by proving that the limit distribution of the bootstrap statistic, conditional on the data, is the same as the limit null distribution of the statistic computed on the original data, conditional on the predictor. This corrects a long-standing error in the bootstrap literature whereby it is incorrectly argued that for strongly persistent regressors and test statistics akin to ours the validity of the fixed regressor bootstrap obtains through equivalence to an unconditional limit distribution. Our bootstrap results are therefore of interest in their own right and are likely to have applications beyond the present context. An illustration is given by re-examining the results relating to U.S. stock returns data in Campbell and Yogo (2006).

Keywords: Predictive regression; Granger causality; persistence; stationarity test; fixed regressor wild bootstrap; conditional distribution.
JEL Classification: C12, C32.

[^0]
1 Introduction

Predictive regression (hereafter PR) is a widely used tool in applied finance and economics, and forms the basis for Granger causality testing. A very common application is in the context of testing the linear rational expectations hypothesis. A core example of this is testing whether future (excess) stock returns are predictable (Granger caused) by current information, such as the dividend yield or the term structure of interest rates. Often it is found that the posited predictor variable (e.g. dividend yield) exhibits persistence behaviour akin to a (near) unit root autoregressive process, whilst the variable being predicted (e.g. the stock return) resembles a (near) martingale difference sequence [m.d.s.].

In basic form, a test of predictability involves running an OLS regression of the variable being predicted, y_{t} say, on the lagged value of a posited predictor variable, x_{t} say, and testing the significance of the estimated coefficient on x_{t-1} using a standard regression t-ratio. Here the null hypothesis is that y_{t} is unpredictable (in mean) from ex-ante information; the alternative is that it is predictable from x_{t-1}. Cavanagh et al. (1995) [CES] show that when the innovation driving x_{t} is correlated with y_{t} (as is often thought to be case in practice; e.g., the stock price is a component of both the return and the dividend yield), then these tests can be badly over-sized if x_{t} is a local to unit root process but critical values appropriate for the case where x_{t} is a pure unit root process are used. This over-size can be interpreted as a tendency towards finding spurious predictability in y_{t}, in that it is incorrectly concluded that x_{t-1} can be used to predict y_{t} when in fact y_{t} is unpredictable; see also Rossi (2005) for a discussion of related issues. Attempting to address this issue, CES discuss Bonferroni bound-based procedures that yield conservative tests, while Campbell and Yogo (2006) [CY] consider a point optimal variant of the t-test and employ confidence belts. Phillips (2014) proposes a modification to the test proposed in CY which is asymptotically valid in the case where x_{t} can be either local-to-unity or stationary. Recently, Breitung and Demetrescu (2015) [BD] consider variable addition and instrumental variable (IV) methods to correct test size. Near-optimal PR tests can also be found in Elliott et al. (2015) and Jansson and Moreira (2006).

A misspecified PR of y_{t} on x_{t-1} (with non-zero slope) can also arise from these tests in cases where y_{t} is in fact predictable and is Granger-caused (possibly by the process $\left\{x_{t}\right\}$
and) by some other persistent process, $\left\{z_{t}\right\}$ say. The variable z_{t} might be a manifest variable or an unobserved latent variable. ${ }^{1}$ Here, and in the special case where x_{t-1} is an invalid predictor variable (because y_{t} is Granger-caused solely by $\left\{z_{t}\right\}$ and x_{t} is uncorrelated with z_{t}), it is known that the regression of y_{t} on x_{t-1} can lead to serious upward size distortions in the standard PR tests, with the same conclusion of spurious predictability of y_{t} by x_{t-1} as discussed earlier; see Ferson et al. (2003a,b) and Deng (2014). More generally, where both $\left\{x_{t}\right\}$ and $\left\{z_{t}\right\}$ Granger-cause y_{t}, or x_{t} and z_{t} are correlated, a linear predictor of y_{t} by x_{t-1} would still be misspecified because it would be suboptimal with respect to quadratic loss, even if the optimal linear predictor based on observables might involve $x_{t-1} .{ }^{2}$ Specifically, in this case the optimal linear predictor for y_{t} would involve the past of z_{t} (if z_{t} is a manifest variable), or further variables among the lags of both y_{t} and x_{t-1} (if z_{t} is latent). This fundamental misspecification problem in the estimated PR will affect all of the predictability tests discussed above.

We demonstrate theoretically and by means of simulations the potential for a misspecified PR of y_{t} on x_{t-1} to arise in the context of a model where x_{t} and z_{t} follow persistent processes, which we model as local-to-unity autoregressions, while modelling the coefficient on z_{t-1} as being local-to-zero. As a consequence, it is important to be able to identify, a priori, if y_{t} is Granger caused by some ignored $\left\{z_{t}\right\}$. Our approach involves testing for persistence in the residuals from a regression of y_{t} on x_{t-1}. Consequently, any effect that x_{t-1} may have on y_{t}, through the value of its slope coefficient in the putative PR , is eliminated from the residuals, and any persistence they display thereafter is attributable to the unincluded variable z_{t-1}, and would signal that the PR is misspecified. The test for PR misspecification we suggest is based on the co-integration tests of Shin (1994) and Leybourne and McCabe (1994), themselves variants of the stationarity test of Kwiatkowski et al. (1992) [KPSS]. Although originally designed to detect pure unit root behaviour in regression residuals, Müller (2005) shows these tests also reject when near unit root behaviour

[^1]is present, making them well-suited to the testing scenario of this paper.
An issue arising with our proposed test is that under its null hypothesis that z_{t-1} plays no role in the data generating process [DGP] for y_{t}, its limit distribution depends on the local-to-unity parameter in the process for x_{t}, even though the residuals used are invariant to the coefficient on x_{t-1} in the DGP. In principle, this makes it difficult to control the size of the test. However, we show a bootstrap procedure which treats x_{t-1} as a fixed regressor (i.e. the observed x_{t-1} is used in calculating bootstrap analogues of our test statistic) can be implemented to yield an asymptotically size-controlled test. This fixed regressor bootstrap approach is not itself new to the literature and has been employed by, among others, Gonçalves and Kilian (2004) and Hansen (2000). Because many financial and economic time series are thought to display non-stationary volatility and/or conditional heteroskedasticity in their innovations, it is also important for our proposed testing procedure to be (asymptotically) robust to these effects. We therefore use a heteroskedasticity-robust variant of the fixed regressor bootstrap along the lines proposed in Hansen (2000). This uses a wild bootstrap scheme to generate bootstrap analogues of y_{t}. We show that our proposed fixed regressor wild bootstrap test has local asymptotic power against the same local alternatives that give rise to a misspecified PR of y_{t} on x_{t-1}.

We establish large sample validity of our bootstrap method by showing that the limit distribution of the bootstrap statistic, conditional on the data, is the same as the limit null distribution of the statistic computed on the original data, conditional on the posited predictor variable. Our method of proof has wider applicability to other scenarios where a fixed regressor bootstrap is used with (near-) integrated regressors. For instance, our proof corrects an error in the bootstrap literature arising from Hansen (2000) who incorrectly suggests, in the context of a closely related test statistic, that for strongly persistent regressors the validity of the fixed regressor bootstrap is due to the coincidence of the unconditional null limit distribution of the original statistic with that of the limit distribution of the bootstrap statistic conditional of the data; actually, by following our proof, this coincidence can be seen not to occur for Hansen's statistic.

The paper is organised as follows. Section 2 presents the maintained DGP and sets out the various null and alternative hypotheses regarding predictability of y_{t} by x_{t-1} and z_{t-1}.

To aid lucidity, we consider a single putative predictor variable, x_{t}, and single unincluded variable, z_{t}, both with m.d.s. errors. Generalisations to richer model specifications are straightforward and discussed at various points. Section 3 details the asymptotic distributions of standard PR statistics under the various hypotheses, demonstrating the inference problems caused by unincluded persistent variables. Section 4 introduces our proposed test for PR invalidity, detailing its limit distribution and showing the validity of the fixed regressor wild bootstrap scheme in providing asymptotic size control. The asymptotic power of this procedure is also examined here and compared with the degree of size distortions associated with PR tests. Section 5 presents the results of a set of finite sample simulations investigating the size and power of our proposed bootstrap tests. An empirical illustration reconsidering the results pertaining to U.S stock returns data in CY is given in Section 6. Proofs and additional simulation results appear in a supplementary appendix.

We use the following notation: $\lfloor\cdot\rfloor$ is the floor function; $\mathbb{I}(\cdot)$ is the indicator function; $x:=y(x=: y)$ means that x is defined by $y(y$ is defined by $x) ; \xrightarrow{w}$ and \xrightarrow{p} for weak convergence and convergence in probability, respectively. For a vector, $x,\|x\|:=\left(x^{\prime} x\right)^{1 / 2}$, the Euclidean norm. Finally, $\mathcal{D}^{k}:=D_{k}[0,1]$ is the space of right continuous with left limit (càdlàg) functions from $[0,1]$ to \mathbb{R}^{k}, equipped with the Skorokhod topology, and $\mathcal{D}:=\mathcal{D}^{1}$.

2 The Model and Predictability Hypotheses

The basic DGP we consider for observed y_{t} is

$$
\begin{equation*}
y_{t}=\alpha_{y}+\beta_{x} x_{t-1}+\beta_{z} z_{t-1}+\epsilon_{y t}, \quad t=1, \ldots, T \tag{1}
\end{equation*}
$$

where x_{t} and z_{t} satisfy

$$
\begin{align*}
x_{t}=\alpha_{x}+s_{x, t}, & z_{t}=\alpha_{z}+s_{z, t}, \quad t=0, \ldots, T \tag{2}\\
s_{x, t}=\rho_{x} s_{x, t-1}+\epsilon_{x t}, & s_{z, t}=\rho_{z} s_{z, t-1}+\epsilon_{z t}, \quad t=1, \ldots, T \tag{3}
\end{align*}
$$

where $\rho_{x}:=1-c_{x} T^{-1}$ and $\rho_{z}:=1-c_{z} T^{-1}$, with $c_{x} \geq 0$ and $c_{z} \geq 0$, so that x_{t} and z_{t} are unit root or local-to-unit root autoregressive processes. We let $s_{x, 0}$ and $s_{z, 0}$ be $O_{p}(1)$ variates. Following CES and in order to examine the asymptotic local power of the test procedures
we discuss, we parameterise β_{x} and β_{z} as $\beta_{x}=g_{x} T^{-1}$ and $\beta_{z}=g_{z} T^{-1}$, respectively, which entails that when g_{x} and/or g_{z} are non-zero, y_{t} is a persistent, but local-to-noise process. ${ }^{3}$

Our interest lies in examining the behaviour of predictability tests derived from the PR of y_{t} on x_{t-1} when y_{t} is generated by the DGP in (1)-(3) with $\beta_{z} \neq 0$, and subsequently developing tests for the null hypothesis that $\beta_{z}=0$. In doing so, it is important to note that the motivating issue of spurious predictability of y_{t} by x_{t-1}, in the case where there is no correlation between x_{t-1} and z_{t-1}, arises whenever x_{t-1} and the unincluded z_{t-1} are both persistent processes. In the general case where no dependence restrictions are placed between x_{t-1} and z_{t-1}, the presence of z_{t-1} in (1) does not entail that x_{t-1} is a spurious predictor for y_{t}. Rather it implies that the PR of y_{t} on x_{t-1} alone is misspecified.

In the context of (1), z_{t-1} could be either an omitted manifest variable or an unobserved latent variable. An example of the latter is given by the case where y_{t} are (currency, commodity or bond) returns and x_{t-1} is either the lagged forward premium (spot minus forward price/rate) or a lagged futures basis (spot minus futures price/rate). Here there is an unobserved latent risk premium which is believed to be strongly persistent, and which in combination with the strongly persistent predictor has been suggested as a possible driver for empirically unorthodox findings, such as the well known forward premium (or Fama) puzzle; see Gospodinov (2009). A second example is provided by the long-run risk model of Bansal and Yaron (2004). Certain versions of their model can be re-written as PRs for returns with an unobserved long-run persistent component in consumption. In the latent case it would also be quite reasonable to view z_{t} not through a literal interpretation of the DGP in (1)-(3) but rather as a general proxy for underlying misspecification in the PR, under which interpretation it would clearly not make sense for z_{t} to be stationary rather than persistent. Possible examples are provided by the case where the coefficient on x_{t-1} displays time-varying behaviour, such as has been considered in, for example, Paye and Timmermann (2006) and Cai et al. (2015), or where the data on x_{t} are observed with a strongly persistent measurement error driven by relatively low variance innovations.

[^2]The innovation vector $\epsilon_{t}:=\left[\epsilon_{x t}, \epsilon_{z t}, \epsilon_{y t}\right]^{\prime}$ is taken to satisfy the following conditions:
Assumption 1. The innovation process ϵ_{t} can be written as $\epsilon_{t}=H D_{t} e_{t}$ where:
(a) H and D_{t} are the 3×3 non-stochastic matrices

$$
H:=\left[\begin{array}{ccc}
h_{11} & 0 & 0 \\
h_{21} & h_{22} & 0 \\
h_{31} & h_{32} & h_{33}
\end{array}\right], \quad D_{t}:=\left[\begin{array}{ccc}
d_{1 t} & 0 & 0 \\
0 & d_{2 t} & 0 \\
0 & 0 & d_{3 t}
\end{array}\right]
$$

with $h_{i j} \in \mathbb{R}, h_{i i}>0(i, j=1,2,3)$, and $H H^{\prime}$ strictly positive definite. The volatility terms $d_{i t}$ satisfy $d_{i t}=d_{i}(t / T)$, where $d_{i} \in \mathcal{D}$ are non-stochastic, strictly positive functions.
(b) e_{t} is a 3×1 vector martingale difference sequence [m.d.s.] with respect to a filtration \mathcal{F}_{t}, to which it is adapted, with conditional covariance matrix $\sigma_{t}:=E\left(e_{t} e_{t}^{\prime} \mid \mathcal{F}_{t-1}\right)$ satisfying: (i) $T^{-1} \sum_{t=1}^{T} \sigma_{t} \xrightarrow{p} E\left(e_{t} e_{t}^{\prime}\right)=I_{3}$; (ii) $\sup _{t} E\left\|e_{t}\right\|^{4+\delta}<\infty$ for some $\delta>0$.

Remark 1. Assumption 1 implies that ϵ_{t} is a vector m.d.s. relative to \mathcal{F}_{t}, with conditional variance matrix $\Omega_{t \mid t-1}:=E\left(\epsilon_{t} \epsilon_{t}^{\prime} \mid \mathcal{F}_{t-1}\right)=\left(H D_{t}\right) \sigma_{t}\left(H D_{t}\right)^{\prime}$, and time-varying unconditional variance matrix $\Omega_{t}:=E\left(\epsilon_{t} \epsilon_{t}^{\prime}\right)=\left(H D_{t}\right)\left(H D_{t}\right)^{\prime}$. Stationary conditional heteroskedasticity and non-stationary unconditional volatility are obtained as special cases with $D_{t}=I_{3}$ (constant unconditional variance, hence only conditional heteroskedasticity) and $\sigma_{t}=I_{3}$ (so $\Omega_{t \mid t-1}=\Omega_{t}=\Omega(t / T)$, only unconditional non-stationary volatility), respectively. ${ }^{4}$ As discussed in Cavaliere, Rahbek and Taylor (2010), Assumption 1(a) implies that the elements of Ω_{t} are only required to be bounded and to display a countable number of jumps, therefore allowing for an extremely wide class of potential models for the behaviour of the variance matrix of ϵ_{t}, including single or multiple variance or covariance shifts, variances which follow a broken trend, and smooth transition variance shifts.
Remark 2. Under Assumption 1, an identification issue regarding the parameters β_{x}, β_{z} and h_{21} arises in the case where $c_{x}=c_{z}$. In this case, whenever the observables $\left(y_{t}, x_{t}\right)$ satisfy (1) for certain $\beta_{x}, \beta_{z} \neq 0$ and z_{t}, they also satisfy (1) for $\beta_{x}^{\lambda}=\beta_{x}+\lambda, \beta_{z}^{\lambda}=\beta_{z}$, and $z_{t}^{\lambda}=z_{t}-\lambda \beta_{z}^{-1} x_{t}$, for any λ, where z_{t}^{λ} is also a (local-to-) unit root autoregressive process and its innovations $\epsilon_{z t}^{\lambda}=\epsilon_{z t}-\lambda \beta_{z}^{-1} \epsilon_{x t}$ are such that $\left[\epsilon_{x t}, \epsilon_{z t}^{\lambda}, \epsilon_{y t}\right]^{\prime}$ satisfies Assumption 1 , upon a redefinition of the matrix H. In particular, if $\beta_{z} \neq 0$, then it is possible to

[^3]choose $\lambda=h_{21} h_{11}^{-1} \beta_{z}$ such that $\epsilon_{x t}$ and $\epsilon_{z t}^{\lambda}$, the innovations driving x_{t} and z_{t}^{λ} respectively, are uncorrelated. In accordance with OLS identification conditions, we will discuss the predictive implications of (1) under the identifying condition $E\left(\epsilon_{x t} \epsilon_{z t}\right)=0$ (equivalently, $\left.h_{21}=0\right)$ if $\beta_{z} \neq 0$, and under the condition $\beta_{z}=0$ otherwise. In the case where z_{t} is a named latent variable (such as an unobserved risk premium) or a manifest variable, the value of $E\left(\epsilon_{x t} \epsilon_{z t}\right)$ is implicitly fixed by the choice of z_{t} and an alternative is to discuss (1) by using this value for identification.
Remark 3. We notice that a PR based on x_{t-1} alone is misspecified whenever $\beta_{z} \neq 0$, regardless of the value of either β_{x} or the correlation between $\epsilon_{x t}$ and $\epsilon_{z t}$. If $h_{21}=0, x_{t-1}$ and z_{t-1} would be uncorrelated with one another and any conclusion of predictability from the PR of y_{t} on x_{t-1} in the case where $\beta_{x}=0$ and $\beta_{z} \neq 0$ in (1) would be purely spurious because the best linear predictor (with respect to symmetric quadratic loss) [BLP] of y_{t} given the past of $\left\{y_{t}, x_{t}\right\}$ would not involve x_{t-1}, although the BLP with respect to a larger information set might involve x_{t-1}. When $h_{21} \neq 0, x_{t-1}$ and z_{t-1} are correlated, and thus, for forecasting purposes, x_{t-1} could act as a proxy for the information in z_{t-1}. Nonetheless, if $\beta_{z} \neq 0$, the BLP of y_{t} would not be a function of x_{t-1} alone: for a manifest variable z_{t}, the BLP given the past of $\left\{y_{t}, x_{t}, z_{t}\right\}$ would involve z_{t-1}, whereas for a latent variable z_{t}, the BLP given the past of $\left\{y_{t}, x_{t}\right\}$ would involve lags of y_{t} and x_{t} (even if $\beta_{x}=0$, as some of the predictive power of z_{t-1} would be picked up by x_{t-1}).

Remark 4. For transparency, the structure in (1)- (3) is exposited for a scalar variable, z_{t}. This is without loss of generality, as one may consider that $z_{t}=\gamma^{\prime} z_{t}^{*}$ where z_{t}^{*} is a vector of variables, which might therefore contain both omitted manifest and latent variables.

We are now ready to discuss, in the context of (1), the possibilities for the predictability and causation of y_{t} by the variables x_{t-1} and z_{t-1}, focusing on linear predictors. One potential case that has received much attention in the literature is that where y_{t} is Grangercaused only by the process $\left\{x_{t}\right\}$, so that it is predictable only by x_{t-1}, implying that $\beta_{x} \neq 0$ while $\beta_{z}=0$ in (1). This forms the alternative hypothesis in the PR tests discussed in section 3, where the corresponding null is that $\beta_{x}=0$, and, in the context of our model, the maintained hypothesis that $\beta_{z}=0$, so that y_{t} is unpredictable under the null. However, it is also a possibility that y_{t} is Granger-caused only by the process $\left\{z_{t}\right\}$, unincluded in
the PR. In this case, $\beta_{x}=0$ and $\beta_{z} \neq 0$, thereby violating the aforementioned maintained hypothesis, and a PR of y_{t} on x_{t-1} alone would be misspecified, regardless of whether z_{t} is a manifest or latent variable (see Remark 3). In the special case where $h_{21}=0$ and x_{t-1} does not enter the BLP of y_{t}, a conclusion to the contrary is an instance of spurious predictability. A final possibility is that $\beta_{x} \neq 0$ and $\beta_{z} \neq 0$ so that y_{t} is Granger-caused by both processes $\left\{x_{t}\right\}$ and $\left\{z_{t}\right\}$. In this last case if z_{t} was an omitted manifest variable then a correctly specified PR could be obtained by including z_{t-1} in the PR. If, on the other hand, z_{t} was a latent variable, a correctly specified BLP of y_{t} would include more observables (e.g., y_{t-1}) than x_{t-1}. We summarize these four cases using the following taxonomy of hypotheses within the context of DGP (1):

$$
\begin{array}{lll}
H_{u}: & \beta_{x}=0, \beta_{z}=0 & y_{t} \text { is unpredictable (in mean) } \\
H_{x}: & \beta_{x} \neq 0, \beta_{z}=0 & y_{t} \text { is Granger-caused by }\left\{x_{t}\right\} \text { alone } \\
H_{z}: & \beta_{x}=0, \beta_{z} \neq 0 & y_{t} \text { is Granger-caused by }\left\{z_{t}\right\} \text { alone } \\
H_{x z}: & \beta_{x} \neq 0, \beta_{z} \neq 0 & y_{t} \text { is Granger-caused by }\left\{x_{t}\right\} \text { and }\left\{z_{t}\right\}
\end{array}
$$

In hypothesis testing terms, standard PR tests attempt to distinguish between the null H_{u} and the alternative H_{x}. Here, we consider the impact of the presence of z_{t-1} in the DGP on such tests, that is we investigate the behaviour of PR tests of H_{u} against H_{x} when in fact H_{z} or $H_{x z}$ is true. In addition, we propose a test for possible PR invalidity, where the appropriate composite null is H_{u} or $H_{x}\left(H_{u}, H_{x}\right)$, and the alternative H_{z} or $H_{z x}\left(H_{z}, H_{z x}\right)$.

We end this section by stating some implications of Assumption 1 for our asymptotic analysis. Associated to a standard Brownian motion $B=\left[B_{1}, B_{2}, B_{3}\right]^{\prime}$ in \mathbb{R}^{3}, let $B_{\eta}=$ $\left[B_{\eta 1}, B_{\eta 2}, B_{\eta 3}\right]^{\prime}$ be the heteroskedastic Gaussian motion defined by $B_{\eta i}(r):=f_{i}^{-1 / 2} \int_{0}^{r} d_{i}(s) d B_{i}(s)$, $r \in[0,1]$, where $f_{i}:=\int_{0}^{1} d_{i}(s)^{2} d s, i=1,2,3$. We can also write $B_{\eta i} \stackrel{d}{=} B_{i}\left(\eta_{i}\right), i=1,2,3$, where η_{i} denotes the variance profile $\eta_{i}(r):=f_{i}^{-1} \int_{0}^{r} d_{i}(s)^{2} d s, r \in[0,1]$, such that $B_{\eta i}$ is a time-changed Brownian motion; see, for example, Davidson (1994, p.486). In particular, $\eta_{i}(r)=r, r \in[0,1]$, under unconditional homoskedasticity. Then the following functional weak convergence result holds in $\mathcal{D}^{3} \times \mathbb{R}^{3 \times 3}$, by Lemma 1 of Boswijk et al. (2016):

$$
\begin{equation*}
\left(T^{-1 / 2} \sum_{t=1}^{\lfloor T r\rfloor} \epsilon_{t}, T^{-1} \sum_{t=1}^{T} \sum_{s=1}^{t-1} \epsilon_{s} \epsilon_{t}^{\prime}\right) \xrightarrow{w}\left(M_{\eta}(r), \int_{0}^{1} M_{\eta}(s) d M_{\eta}(s)^{\prime}\right), r \in[0,1], \tag{4}
\end{equation*}
$$

where $M_{\eta}:=\left[M_{\eta x}, M_{\eta z}, M_{\eta y}\right]^{\prime}:=H F^{1 / 2} B_{\eta}$ for the diagonal matrix $F:=\operatorname{diag}\left\{f_{1}, f_{2}, f_{3}\right\}$. Let $\Omega_{\eta}:=\left\{\omega_{a b}\right\}_{a, b \in\{x, y, z\}}:=\operatorname{Var}\left\{M_{\eta}(1)\right\}=H F H^{\prime}$, which in the unconditionally homoskedastic case $D_{t}=I_{3}$ reduces to

$$
H H^{\prime}=\left[\begin{array}{ccc}
h_{11}^{2} & h_{11} h_{21} & h_{11} h_{31} \\
h_{11} h_{21} & h_{21}^{2}+h_{22}^{2} & h_{21} h_{31}+h_{22} h_{32} \\
h_{11} h_{31} & h_{21} h_{31}+h_{22} h_{32} & h_{31}^{2}+h_{32}^{2}+h_{33}^{2}
\end{array}\right]=:\left[\begin{array}{ccc}
\sigma_{x x} & \sigma_{x z} & \sigma_{x y} \\
\sigma_{x z} & \sigma_{z z} & \sigma_{z y} \\
\sigma_{x y} & \sigma_{z y} & \sigma_{y y}
\end{array}\right]=: \Omega .
$$

It will prove convenient to define the two Ornstein-Uhlenbeck-type processes $M_{\eta c, u}(r):=$ $\int_{0}^{r} e^{(s-r) c_{u}} d M_{\eta u}(s)$ for $u=x, z$ and $r \in[0,1]$, along with the standardised analogues $B_{\eta c, u}(r):=\omega_{u u}^{-1 / 2} M_{\eta c, u}(r)$ and their demeaned counterparts $\bar{B}_{\eta c, u}(r):=B_{\eta c, u}(r)-\int_{0}^{1} B_{\eta c, u}(s)$.

3 Asymptotic Behaviour of Predictive Regression Tests

To fix ideas, as in CES, we first consider the basic PR test of H_{u} against H_{x}, based on the t-ratio for testing $\beta_{x}=0$ in the fitted linear regression

$$
\begin{equation*}
y_{t}=\hat{\alpha}_{y}+\hat{\beta}_{x} x_{t-1}+\hat{\epsilon}_{y t}, \quad t=1, \ldots, T . \tag{5}
\end{equation*}
$$

The test statistic is given by

$$
t_{u}:=\frac{\hat{\beta}_{x}}{\sqrt{s_{y}^{2} / \sum_{t=1}^{T}\left(x_{t-1}-\bar{x}_{-1}\right)^{2}}}, \quad \hat{\beta}_{x}:=\frac{\sum_{t=1}^{T}\left(x_{t-1}-\bar{x}_{-1}\right) y_{t}}{\sum_{t=1}^{T}\left(x_{t-1}-\bar{x}_{-1}\right)^{2}}
$$

and $s_{y}^{2}:=(T-2)^{-1} \sum_{t=1}^{T} \hat{\epsilon}_{y t}^{2}$, with $\bar{x}_{-1}:=T^{-1} \sum_{t=1}^{T} x_{t-1}$.
In addition to the t-test, we also analyze a point optimal variant introduced by CY. For a known value of ρ_{x}, the (infeasible) test statistic takes the following form:

$$
Q:=\frac{\hat{\beta}_{x}-\left(s_{x y} / s_{x}^{2}\right)\left(\hat{\rho}_{x}-\rho_{x}\right)}{\sqrt{s_{y}^{2}\left\{1-\left(s_{x y}^{2} / s_{y}^{2} s_{x}^{2}\right)\right\} / \sum_{t=1}^{T}\left(x_{t-1}-\bar{x}_{-1}\right)^{2}}}
$$

where $\hat{\beta}_{x}$ and s_{y}^{2} are as defined above, $s_{x y}:=(T-2)^{-1} \sum_{t=1}^{T} \hat{\epsilon}_{x t} \hat{\epsilon}_{y t}$ and $s_{x}^{2}:=(T-$ $2)^{-1} \sum_{t=1}^{T} \hat{\epsilon}_{x t}^{2}$ with $\hat{\epsilon}_{x t}$ denoting the OLS residuals from regressing x_{t} on a constant and x_{t-1}, and where $\hat{\rho}_{x}:=\sum_{t=1}^{T}\left(x_{t-1}-\bar{x}_{-1}\right) x_{t} / \sum_{t=1}^{T}\left(x_{t-1}-\bar{x}_{-1}\right)^{2}$. In the case where $s_{x y}=0$, Q and t_{u} coincide.

The limit distributions of t_{u} and Q under Assumption 1 are shown in the next theorem.

Theorem 1. For the DGP (1), (2), (3) and under Assumption 1, the weak limits of t_{u} and Q as $T \rightarrow \infty$ are of the form

$$
\begin{equation*}
\frac{\int_{0}^{1} \bar{M}_{\eta c, x}(r) d N_{\eta y}(r)}{\sqrt{\int_{0}^{1} \bar{M}_{\eta c, x}(r)^{2}}}+\frac{g_{x} \int_{0}^{1} \bar{M}_{\eta c, x}(r)^{2}+g_{z} \int_{0}^{1} \bar{M}_{\eta c, x}(r) M_{\eta c, z}(r)}{\sqrt{n_{y} \int_{0}^{1} \bar{M}_{\eta c, x}(r)^{2}}} \tag{6}
\end{equation*}
$$

where $\bar{M}_{\eta c, x}(r):=M_{\eta c, x}(r)-\int_{0}^{1} M_{\eta c, x}(s) d s, r \in[0,1]$, and $N_{\eta y}, n_{y}$ are statistic-specific. Thus, for the t_{u} statistic, $N_{\eta y}:=\omega_{y y}^{-1 / 2} M_{\eta y}$ and $n_{y}:=\omega_{y y}$, whereas for the Q statistic, $N_{\eta y}:=\omega_{y \mid x}^{-1 / 2}\left\{M_{\eta y}-\omega_{x y} \omega_{x x}^{-1} M_{\eta x}\right\}$ and $n_{y}:=\omega_{y y}-\omega_{x y}^{2} / \omega_{x x}=: \omega_{y \mid x}$.

Remark 5. Notice that the limit expressions for t_{u} and Q in (6) are identical when $h_{31}=0$ (i.e. $\omega_{x y}=0$). The limit expression in (6) shows the dependence of t_{u} and Q on g_{z} under H_{z} (where $g_{x}=0$ but $g_{z} \neq 0$). Consequently, even for infeasible versions of these tests where all other nuisance parameters were known, the use of asymptotic critical values appropriate for these tests under H_{u} will not result in size-controlled procedures under H_{z} and raises the possibility that spurious rejections in favour of predictability of y_{t} by x_{t-1} will be encountered when y_{t} is actually predictable by z_{t-1} (cf. Ferson et al., 2003a,b, and Deng, 2014, for related results under non-localized β_{z}). Under $H_{x z}$, where both $g_{x} \neq 0$ and $g_{z} \neq 0$, any rejection by t_{u} or Q could not uniquely be ascribed to the role of x_{t-1}, potentially suggesting the existence of a well-specified PR that is in fact under-specified due to the omission of z_{t-1}. The same issues also hold for the feasible versions of the t_{u} and Q tests developed in CES and in CY and Phillips (2014), respectively.
Remark 6. In the special case where $c_{x}=c_{z}$, the limit of t_{u} in (6) can be written as

$$
\begin{equation*}
\frac{\int_{0}^{1} \bar{B}_{\eta c, x}(r) d M_{\eta y}(r)}{\sqrt{\omega_{y y} \int_{0}^{1} \bar{B}_{\eta c, x}(r)^{2}}}+g_{x}^{\perp}\left(\frac{\omega_{x x}}{\omega_{y y}}\right)^{1 / 2} \sqrt{\int_{0}^{1} \bar{B}_{\eta c, x}(r)^{2}}+g_{z}\left(\frac{\omega_{z \mid x}}{\omega_{y y}}\right)^{1 / 2} \frac{\int_{0}^{1} \bar{B}_{\eta c, x}(r) B_{\eta c, 2}(r)}{\sqrt{\int_{0}^{1} \bar{B}_{\eta c, x}(r)^{2}}} \tag{7}
\end{equation*}
$$

with $B_{\eta c, 2}(r):=\int_{0}^{r} e^{(s-r) c_{z}} d B_{\eta 2}(s)$ for $r \in[0,1], \omega_{z \mid x}:=\omega_{z z}-\omega_{x z}^{2} / \omega_{x x}$ and $g_{x}^{\perp} T^{-1}:=$ $\left(g_{x}+\omega_{x z} \omega_{x x}^{-1} g_{z}\right) T^{-1}$ representing the coefficient of x_{t-1} in a redefinition of (1) where x_{t-1} is orthogonal to the unincluded persistent variable (see Remark 2 with $\lambda=h_{21} h_{11}^{-1} \beta_{z}=$ $\omega_{x z} \omega_{x x}^{-1} g_{z} T^{-1}$). Not surprisingly, therefore, t_{u} can be anticipated to have relatively low power to reject H_{u} in favour of $H_{x z}$ when the contribution of x_{t-1} to the variability of y_{t} (as measured by $\left|g_{x}^{\perp}\right| \omega_{x x}^{1 / 2} \omega_{y y}^{-1 / 2}$) is low, and also the contribution of z_{t-1} corrected for x_{t-1} (as measured by $\left|g_{z}\right| \omega_{z \mid x}^{1 / 2} \omega_{y y}^{-1 / 2}$) is low. Additionally, the correlation between $\bar{B}_{\eta c, x}$ and $M_{\eta y}$
(for $h_{31} \neq 0$) renders the leading term in (7) non-Gaussian, affecting both the size and the power of the test. These comments also apply to the limit of the Q statistic, except that the first term in (7) is then standard Gaussian.

We will now proceed to investigate the extent of the size distortions that occur in the t_{u} and Q tests when $g_{z} \neq 0$. Before doing so, it should be noted that other PR tests have been proposed in the literature, including the near-optimal tests of Elliott et al. (2015) and Jansson and Moreira (2006); see the useful recent summaries provided in BD and Cai et al. (2015). The issues we discuss in this paper are pertinent irrespective of which particular PR test one uses, in cases where the putative and unincluded predictors are persistent. They are also relevant for the case where a putative PR contains multiple predictors.

3.1 Asymptotic Size of Predictive Regression Tests under H_{z}

To obtain as transparent as possible a picture of the large sample size properties of t_{u} and Q under H_{z} we abstract from any role that non-stationary volatility plays by setting $d_{i}=1$, $i=1,2,3$. We then simulate the limit distributions using 10,000 Monte Carlo replications, approximating the Brownian motion processes in the limiting functionals for (6) using independent $N(0,1)$ random variates, with the integrals approximated by normalized sums of 2,000 steps. Critical values are obtained by setting $g_{x}=g_{z}=0$; for t_{u} these depend on c_{x} and also (it can be shown) $h_{31}^{2} /\left(h_{31}^{2}+h_{32}^{2}+h_{33}^{2}\right)=\sigma_{x y}^{2} / \sigma_{x x} \sigma_{y y}$, while for Q, these depend on c_{x} alone. These quantities are assumed known, so we are essentially analyzing the large sample behaviour of infeasible variants of t_{u} and Q. We graph nominal 0.10-level sizes of two-sided tests as functions of the parameter $g_{z}=\{0,2.5,5.0, \ldots 50.0\}$ with $g_{x}=0$. For $c_{x}=c_{z}=c=\{0,10\}$ we set $\sigma_{x x}=\sigma_{z z}=\sigma_{y y}=1$, and consider $\sigma_{x y}=\sigma_{z y}=0$ plus $\sigma_{x y}=-0.70$ with $\sigma_{z y}=\{0,-0.70,0.70\}$ where $\sigma_{x z}=0$ throughout. Setting $c_{x}=c_{z}$ is not a requirement here, but simply facilitates keeping x_{t} and z_{t} balanced in terms of their persistence properties.

The results of this size simulation exercise are shown in Figure 1. For $c=0$ we observe the sizes of t_{u} and Q growing monotonically from the baseline 0.10 level with increasing g_{z}, thereby giving rise to an ever-increasing likelihood of ascribing spurious predictive ability to x_{t-1}. Both tests' sizes are seen to exceed 0.85 for $g_{z}=50$, while even a value of g_{z}
as small as $g_{z}=12.5$ produces sizes in excess of 0.50 . The size patterns for t_{u} and Q are also quite similar, which is as we would expect given that g_{z} impacts upon their limit distributions in a very similar way. Of course, when $\sigma_{x y}=0$, the tests have identical limits, while for $\sigma_{x y}=-0.7$, there is a general tendency for Q to show slightly more pronounced over-sizing than t_{u} (possibly reflecting the relatively higher power that this test can achieve under H_{x}). Size distortions appear little influenced by the value taken by $\sigma_{z y}$. With $c=10$ qualitatively, the same comments apply here as for the case $c=0$. That said, we do observe that the over-sizing now manifests itself more slowly with increasing g_{z}. Indeed, when $\sigma_{z y}=-0.70$ some modest under-size is observed for small values of g_{z}. However, both sizes are still above 0.50 once $g_{z}=50$ so spurious predictability does remain a serious issue. That the problem is less severe here simply reflects the fact that x_{t-1} and z_{t-1} are lower (but still high) persistence processes.

It would be difficult to argue that spurious predictive ability is not a potentially important consideration to take into account when employing either of the t_{u} and Q tests to infer predictability with high persistence processes. Although we have focussed this analysis on OLS-based PR tests, similar qualitative results will pertain for other PR tests including the recently proposed IV-based tests of BD whenever a high persistence IV is used. A low persistence IV test should be less prone to over-size in the presence of a high persistence unincluded variable z_{t-1}, but the price paid for employing such an IV is that when a true predictor x_{t-1} is highly persistent, the IV test will have very poor power. Basically, whenever there is scope for high persistence properties of regressors to yield good power for PR tests, we should always remain alert to the possibility of spurious predictability.

4 A Test for Predictive Regression Invalidity

Given the potential for standard PR tests to spuriously signal predictability of y_{t} by x_{t-1} (alone) when $\beta_{z} \neq 0$, we now consider a test devised to distinguish between $\beta_{z}=0$ and $\beta_{z} \neq 0$. Non-rejection by such a test would indicate that z_{t-1} plays no role in predicting y_{t}, and hence that standard PR tests based on x_{t-1} are valid. Rejection, however, would indicate the presence of an unincluded variable z_{t-1} in the DGP for y_{t}, signalling the invalidity of PR tests based on x_{t-1}. Formally, then, we wish to test the null hypothesis
that $\beta_{z}=0$, i.e. H_{u}, H_{x}, against the alternative that $\beta_{z} \neq 0$, i.e. $H_{z}, H_{x z}$, in (1).

4.1 The Test Statistic and Conventional Asymptotics

The test we develop is based on testing a null hypothesis of stationarity; specifically, we adapt the co-integration tests of Shin (1994) and Leybourne and McCabe (1994), which are themselves variants of the KPSS test. We employ the statistic

$$
\begin{equation*}
S:=s^{-2} T^{-2} \sum_{t=1}^{T}\left(\sum_{i=1}^{t} \hat{e}_{i}\right)^{2} \tag{8}
\end{equation*}
$$

where $s^{2}:=(T-3)^{-1} \sum_{t=1}^{T} \hat{e}_{t}^{2}$ and \hat{e}_{t} are the OLS residuals from the fitted regression

$$
\begin{equation*}
y_{t}=\hat{\alpha}_{y}+\hat{\beta}_{x} x_{t-1}+\hat{\beta}_{\Delta x} \Delta x_{t}+\hat{e}_{t}, \quad t=1, \ldots, T \tag{9}
\end{equation*}
$$

where, as in Shin (1994), the regressor Δx_{t} is included in (9) to account for the possibility of correlation between $\epsilon_{x t}$ and $\epsilon_{y t}\left(h_{31} \neq 0\right)$. Abstracting from the role of the regressor Δx_{t}, when $\beta_{z} \neq 0$, the residuals \hat{e}_{t} incorporate a contribution of the unincluded z_{t-1} term in (1), hence the persistence in z_{t-1} is passed to \hat{e}_{t}, and the statistic S is a test of $\beta_{z}=0$ against $\beta_{z} \neq 0$, rejecting for large values of S. Specifically, assuming $c_{z}=0$, we can rewrite (1) as

$$
\begin{equation*}
y_{t}=\alpha_{y}+\beta_{x} x_{t-1}+r_{t-1}+\epsilon_{y t} \tag{10}
\end{equation*}
$$

where $r_{t}=r_{t-1}+u_{t}$, initialised at $r_{0}=\beta_{z} \alpha_{z}$ (on setting $s_{z, 0}=0$ with no loss of generality) with innovations $u_{t}=\beta_{z} \epsilon_{z t}$. Testing the null of $\beta_{z}=0$ against $\beta_{z}=g_{z} T^{-1}$ in (1) is then seen to be precisely the same problem as testing the null of $V\left(u_{t}\right)=: \sigma_{u u}=0$ against $\sigma_{u u}$ $=g_{z}^{2} T^{-2} \sigma_{z z}$ in the context of (10), with $g_{z}=0$ under both nulls. If we temporarily assume that x_{t} is strictly exogenous and $\epsilon_{y t}$ and $\epsilon_{z t}$ are independent IID normal random variates, then S is the locally best invariant ($\mathrm{to} \alpha_{y}, \alpha_{x}, \alpha_{z}, \beta_{x}$ and $\sigma_{y y}$) test of the null $\sigma_{u u}=0$ against the local alternative $\sigma_{u u}=g_{z}^{2} T^{-2} \sigma_{z z}$ in (10). As such, the statistic S is relevant for our testing problem where we seek to distinguish between $\beta_{z}=0$ and $\beta_{z} \neq 0$. In our model we do not impose $c_{z}=0$ (nor the other temporary assumptions above), so in these more general circumstances we consider S to deliver a near locally best invariant test.

Notwithstanding the foregoing motivation, it is important to stress that a test based on S should properly be viewed as a mis-specification test for the linear regression in (9). As
such, a rejection by this test indicates that the fitted regression in (9) is not a valid PR. As with the failure of any mis-specification test, this does not tell us why the regression has failed. We do know that S delivers a test which is (approximately) locally optimal in the direction of z_{t-1} being an unincluded variable (be it manifest or latent), but a rejection does not mean that x_{t-1} is not a valid predictor for y_{t}. Therefore, our proposed test is one for the invalidity of the putative PR , not of the putative predictor, x_{t-1}; see again the discussion on this point in section 2.

In Theorem 2 we now detail the limiting distribution of S under Assumption 1.
Theorem 2. For the DGP (1), (2), (3) and under Assumption 1,

$$
\begin{equation*}
S \xrightarrow{w} \int_{0}^{1}\left\{F\left(r, c_{x}\right)+g_{z} G\left(r, c_{x}, c_{z}\right)\right\}^{2} d r \tag{11}
\end{equation*}
$$

where

$$
\begin{aligned}
F\left(r, c_{x}\right) & :=\mathbb{B}_{\eta, y \mid x}(r)-\int_{0}^{1} \bar{B}_{\eta c, x}(s) d B_{\eta, y \mid x}(s)\left\{\int_{0}^{1} \bar{B}_{\eta c, x}(s)^{2}\right\}^{-1} \int_{0}^{r} \bar{B}_{\eta c, x}(s), \\
G\left(r, c_{x}, c_{z}\right) & :=\left(\frac{\omega_{z z}}{\omega_{y \mid x}}\right)^{1 / 2}\left\{\int_{0}^{r} \bar{B}_{\eta c, z}(s)-\frac{\int_{0}^{1} \bar{B}_{\eta c, x}(s) B_{\eta c, z}(s)}{\int_{0}^{1} \bar{B}_{\eta c, x}^{2}(s)} \int_{0}^{r} \bar{B}_{\eta c, x}(s)\right\}
\end{aligned}
$$

with $\omega_{y \mid x}:=\omega_{y y}-\omega_{x y}^{2} / \omega_{x x}, \mathbb{B}_{\eta, y \mid x}(r):=B_{\eta, y \mid x}(r)-r B_{\eta, y \mid x}(1), r \in[0,1]$, and $B_{\eta, y \mid x}:=$ $\omega_{y \mid x}^{-1 / 2}\left\{M_{\eta y}-\omega_{x y} \omega_{x x}^{-1} M_{\eta x}\right\}$ a standardised heteroskedastic Brownian motion independent of B_{1}.

Remark 7. Notice that the limit in (11) does not depend on h_{31} owing to the invariance of the residuals \hat{e}_{t} to this parameter arising from the presence of the regressor Δx_{t} in (9). In the special case $c_{x}=c_{z}$, the limit is also invariant to h_{21} (cf. Remark 2). In fact, as $M_{\eta z}=$ $\omega_{x z} \omega_{x x}^{-1} M_{\eta x}+\omega_{z \mid x}^{1 / 2} B_{\eta 2}$ for $\omega_{z \mid x}:=\omega_{z z}-\omega_{x z}^{2} / \omega_{x x}$, in this case the equality of the decay rate in the Ornstein-Uhlenbeck processes $M_{\eta c, x}$ and $M_{\eta c, z}$ ensures that $B_{\eta c, z \mid x}:=\omega_{z \mid x}^{-1 / 2}\left\{M_{\eta c, z}-\right.$ $\left.\omega_{x z} \omega_{x x}^{-1} M_{\eta c, x}\right\}$ equals the Ornstein-Uhlenbeck process $B_{\eta c, 2}$ so $G\left(r, c_{x}, c_{z}\right)$ reduces to

$$
G\left(r, c_{x}, c_{x}\right)=\left(\frac{\omega_{z \mid x}}{\omega_{y \mid x}}\right)^{1 / 2}\left\{\int_{0}^{r} \bar{B}_{\eta c, 2}(s)-\frac{\int_{0}^{1} \bar{B}_{\eta c, x}(s) B_{\eta c, 2}(s)}{\int_{0}^{1} \bar{B}_{\eta c, x}^{2}(s)} \int_{0}^{r} \bar{B}_{\eta c, x}(s)\right\}
$$

The term $g_{z} G\left(r, c_{x}, c_{z}\right)$ in (11) is key in enabling the test S to potentially distinguish between H_{u}, H_{x} and $H_{z}, H_{x z}$. Clearly if $\omega_{z \mid x} / \omega_{y \mid x} \simeq 0$, then such a test has low power. This occurs when $\epsilon_{x t}$ and $\epsilon_{z t}$ are highly correlated (so $\omega_{z \mid x} \simeq 0$, corresponding to the part of z_{t-1}
that is not shared and therefore not removed by the regressor x_{t-1}, on average over t), or more generally, when $\epsilon_{z t}$ corrected for $\epsilon_{x t}$ varies little relatively to $\epsilon_{y t}$ corrected for $\epsilon_{x t}$. For $c_{x} \neq c_{z}$ the limit of S depends on h_{21} as $G\left(r, c_{x}, c_{x}\right)-G\left(r, c_{x}, c_{z}\right)$ is proportional to $h_{21} h_{11}^{-1}$. Remark 8. Under H_{u}, H_{x}, where $g_{z}=0$, the limit distribution of S in (11) simplifies to $\int_{0}^{1} F\left(r, c_{x}\right)^{2}$ and depends only on c_{x} and any unconditional heteroskedasticity present in ϵ_{t}. Remark 9. We have assumed thus far that the $\epsilon_{x t}$ are serially uncorrelated, with e_{t} being an m.d.s. More generally we may consider a linear process assumption for $\epsilon_{x t}$ of the form $\epsilon_{x t}=\sum_{i=0}^{\infty} \theta_{i} v_{x, t-i}$ where $v_{x, t}$ is the first element of $H D_{t} e_{t}$ with the standard summability and invertibility conditions $\sum_{i=0}^{\infty} i\left|\theta_{i}\right|<\infty$ and $\sum_{i=0}^{\infty} \theta_{i} z^{i} \neq 0$ for all $|z| \leq 1$, respectively, satisfied. Under homoskedasticity, this would include all stationary and invertible ARMA processes. Notice that $\epsilon_{y t}$ remains uncorrelated with the increments of x_{t} at all lags (i.e. x_{t} is weakly exogenous with respect to $\epsilon_{y t}$) under this structure. Here, it may be shown that the limiting results given in Theorem 2 above and in Theorems 3-5 below continue to hold provided we replace (9) in the calculation of S with the augmented variant

$$
\begin{equation*}
y_{t}=\hat{\alpha}_{y}+\hat{\beta}_{x} x_{t-1}+\hat{\beta}_{\Delta x} \Delta x_{t}+\sum_{i=1}^{p} \hat{\delta}_{i} \Delta x_{t-i}+\hat{e}_{t}, \quad t=p+1, \ldots, T \tag{12}
\end{equation*}
$$

where p satisfies the standard rate condition that $1 / p+p^{3} / T \rightarrow 0$, as $T \rightarrow \infty$, and it is assumed that $T^{1 / 2} \sum_{i=p+1}^{\infty}\left|\delta_{i}\right| \rightarrow 0$, where $\left\{\delta_{i}\right\}_{i=1}^{\infty}$ are the coefficients of the $A R(\infty)$ process obtained by inverting the $M A(\infty)$ for $\epsilon_{x t}$. Similarly to BD , we would also need to restrict the amount of serial dependence allowed in the conditional variances via the assumption that $\sup _{i, j \geq 1}\left\|\tau_{i j}\right\|<\infty$, where $\tau_{i j}:=E\left(e_{t} e_{t}^{\prime} \otimes e_{t-i} e_{t-j}^{\prime}\right)$, with \otimes denoting the Kronecker product. Serial correlation of a similar form in $\epsilon_{z t}$ will have no impact on our large sample results under the null hypothesis, H_{u}, H_{x}, although an effect does arise under $H_{z}, H_{x z}$. As is standard in the PR literature, we maintain the assumption that $\epsilon_{y t}$ is serially uncorrelated.
Remark 10. Extensions to the case where the putative PR contains multiple regressors and/or more general deterministic components can easily be handled in the context of our proposed PR invalidity test. Specifically, denoting the deterministic component as $\boldsymbol{\tau}^{\prime} \mathbf{f}_{t}$, where \mathbf{f}_{t} is as defined in section 3.2 of BD , an obvious example being the linear trend case where $\mathbf{f}_{t}:=(1, t)^{\prime}$, and the vector of putative regressors as \mathbf{x}_{t-1}, then we would need to correspondingly construct S using the residuals from the regression of y_{t} on $\mathbf{f}_{t}, \mathbf{x}_{t-1}$ and $\Delta \mathbf{x}_{t-1}$. Doing so would alter the form of the limit distributions given in Theorem 2 and
in the sequel, but would not alter the primary conclusion given in Corollary 1 below, that the fixed regressor wild bootstrap implementation of this test is asymptotically valid.

A consequence of the result in Theorem 2 is therefore that if we wish to base a test for PR invalidity on S, then we need to address the fact that under the null H_{u}, H_{x} the limit distribution of S is not pivotal. In order to account for the dependence of inference on any unconditional heteroskedasticity present, we employ a wild bootstrap procedure based on the residuals \hat{e}_{t}. However, we also need to account for the dependence of the limit distribution of S on c_{x}, and this we carry out by using the observed outcome on $x:=\left[x_{0}, \ldots, x_{T}\right]^{\prime}$ as a fixed regressor in the bootstrap procedure which we detail next.

4.2 A Fixed Regressor Wild Bootstrap Stationarity Test

A standard approach to obtaining bootstrap critical values for S would involve repeated generation of bootstrap samples for the original y_{t}, such that they mimic (in a statistical sense) the behaviour of y_{t} with the null H_{u}, H_{x} imposed, together with repeated generation of bootstrap samples for the original x_{t}, to mimic the behaviour of x_{t}. For each bootstrap sample, these would then be used to calculate a bootstrap analogue of S, which should reflect the behaviour of S under the null. Generation of bootstrap samples of y_{t} with suitable properties is quite straightforward, at least in large samples, using a standard wild bootstrap re-sampling scheme from the residuals \hat{e}_{t} from (9). However, finding bootstrap samples of x_{t} presents a significant problem since $x_{t}=\left(1-c_{x} T^{-1}\right) x_{t-1}+\epsilon_{x t}$ (assuming $\alpha_{x}=0$ for simplicity) and so any corresponding recursion used to construct bootstrap samples for x_{t} from bootstrap samples of $e_{x t}$ requires, for a size-controlled test, that c_{x} should be known or consistently estimated. Unfortunately, it is well-known that consistent estimation of c_{x} is not feasible. To avoid this problem, we circumvent estimation of c_{x} altogether and instead follow the approach taken in Hansen (2000), considering a bootstrap procedure which uses x as a fixed regressor; that is, the bootstrap statistic S^{*} is calculated from the same observed x_{t} as was used in the construction of S itself.

We now outline the steps involved in our proposed fixed regressor wild bootstrap.

Algorithm 1 (Fixed Regressor Wild Bootstrap):

(i) Construct the wild bootstrap innovations $y_{t}^{*}:=\hat{e}_{t} w_{t}$, where $w_{t}, t=1, \ldots, T$, is an $I I D N(0,1)$ sequence independent of the data and \hat{e}_{t} are the residuals from either (9) or (12).
(ii) Calculate the fixed regressor wild bootstrap analogue of S,

$$
S^{*}:=\left(s_{y}^{*}\right)^{-2} T^{-2} \sum_{t=1}^{T}\left(\sum_{i=1}^{t} \hat{\epsilon}_{y i}^{*}\right)^{2}
$$

where $\left(s_{y}^{*}\right)^{2}:=(T-2)^{-1} \sum_{t=1}^{T}\left(\hat{\epsilon}_{y t}^{*}\right)^{2}$ and $\hat{\epsilon}_{y t}^{*}$ are OLS residuals from the fitted regression

$$
\begin{equation*}
y_{t}^{*}=\hat{\alpha}_{y}^{*}+\hat{\beta}_{x}^{*} x_{t-1}+\hat{\epsilon}_{y t}^{*}, \quad t=1, \ldots, T . \tag{13}
\end{equation*}
$$

(iii) Define the corresponding p-value as $P_{T}^{*}:=1-G_{T}^{*}(S)$ with G_{T}^{*} denoting the conditional (on the original data) cumulative distribution function (cdf) of S^{*}. In practice, G_{T}^{*} is unknown, but can be approximated in the usual way by numerical simulation.
(iv) The wild bootstrap test of H_{u}, H_{x} at level ξ rejects in favour of $H_{z}, H_{x z}$ if $P_{T}^{*} \leq \xi$.

Remark 11. The wild bootstrap scheme used to generate y_{t}^{*} is constructed so as to replicate the pattern of heteroskedasticity present in the original innovations; this follows because, conditionally on \hat{e}_{t}, y_{t}^{*} is independent over time with zero mean and variance \hat{e}_{t}^{2}. Remark 12. By definition, the residuals \hat{e}_{t} from (9) are invariant to the value of β_{x} in (1), and so we can assume that $\beta_{x}=0$ with no loss of generality when generating the bootstrap y_{t}^{*} data. We also do not include Δx_{t} as an additional regressor (or lags thereof in the case considered in Remark 9) in (13) because the \hat{e}_{t} are asymptotically free of any effects arising from correlation between $\epsilon_{x t}$ and $\epsilon_{y t}$, or from any weak dependence in $\epsilon_{x t}$.

Remark 13. Although \hat{e}_{t} depends on g_{z} under $H_{z}, H_{x z}$, we show in the next subsection that this does not translate into large sample dependence of S^{*} on g_{z}.

4.3 Conditional Asymptotics and Bootstrap Validity

We show that the use of x_{t-1} as a fixed regressor in the construction of the bootstrap statistic S^{*} prevents S^{*} from converging weakly in probability to any non-random distribution, in contradistinction to most standard bootstrap applications we are aware of. Rather, under

Assumption 1 and any of the hypotheses H_{u}, H_{x}, H_{z} and $H_{x z}$ the distribution of S^{*}, given the data, converges weakly to the random distribution which obtains by conditioning the limit in (11) corresponding to $g_{z}=0$, on the weak limit B_{1} of the process $T^{-1 / 2} \sum_{t=1}^{\lfloor T r\rfloor} e_{1 t}$, $r \in[0,1]$. This fact (along with some regularity conditions) makes it possible to conclude that the bootstrap p-value P_{T}^{*} is asymptotically uniform $U[0,1]$-distributed under H_{u}, H_{x}, by using a general result on bootstrap validity from Cavaliere and Georgiev (2017, Theorem 2). From a pragmatic perspective, such a conclusion ensures that the bootstrap test is asymptotically sized controlled under the conditions of Assumption 1 alone.

However, under Assumption 1 alone, the shortcoming remains that the meaning of the large-sample inference performed by our bootstrap test is unclear. Certainly, asymptotic bootstrap inference is not unconditional because S^{*} given the data does not converge to the unconditional limit distribution of S. On the other hand, bootstrap inference need not be asymptotically equivalent to conditional inference on x either. Indeed, it is well known that Theorem 2, where the limit distribution of S is established, cannot be taken to imply that S conditional on x converges weakly to the limit in (11) conditioned on B_{1} (the implication is falsified by, e.g., Example 1 of LePage, Podgórski and Ryznar, 1997). Nevertheless, it is not unreasonable to expect that this result holds true under certain additional requirements, and we prove that this is in fact the case. We strengthen Assumption 1, so that under H_{u}, H_{x} the distribution of the statistic S conditional on x converges weakly to the same random distribution as S^{*} given the data, which allows us to establish that our bootstrap test in large samples has the meaning of a test conditional on x.

The results we present differ from those given in Hansen (2000) who considers a joint structural stability test on the constant and slope parameters in a general regression setting; our test of $\beta_{z}=0$ for the PR in (5) can be seen as the corresponding individual test for stability of just the intercept. Hansen argues that, under his Assumption 2, the fixed regressor (wild) bootstrap asymptotically implements unconditional inference (see Theorems 5 and 6 , Hansen, 2000) and that the convergence $P_{T}^{*} \xrightarrow{w} U[0,1]$ of bootstrap p-values under the null hypothesis follows from the equivalence of the unconditional limiting null distribution of the original statistic and the limiting distribution of the bootstrap statistic given the data (see Corollaries 1 and 2, ibidem). The results given in this section show
that any such claim about unconditional inference is not correct, at least for the non-empty class of models satisfying both Hansen's and our assumptions. Nonetheless the stated convergence of bootstrap p-values is correct, albeit for a different reason. A fuller treatment of this specific issue is given in Georgiev et al. (2016).

Theorem 2 is based on the invariance principle given in (4). Conditional and bootstrap analogues of that theorem can be based on a conditional joint invariance principle for the original and the bootstrap data. In order to obtain this result, we will strengthen Assumption 1 as follows:

Assumption 2. Let Assumption 1 hold, together with the following conditions:
(a) e_{t} is drawn from a doubly infinite strictly stationary and ergodic sequence $\left\{e_{t}\right\}_{t=-\infty}^{\infty}$ which is a martingale difference w.r.t. its own past.
(b) $\left\{\left[e_{2 t}, e_{3 t}\right]\right\}_{t=-\infty}^{\infty}$ is an m.d.s. also w.r.t. $\mathcal{X} \vee \mathcal{F}_{t}$, where \mathcal{X} and \mathcal{F}_{t} are the σ-algebras generated by $\left\{e_{1 t}\right\}_{t=-\infty}^{\infty}$ and $\left\{\left[e_{2 s}, e_{3 s}\right]\right\}_{s=-\infty}^{t}$, respectively, and $\mathcal{X} \vee \mathcal{F}_{t}$ denotes the smallest σ-algebra containing both \mathcal{X} and \mathcal{F}_{t}.
(c) The initial values $s_{x, 0}$ and $s_{z, 0}$ are measurable w.r.t. \mathcal{X} (in particular, they could be fixed constants).

Remark 14. Arguably, the most restrictive condition in Assumption 2 is given in part (b). A first leading example where it is satisfied is that of a symmetric multivariate GARCH process with neither leverage nor asymmetric clustering. Specifically, let $e_{t}=\Omega_{t}^{1 / 2} \varepsilon_{t}$, where Ω_{t} is measurable with respect to the past $\left[\varepsilon_{1 s}^{2}, \varepsilon_{2 s}^{2}, \varepsilon_{3 s}^{2}\right]^{\prime}, s \leq t-1$, and $\left\{\varepsilon_{t}\right\}_{t=-\infty}^{\infty}$ is an i.i.d. sequence such that $E\left(\varepsilon_{i t} \mid \varepsilon_{1 t}, \varepsilon_{2 t}^{2}, \varepsilon_{3 t}^{2}\right)=0, i=2,3$. If $E\left\|e_{t}\right\|<\infty$, then it could be seen that $E\left(e_{i t} \mid \mathcal{X} \vee \mathcal{F}_{t-1}\right)=0, i=2,3$. Another example is that of a multivariate stochastic volatility process $e_{t}=H_{t}^{1 / 2} \varepsilon_{t}$ with $\left\{H_{t}\right\}_{t=-\infty}^{\infty}$ independent of $\left\{\varepsilon_{t}\right\}_{t=-\infty}^{\infty}$ and where $\left\{\varepsilon_{t}\right\}_{t=-\infty}^{\infty}$ is an i.i.d. sequence with $E\left(\varepsilon_{i t} \mid \varepsilon_{1 t}\right)=0, i=2,3$ (which is certainly true if ε_{t} is multivariate standard Gaussian, as is usually assumed in the stochastic volatility framework). If $E\left\|e_{t}\right\|<\infty$, then again $E\left(e_{i t} \mid \mathcal{X} \vee \mathcal{F}_{t-1}\right)=0, i=2,3$. These two examples are also the leading examples given in the univariate context by Deo (2000), and in section 3 of Gonçalves and Kilian (2004). It would be interesting, although beyond the scope of our paper, to investigate how Assumption 2(b) could be weakened to the case where $\left\{e_{t}\right\}$ could be well approximated by a sequence satisfying Assumption 2(b). For instance, following Rubshtein (1996), the
conclusions of Theorem 5 in the supplementary appendix would remain valid if Assumption 2 (b) was replaced by the condition that $\sup _{t \geq 1} E\left\{E\left(\sum_{s=1}^{t} e_{i s} \mid \mathcal{X}\right)\right\}^{2}<\infty, i=2,3$.

In Theorem 3 we now establish three things: first, a conditional invariance principle that can be assembled from results and ideas disseminated throughout the probabilistic literature (see, in particular, Awad, 1981, Rubshtein, 1996), second, a bootstrap extension of that result, and third, associated convergence results for stochastic integrals. For simplicity, a one-dimensional bootstrap partial-sum process is considered; it is constructed from quantities $\tilde{e}_{T t}$ that we shall subsequently specify to be the residuals \hat{e}_{t} from the regression in (9). Analogously to the definition of x, let $y:=\left[y_{1}, \ldots, y_{T}\right]^{\prime}$ and $z:=\left[z_{0}, \ldots, z_{T}\right]^{\prime}$.

Theorem 3. Let $\tilde{e}_{T t}(t=1, \ldots, T)$ be scalar measurable functions of x, y, z and such that $\sum_{t=1}^{\lfloor T r\rfloor} \tilde{e}_{T t}^{2} \xrightarrow{p} \int_{0}^{r} m^{2}(s) d s$ for $r \in[0,1]$, where m is a square-integrable real function on $[0,1]$. Introduce $\tilde{\epsilon}_{t b}:=w_{t} \tilde{e}_{T t}(t=1, \ldots, T)$, and $\tilde{B}_{\eta}(r):=\int_{0}^{r} m(s) d \tilde{B}_{1}(s), r \in[0,1]$, where \tilde{B}_{1} is a standard Brownian motion independent of B. Under Assumption 2, the following converge jointly as $T \rightarrow \infty$:

$$
\left(T^{-1 / 2} \sum_{t=1}^{\lfloor T r\rfloor} \epsilon_{t}, T^{-1} \sum_{t=1}^{T} \sum_{s=1}^{t-1} \epsilon_{x s}\left[\epsilon_{y t}, \epsilon_{z t}\right]\right)\left|x \xrightarrow{w}\left(M_{\eta}(r), \int_{0}^{1} M_{\eta x}(s) d\left[M_{\eta y}(s), M_{\eta z}(s)\right]\right)\right| B_{1}
$$

$r \in[0,1]$, in the sense of weak convergence of random measures on $\mathcal{D}^{3} \times \mathbb{R}^{2}$, and

$$
\left(T^{-1 / 2} \sum_{t=1}^{\lfloor T r\rfloor}\left[e_{1 t}, \tilde{\epsilon}_{t b}\right], T^{-1} \sum_{t=1}^{T} \sum_{s=1}^{t-1} \epsilon_{x s} \tilde{\epsilon}_{t b}\right)\left|x, y, z \xrightarrow{w}\left(B_{1}(r), \tilde{B}_{\eta}(r), \int_{0}^{1} M_{\eta x}(s) d \tilde{B}_{\eta}(s)\right)\right| B_{1},
$$

$r \in[0,1]$, in the sense of weak convergence of random measures on $\mathcal{D}^{2} \times \mathbb{R}$.
Remark 15. Let $E_{x}(\cdot):=E(\cdot \mid x)$ and $E^{*}(\cdot):=E(\cdot \mid x, y, z)$. The convergence concept used in Theorem 3 is defined as follows. Let ζ, ζ_{T} and $\xi, \xi_{T}(T \in \mathbb{N})$ be random elements of the metric spaces \mathcal{S} and \mathcal{T}, respectively, such that ζ, ξ and B_{1} are defined on the same probability space, and similarly for ζ_{T}, ξ_{T} and x, y, z. We say that $\zeta_{T}|x \xrightarrow{w} \zeta| B_{1}$ and $\xi_{T}|x, y, z \xrightarrow{w} \xi| B_{1}$ jointly in the sense of weak convergence of random measures on \mathcal{S} and \mathcal{T} if for all bounded continuous functions $f: \mathcal{S} \rightarrow \mathbb{R}$ and $g: \mathcal{T} \rightarrow \mathbb{R}$ it holds that

$$
\left[E_{x}\left(f\left(\zeta_{T}\right)\right), E^{*}\left(g\left(\xi_{T}\right)\right)\right]^{\prime} \xrightarrow{w}\left[E\left(f(\zeta) \mid B_{1}\right), E\left(g(\xi) \mid B_{1}\right)\right]^{\prime}
$$

as $T \rightarrow \infty$, in the sense of standard weak convergence of random vectors in \mathbb{R}^{2}.

We are already in a position to establish in Theorem 4 the large sample behaviour of S conditional on x, and of S^{*}, its bootstrap analogue from Algorithm 1, conditional on the data. These two limiting distributions will be seen to coincide under the null hypothesis.

Theorem 4. Under DGP (1)-(3) and Assumption 2, the following converge jointly as $T \rightarrow \infty$, in the sense of weak convergence of random measures on \mathbb{R} :

$$
\begin{gather*}
S\left|x \xrightarrow{w} \int_{0}^{1}\left\{F\left(r, c_{x}\right)+g_{z} G\left(r, c_{x}, c_{z}\right)\right\}^{2} d r\right| B_{1} \tag{14}\\
S^{*}\left|x, y, z \xrightarrow{w} \int_{0}^{1} F\left(r, c_{x}\right)^{2} d r\right| B_{1}, \tag{15}
\end{gather*}
$$

where the processes F and G are as defined in Theorem 2.

Remark 16. A comparison of (14) and (15) shows that the bootstrap statistic S^{*}, conditional on the data, and the original statistic S, conditional on x, converge jointly to the same random distribution when $g_{z}=0$; that is, under the null hypothesis, H_{u}, H_{x}. An implication of this is that the bootstrap approximation is consistent in the sense that

$$
\begin{equation*}
\sup _{u \in \mathbb{R}}\left|P_{x}(S \leq u)-P^{*}\left(S^{*} \leq u\right)\right| \xrightarrow{p} 0 \tag{16}
\end{equation*}
$$

given that the random cdf of $\int_{0}^{1} F\left(r, c_{x}\right)^{2} d r \mid B_{1}$ is sample-path continuous. Here P_{x} and P^{*} denote probability conditional on x and on all the data, respectively. Thus, the distribution of the 'fixed-regressor bootstrap' statistic S^{*} conditional on the data consistently estimates the large-sample distribution of the original statistic S conditional on the 'fixed regressor' x. This result differs from the usual formulation of bootstrap validity, where two cdfs with a common non-random limit are compared; here, in contrast, $P_{x}(S \leq u) \xrightarrow{w} P\left(\int_{0}^{1} F\left(r, c_{x}\right)^{2} d r \leq u \mid B_{1}\right), u \in \mathbb{R}$, with a non-degenerate random limit.

In Corollary 1 below we formulate the conclusion of asymptotic validity of the bootstrap test based on S and S^{*} in terms of the bootstrap p-values.

Corollary 1. Let $P_{T}^{*}:=P^{*}\left(S^{*}>S\right)$. Under H_{u}, H_{x} and Assumption 2, $P_{T}^{*} \mid x \rightarrow_{p}^{w} U[0,1]$ and $P_{T}^{*} \xrightarrow{w} U[0,1]$.

An implication of Corollary 1 is that comparison of the statistic S with a ξ level bootstrap critical value (approximated by the upper tail ξ percentile from the order statistic
formed from B independent simulated bootstrap S^{*} statistics, which we will denote by $c v_{\xi, B}$), results in a bootstrap test with correct asymptotic size (ξ) under H_{u}, H_{x}, conditionally on x and unconditionally. In what follows we denote by S_{B} the fixed regressor wild bootstrap procedure outlined in Algorithm 1, whereby S is compared to the critical value $c v_{\xi, B}$. The asymptotic local power of S_{B} under $H_{z}, H_{x z}$ depends on the parameter g_{z}.

Remark 17. For the bootstrap statistic, S^{*}, the same limiting distribution is obtained in (15) under the alternative hypothesis, $H_{z}, H_{x z}$, as under the null hypothesis. In contrast, in the case of S, a stochastic offset, arising from the term $g_{z} G\left(r, c_{x}, c_{z}\right)$, is seen in the limiting distributions (in (14) conditionally on x, and in (11) unconditionally). Although, for a given alternative, the asymptotic local power is different for the bootstrap test based on S^{*} and an (infeasible) test based on the unconditional limit of S and knowledge of the parameter c_{x} (the former power is a random variable depending on B_{1} and the latter power is a number), we comment in Remark 18 on some qualitative similarities.
Remark 18. The limiting functional for S in (11) and (14) is dominated in probability (both unconditionally and conditionally on B_{1}) by $g_{z}^{2} \int_{0}^{1} G\left(r, c_{x}, c_{z}\right)^{2} d r$ for large g_{z} and, as a result, asymptotic local power approaches 1 as g_{z} diverges. Nonetheless, asymptotic local power is not monotone in $\left|g_{z}\right|$. For example, in the case $c_{x}=c_{z}$, the null component $F\left(r, c_{x}\right)$ in (11) and (14) involves a term in $h_{32} B_{\eta 2}(r)$, while the alternative component $g_{z} G\left(r, c_{x}, c_{z}\right)$ involves a term in $g_{z} \int_{0}^{r} \bar{B}_{\eta c, 2}$ (see Remark 7). Because $B_{\eta 2}(r)$ and $\int_{0}^{r} \bar{B}_{\eta c, 2}$ are positively correlated, it can be shown that $E\left\{\int_{0}^{1} F\left(r, c_{x}\right) G\left(r, c_{x}, c_{z}\right) d r\right\} \neq 0$ for $h_{32} \neq 0$, and similarly for the conditional expectation given B_{1}, a.s. As a result, when $h_{32} \neq 0$, there exist values of g_{z} (dependent on B_{1} in the conditional case) which render the expectations of the limits in (11) and (14) (respectively unconditional and conditional on B_{1}), smaller than their expectations under the null hypothesis. For such g_{z} the limit distribution under the alternative does not first-order stochastically dominate the limit distribution under the null, translating into power being less than size for some size levels.

4.4 Asymptotic Local Power of Stationarity Tests under H_{z}

We now consider the asymptotic local power of S and S_{B}, the latter on average over B_{1}. We use the same set of homoskedastic simulation models as for the size of t_{u} and Q in

Figure 1, so we overlay this information on them. For the asymptotic power of S under H_{z} we use the limit expression (11), having first obtained 0.10-level critical values from simulating (11) under $g_{z}=0$. Since these critical values depend on knowledge of c_{x}, S here is an infeasible test against which to benchmark the power of S_{B}. The asymptotic power of S_{B} is also based on the limit distribution of S under H_{z} but compared against a simulated limit bootstrap critical value $c v_{\xi, B}$ with $\xi=0.10$. For each replication, this critical value is obtained by simulating the limit (15) using $B=2000$ replications, conditioning on the simulated B_{1} for that Monte Carlo replication.

When $c=0$, we see the power of S rising rapidly with departures from $g_{z}=0$. For $g_{z}=50$, its power is very close to 1 . Turning attention to S_{B}, it has a very similar power profile to that of S; indeed, its power marginally exceeds that of S. It is of course anticipated from Remark 17 that S_{B} does not have the same asymptotic local power function as S, but the fact that its power exceeds that of S is a welcome finding as S_{B}, unlike S, is a feasible procedure. When $c=10$ the powers of S and S_{B} are near identical, but at a lower level than when $c=0$. There is also a non-monotonicity in the power profiles of S and S_{B}, anticipated from Remark 18, for $\sigma_{z y}=-0.70$ when g_{z} is small, with power dipping below size. However, for large enough g_{z}, this anomaly disappears. ${ }^{5}$

The important comparison here is between the power of S_{B} (restricting attention to the feasible procedure) and the size of t_{u} and Q (as their size profiles are similar we only refer to t_{u}). When $c=0$, the power of S_{B} exceeds the size of t_{u}, hence the invalidity of the PR is detected with greater frequency than t_{u} spuriously rejects in favour of predictability of y_{t} by x_{t-1}. This demonstrates the capability of S_{B} to detect PR invalidity in cases where the important size problems associated with t_{u} exist. That the power of S_{B} exceeds the size of t_{u} under H_{z} is possibly to be expected, because S is designed to detect departures from the null of $g_{z}=0$ whereas such departures simply represent model mis-specification in the context of the PR test t_{u}. With $c=10$, we again see that the power of S_{B} generally out-strips the sizes of t_{u}, with the size/power differences appearing even more marked than for $c=0$. Again, the only exception to this is for $\sigma_{z y}=-0.7$ when g_{z} is small.

The Supplementary Appendix to this paper contains asymptotic power simulation re-

[^4]sults for some additional parameter configurations (for which many possibilities exist). We consider the current setup with $c=5$ and $c=20$ and we find that the power of S_{B} with $c=20$ is lower than for $c=10$ due to a less persistent z_{t-1} lessening the impact of model misspecification. Other simulations where we allow c_{z} to be different to c_{x} confirm that the main driver of power for S_{B} is c_{z} and not c_{x}, as would be expected. We also consider $\sigma_{x z} \neq 0$ (with c_{z} and c_{x} equal or different; note that we reduce the magnitudes of $\sigma_{x y}$ and $\sigma_{z y}$ in some cases to ensure Ω remains positive definite). Here the interplay between S_{B} and t_{u} (Q) becomes rather more complex. For example, with $c_{z}=c_{x}$, setting $\sigma_{x z}= \pm 0.5$ causes the power of S_{B} to suffer while the frequency with which t_{u} rejects increases, while for $c_{z} \neq c_{x}$, only small changes are observed for $\sigma_{x z} \neq 0$ compared to $\sigma_{x z}=0$.

5 Finite Sample Size and Power under H_{z}

We now evaluate the finite sample size properties of the PR tests and the size and power of S_{B}. For the PR tests, we consider the feasible versions of t_{u} and Q, proposed by CES and CY respectively, both of which rely on Bonferroni bounds to control size. ${ }^{6}$ We also consider the IV-based test of BD that combines fractional and sine function instruments, denoted $I V_{\text {comb }}$, comparing this with its asymptotic $\chi^{2}(1)$ critical value. For S_{B} we use $B=499$ replications.

To begin, we continue to abstract from heteroskedasticity and consider finite sample DGPs for the same settings as used in the main asymptotic simulations. Specifically, we simulate the DGP (1)-(3) for $T=200$ with $\alpha_{y}=\alpha_{x}=\alpha_{z}=0, g_{x}=0, s_{x, 0}=$ $s_{z, 0}=0, d_{i t}=1(i=1,2,3)$, and $e_{t} \sim \operatorname{IID} N\left(0, I_{3}\right)$. Figure 2 reports the finite sample analogues of Figure 1, i.e. rejection frequencies of nominal 0.10 -level (two-sided for t_{u}, Q and $I V_{\text {comb }}$) tests under H_{z}. Simulations are again conducted using 10,000 Monte Carlo replications. On comparing Figure 2 with its large sample counterpart Figures 1, it is clear that our asymptotic simulations provide a close approximation to the finite sample rejection frequencies of t_{u}, Q and S_{B}, particularly in terms of the relative behaviour of the tests, albeit in absolute terms the finite sample rejection frequencies tend to be slightly lower than their asymptotic counterparts. For t_{u} and Q this is partly due to the feasible

[^5]tests not having the same large sample properties as the infeasible tests. The general observations made on the basis of the asymptotic simulations apply equally here; finite sample size of the PR tests increases with g_{z}, giving rise to an increasing likelihood of concluding spurious predictive ability. As anticipated in the discussion of section 3.1, a similar pattern of rejections is found for $I V_{\text {comb }}$; its sizes are close to those of t_{u} and Q. As regards S_{B}, its finite sample power increases with g_{z}, with the invalidity of the PR generally being detected with greater frequency than the PR tests' spurious rejections. Hence, the ability of S_{B} to detect PR invalidity in cases where well-known PR tests suffer problematic over-size is displayed in finite samples also.

Lastly we examine the impact of unconditional heteroskedasticity in the DGP on the size of S_{B} and $I V_{c o m b}$ when the error processes are subject to a single break in volatility. ${ }^{7}$ Specifically, we again simulate the DGP (1)-(3) for $T=200$ with $g_{x}=g_{z}=0, e_{t} \sim \operatorname{IID} N\left(0, I_{3}\right)$, but setting $d_{i t}=1(t \leq\lfloor\tau T\rfloor)+\sigma_{i} 1(t>\lfloor\tau T\rfloor)$ for $i=1,3$. We set $\tau=\{0.3,0.7\}$ thereby allowing for two (common) volatility break timings, and $\sigma_{i}=\left\{1,4, \frac{1}{4}\right\}$ allowing for both upward and downward volatility shifts (these magnitudes being substantial for illustrative purposes). We consider $c_{x}=\{0,5,10\}$ and for simplification abstract from time-varying correlation between $\epsilon_{x t}$ and $\epsilon_{y t}$ by setting $h_{21}=h_{31}=h_{32}=0$. Table 1 reports the results for nominal 0.10 -level tests (two-sided for $I V_{\text {comb }}$). It is clear that the size of S_{B} is very well controlled across all the patterns of time-varying volatility of $\epsilon_{x t}$ and $\epsilon_{y t}$. The wild bootstrap aspect of the bootstrap methods that we propose therefore works well in achieving size close to the nominal level even for the large volatility changes that we consider. ${ }^{8}$ The $I V_{\text {comb }}$ test also displays a good degree of robustness to heteroskedasticity, although size can be a little inflated for some settings.

The Supplementary Appendix also contains results for the same settings as above but with $g_{z}=25$ and $g_{z}=50$, i.e. power for S_{B} and size for $I V_{c o m b}$, with $c_{z}=c_{x}$ and additionally allowing for a volatility break in $\epsilon_{z t}$ via $d_{2 t}=1(t \leq\lfloor\tau T\rfloor)+\sigma_{2} 1(t>\lfloor\tau T\rfloor)$. It is clear that the presence of (unconditional) heteroskedasticity can have a substantial

[^6]influence on the level of power attainable. Other things equal, a volatility increase in $\epsilon_{z t}$ (an increase in σ_{2}) leads to higher S_{B} power, with a volatility decrease in $\epsilon_{z t}$ having the opposite effect, while volatility changes in $\epsilon_{y t}$ have the reverse effect, with an increase (decrease) in σ_{3} resulting in lower (higher) power for S_{B}. Volatility changes in $\epsilon_{x t}$ (changes in σ_{1}) appear to have relatively little effect. A similar pattern of rejection frequencies is also observed for the sizes of the $I V_{\text {comb }}$ test under heteroskedasticity. In the same cases where S_{B} power is increased (decreased), so the over-size of $I V_{\text {comb }}$ increases (decreases). It appears, therefore, that S_{B} has attractive size and power properties in finite samples as well as in the limit, and it is encouraging to see that for the most part these carry over to situations where the errors are unconditionally heteroskedastic.

6 An Empirical Application to U.S. Equity Data

To illustrate how our proposed procedure may be used in practice, we reconsider the results from the empirical analysis investigating the predictability of excess returns using the U.S. equity data reported in CY. CY consider four different series of stock returns, dividendprice ratio, and earnings-price ratio. The first is annual S\&P 500 index data over the period 1871-2002. The other three series are annual, quarterly, and monthly NYSE/AMEX valueweighted index data (1926-2002). Full data descriptions are provided in CY. The data can be obtained from https://sites.google.com/site/motohiroyogo/home/research/

CY analyse the time series behaviour of these data and test for predictability in excess returns (relative to an appropriate risk free rate), using as putative predictors for a variety of sample windows: the dividend-price ratio, denoted $d-p$; the earnings-price ratio, denoted $e-p$; the three-month T-bill rate, denoted r_{3}, and a measure of the long-short yield spread, denoted $y-r_{1}$. Details on the construction of these variables can be found in CY; as is conventional, excess returns and the predictor variables appear in logs. CY argue that all of these possible predictors display high persistence with, in most cases, the 95% confidence interval for the largest autoregressive root containing unity. A priori then, bivariate tests of predictability would seem to be at potential risk from the spurious predictability problem.

Table 2 reports the application of a variety of statistics to the same sets of bivariate PRs as in Table 5 of CY. Here S is our PR invalidity statistic; KPSS is the KPSS for
stationarity of the predictor appearing in that regression; $I V_{\text {comb }}$ is the PR test of BD . The S statistic is implemented using BIC selection for the order of p in the fitted regression (12), starting from $p_{\max }=12$, with an appropriate degrees of freedom adjustment made for $s_{y}^{2} .{ }^{9}$ For the KPSS statistic the long run variance estimate is based on the QS kernel with automatic bandwidth selection. For each test, a p-value is given. For S this relates to our fixed regressor wild bootstrap test, S_{B} using $B=9999$ replications; for KPSS it is based on the wild bootstrap method of Cavaliere and Taylor (2005), again using $B=9999$; for $I V_{\text {comb }}$ it relates to a $\chi^{2}(1)$ distribution. Finally, under Q, an entry of $*$ (NS) denotes that CY's Q test rejects (does not reject) the null of no predictability at the 0.10 level.

Notice first that the p-values for $K P S S$ are relatively close to zero for most of the predictors. The KPSS test is known to reject the null of stationarity with high probability when a series displays local-to-unit root behaviour (increasingly as the local-to-unity parameter approaches zero), so the p-value can be viewed as an indicator of the strength of persistence in a series (higher persistence associated with a lower p-value). We conclude that, in accordance with the findings of CY and BD , these possible predictors all display (to differing degrees) strongly persistent behaviour. The least persistent appears to be the annual \log earnings-price ratio, $e-p$, regardless of which sample window is considered. Interestingly, while CY suggest that r_{3} and $y-r_{1}$ are the least persistent variables, we find small p-values for these series in almost every case, suggesting they are strongly persistent.

For both the full sample results in Panel A and the sub-sample considered in Panel B, the Q test delivers rejections at the 0.10 level in the case of $e-p$, for all four of the data series considered. The Q test also rejects at the 0.10 level for $d-p$, but only for annual data. The $I V_{\text {comb }}$ test also generally rejects with annual data. These results, when taken at face value, signal significant predictability of excess returns by $e-p$ in particular, but also by $d-p$ with annual data. However, in the case of $e-p$ any such conclusions of predictability are immediately thrown into serious question once we observe that S_{B} also rejects very strongly in all these cases, suggesting that such a PR model is potentially spurious, or at the very least, under-specified by some unincluded persistent process. Interestingly, in the annual data the S_{B} test for $d-p$ is highly insignificant in both Panels A and B suggesting

[^7]no evidence that the significant outcome of the Q test is spurious here. So although the evidence from the Q tests alone suggests that $e-p$ has predictive power for excess returns with a less consistent body of evidence of predictability from $d-p$, a consideration of the Q tests in tandem with S_{B} suggests that the stronger evidence for genuine predictability may well lie with $d-p$; indeed the results are not inconsistent with $d-p$ being an omitted manifest persistent predictor when testing for predictability from $e-p$.

Turning to the results in Panel C, the Q test is seen to be significant at the 0.10 level only for r_{3} and $y-r_{1}$ for quarterly and monthly, but not annual, data. Among these cases, only $y-r_{1}$ for monthly data is flagged up as potentially spurious by S_{B}. Consequently, with this exception, the rejections delivered by Q in Panel C do not appear problematic when judged by our PR validity test. For the $I V_{\text {comb }}$ test in Panel C, significant predictability at the 0.10 level is again (as with Q) signalled for monthly r_{3} and monthly $y-r_{1}$, but also signalled for annual $d-p$ and both annual and quarterly r_{3}. The results for S_{B} again suggest that most of these rejections do not appear to be obviously problematic, although S_{B} does reject at roughly the 0.05 level for annual $d-p$.

7 Conclusions

In this paper we have examined the issue of spurious predictability that can potentially arise with recently proposed tests for predictability. We have shown that the outcomes from these tests have considerable potential to spuriously signal that a putative predictor is a genuine predictor whenever unincluded persistent (manifest and/or latent) variables are present in the underlying data generation process. To guard against this possibility we have proposed a diagnostic test for such PR invalidity based on a well-known stationarity testing approach. In order to again allow for an unknown degree of persistence in the putative (and latent) predictors, and to allow for both conditional and unconditional heteroskedasticity in the data, a fixed regressor wild bootstrap test procedure was proposed and its asymptotic validity established. Doing so required us to establish some novel asymptotic results pertaining to the use of the fixed regressor bootstrap with non-stationary regressors, which are likely to have important applications beyond the present context. Monte Carlo simulations were reported which suggested that our proposed methods work well in practice. A
re-consideration of the empirical study of the predictability of U.S. stock returns reported in CY highlighted the potential value of our procedure in practice.

We have proposed what we believe to be the first serious diagnostic testing exercise in the context of fitted PRs, suggesting within-sample misspecification tests directed to have power to detect the presence of persistent variables in the underlying DGP but not included in the PR. We hope that this paper encourages further research in this area, developing additional within- and out-of-sample diagnostic procedures for PRs.

References

Awad, A. (1981). Conditional central limit theorems for martingales and reversed martingales. Sankhya 43 A, 100-106.

Bansal, R. and A. Yaron (2004). Risks for the long run: A potential resolution of asset pricing puzzles. The Journal of Finance 59, 1481-1509.

Boswijk P., G. Cavaliere, A. Rahbek and A.M.R. Taylor (2016). Inference on co-integration parameters in heteroskedastic vector autoregressions. Journal of Econometrics, 192, 64-85.

Breitung, J. and M. Demetrescu (2015). Instrumental variable and variable addition based inference in predictive regressions. Journal of Econometrics 187, 358-375.

Cai, Z., Y. Wang and Y. Wang (2015). Testing instability in a predictive regression model with nonstationary regressors. Econometric Theory 31, 953-980.

Campbell, J.Y. and R.J. Shiller, (1988). Stock prices, earnings, and expected dividends. Journal of Finance 43, 661-676.

Campbell, J.Y. and M. Yogo (2006). Efficient tests of stock return predictability. Journal of Financial Economics 81, 27-60.

Cavaliere, G. and I. Georgiev (2017). Bootstrap inference under random distributional limits. Research Institute for Econometrics Discussion Paper 1-17.

Cavaliere, G., A. Rahbek and A.M.R. Taylor (2010). Testing for co-integration in vector autoregressions with non-stationary volatility. Journal of Econometrics 158, 7-24.

Cavaliere, G., and A.M.R. Taylor (2005). Stationarity Tests under Time-Varying Second Moments. Econometric Theory 21, 1112-1129.

Cavanagh, C.L., G. Elliott and J.H. Stock (1995). Inference in models with nearly integrated regressors. Econometric Theory 11, 1131-1147.

Davidson, J. (1994). Stochastic Limit Theory. Oxford: Oxford University Press.

Deng, A. (2014). Understanding spurious regression in financial economics. Journal of Financial Econometrics 12, 122-150.

Deo, R.S. (2000). Spectral tests of the martingale hypothesis under conditional heteroskedasticity. Journal of Econometrics 99, 291-315.

Elliott, G., U. Müller and M.W. Watson (2015). Nearly optimal tests when a nuisance parameter is present under the null hypothesis. Econometrica 83, 771-811.

Ferson, W., S. Sarkissian and T. Simin (2003a). Spurious regression in financial economics? Journal of Finance 58, 1393-1414.

Ferson, W., S. Sarkissian and T. Simin (2003b). Is stock return predictability spurious? Journal of Investment Management 1, 10-19.

Georgiev, I., D.I. Harvey, S.J. Leybourne and A.M.R. Taylor (2016). Testing for Parameter Instability in Predictive Regression Models. Mimeo.

Gonçalves, S. and L. Kilian (2004). Bootstrapping autoregressions with conditional heteroskedasticity of unknown form. Journal of Econometrics 123, 89-120.

Gospodinov, N. (2009). A new look at the forward premium puzzle. Journal of Financial Econometrics 7, 312-338.

Hansen, B.E. (2000). Testing for structural change in conditional models. Journal of Econometrics 97, 93-115.

Jansson, M. and M.J. Moreira (2006). Optimal inference in regression models with nearly integrated regressors. Econometrica 74, 681-714.

Kwiatkowski, D., P.C.B. Phillips, P. Schmidt and Y. Shin (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: how sure are we that economic time series have a unit root? Journal of Econometrics 54, 159-178.

LePage, R., K. Podgórski, and M. Ryznar (1997). Strong and conditional invariance principles for samples attracted to stable laws. Probability Theory and Related Fields 108, 281-298.

Leybourne, S. J. and B.P.M. McCabe (1994). A consistent test for a unit root. Journal of Business and Economic Statistics 12, 157-167.

Müller, U. (2005). Size and power of tests of stationarity in highly autocorrelated time series. Journal of Econometrics 128, 195-213.

Paye, B.S. and A. Timmermann (2006). Instability of return prediction models. Journal of Empirical Finance 13, 274-315.

Phillips, P.C.B. (2014). On confidence intervals for autoregressive roots and predictive regression. Econometrica 82, 1177-1195.

Rossi, B. (2005). Testing long horizon predictive ability with high persistence, and the Meese-Rogoff Puzzle. International Economic Review 46, 61-92.

Rubshtein B.Z. (1996). A central limit theorem for conditional distributions. In Bergelson V., P. March, J. Rosenblatt (eds.), Convergence in Ergodic Theory and Probability, De Gruyter, Berlin.

Shin, Y. (1994). A residual-based test of the null of cointegration against the alternative of no cointegration. Econometric Theory 10, 91-115.

Table 1. Finite sample size of S_{B} and $I V_{\text {comb }}$ under volatility shifts:

$$
T=200, g_{x}=g_{z}=0, d_{i t}=1(t \leq\lfloor\tau T\rfloor)+\sigma_{i} 1(t>\lfloor\tau T\rfloor), i=1,3
$$

σ_{1}	σ_{3}	$c_{x}=0$				$c_{x}=5$				$c_{x}=10$			
		$\tau=0.3$		$\tau=0.7$		$\tau=0.3$		$\tau=0.7$		$\tau=0.3$		$\tau=0.7$	
		S_{B}	$I V_{\text {comb }}$										
1	1	0.098	0.110	0.098	0.110	0.103	0.104	0.103	0.104	0.102	0.105	0.102	0.105
	4	0.101	0.109	0.101	0.112	0.106	0.107	0.105	0.111	0.105	0.108	0.107	0.110
	$\frac{1}{4}$	0.102	0.112	0.098	0.104	0.104	0.105	0.099	0.105	0.104	0.106	0.102	0.105
4	1	0.100	0.109	0.102	0.113	0.103	0.107	0.104	0.112	0.104	0.108	0.104	0.113
	4	0.099	0.109	0.102	0.117	0.107	0.110	0.107	0.119	0.106	0.114	0.109	0.123
	$\frac{1}{4}$	0.101	0.107	0.099	0.099	0.104	0.102	0.102	0.100	0.106	0.102	0.102	0.103
$\frac{1}{4}$	1	0.102	0.114	0.099	0.111	0.102	0.108	0.105	0.107	0.104	0.109	0.110	0.106
	4	0.103	0.105	0.103	0.108	0.102	0.100	0.108	0.106	0.104	0.100	0.108	0.105
	$\frac{1}{4}$	0.103	0.117	0.098	0.108	0.105	0.112	0.101	0.108	0.106	0.113	0.101	0.110

Table 2. Application to U.S. Equity Indices

Series	Obs.	Predictor	S	p-val.	KPSS	p-val.	$I V_{\text {comb }}$	p-val.	Q
Panel A: S\&P 1880-2002, CRSP 1926-2002									
S\&P 500	123	$d-p$	0.358	0.057	0.669	0.043	0.187	0.426	NS
		$e-p$	1.111	0.000	0.449	0.087	1.087	0.139	
Annual	77	$d-p$	0.081	0.658	0.572	0.077	1.383	0.083	*
		$e-p$	0.522	0.008	0.465	0.116	0.988	0.162	
Quarterly	305	$d-p$	0.531	0.017	1.201	0.007	0.474	0.319	NS$*$
		$e-p$	1.302	0.000	0.889	0.026	0.624	0.267	
Monthly	913	$d-p$	1.449	0.000	2.588	0.000	-0.423	0.337	NS$*$
		$e-p$	1.522	0.000	1.938	0.001	-0.139	0.445	
		Panel B: S\&P 1880-1994, CRSP 1926-1994							
S\&P 500	115	$d-p$	0.346	0.081	0.495	0.028	0.388	0.350	NS$*$
		$e-p$	1.207	0.000	0.251	0.146	1.600	0.054	
Annual	69	$d-p$	0.100	0.611	0.390	0.062	1.593	0.055	*
		$e-p$	0.803	0.002	0.272	0.222	1.206	0.114	*
Quarterly	273	$d-p$	0.894	0.001	0.753	0.009	0.451	0.327	NS$*$
		$e-p$	2.028	0.000	0.420	0.114	0.711	0.239	
Monthly	817	$d-p$	1.626	0.000	1.473	0.000	-0.598	0.276	NS$*$
		$e-p$	2.434	0.000	0.839	0.021	-0.164	0.435	
			Panel C: CRSP 1952-2002						
Annual	51	$d-p$	0.368	0.051	0.351	0.210	1.286	0.099	NS
		$e-p$	0.058	0.675	0.244	0.270	0.979	0.163	NS
		r_{3}	0.071	0.726	0.269	0.151	-1.391	0.082	NS
		$y-r_{1}$	0.085	0.657	0.626	0.014	0.472	0.381	NS
Quarterly	204	$d-p$	0.518	0.017	0.645	0.062	1.128	0.129	NSNS$*$
		$e-p$	1.511	0.000	0.550	0.064	0.764	0.223	
		r_{3}	0.071	0.659	0.585	0.017	-2.661	0.004	
		$y-r_{1}$	0.235	0.146	0.855	0.003	0.946	0.172	*
Monthly	612	$d-p$	0.345	0.073	1.449	0.004	0.550	0.290	NS
		$e-p$	1.729	0.000	1.264	0.004	0.363	0.358	NS
		r_{3}	0.091	0.535	1.296	0.000	-3.439	0.000	*
		$y-r_{1}$	0.422	0.028	1.373	0.000	1.856	0.032	*

Notes: Returns are for the annual S\&P 500 index and the annual, quarterly, and monthly CRSP value-weighted index. The predictor variables are the \log dividend-price ratio $d-p$, the \log earnings-price ratio $e-p$, the three-month T-bill rate r_{3}, and the long-short yield spread $y-r_{1}$. In the column headed $Q, *(\mathrm{NS})$ indicates those cases where the Q test of Campbell and Yogo (2006) rejects (does not reject) the null hypothesis of no predictability at the 10% level. The columns headed p-val. indicate the p-values of the tests in the preceding column calculated as detailed in the main text.

Figure 1. Asymptotic rejection frequencies of S, S_{B} (power) and t_{u}, Q (size): $g_{x}=0, c_{x}=c_{z}=c$; $S:-\cdot, S_{B}:-, t_{u}:--, Q:--$

(a) $c=0, \sigma_{x y}=0, \sigma_{z y}=0$

(e) $c=10, \sigma_{x y}=0, \sigma_{z y}=0$

(b) $c=0, \sigma_{x y}=-0.7, \sigma_{z y}=0$

(f) $c=10, \sigma_{x y}=-0.7, \sigma_{z y}=0$

(c) $c=0, \sigma_{x y}=-0.7, \sigma_{z y}=-0.7$

(g) $c=10, \sigma_{x y}=-0.7, \sigma_{z y}=-0.7$

(d) $c=0, \sigma_{x y}=-0.7, \sigma_{z y}=0.7$

(h) $c=10, \sigma_{x y}=-0.7, \sigma_{z y}=0.7$

Figure 2. Finite sample rejection frequencies of S_{B} (power) and $t_{u}, Q, I V_{c o m b}, t_{u}^{p r e}, Q^{\text {pre }}, I V_{c o m b}^{\text {pre }}$ (size): $T=200, g_{x}=0, c_{x}=c_{z}=c$;

$$
S_{B}:-, t_{u}:--, Q:--, I V_{c o m b}: \cdots
$$

Supplementary Online Appendix
 to

A Bootstrap Stationarity Test for Predictive Regression Invalidity
by
I. Georgiev, D.I. Harvey, S.J. Leybourne and A.M.R. Taylor

Date: September 22, 2017

S. 1 Introduction

This supplement contains additional Monte Carlo results and proofs for our paper "A Bootstrap Stationarity Test for Predictive Regression Invalidity. "Equation references (S.n) for $n \geq 1$ refer to equations in this supplement and other equation references are to the main paper.

The supplement is organised as follows. Additional Monte Carlo simulation results are reported in section S.2. Section S. 3 provides mathematical proofs for the large sample results given in the main paper. All additional references are included at the end of the supplement.

S. 2 Additional Monte Carlo Results

Figure S. 1 reports asymptotic simulation results for the same tests and DGP settings as for Figure 1, but replacing $c=0$ and $c=10$ with $c=5$ and $c=20$, respectively. Figure S. 2 reports similar results, but allowing for $c_{x} \neq c_{z}$. Figures S.3-S. 6 report, for various combinations of c_{x} and c_{z}, results for $\sigma_{x z}= \pm 0.5$, with the magnitudes of $\sigma_{x y}$ and $\sigma_{z y}$ reduced in some cases to ensure Ω remains positive definite.

Tables S. 1 and S. 2 report finite sample results for the same tests and DGP settings as for Table 1, but with $g_{z}=25$ and $g_{z}=50$, with $c_{z}=c_{x}$ and additionally allowing for a volatility break in $\epsilon_{z t}$ via $d_{2 t}=1(t \leq\lfloor\tau T\rfloor)+\sigma_{2} 1(t>\lfloor\tau T\rfloor)$.

S. 3 Mathematical Proofs

We start with some preliminaries. First, we set $s_{x, 0}=s_{z, 0}=0$ throughout the Appendix, without loss of generality under our assumptions. Second, for centred variables we introduce the notation $\stackrel{\circ}{y}_{t}:=y_{t}-\bar{y}, \stackrel{\circ}{x}_{t}:=x_{t}-\bar{x}_{-1}$ and $\Delta \dot{x}_{t}:=\Delta x_{t}-\overline{\Delta x}$, where $\bar{y}:=T^{-1} \sum_{t=1}^{T} y_{t}$, $\bar{x}_{-1}:=T^{-1} \sum_{t=0}^{T-1} x_{t}$ and $\overline{\Delta x}:=T^{-1} \sum_{t=1}^{T} \Delta x_{t}$.

Third, we will repeatedly use the following result, which holds under Assumption 1 by virtue of Lemma A. 1 of Boswijk et al. (2016),

$$
\begin{equation*}
T^{-1} \sum_{t=1}^{T} \epsilon_{t} \epsilon_{t}^{\prime} \xrightarrow{p} \Omega_{\eta}=H\left[\int_{0}^{1} \operatorname{diag}\left\{d_{1}^{2}(r), d_{2}^{2}(r), d_{3}^{2}(r)\right\} d r\right] H^{\prime}=H \operatorname{diag}\left\{f_{1}, f_{2}, f_{3}\right\} H^{\prime}=H F H^{\prime} \tag{S.1}
\end{equation*}
$$

where $\operatorname{diag}\{v\}$ denotes a diagonal matrix with v on the main diagonal.
Fourth, we will also use the functional Orstein-Uhlenbeck convergence

$$
T^{-1 / 2}\left[\begin{array}{c}
x_{\lfloor T r\rfloor} \tag{S.2}\\
z_{\lfloor T r\rfloor}
\end{array}\right] \stackrel{w}{\rightarrow} \int_{0}^{r}\left[\begin{array}{l}
e^{-(r-s) c_{x}} d M_{\eta x}(s) \\
e^{-(r-s) c_{z}} d M_{\eta z}(s)
\end{array}\right]=\left[\begin{array}{c}
M_{\eta c, x}(r) \\
M_{\eta c, z}(r)
\end{array}\right]=: M_{\eta c}(r), \quad r \in[0,1],
$$

and the associated convergence to stochastic integrals

$$
T^{-1} \sum_{t=1}^{T}\left[\begin{array}{c}
x_{t-1} \tag{S.3}\\
z_{t-1}
\end{array}\right]\left[\epsilon_{t}^{\prime}, \Delta x_{t}, \Delta z_{t}\right] \xrightarrow{w} \int_{0}^{1} M_{\eta c}(s) d\left[M_{\eta}(s)^{\prime}, M_{\eta c}(s)^{\prime}\right]
$$

These obtain from (4) by routine arguments using a standard approximation of the exponential function, partial summation and integration, and the continuous mapping theorem [CMT].

Proof of Theorem 1: We may set α_{y}, α_{x} and α_{z} to zero, without loss of generality. First write t_{u} as

$$
t_{u}=\frac{T^{-1} \sum_{t=1}^{T} \stackrel{\circ}{x}_{t-1} y_{t}}{\sqrt{s_{y}^{2} T^{-2} \sum_{t=1}^{T} \stackrel{\circ}{x}_{t-1}^{2}}}
$$

Then, we can write

$$
\begin{aligned}
T^{-1} \sum_{t=1}^{T} \stackrel{\grave{x}}{t-1} y_{t}= & g_{x} T^{-2} \sum_{t=1}^{T} \stackrel{\circ}{x}_{t-1} x_{t-1}+g_{z} T^{-2} \sum_{t=1}^{T} \stackrel{\grave{x}}{t-1}^{z_{t-1}}+T^{-1} \sum_{t=1}^{T} \stackrel{\grave{x}}{t-1} \epsilon_{y t} \\
& \xrightarrow{w} g_{x} \int_{0}^{1} \bar{M}_{\eta c, x}(r)^{2}+g_{z} \int_{0}^{1} \bar{M}_{\eta c, x}(r) M_{\eta c, z}(r)+\int_{0}^{1} \bar{M}_{\eta c, x}(r) d M_{\eta y}(r)
\end{aligned}
$$

and $T^{-2} \sum_{t=1}^{T} \stackrel{x}{x}_{t-1}^{2} \xrightarrow{w} \int_{0}^{1} \bar{M}_{\eta c, x}(r)^{2}$ using (S.2), (S.3) and the CMT. Also,

$$
\begin{aligned}
s_{y}^{2}= & T^{-1} \sum_{t=1}^{T} \stackrel{\grave{y}}{t}_{2}-T^{-1} \frac{\left\{T^{-1} \sum_{t=1}^{T} \stackrel{\grave{x}}{t-1}^{y_{t}}\right\}^{2}}{T^{-2} \sum_{t=1}^{T} \grave{x}_{t-1}^{2}}+o_{p}(1)=T^{-1} \sum_{t=1}^{T} y_{t}^{2}-\bar{y}^{2}+o_{p}(1) \\
= & T^{-1} \sum_{t=1}^{T}\left(g_{x} T^{-1} x_{t-1}+g_{z} T^{-1} z_{t-1}+\epsilon_{y t}\right)^{2} \\
& -\left\{T^{-1} \sum_{t=1}^{T}\left(g_{x} T^{-1} x_{t-1}+g_{z} T^{-1} z_{t-1}+\epsilon_{y t}\right)\right\}^{2}+o_{p}(1) \\
= & T^{-1} \sum_{t=1}^{T} \epsilon_{y t}^{2}+o_{p}(1) \xrightarrow{p} \omega_{y y}
\end{aligned}
$$

by (S.1). Consequently, by the CMT,

$$
t_{u} \xrightarrow{w} \frac{g_{x} \int_{0}^{1} \bar{M}_{\eta c, x}(r)^{2}+g_{z} \int_{0}^{1} \bar{M}_{\eta c, x}(r) M_{\eta c, z}(r)+\int_{0}^{1} \bar{M}_{\eta c, x}(r) d M_{\eta y}(r)}{\sqrt{\omega_{y y} \int_{0}^{1} \bar{M}_{\eta c, x}(r)^{2}}}
$$

It follows from the previous discussion of $\sum_{t=1}^{T} \dot{x}_{t-1} y_{t}$ and $\sum_{t=1}^{T} \stackrel{\circ}{x}_{t-1}^{2}$ that

$$
T \hat{\beta}_{x} \xrightarrow[\rightarrow]{ } \frac{g_{x} \int_{0}^{1} \bar{M}_{\eta c, x}(r)^{2}+g_{z} \int_{0}^{1} \bar{M}_{\eta c, x}(r) M_{\eta c, z}(r)+\int_{0}^{1} \bar{M}_{\eta c, x}(r) d M_{\eta y}(r)}{\int_{0}^{1} \bar{M}_{\eta c, x}(r)^{2}} .
$$

Also,

$$
T\left(\hat{\rho}_{x}-\rho_{x}\right)=\frac{T^{-1} \sum_{t=1}^{T} \stackrel{\grave{x}}{t-1} \epsilon_{x t}}{T^{-2} \sum_{t=1}^{T} \grave{x}_{t-1}^{2}} \xrightarrow[\rightarrow]{w} \frac{\int_{0}^{1} \bar{M}_{\eta c, x}(r) d M_{\eta x}(r)}{\int_{0}^{1} \bar{M}_{\eta c, x}(r)^{2}}
$$

since $T^{-1} \sum_{t=1}^{T} \stackrel{\circ}{x}_{t-1} \epsilon_{x t} \xrightarrow{w} \int_{0}^{1} \bar{M}_{\eta c, x}(r) d M_{\eta x}(r)$ using (S.2), (S.3) and the CMT. Now

$$
\begin{aligned}
\hat{\epsilon}_{x t} & =x_{t}-\bar{x}-\hat{\rho}_{x} \grave{x}_{t-1} \\
& =\rho_{x} x_{t-1}+\epsilon_{x t}-\rho_{x} \bar{x}_{-1}-\bar{\epsilon}_{x}-\hat{\rho}_{x} \stackrel{\grave{x}}{t-1} \\
& =-\left(\hat{\rho}_{x}-\rho_{x}\right) \grave{x}_{t-1}+\epsilon_{x t}-\bar{\epsilon}_{x}
\end{aligned}
$$

giving

$$
\begin{aligned}
s_{x}^{2}= & T^{-1} \sum_{t=1}^{T}\left\{-\left(\hat{\rho}_{x}-\rho_{x}\right) \stackrel{x}{t-1}+\epsilon_{x t}-\bar{\epsilon}_{x}\right\}^{2}+o_{p}(1) \\
= & \left(\hat{\rho}_{x}-\rho_{x}\right)^{2} T^{-1} \sum_{t=1}^{T} \stackrel{\check{x}}{t-1}_{2}+T^{-1} \sum_{t=1}^{T}\left(\epsilon_{x t}-\bar{\epsilon}_{x}\right)^{2} \\
& -2\left(\hat{\rho}_{x}-\rho_{x}\right) T^{-1} \sum_{t=1}^{T} \stackrel{\grave{x}}{t-1}\left(\epsilon_{x t}-\bar{\epsilon}_{x}\right)+o_{p}(1) \\
= & T^{-1} \sum_{t=1}^{T} \epsilon_{x t}^{2}+o_{p}(1) \xrightarrow{p} \omega_{x x}
\end{aligned}
$$

by (S.1), and

$$
\begin{aligned}
s_{x y} & =T^{-1} \sum_{t=1}^{T} \hat{\epsilon}_{x t} \hat{\epsilon}_{y t}+o_{p}(1) \\
& =T^{-1} \sum_{t=1}^{T}\left\{-\left(\hat{\rho}_{x}-\rho_{x}\right) \stackrel{\circ}{x}_{t-1}+\epsilon_{x t}-\bar{\epsilon}_{x}\right\}\left\{\beta_{x} \stackrel{\circ}{x-1}+\beta_{z} \stackrel{\circ}{z}_{t-1}+\left(\epsilon_{y t}-\bar{\epsilon}_{y}\right)-\hat{\beta}_{x} \stackrel{\circ}{x}_{t-1}\right\}+o_{p}(1) \\
& =T^{-1} \sum_{t=1}^{T} \epsilon_{x t} \epsilon_{y t}+o_{p}(1) \xrightarrow{p} \omega_{x y}
\end{aligned}
$$

using (S.1).
So, using the limit of s_{y}^{2} from the discussion of t_{u}, we find that

$$
\begin{aligned}
Q & =\frac{T \hat{\beta}_{x}-\left(s_{x y} / s_{x}^{2}\right) T\left(\hat{\rho}_{x}-\rho_{x}\right)}{\sqrt{s_{y}^{2}\left\{1-\left(s_{x y}^{2} / s_{y}^{2} s_{x}^{2}\right)\right\} / T^{-2} \sum_{t=1}^{T}\left(x_{t-1}-\bar{x}_{-1}\right)^{2}}} \\
& \xrightarrow[\rightarrow]{w} \frac{g_{x} \int_{0}^{1} \bar{M}_{\eta c, x}(r)^{2}+g_{z} \int_{0}^{1} \bar{M}_{\eta c, x}(r) M_{\eta c, z}(r)+\int_{0}^{1} \bar{M}_{\eta c, x}(r) d M_{\eta y}(r)-\omega_{x y} \omega_{x x}^{-1} \int_{0}^{1} \bar{M}_{\eta c, x}(r) d M_{\eta x}(r)}{\sqrt{\left(\omega_{y y}-\omega_{x y}^{2} / \omega_{x x}\right) \int_{0}^{1} \bar{M}_{\eta c, x}(r)^{2}}} \\
& =\frac{g_{x} \int_{0}^{1} \bar{M}_{\eta c, x}(r)^{2}+g_{z} \int_{0}^{1} \bar{M}_{\eta c, x}(r) M_{\eta c, z}(r)+\int_{0}^{1} \bar{M}_{\eta c, x}(r) d\left\{M_{\eta y}(r)-\omega_{x y} \omega_{x x}^{-1} M_{\eta x}(r)\right\}}{\sqrt{\omega_{y \mid x} \int_{0}^{1} \bar{M}_{\eta c, x}(r)^{2}}}
\end{aligned}
$$

Proof of Theorem 2: We may set α_{y}, α_{x} and α_{z} to zero, and g_{x} to $-c h_{11}^{-1} h_{31}$, without loss of generality, since the \hat{e}_{t} are invariant to these parameters. Let $y_{t}^{x}:=y_{t}-h_{11}^{-1} h_{31} \Delta x_{t}$, $\dot{y}_{t}^{x}:=\grave{y}_{t}-h_{11}^{-1} h_{33} \Delta \dot{x}_{t}$ and $\epsilon_{y t}^{x}:=\epsilon_{y t}-h_{31} d_{1 t} e_{1 t}=h_{32} d_{2 t} e_{2 t}+h_{33} d_{3 t} e_{3 t}$. For later reference
we first observe that

$$
\begin{align*}
T^{-1} \sum_{t=1}^{T} \stackrel{\grave{x}}{t-1}^{y_{t}^{x}=} & T^{-1} \sum_{t=1}^{T} \stackrel{\circ}{x}_{t-1} \epsilon_{y t}^{x}+g_{z} T^{-1} \sum_{t=1}^{T} \dot{x}_{t-1} z_{t-1} \tag{S.4}\\
& \xrightarrow{w} \int_{0}^{1} \bar{M}_{\eta c, x}(r) d\left\{\omega_{y \mid x}^{1 / 2} B_{\eta, y \mid x}(r)\right\}+g_{z} \int_{0}^{1} \bar{M}_{\eta c, x}(r) M_{\eta c, z}(r)
\end{align*}
$$

using (S.2), (S.3) and the CMT, with $\omega_{y \mid x}=h_{32}^{2} f_{2}+h_{33}^{2} f_{3}$ and $B_{\eta, y \mid x}(r)=\omega_{y \mid x}^{-1 / 2}\left\{h_{32} f_{2}^{1 / 2} B_{\eta 2}(r)+\right.$ $\left.h_{33} f_{3}^{1 / 2} B_{\eta 3}(r)\right\}$.

Next, consider the limit of the partial sum process for \hat{e}_{t}, which we write as

$$
T^{-1 / 2} \sum_{t=1}^{\lfloor T r\rfloor} \hat{e}_{t}=T^{-1 / 2} \sum_{t=1}^{\lfloor T r\rfloor} \grave{y}_{t}-\left[\begin{array}{ll}
T^{-3 / 2} \sum_{t=1}^{\lfloor T r\rfloor} \grave{x}_{t-1} & T^{-1 / 2} \sum_{t=1}^{\lfloor T r\rfloor} \Delta \grave{x}_{t} \tag{S.5}
\end{array}\right] N_{T} \hat{\boldsymbol{\beta}}
$$

with $N_{T}:=\operatorname{diag}\{1, T\}$ and

$$
N_{T} \hat{\boldsymbol{\beta}}:=\left[\begin{array}{cc}
T^{-2} \sum_{t=1}^{T} \dot{x}_{t-1}^{2} & T^{-1} \sum_{t=1}^{T} \stackrel{\circ}{x}_{t-1} \Delta x_{t} \\
T^{-2} \sum_{t=1}^{T} \dot{x}_{t-1} \Delta x_{t} & T^{-1} \sum_{t=1}^{T}\left(\Delta \dot{x}_{t}\right)^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
T^{-1} \sum_{t=1}^{T} \stackrel{\circ}{x}_{t-1} y_{t} \\
T^{-1} \sum_{t=1}^{T} \Delta \dot{x}_{t} y_{t}
\end{array}\right]
$$

Before passing to the limit in (S.5), we focus on $N_{T} \hat{\boldsymbol{\beta}}$. It holds that

$$
N_{T} \hat{\boldsymbol{\beta}}=\Delta_{T}^{-1}\left[\begin{array}{cc}
T^{-1} \sum_{t=1}^{T}\left(\Delta \stackrel{\circ}{x}_{t}\right)^{2} & -T^{-1} \sum_{t=1}^{T} \stackrel{\circ}{x}_{t-1} \Delta x_{t} \tag{S.6}\\
o_{p}(1) & T^{-2} \sum_{t=1}^{T} \grave{x}_{t-1}^{2}
\end{array}\right]\left[\begin{array}{c}
T^{-1} \sum_{t=1}^{T} \grave{x}_{t-1} y_{t} \\
T^{-1} \sum_{t=1}^{T} \Delta \grave{x}_{t} y_{t}
\end{array}\right]
$$

where $\Delta_{T}:=T^{-3}\left\{\sum_{t=1}^{T} \stackrel{\circ}{x}_{t-1}^{2} \sum_{t=1}^{T}\left(\Delta \dot{x}_{t}\right)^{2}-\left(\sum_{t=1}^{T} \dot{x}_{t-1} \Delta x_{t}\right)^{2}\right\}=T^{-3} \sum_{t=1}^{T} \stackrel{\circ}{x}_{t-1}^{2} \sum_{t=1}^{T}\left(\Delta \dot{x}_{t}\right)^{2}+$ $o_{p}\left(T^{-3}\right)$ because $\sum_{t=1}^{T} \stackrel{\circ}{x}_{t-1} \Delta x_{t}=O_{p}(T)$ by (S.2) and (S.3). Further, as also $\sum_{t=1}^{T} \stackrel{\circ}{x}_{t-1} y_{t}=$ $O_{p}(T)$ by the proof of Theorem 1, it holds that

$$
\begin{align*}
N_{T} \hat{\boldsymbol{\beta}} & =\Delta_{T}^{-1}\left[\begin{array}{c}
T^{-2}\left\{\sum_{t=1}^{T} \stackrel{\circ}{x}_{t-1} y_{t} \sum_{t=1}^{T}\left(\Delta \grave{x}_{t}\right)^{2}-\sum_{t=1}^{T} \grave{x}_{t-1} \Delta x_{t} \sum_{t=1}^{T} \Delta \grave{x}_{t} y_{t}\right\} \\
T^{-3} \sum_{t=1}^{T} \grave{x}_{t-1}^{2} \sum_{t=1}^{T} \Delta \grave{x}_{t} y_{t}+o_{p}(1)
\end{array}\right] \\
& =\Delta_{T}^{-1}\left[\begin{array}{c}
T^{-2}\left\{\sum_{t=1}^{T} \stackrel{\grave{x}}{t-1}^{\left.y_{t}^{x} \sum_{t=1}^{T}\left(\Delta \grave{x}_{t}\right)^{2}-\sum_{t=1}^{T} \stackrel{\circ}{x}_{t-1} \Delta x_{t} \sum_{t=1}^{T} \Delta \grave{x}_{t} y_{t}^{x}\right\}}\right. \\
T^{-3} \frac{h_{31}}{h_{11}} \sum_{t=1}^{T} \grave{x}_{t-1}^{2} \sum_{t=1}^{T}\left(\Delta \grave{x}_{t}\right)^{2}+T^{-3} \sum_{t=1}^{T} \grave{x}_{t-1}^{2} \sum_{t=1}^{T} \Delta \grave{x}_{t} y_{t}^{x}+o_{p}(1)
\end{array}\right] \\
& =\Delta_{T}^{-1}\left[\begin{array}{c}
T^{-2} \sum_{t=1}^{T} \grave{x}_{t-1} y_{t}^{x} \sum_{t=1}^{T}\left(\Delta \grave{x}_{t}\right)^{2}+o_{p}(1) \\
T^{-3} \frac{h_{31}}{h_{11}} \sum_{t=1}^{T} \grave{x}_{t-1}^{2} \sum_{t=1}^{T}\left(\Delta \grave{x}_{t}\right)^{2}+o_{p}(1)
\end{array}\right] \tag{S.7}
\end{align*}
$$

because $\sum_{t=1}^{T} \Delta \dot{x}_{t} y_{t}^{x}=\sum_{t=1}^{T} \Delta x_{t} \epsilon_{y t}^{x}+g_{z} T^{-1} \sum_{t=1}^{T} \Delta x_{t} z_{t-1}-T^{-1}\left(x_{T}-x_{1}\right)\left\{\sum_{t=1}^{T} \epsilon_{y t}^{x}+\right.$ $\left.g_{z} T^{-1} \sum_{t=1}^{T} z_{t-1}\right\}=o_{p}(T)$ given that (i) $\sum_{t=1}^{T} \Delta x_{t} \epsilon_{y t}^{x}=\sum_{t=1}^{T} \epsilon_{x t} \epsilon_{y t}^{x}-c T^{-1} \sum_{t=1}^{T} x_{t-1} \epsilon_{y t}^{x}=$
$o_{p}(T)$ using (S.1) and the convergence $T^{-1} \sum_{t=1}^{T} x_{t-1} \epsilon_{y t}^{x} \xrightarrow{w} \int_{0}^{1} M_{\eta c, x}(s) d\left\{\omega_{y \mid x}^{1 / 2} B_{\eta, y \mid x}(s)\right\}$ implied by (S.3), (ii) $T^{-1} \sum_{t=1}^{T} \Delta x_{t} z_{t-1} \xrightarrow{w} \int_{0}^{1} M_{\eta c, z}(r) d M_{\eta c, x}(r)$ as a consequence of (S.3), (iii) $T^{-1 / 2}\left(x_{T}-x_{1}\right) \xrightarrow{w} M_{\eta c, x}(1)$ by (S.2) and the CMT, (iv) $T^{-1 / 2} \sum_{t=1}^{T} \epsilon_{y t}^{x} \xrightarrow{w} \omega_{y \mid x}^{1 / 2} B_{\eta, y \mid x}(1)$, and (v) $T^{-3 / 2} \sum_{t=1}^{T} z_{t-1} \xrightarrow{w} \int_{0}^{1} M_{\eta c, z}(s)$ by (S.2) and the CMT. Finally,

$$
\begin{equation*}
N_{T} \hat{\boldsymbol{\beta}}=\left[\left(T^{-1} \sum_{t=1}^{T} \stackrel{\grave{x}}{t-1}_{2}^{)^{-1}} \sum_{t=1}^{T} \stackrel{\circ}{x}_{t-1} y_{t}^{x} \quad h_{11}^{-1} h_{31}\right]^{\prime}+o_{p}(1)\right. \tag{S.8}
\end{equation*}
$$

because $T^{-1} \sum_{t=1}^{T}\left(\Delta \dot{x}_{t}\right)^{2}=T^{-1} \sum_{t=1}^{T} \epsilon_{t x}^{2}-2 c_{x} T^{-2} \sum_{t=1}^{T} \epsilon_{t x} x_{t-1}+T^{-3} c_{x}^{2} \sum_{t=1}^{T} x_{t-1}^{2}-T^{-2}\left(x_{T}-\right.$ $\left.x_{1}\right)^{2}=T^{-1} \sum_{t=1}^{T} \epsilon_{t x}^{2}+o_{p}(1) \xrightarrow{p} \omega_{x x}$ by (S.1), so $T^{-1} \sum_{t=1}^{T}\left(\Delta \dot{x}_{t}\right)^{2}$ is bounded away from zero in P-probability.

Given (S.8), (S.5) simplifies to

$$
\begin{equation*}
T^{-1 / 2} \sum_{t=1}^{\lfloor T r\rfloor} \hat{e}_{t}=T^{-1 / 2} \sum_{t=1}^{\lfloor T r\rfloor} \check{y}_{t}^{x}-\frac{\sum_{t=1}^{T} \stackrel{\check{x}}{t-1} y_{t}^{x}}{T^{-1} \sum_{t=1}^{T} \check{x}_{t-1}^{2}} T^{-3 / 2} \sum_{t=1}^{\lfloor T r\rfloor} \stackrel{\circ}{x}_{t-1}+\rho_{T}(r), \tag{S.9}
\end{equation*}
$$

where

$$
\begin{aligned}
T^{-1 / 2} \sum_{t=1}^{\lfloor T r\rfloor} \dot{y}_{t}^{x}=T^{-1 / 2} & \sum_{t=1}^{\lfloor T r\rfloor} \epsilon_{y t}^{x}+T^{-3 / 2} g_{z} \sum_{t=1}^{\lfloor T r\rfloor} z_{t-1}-\frac{\lfloor T r\rfloor-1}{T^{3 / 2}}\left\{\sum_{t=1}^{T} \epsilon_{y t}^{x}+T^{-1} g_{z} \sum_{t=1}^{T} z_{t-1}\right\} \\
& \xrightarrow[\rightarrow]{w} \omega_{y \mid x}^{1 / 2}\left(B_{\eta, y \mid x}(r)-r B_{\eta, y \mid x}(1)\right)+g_{z}\left(\int_{0}^{r} M_{\eta c, z}(s)-r \int_{0}^{r} M_{\eta c, z}\right)
\end{aligned}
$$

on \mathcal{D}, and $\rho_{T}(r)=o_{p}(1) T^{-3 / 2} \sum_{t=1}^{\lfloor T r\rfloor} \dot{x}_{t-1}+o_{p}(1) T^{-1 / 2} \sum_{t=1}^{\lfloor T r\rfloor} \Delta \dot{x}_{t}$ is such that

$$
\begin{equation*}
\sup _{r \in[0,1]}\left|\rho_{T}(r)\right| \leq o_{p}(1) \sup _{r \in[0,1]}\left|T^{-3 / 2} \sum_{t=1}^{\lfloor T r\rfloor} \stackrel{\circ}{x}_{t-1}\right|+o_{p}(1) T^{-1 / 2} \sup _{t=0, \ldots, T}\left|x_{t}\right|=o_{p}(1) \tag{S.10}
\end{equation*}
$$

because $\sup _{r \in[0,1]}\left|T^{-3 / 2} \sum_{t=1}^{\lfloor T r]} \stackrel{\circ}{x}_{t-1}\right| \xrightarrow{w} \sup _{r \in[0,1]}\left|\int_{0}^{r} \bar{M}_{\eta c, x}(s)\right|$ and $T^{-1 / 2} \sup _{t=0, \ldots, T}\left|x_{t}\right| \xrightarrow{w}$ $\sup _{r \in[0,1]}\left|M_{\eta c, x}(r)\right|$ by the CMT. Therefore, using also (S.4) and the CMT again,

$$
\begin{aligned}
& T^{-1 / 2} \sum_{t=1}^{\lfloor T r\rfloor} \hat{e}_{t} \xrightarrow{w} \omega_{y \mid x}^{1 / 2}\left\{B_{\eta, y \mid x}(r)-r B_{\eta, y \mid x}(1)-\frac{\int_{0}^{1} \bar{M}_{\eta c, x}(s) d B_{\eta, y \mid x}(s)}{\int_{0}^{1} \bar{M}_{\eta c, x}^{2}(s)} \int_{0}^{r} \bar{M}_{\eta c, x}(s)\right\} \\
& \quad+g_{z}\left\{\int_{0}^{r} M_{\eta c, z}(s)-r \int_{0}^{1} M_{\eta c, z}(s)-\frac{\int_{0}^{1} \bar{M}_{\eta c, x}(s) M_{\eta c, z}(s)}{\int_{0}^{1} \bar{M}_{\eta c, x}^{2}(s)} \int_{0}^{r} \bar{M}_{\eta c, x}(s)\right\} \\
& =\omega_{y \mid x}^{1 / 2}\left\{F\left(r, c_{x}\right)+g_{z} G\left(r, c_{x}, c_{z}\right)\right\}
\end{aligned}
$$

on \mathcal{D}.

Next, using the previously established order of magnitude results, we have that,

$$
\begin{align*}
& \sum_{t=1}^{T} \hat{e}_{t}^{2}=\sum_{t=1}^{T} \dot{y}_{t}^{2}-\left[\begin{array}{ll}
T^{-1} \sum_{t=1}^{T} \stackrel{\circ}{x}_{t-1} y_{t} & \sum_{t=1}^{T} \Delta \dot{x}_{t} y_{t}
\end{array}\right] N_{T} \hat{\boldsymbol{\beta}} \tag{S.11}\\
& =\sum_{t=1}^{T} \dot{y}_{t}^{2}-h_{11}^{-1} h_{31} \sum_{t=1}^{T} \Delta \stackrel{\circ}{x}_{t} y_{t}-\sum_{t=1}^{T} \stackrel{\check{x}}{t-1} y_{t}\left(\sum_{t=1}^{T} \stackrel{\circ}{x}_{t-1}^{2}\right)^{-1} \sum_{t=1}^{T} \stackrel{\circ}{x}_{t-1} y_{t}^{x}+o_{p}(T) \\
& =\sum_{t=1}^{T} \stackrel{\check{y}}{t}_{2}-h_{11}^{-2} h_{31}^{2} \sum_{t=1}^{T}\left(\Delta \dot{x}_{t}\right)^{2}-h_{11}^{-1} h_{31} \sum_{t=1}^{T} \Delta \dot{x}_{t} y_{t}^{x}+o_{p}(T) \\
& =\sum_{t=1}^{T}\left(\grave{y}_{t}^{x}\right)^{2}+h_{11}^{-1} h_{31} \sum_{t=1}^{T} y_{t}^{x} \Delta \dot{x}_{t}+o_{p}(T) \\
& =\sum_{t=1}^{T}\left(\epsilon_{y t}^{x}\right)^{2}-2 T^{-1} g_{z} \sum_{t=1}^{T} z_{t-1} \epsilon_{y t}+T^{-2} g_{z}^{2} \sum_{t=1}^{T} z_{t-1}^{2}+o_{p}(T)=\sum_{t=1}^{T}\left(\epsilon_{y t}^{x}\right)^{2}+o_{p}(T) \text {, }
\end{align*}
$$

where $T^{-1} \sum_{t=1}^{T}\left(\epsilon_{y t}^{x}\right)^{2} \xrightarrow{p} h_{32}^{2} f_{2}+h_{33}^{2} f_{3}=\omega_{y \mid x}$ by (S.1). Consequently,

$$
\begin{equation*}
s^{2} \xrightarrow{p} \omega_{y \mid x}, \tag{S.12}
\end{equation*}
$$

and by the CMT, $S \xrightarrow{w} \int_{0}^{1}\left\{F\left(r, c_{x}\right)+g_{z} G\left(r, c_{x}, c_{z}\right)\right\}^{2} d r$.

Before proceeding to the proof of Theorem 5, we make the assumption, without loss of generality and maintained throughout, that well-defined conditional distributions exist. Indeed, whenever interest is in the random elements of a Polish space, the existence of conditional distributions is guaranteed and we assume without loss of generality that conditional probabilities are regular (Dudley (2004), Th. 10.2.2, p.345). We also define some additional notation related to the conditional convergence modes used in the remainder of the Appendix. Let $E_{x}(\cdot):=E(\cdot \mid x)$ and $E^{*}(\cdot):=E(\cdot \mid x, y, z)$. For weak convergence of random measures induced by conditioning, i.e., of the form $(\cdot)|x \xrightarrow{w}(\circ)| B_{1}$ and $(\mathbf{\Delta})|x, y, z \xrightarrow{w}(\triangle)| B_{1}$, we write $(\cdot) \xrightarrow{w_{\mathcal{F}}}(0) \mid B_{1}$ and $(\cdot) \xrightarrow{w^{*}}(\triangle) \mid B_{1}$ respectively, the definitions being $E_{x}\{f(\cdot)\} \xrightarrow{w}$ $E\left\{f(\circ) \mid B_{1}\right\}$ and $E^{*}\{g(\mathbf{\Delta})\} \xrightarrow{w} E\left\{g(\triangle) \mid B_{1}\right\}$ for all bounded continuous real functions f and g, where $\cdot, \circ, \boldsymbol{\Delta}$ and \triangle are placeholders for random elements. We say that the w_{x} and w^{*} convergence are joint if $\left(E_{x}\{f(\cdot)\}, E^{*}\{g(\mathbf{\Delta})\}\right)^{\prime} \xrightarrow{w}\left(E\left\{f(\circ) \mid B_{1}\right\}, E\left\{g(\triangle) \mid B_{1}\right\}\right)^{\prime}$ for the same class of functions f, g. This is distinct from the case where two w_{x} convergence facts, $(\cdot) \xrightarrow{w_{F}}(\circ) \mid B_{1}$ and $(\mathbf{\Delta}) \xrightarrow{w_{F}}(\triangle) \mid B_{1}$, are joint, where $E_{x}\{h(\cdot, \mathbf{\Delta})\} \xrightarrow{w} E\left\{h(\circ, \triangle) \mid B_{1}\right\}$ should hold for bounded continuous h (and similarly, for w^{*}). We write $(\cdot)_{T}=O_{p}^{x}(1)$ to denote
that for every $\varepsilon>0$ there exists a $C>0$ such that $P\left(P\left(\left\|(\cdot)_{T}\right\|>C \mid x\right)>\varepsilon\right)<\varepsilon$, and $(\cdot)_{T}=o_{p}^{x}(1)$ if $(\cdot)_{T} \xrightarrow{w_{\boldsymbol{*}}} 0$, where $\|\cdot\|$ is a norm (for random processes, the uniform norm). The corresponding notation $O_{p}^{*}(1)$ and $o_{p}^{*}(1)$ is introduced similarly for conditioning on the data.

In Theorem 5 we now establish a homoskedastic joint conditional and bootstrap invariance principle.

Theorem 5. Define the partial sums $U_{t i}:=T^{-1 / 2} \sum_{s=1}^{t} e_{i s}(i=1,2,3), U_{t}:=\left[U_{t 1}, U_{t 2}, U_{t 3}\right]^{\prime}$ and $U_{t b}:=T^{-1 / 2} \sum_{s=1}^{t} e_{s} w_{s}$. Moreover, let $B^{\dagger}:=\left[B_{1}^{\dagger}, B_{2}^{\dagger}, B_{3}^{\dagger}\right]^{\prime}$ denote a standard Brownian motion in \mathbb{R}^{3}, independent of B. Under Assumption 2, the following converge jointly as $T \rightarrow \infty$:

$$
U_{\lfloor T \cdot\rfloor}|x \xrightarrow{w} B| B_{1}
$$

and

$$
\left[U_{\lfloor T \cdot\rfloor 1}, U_{[T \cdot\rfloor b}^{\prime}\right]^{\prime}\left|x, y, z \xrightarrow{w}\left[B_{1},\left(B^{\dagger}\right)^{\prime}\right]^{\prime}\right| B_{1}
$$

in the sense of weak convergence of random measures on \mathcal{D}^{3} and \mathcal{D}^{4}.
According to the notation introduced previously, the meaning of the joint weak convergence of random measures result established in Theorem 5, is that for all bounded continuous real functions f and g on \mathcal{D}^{3} and \mathcal{D}^{4}, respectively, it holds that

$$
\left[\begin{array}{c}
E_{x}\left(f\left(U_{\lfloor T \cdot\rfloor}^{\prime}\right)\right) \\
E^{*}\left(g\left(U_{\lfloor T \cdot\rfloor 1}, U_{\lfloor T \cdot\rfloor b}^{\prime}\right)\right)
\end{array}\right] \stackrel{w}{\rightarrow}\left[\begin{array}{c}
E\left(f\left(B^{\prime}\right) \mid B_{1}\right) \\
E\left(g\left(B_{1},\left(B^{\dagger}\right)^{\prime}\right) \mid B_{1}\right)
\end{array}\right]
$$

as $T \rightarrow \infty$, in the sense of standard weak convergence of random vectors in \mathbb{R}^{2}.
Proof of Theorem 5: From Theorem 2 of Rubshtein (1996), by extending the argument to the trivariate case, it follows that $E\left(f\left(U_{\lfloor T \cdot\rfloor 2}, U_{\lfloor T \cdot\rfloor 3}\right) \mid \mathcal{X}\right) \xrightarrow{\text { a.s. }} E\left(f\left(B_{2}, B_{3}\right)\right)$ for continuous bounded real f on \mathcal{D}^{2}. Then, by the bounded and martingale convergence theorems,

$$
\begin{equation*}
E_{x} f\left(U_{\lfloor T \cdot\rfloor 2}, U_{\lfloor T \cdot\rfloor 3}\right) \xrightarrow{p} E f\left(B_{2}, B_{3}\right) \tag{S.13}
\end{equation*}
$$

for these functions f. As additionally $U_{\lfloor T \cdot\rfloor} \xrightarrow{w} B$ in \mathcal{D}^{3} (a special case of (4)), from Corollary 4.1 of Crimaldi and Pratelli (2005) it follows that

$$
\begin{equation*}
E_{x} f\left(U_{\lfloor T \cdot\rfloor}^{\prime}\right) \xrightarrow{w} E\left(f\left(B^{\prime}\right) \mid B_{1}\right) \tag{S.14}
\end{equation*}
$$

for continuous bounded real f on \mathcal{D}^{3}. Here we have used the result that conditioning on x and $U_{\lfloor T \cdot\rfloor 1}$ are equivalent.

Next, we note that $U_{t b}$, given the data, is a Gaussian process with independent increments, mean zero and variance function $V_{T}(r):=\operatorname{Var}^{*}\left(U_{\lfloor T r\rfloor b}\right)=T^{-1} \sum_{t=1}^{\lfloor T r\rfloor} e_{t} e_{t}^{\prime} \xrightarrow{p} r I_{3}$ $(r \in[0,1])$, by Lemma A. 1 of Boswijk et al. (2015). As V_{T} are component-wise increasing in r and their point-wise limit is continuous in r, the convergence of V_{T} is uniform in r, and it follows that

$$
\begin{equation*}
E^{*} f\left(U_{\lfloor T \cdot] b}^{\prime}\right) \xrightarrow{p} E f\left(B^{\dagger \prime}\right) \tag{S.15}
\end{equation*}
$$

for continuous bounded real f on \mathcal{D}^{3}. Additionally, $\left[U_{[T \cdot]}^{\prime}, U_{[T \cdot] b}^{\prime}\right]^{w}\left[B^{\prime}, B^{\dagger}\right]^{\prime}$ on \mathcal{D}^{6} by the martingale functional CLT [MFCLT] of Brown (1971), and so from Corollary 4.1 of Crimaldi and Pratelli (2005) it follows further that, for continuous bounded real f on \mathcal{D}^{6},

$$
E^{*} f\left(U_{\lfloor T \cdot\rfloor}^{\prime}, U_{\lfloor T \cdot\rfloor b}^{\prime}\right) \xrightarrow{w} E\left\{f\left(B^{\prime}, B^{\dagger}\right) \mid B\right\}
$$

here we have used the result that conditioning on x, y, z and $U_{\lfloor T .\rfloor}$ are equivalent. In particular, for f that do not depend on $U_{\lfloor T \cdot\rfloor 1}, U_{\lfloor T \cdot\rfloor 2}$, restricted to \mathcal{D}^{4}, the bootstrap counterpart of (S.14) is obtained:

$$
\begin{equation*}
E^{*} f\left(U_{\lfloor T \cdot\rfloor 1}, U_{\lfloor T \cdot\rfloor b}^{\prime}\right) \xrightarrow{w} E\left\{f\left(B_{1}, B^{\dagger \prime}\right) \mid B\right\}=E\left\{f\left(B_{1}, B^{\dagger \prime}\right) \mid B_{1}\right\} \tag{S.16}
\end{equation*}
$$

the last equality following by the independence of the components of $\left[B^{\prime}, B^{\dagger}\right]^{\prime}$.
To see that (S.14) and (S.16) are joint, it is sufficient, according to the Cramer-Wald device, to obtain the convergence

$$
\begin{equation*}
a E_{x} f\left(U_{\lfloor T \cdot\rfloor}^{\prime}\right)+b E^{*} g\left(U_{\lfloor T \cdot\rfloor 1}, U_{\lfloor T \cdot\rfloor b}^{\prime}\right) \xrightarrow{w} E\left(a f\left(B^{\prime}\right)+b g\left(B_{1}, B^{\dagger \prime}\right) \mid B_{1}\right) \tag{S.17}
\end{equation*}
$$

for arbitrary $a, b \in \mathbb{R}$ and for continuous bounded real f and g on \mathcal{D}^{3} and \mathcal{D}^{4}, respectively. To this end, by Skorokhod's representation theorem applied to the Polish space \mathcal{D}^{6}, and since $\left[B^{\prime}, B^{\dagger}\right]^{\prime}$ has a.s. continuous sample paths, we can consider a probability space where $\left[U_{[T \cdot]}, U_{[T \cdot] b}^{\prime}\right]^{\prime} \rightarrow\left[B^{\prime}, B^{\dagger}\right]^{\prime}$ a.s. On this probability space, by Corollary 4.4 of Crimaldi and Pratelli (2005), (S.14) and (S.16) hold in probability instead of weakly, and hence, (S.17) holds in probability. Since the distribution of the involved conditional expectations only depends on the distribution of $\left[U_{[T \cdot]}^{\prime}, U_{[T \cdot] b}^{\prime}\right]^{\prime}$ and $\left[B^{\prime}, B^{\dagger \dagger}\right]^{\prime}$, it follows that on general probability spaces (S.17) holds weakly.

Proof of Theorem 3: Let $\tilde{U}_{t b}:=T^{-1 / 2} \sum_{s=1}^{t} \tilde{\epsilon}_{s b}$ be the bootstrap partial sums. Introduce also $\tilde{\epsilon}_{i t}:=d_{t} e_{i t}, \tilde{U}_{t i}:=T^{-1 / 2} \sum_{s=1}^{t} \tilde{\epsilon}_{i s}, \tilde{M}_{i}(r):=\int_{0}^{r} d_{i}(s) d B_{i}(s)(i=1,2,3 ; r \in[0,1])$, $\tilde{U}_{t}:=\left[\tilde{U}_{t 1}, \tilde{U}_{t 2}, \tilde{U}_{t 3}\right]^{\prime}, \tilde{M}:=\left[\tilde{M}_{1}, \tilde{M}_{2}, \tilde{M}_{3}\right]^{\prime}$. Given that ϵ_{t} is a linear transformation of $\tilde{\epsilon}_{t}$, and linear transformations are continuous on the support of the process \tilde{M}, it suffices to establish that

$$
\begin{equation*}
\left(\tilde{U}_{\lfloor T \cdot]}, \sum_{t=1}^{T} \tilde{U}_{t-1,1}\left[\Delta \tilde{U}_{t 2}, \Delta \tilde{U}_{t 3}\right]\right) \xrightarrow{w_{7}}\left(\tilde{M}, \int_{0}^{1} \tilde{M}_{1}(s) d\left[\tilde{M}_{2}(s), \tilde{M}_{3}(s)\right]\right) \mid B_{1} \tag{S.18}
\end{equation*}
$$

jointly with

$$
\begin{equation*}
\left(U_{\lfloor T \cdot\rfloor 1}, \tilde{U}_{\lfloor T \cdot\rfloor b}, \sum_{t=1}^{T} \tilde{U}_{t-1,1} \Delta \tilde{U}_{t b}\right) \xrightarrow{w^{*}}\left(B_{1}, \tilde{B}_{\eta}, \int_{0}^{1} \tilde{M}_{1}(s) d \tilde{B}_{\eta}(s)\right) \mid B_{1} \tag{S.19}
\end{equation*}
$$

We shall prove Theorem 3 in this way.
Notice first that, given the data, $\tilde{U}_{\lfloor T \cdot] b}$ is a Gaussian process with independent increments, mean zero and variance function $\operatorname{Var}^{*}\left(\tilde{U}_{\lfloor T r\rfloor b}\right)=T^{-1} \sum_{t=1}^{\lfloor T r\rfloor} \tilde{e}_{T t}^{2}$. Under the assumption that $T^{-1} \sum_{t=1}^{\lfloor T r\rfloor} \tilde{e}_{T t}^{2} \xrightarrow{p} \int_{0}^{r} m^{2}(s) d s, r \in[0,1]$, this convergence is uniform in r because $T^{-1} \sum_{t=1}^{\lfloor T r\rfloor} \tilde{e}_{T t}^{2}$ are increasing in r and the limit integral is continuous in r. This suffices for the conclusion that $\tilde{U}_{\lfloor T \cdot\rfloor b}$ given the data (and thus, given $U_{\lfloor T \cdot\rfloor}$) converges weakly in probability to \tilde{B}_{η} :

$$
\begin{equation*}
E^{*} g\left(\tilde{U}_{\lfloor T \cdot\rfloor b}\right) \xrightarrow{p} E g\left(\tilde{B}_{\eta}\right) \tag{S.20}
\end{equation*}
$$

for all bounded continuous real g on \mathcal{D}, where \tilde{B}_{η} is a Gaussian process with independent increments, zero mean and variance function $\int_{0}^{*} m^{2}(s) d s$. On the other hand, since $U_{\lfloor T \cdot\rfloor} \xrightarrow{w} B$ by the MFCLT of Brown (1971), and since $\mathcal{D}^{3} \times \mathcal{D}$ is separable, it follows that $\left[U_{\lfloor T \cdot]}^{\prime}, \tilde{U}_{[T \cdot] b}\right]^{\prime} \xrightarrow{w}\left[B^{\prime}, \tilde{B}_{\eta}\right]^{\prime}$ on $\mathcal{D}^{3} \times \mathcal{D}$, with B and \tilde{B}_{η} independent (see Theorem 2.8 of Billingsley (1999)), and also on \mathcal{D}^{4}, because the limit process is continuous.

In view of Skorokhod's representation theorem and the a.s. continuity of $\left[B^{\prime}, \tilde{B}_{\eta}\right]^{\prime}$'s sample paths, we may assume in the remainder of the proof that $\left[U_{[T \cdot\rfloor}^{\prime}, \tilde{U}_{[T \cdot] b}\right]^{\prime}$ and $\left[B^{\prime}, \tilde{B}_{\eta}\right]^{\prime}$ are defined on the same probability space (say \mathbb{S}), and

$$
\begin{equation*}
\left[U_{[T \cdot]}^{\prime}, \tilde{U}_{\lfloor T \cdot] b}\right]^{\prime} \rightarrow\left[B^{\prime}, \tilde{B}_{\eta}\right]^{\prime} \text { a.s. } \tag{S.21}
\end{equation*}
$$

By using (S.21) and the distributional properties of $\left[U_{[T \cdot]}^{\prime}, \tilde{U}_{[T \cdot] b}\right]^{\prime}$ (though not functional relations with the data and the bootstrap multipliers, which need not be defined on \mathbb{S}), we
show that on \mathbb{S} the convergence in (S.18)-(S.19) holds in probability, so in general it holds weakly. To be specific, we write $\tilde{U}_{t i}=\sum_{s=1}^{t} d_{i}(s / T) \Delta U_{s i}(i=1,2,3)$, and establish that on \mathbb{S},

$$
\begin{equation*}
E_{x} \phi\left(\tilde{U}_{\lfloor T \cdot\rfloor}^{\prime}, \sum_{t=1}^{T} \tilde{U}_{t-1,1}\left[\Delta \tilde{U}_{t 2}, \Delta \tilde{U}_{t 3}\right]\right) \xrightarrow{p} E\left[\phi\left(\tilde{M}^{\prime}, \int_{0}^{1} \tilde{M}_{1}(s) d\left[\tilde{M}_{2}(s), \tilde{M}_{3}(s)\right]\right) \mid B_{1}\right] \tag{S.22}
\end{equation*}
$$

and

$$
\begin{equation*}
E^{*} \psi\left(U_{\lfloor T \cdot\rfloor 1}, \tilde{U}_{\lfloor T \cdot\rfloor, b}, \sum_{t=1}^{T} \tilde{U}_{t-1,1} \Delta \tilde{U}_{t b}\right) \xrightarrow{p} E\left[\psi\left(B_{1}, \tilde{B}_{\eta}, \int_{0}^{1} \tilde{M}_{1}(s) d \tilde{B}_{\eta}(s)\right) \mid B_{1}\right] \tag{S.23}
\end{equation*}
$$

for every bounded and continuous real ϕ and ψ on $\mathcal{D}^{3} \times \mathbb{R}^{2}$ and $\mathcal{D}^{2} \times \mathbb{R}$, respectively. On \mathbb{S}, E_{x} and E^{*} denote exclusively $E\left(\cdot \mid U_{\lfloor T \cdot\rfloor 1}\right)$ and $E\left(\cdot \mid U_{\lfloor T \cdot\rfloor}\right)$. In view of (S.13) and (S.20), on \mathbb{S} we can still invoke

$$
E_{x} f\left(U_{\lfloor T \cdot\rfloor 2}, U_{\lfloor T \cdot\rfloor 3}\right) \xrightarrow{w} E f\left(B_{2}, B_{3}\right) \text { and } E^{*} g\left(\tilde{U}_{\lfloor T \cdot\rfloor b}\right) \xrightarrow{w} E g\left(\tilde{B}_{\eta}\right)
$$

for arbitrary bounded and continuous real f and g on \mathcal{D}^{2} and \mathcal{D}, respectively, because the distributions of the conditional expectations depend only on the distributions of [$\left.U_{[T \cdot]}^{\prime}, \tilde{U}_{[T \cdot] b}\right]^{\prime}$ and $\left[B^{\prime}, \tilde{B}_{\eta}\right]^{\prime}$. Moreover, in view also of (S.21), by Corollary 4.4 of Crimaldi and Pratelli (2005), it holds on \mathbb{S} that

$$
\begin{equation*}
E_{x} h\left(U_{\lfloor T \cdot\rfloor}^{\prime}\right) \xrightarrow{p} E\left\{h\left(B^{\prime}\right) \mid B_{1}\right\} \text { and } E^{*} g\left(U_{\lfloor T \cdot\rfloor 1}, \tilde{U}_{\lfloor T \cdot\rfloor b}\right) \xrightarrow{p} E\left\{g\left(B_{1}, \tilde{B}_{\eta}\right) \mid B_{1}\right\} \tag{S.24}
\end{equation*}
$$

for arbitrary bounded and continuous real h and g on \mathcal{D}^{3} and \mathcal{D}^{2}.
It is well known that (S.22)-(S.23) cannot be put in the form of (S.24) for any choice of h and g because, in general, the stochastic integrals involved are not continuous transformations. Therefore, we resort to their continuous approximations, as is habitually done. We approximate:
(a) $\tilde{U}_{\lfloor T \cdot\rfloor j}$ by $\xi_{\delta j}\left(U_{\lfloor T \cdot\rfloor j}\right)(j=1,2,3)$, where $\xi_{\delta j}: \mathcal{D} \rightarrow \mathcal{D}$ are defined by $\xi_{\delta j}(X)=$ $X(\cdot) \delta_{j}(\cdot)-\int_{0}^{r} X(s) d \delta_{j}(s)$ and are continuous on the support $C[0,1]$ of B_{j} for every fixed smooth function $\delta_{j}:[0,1] \rightarrow \mathbb{R}$. Then, using (S.24) and integration by parts, it follows that

$$
\begin{aligned}
& E_{x} m\left(\xi_{\delta 1}\left(U_{\lfloor T \cdot\rfloor 1}\right), \xi_{\delta 2}\left(U_{\lfloor T \cdot\rfloor 2}\right), \xi_{\delta 3}\left(U_{\lfloor T \cdot\rfloor 3}\right)\right) \xrightarrow{p} E\left\{m\left(\xi_{\delta 1}\left(B_{1}\right), \xi_{\delta 2}\left(B_{2}\right), \xi_{\delta 3}\left(B_{3}\right)\right) \mid B_{1}\right\} \\
& =E\left\{m\left(\int_{0}^{\cdot} \delta_{1}(s) d B_{1}(s), \int_{0} \delta_{2}(s) d B_{2}(s), \int_{0}^{\cdot} \delta_{3}(s) d B_{3}(s)\right) \mid B_{1}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& E^{*} n\left(U_{\lfloor T \cdot\rfloor 1}, \xi_{\delta 1}\left(U_{\lfloor T \cdot\rfloor 1}\right), \tilde{U}_{\lfloor T \cdot\rfloor b}\right) \xrightarrow{p} E\left\{n\left(B_{1}, \xi_{\delta 1}\left(B_{1}\right), \tilde{B}_{\eta}\right) \mid B_{1}\right\} \\
& =E\left\{n\left(B_{1}, \int_{0}^{r} \delta_{1}(s) d B_{1}(s), \tilde{B}_{\eta}\right) \mid B_{1}\right\} .
\end{aligned}
$$

for continuous $m, n: \mathcal{D}^{3} \rightarrow \mathbb{R}$. It then needs to be argued that the integrals involving smooth δ_{j} approximate those involving d_{j}, in conditional distribution, such that it also holds that $E_{x} m\left(\tilde{U}_{\lfloor T \cdot\rfloor}\right) \xrightarrow{p} E\left\{m(\tilde{M}) \mid B_{1}\right\}$ and

$$
E^{*} n\left(U_{\lfloor T \cdot\rfloor 1}, \tilde{U}_{\lfloor T \cdot\rfloor 1}, \tilde{U}_{\lfloor T \cdot\rfloor b}\right) \xrightarrow{p} E\left\{n\left(B_{1}, \tilde{M}_{1}, \tilde{B}_{\eta}\right) \mid B_{1}\right\} .
$$

(b) $\int_{0}^{1} \tilde{U}_{\lfloor T s-\rfloor 1} d \tilde{U}_{\lfloor T s\rfloor j}(j=2,3)$ and $\int_{0}^{1} \tilde{U}_{\lfloor T s-\rfloor 1} d \tilde{U}_{\lfloor T s\rfloor b}$ by $\zeta_{L}\left(\tilde{U}_{\lfloor T \cdot\rfloor 1}, \tilde{U}_{\lfloor T \cdot\rfloor j}\right)$ and $\zeta_{L}\left(\tilde{U}_{\lfloor T \cdot\rfloor 1}, \tilde{U}_{\lfloor T \cdot\rfloor\rfloor}\right)$, where $\zeta_{L}: \mathcal{D}^{2} \rightarrow \mathbb{R}$ is defined by

$$
\zeta_{L}(X, Y):=X(1) Y(1)-\sum_{i=1}^{L} Y\left(\frac{i}{L}\right)\left\{X\left(\frac{i}{L}\right)-X\left(\frac{i-1}{L}\right)\right\}=\int_{0}^{1} X^{L}(s-) d Y(s),
$$

with

$$
X^{L}(s):=\sum_{i=1}^{L} X\left(\frac{i-1}{L}\right) \mathbb{I}\left\{\frac{i-1}{L} \leq s<\frac{i}{L}\right\}+X(1) \mathbb{I}\{s=1\}
$$

and is continuous on the support of $\left[\tilde{M}_{1}, \tilde{M}_{j}\right]^{\prime}$ and $\left[\tilde{M}_{1}, \tilde{B}_{\eta}\right]^{\prime}$ for every $L \in \mathbb{N}$. Then, by an appropriate choice of m and n above, it follows that
$E_{x} \phi\left(\tilde{U}_{\lfloor T \cdot\rfloor}, \zeta_{L}\left(\tilde{U}_{\lfloor T \cdot\rfloor 1}, \tilde{U}_{\lfloor T \cdot\rfloor 2}\right), \zeta_{L}\left(\tilde{U}_{\lfloor T \cdot\rfloor 1}, \tilde{U}_{\lfloor T \cdot\rfloor 3}\right)\right) \xrightarrow{p} E\left[\phi\left(\tilde{M}, \zeta_{L}\left(\tilde{M}_{1}, \tilde{M}_{2}\right), \zeta_{L}\left(\tilde{M}_{1}, \tilde{M}_{3}\right)\right) \mid B_{1}\right]$
and

$$
E^{*} \psi\left(U_{\lfloor T \cdot\rfloor 1}, \tilde{U}_{\lfloor T \cdot\rfloor b}, \zeta_{L}\left(\tilde{U}_{\lfloor T \cdot\rfloor 1}, \tilde{U}_{\lfloor T \cdot\rfloor b}\right)\right) \xrightarrow{p} E\left[\psi\left(B_{1}, \tilde{B}_{\eta}, \zeta_{L}\left(\tilde{M}_{1}, \tilde{B}_{\eta}\right)\right) \mid B_{1}\right]
$$

for ϕ and ψ as in (S.22)-(S.23). To complete the proof, it remains to be shown that, as $L \rightarrow \infty, \zeta_{L}$ approximates the stochastic integrals of interest sufficiently well, again in conditional distribution.

We turn to the accuracy of the approximations introduced previously, starting from point (a) and proceeding in two steps.
(a.1) By partial summation and the mean-value theorem,

$$
\begin{equation*}
\max _{r \in[0,1]}\left|\tilde{U}_{\lfloor T r\rfloor j}-\xi_{\delta j}\left(U_{\lfloor T \cdot\rfloor j}\right)(r)\right| \leq \max _{r \in[0,1]}\left|\sum_{t=1}^{\lfloor r T\rfloor}\left\{d_{j}\left(\frac{t}{T}\right)-\delta_{j}\left(\frac{t}{T}\right)\right\} \Delta U_{t j}\right|+\max _{r \in[0,1]}\left|R_{T}(r)\right|, \tag{S.25}
\end{equation*}
$$

where $R_{T}(r):=U_{\lfloor r T\rfloor j}\left\{\delta_{j}(r)-\delta_{j}(\lfloor r T\rfloor / T)\right\}$, satisfies

$$
\max _{r \in[0,1]}\left|R_{T}(r)\right| \leq T^{-1} \max _{r \in[0,1]}\left|\delta_{j}^{\prime}(r)\right| \max _{t=1, \ldots, T}\left|U_{t j}\right|=o_{p}^{x}(1)
$$

because $\left\{\max _{t=1, \ldots, T}\left|U_{t j}\right|\right\}\left|x \rightarrow \max _{[0,1]}\right| B_{j} \mid$ (a.s. for $j=1$ and weakly in probability for $j=2,3$) by continuity of the sup on the support of B_{j}. Moreover, for $j=1$ and every $\lambda>0$, by Doob's inequality and the property $E\left(\Delta U_{t 1} \Delta U_{s 1}\right)=T^{-1} \mathbb{I}\{t=s\}$ (inherited on \mathbb{S} from the martingale difference property of $e_{1 t}$ and the standardisation $E e_{1 t}^{2}=1$), it holds that

$$
\begin{aligned}
& P\left\{P_{x}\left(\max _{r \in[0,1]}\left|\sum_{t=1}^{\lfloor r T]}\left\{d_{1}\left(\frac{t}{T}\right)-\delta_{1}\left(\frac{t}{T}\right)\right\} \Delta U_{t 1}\right| \geq \lambda\right)=0\right\} \\
= & 1-P\left(\max _{r \in[0,1]}\left|\sum_{t=1}^{\llcorner r T\rfloor}\left\{d_{1}\left(\frac{t}{T}\right)-\delta_{1}\left(\frac{t}{T}\right)\right\} \Delta U_{t 1}\right| \geq \lambda\right) \\
\geq & 1-\frac{1}{\lambda^{2}} E\left(\sum_{t=1}^{T}\left\{d_{1}\left(\frac{t}{T}\right)-\delta_{1}\left(\frac{t}{T}\right)\right\} \Delta U_{t 1}\right)^{2} \\
= & 1-\frac{1}{\lambda^{2} T} \sum_{t=1}^{T}\left\{d_{1}\left(\frac{t}{T}\right)-\delta_{1}\left(\frac{t}{T}\right)\right\}^{2} \underset{T \rightarrow \infty}{\rightarrow} 1-\frac{1}{\lambda^{2}} \int_{0}^{1}\left(d_{1}-\delta_{1}\right)^{2} .
\end{aligned}
$$

Since smooth functions are dense in $L_{2}[0,1]$, this limit can be made as close to 1 as desired by choosing δ_{1} according to λ. On the other hand, for $j=2,3$, by using $E_{x}\left(\Delta U_{t j} \mid\left\{\Delta U_{s j}\right\}_{s=1}^{t-1}\right)=$ 0 (inherited on \mathbb{S} from $E_{x}\left(e_{j t} \mid \mathcal{F}_{t-1}\right)=0$, which is a distributional property), it follows from the conditional version of Doob's inequality that

$$
\begin{align*}
& P_{x}\left(\max _{r \in[0,1]}\left|\sum_{t=1}^{\lfloor r T\rfloor}\left\{d_{j}\left(\frac{t}{T}\right)-\delta_{j}\left(\frac{t}{T}\right)\right\} \Delta U_{t j}\right| \geq \lambda\right) \tag{S.26}\\
\leq & \frac{1}{\lambda^{2}} E_{x}\left(\sum_{t=1}^{T}\left\{d_{j}\left(\frac{t}{T}\right)-\delta_{j}\left(\frac{t}{T}\right)\right\} \Delta U_{t j}\right)^{2}=\frac{1}{\lambda^{2}} \sum_{t=1}^{T}\left\{d_{j}\left(\frac{t}{T}\right)-\delta_{j}\left(\frac{t}{T}\right)\right\}^{2} E_{x}\left[\left(\Delta U_{t j}\right)^{2}\right]
\end{align*}
$$

and from Markov's inequality that

$$
\begin{gathered}
P\left(\frac{1}{\lambda^{2}} \sum_{t=1}^{T}\left\{d_{j}\left(\frac{t}{T}\right)-\delta_{j}\left(\frac{t}{T}\right)\right\}^{2} E_{x}\left[\left(\Delta U_{t j}\right)^{2}\right] \geq \lambda\right) \leq \frac{E\left[\left(\Delta U_{1 j}\right)^{2}\right]}{\lambda^{3}} \sum_{t=1}^{T}\left\{d_{j}\left(\frac{t}{T}\right)-\delta_{j}\left(\frac{t}{T}\right)\right\}^{2} \\
\underset{T \rightarrow \infty}{\rightarrow} \lambda^{-3} \int_{0}^{1}\left(d_{j}-\delta_{j}\right)^{2}
\end{gathered}
$$

which can be made as small as desired by the choice of δ_{j}.
(a.2) By the continuous-time version of Doob's inequality,

$$
\begin{aligned}
P\left(\max _{r \in[0,1]}\left|\int_{0}^{r}\left\{d_{j}(u-)-\delta_{j}(u-)\right\} d B_{j}(u)\right| \geq \lambda\right) & \leq \frac{1}{\lambda^{2}} E\left(\int_{0}^{1}\left\{d_{j}(u-)-\delta_{j}(u-)\right\} d B_{j}(u)\right)^{2} \\
& =\lambda^{-2} \int_{0}^{1}\left(d_{j}-\delta_{j}\right)^{2}
\end{aligned}
$$

can be made as small as desired by the choice of δ_{j}, as in step (a.1).
We consider next the integral approximations in point (b), starting from the nonbootstrap case. Let $\Delta_{T L}^{j}:=\sum_{t=1}^{T} \tilde{U}_{t-1,1} \Delta \tilde{U}_{t j}-\zeta_{L}\left(\tilde{U}_{\lfloor T \cdot\rfloor 1}, \tilde{U}_{\lfloor T \cdot\rfloor j}\right)$. As $E_{x}\left(\Delta U_{t j} \mid\left\{\Delta U_{s j}\right\}_{s=1}^{t-1}\right)=$ $0(j=2,3, t=1, \ldots, T)$, with $\left\{T l_{i}\right\}_{i=0}^{L}=\left\{\left\lfloor\frac{T i}{L}\right\rfloor\right\}_{i=0}^{L}$ and $j=2,3$ it holds that

$$
\begin{aligned}
E_{x}\left\{\Delta_{T L}^{j}\right\}^{2} & =E_{x}\left\{\sum_{i=1}^{L} \sum_{t=T l_{i-1}+1}^{T l_{i}}\left(\tilde{U}_{t-1,1}-\tilde{U}_{T l_{i-1}, 1}\right) \Delta \tilde{U}_{t j}\right\}^{2} \\
& =\sum_{i=1}^{L} \sum_{t=T l_{i-1}+1}^{T l_{i}}\left(\tilde{U}_{t-1,1}-\tilde{U}_{T l_{i-1}, 1}\right)^{2} d_{j}^{2}\left(\frac{t}{T}\right) E_{x}\left[\left(\Delta U_{t j}\right)^{2}\right] \\
& \leq \sup _{[0,1]}\left|d_{j}^{2}\right| \sum_{i=1}^{L} \max _{t=T l_{i-1}+1, \ldots, T l_{i}}\left(\tilde{U}_{t-1,1}-\tilde{U}_{T l_{i-1}, 1}\right)^{2} \sum_{t=T l_{i-1}+1}^{T l l_{i}} E_{x}\left[\left(\Delta U_{t j}\right)^{2}\right] .
\end{aligned}
$$

Here, first, $\tilde{U}_{\lfloor T \cdot\rfloor 1} \xrightarrow{p} \tilde{M}_{1}$ can be established on \mathbb{S} by using the approximation of $\tilde{U}_{[T \cdot\rfloor 1}$ with $\xi_{\delta 1}\left(U_{\lfloor T \cdot J 1}\right)$ as was previously done, and second, $\gamma_{T i j}:=\sum_{t=T l_{i-1}+1}^{T l_{i}}\left(\Delta U_{t j}\right)^{2}$ satisfies $E_{x} \gamma_{T i j} \xrightarrow{p} l_{i}-l_{i-1}$ as $T \rightarrow \infty$. Indeed, $E_{x} \gamma_{T i j}=\Gamma_{T}^{\leq} i j, K+\Gamma_{T i j, K}^{>}$for every $K>0$, where

$$
\begin{aligned}
& \Gamma_{T i j, K}^{\leq}:=E_{x}\left(T^{-1} \sum_{t=T l_{i-1}+1}^{T l_{i}} T\left(\Delta U_{t j}\right)^{2} \mathbb{I}\left\{T\left(\Delta U_{t j}\right)^{2} \leq K\right\}\right) \\
& \xrightarrow[\rightarrow]{p}\left(l_{i}-l_{i-1}\right) E\left[e_{j 1}^{2} \mathbb{I}\left\{e_{j 1}^{2} \leq K\right\}\right] \rightarrow l_{i}-l_{i-1}
\end{aligned}
$$

as $T \rightarrow \infty$ followed by $K \rightarrow \infty$, by the bounded and martingale convergence theorems (as $T \rightarrow \infty$) and then the monotone convergence theorem (as $K \rightarrow \infty$), and

$$
\Gamma_{T i j, K}^{>}:=E_{x}\left(T^{-1} \sum_{t=T l_{i-1}+1}^{T l_{i}} T\left(\Delta U_{t j}\right)^{2} \mathbb{I}\left\{T\left(\Delta U_{t j}\right)^{2}>K\right\}\right) \xrightarrow{p} 0
$$

as $T \rightarrow \infty$ followed by $K \rightarrow \infty$, by Markov's inequality and the uniformly bounded fourth moment of $T^{1 / 2} \Delta U_{t j}$. Therefore, by Chebyshev's inequality, $P_{x}\left(\left|\Delta_{T L}^{j}\right| \geq \lambda\right)$ for every $\lambda>0$ is bounded above by λ^{-2} times a r.v. converging in probability to

$$
\sup _{[0,1]}\left|d_{j}^{2}\right| \sum_{i=1}^{L} \max _{r \in\left[l_{i-1}, l_{i}\right]}\left|\tilde{M}_{1}(r)-\tilde{M}_{1}\left(l_{i-1}\right)\right|^{2} \cdot\left(l_{i}-l_{i-1}\right) .
$$

Further, using Doob's sub-martingale inequality,

$$
\begin{aligned}
& P\left(\sum_{i=1}^{L} \max _{r \in\left[l_{i-1}, l_{i}\right]}\left|\tilde{M}_{1}(r)-\tilde{M}_{1}\left(l_{i-1}\right)\right|^{2} \cdot\left(l_{i}-l_{i-1}\right) \geq \lambda\right) \\
\leq & \sum_{i=1}^{L} \frac{l_{i}-l_{i-1}}{\lambda} \operatorname{Var}\left(\tilde{M}_{1}\left(l_{i}\right)-\tilde{M}_{1}\left(l_{i-1}\right)\right)=\sum_{i=1}^{L} \frac{l_{i}-l_{i-1}}{\lambda} \int_{l_{i-1}}^{l_{i}} d_{1}^{2}(s) d s \\
\leq & \frac{1}{\lambda} \max _{i=1, \ldots, L}\left|l_{i}-l_{i-1}\right| \int_{0}^{1} d_{1}^{2}(s) d s \rightarrow 0
\end{aligned}
$$

as $L \rightarrow \infty$ for every $\lambda>0$. Hence,

$$
\lim _{L \rightarrow \infty} \limsup _{T \rightarrow \infty} P\left(P_{x}\left(\left|\sum_{t=1}^{T} \tilde{U}_{t-1,1} \Delta \tilde{U}_{t j}-\zeta_{L}\left(\tilde{U}_{\lfloor T \cdot\rfloor 1}, \tilde{U}_{\lfloor T \cdot\rfloor j}\right)\right| \geq \lambda\right) \geq \lambda\right)=0
$$

On the other hand, it also holds that

$$
\zeta_{L}\left(\tilde{M}_{1}, \tilde{M}_{2}\right)=\int_{0}^{1} \tilde{M}_{1}^{L}(s-) d \tilde{M}_{j}(s) \xrightarrow{p} \int_{0}^{1} \tilde{M}_{1}(s-) d \tilde{M}_{j}(s) \text { as } L \rightarrow \infty
$$

because $\int_{0}^{1}\left(\tilde{M}_{1}^{L}(s)-\tilde{M}_{1}(s)\right)^{2} d s \xrightarrow{p} 0$ as $L \rightarrow \infty$.
Regarding bootstrap integrals, the argument is similar except that $E^{*}\left(\Delta \tilde{U}_{t b}\right)^{2}$ appears instead of $E_{x}\left(\Delta U_{t j}\right)^{2}$. Since $E^{*}\left(\Delta \tilde{U}_{t b} \Delta \tilde{U}_{s b}\right)=0$ for $t \neq s$ (inherited on \mathbb{S} from the independence of w_{t}), it holds that

$$
\begin{aligned}
& E^{*}\left\{\sum_{i=1}^{L} \sum_{t=T l_{i-1}+1}^{T l_{i}}\left(\tilde{U}_{t-1,1}-\tilde{U}_{T l_{i-1}, 1}\right) \Delta \tilde{U}_{t b}\right\}^{2}=\sum_{i=1}^{L} \sum_{t=T l_{i-1}+1}^{T l_{i}}\left(\tilde{U}_{t-1,1}-\tilde{U}_{T l_{i-1}, 1}\right)^{2} E^{*}\left(\Delta \tilde{U}_{t b}\right)^{2} \\
& \leq \sum_{i=1}^{L} \max _{t=T l_{i-1}+1, \ldots, T l_{i}}\left(\tilde{U}_{t-1,1}-\tilde{U}_{T l_{i-1}, 1}\right)^{2} \sum_{t=T l_{i-1}+1}^{T l_{i}} E^{*}\left(\Delta \tilde{U}_{t b}\right)^{2} \\
& \xrightarrow{p} \sum_{i=1}^{L} \max _{r \in\left[l_{i-1}, l_{i}\right]}\left|\tilde{M}_{1}(r)-\tilde{M}_{1}\left(l_{i-1}\right)\right|^{2} \int_{l_{i-1}}^{l_{i}} m^{2}(s) d s
\end{aligned}
$$

as $T \rightarrow \infty$, as $\sum_{t=T l_{i-1}+1}^{T l_{i}} E^{*}\left(\Delta \tilde{U}_{t b}\right)^{2} \xrightarrow{p} \int_{l_{i-1}}^{l_{i}} m^{2}(s) d s$ is a distributional property inherited on \mathbb{S} from $T^{-1} \sum_{t=T l_{i-1}+1}^{T l_{i}} \tilde{e}_{T t}^{2} \xrightarrow{p} \int_{l_{i-1}}^{l_{i}} m^{2}(s) d s$. The rest of the argument proceeds as for non-bootstrap integrals. This completes the proof of the theorem.

We next discuss some implications of Theorem 3 for Orstein-Uhlenbeck limits and
stochastic integrals involving them. With $s_{x, 0}=\alpha_{x}=0$, the standard evaluation

$$
\begin{aligned}
\max _{r \in[0,1]}\left|x_{\lfloor T r\rfloor}-e^{-c_{x} \frac{\lfloor T r\rfloor}{T}} \sum_{i=1}^{\lfloor T r\rfloor} e^{c_{x} \frac{i}{T}} \epsilon_{x i}\right| & \leq \max _{r \in[0,1]}^{\lfloor T r\rfloor-1} \sum_{i=0}\left|\left(1-c_{x} / T\right)^{i}-e^{-c_{x} \frac{i}{T}}\right|\left|\epsilon_{x,\lfloor T r\rfloor-i}\right| \\
& \leq\left|\left(1-c_{x} / T\right)^{T}-e^{-c_{x}}\right| \max _{[0,1]}\left|d_{1}\right| \sum_{t=1}^{T}\left|e_{1 t}\right|=O(1)
\end{aligned}
$$

holds for almost all x, by the ergodic theorem. As $\sum_{i=1}^{\lfloor T r\rfloor} e^{c_{x} \frac{i}{T}} \epsilon_{x i}=h_{11} \sum_{i=1}^{\lfloor T r\rfloor} e^{c_{x} \frac{i}{T}} d_{1}\left(\frac{i}{T}\right) e_{1 i}$, by applying Theorem 3 with $e^{c_{x}(\cdot)} d_{1}(\cdot)$ in place of $d_{1}(\cdot)$, it follows that

$$
T^{-1 / 2} x_{\lfloor T \cdot\rfloor} \xrightarrow{w_{F}} h_{11} e^{-c_{x}(\cdot)} \int_{0}^{\cdot} e^{c_{x} s} d_{1}(s) d B_{1}(s)\left|B_{1}=M_{\eta c, x}\right| B_{1},
$$

and similarly, $T^{-1 / 2} z_{\lfloor T .\rfloor} \xrightarrow{w_{\mathcal{F}}} M_{\eta c, z} \mid B_{1}$, jointly with the convergence in Theorem 3, by the argument for that theorem.

Regarding stochastic integrals, for $\tilde{\epsilon}_{i t}(i=2,3)$ introduced in the proof of Theorem 3, we find by partial summation that

$$
\left(1-\frac{c_{x}}{T}\right) \sum_{t=1}^{T} s_{x, t-1} \tilde{\epsilon}_{i t}=s_{x, T} \sum_{t=1}^{T} \tilde{\epsilon}_{i t}-\sum_{t=1}^{T} \epsilon_{x t} \sum_{s=1}^{t-1} \tilde{\epsilon}_{i s}+\frac{c_{x}}{T} \sum_{t=1}^{T} s_{x, t-1} \sum_{s=1}^{t-1} \tilde{\epsilon}_{i s}-\sum_{t=1}^{T} \epsilon_{x t} \tilde{\epsilon}_{i t},
$$

where the following jointly converge by the CMT, Theorem 3 and the discussion in the previous paragraph:

$$
\begin{aligned}
& T^{-1} s_{x, T} \sum_{t=1}^{T} \tilde{\epsilon}_{i t} \xrightarrow{w_{7}} \quad M_{\eta c, x}(1) \tilde{M}_{i}(1) \mid B_{1} \\
& T^{-1} \sum_{t=1}^{T} \epsilon_{x t} \sum_{s=1}^{t-1} \tilde{\epsilon}_{i s} \xrightarrow{w_{\boldsymbol{F}}} \quad h_{11} \int_{0}^{1}\left[d \tilde{M}_{1}(s)\right] \tilde{M}_{i}(s) \mid B_{1} \\
& T^{-2} \sum_{t=1}^{T} s_{x, t-1} \sum_{s=1}^{t-1} \tilde{\epsilon}_{i s} \xrightarrow{w_{f}} h_{11} \int_{0}^{1} \tilde{M}_{1}(s) \tilde{M}_{i}(s) d s \mid B_{1} .
\end{aligned}
$$

Moreover, $T^{-1} \sum_{t=1}^{T} \epsilon_{x t} \tilde{\epsilon}_{i t}=o_{p}^{x}(1)$ by the conditional Chebyshev inequality, as

$$
\begin{equation*}
T^{-1} \operatorname{Var}_{x}\left(\sum_{t=1}^{T} \epsilon_{x t} \tilde{\epsilon}_{i t}\right) \leq K T^{-1} \sum_{t=1}^{T} e_{1 t}^{2} E_{x} e_{i t}^{2} \rightarrow K E\left(e_{1 t}^{2} e_{i t}^{2}\right) \text { a.s. } \tag{S.27}
\end{equation*}
$$

using the martingale difference property and the ergodic theorem, with $K:=h_{11}^{2} \sup _{[0,1]}\left|d_{1}^{2} d_{i}^{2}\right|$.

Therefore,

$$
\begin{aligned}
T^{-1} \sum_{t=1}^{T} s_{x, t-1} \tilde{\epsilon}_{i t} & \xrightarrow{w_{z}}\left(M_{\eta c, x}(1) \tilde{M}_{i}(1)-h_{11} \int_{0}^{1}\left[d \tilde{M}_{1}(s)\right] \tilde{M}_{i}(s)+c_{x} h_{11} \int_{0}^{1} \tilde{M}_{1}(s) \tilde{M}_{i}(s) d s\right) \mid B_{1} \\
& =\int_{0}^{1} \tilde{M}_{i}(s) d M_{\eta c, x}(s) \mid B_{1}
\end{aligned}
$$

jointly with the convergence in Theorem 3 and its implications. By continuity again, as $T^{-2} \sum_{t=1}^{T} s_{x, t-1} z_{t-1} \xrightarrow{w_{干}} \int_{0}^{1} M_{\eta c, x}(s) M_{\eta c, z}(s) d s \mid B_{1}$ and $T^{-3 / 2} \sum_{t=1}^{T-1} s_{x, t} \xrightarrow{w_{7}} \int_{0}^{1} M_{\eta c, x}(s) d s \mid B_{1}$, it follows for $\stackrel{\circ}{s, t}:=s_{x, t}-T^{-1} \sum_{i=1}^{T-1} s_{x, i}$ and $\epsilon_{y t}^{x}:=\epsilon_{y t}-h_{31} d_{1 t} e_{1 t}$ that

$$
\begin{align*}
T^{-1} \sum_{t=1}^{T} \stackrel{\circ}{s} x, t-1 y_{t}^{x} & =T^{-1} \sum_{t=1}^{T} \stackrel{\circ}{s}_{x, t-1}\left(\epsilon_{y t}^{x}+T^{-1} g_{z} z_{t-1}\right) \tag{S.28}\\
& \stackrel{w_{7}}{\rightarrow}\left\{\int_{0}^{1} \bar{M}_{\eta c, x}(s) d\left[\omega_{y \mid x}^{1 / 2} B_{\eta, y \mid x}(s)\right]+g_{z} \int_{0}^{1} \bar{M}_{\eta c, x}(s) M_{\eta c, z}(s) d s\right\} \mid B_{1},
\end{align*}
$$

if $g_{x}=0$, where $B_{\eta, y \mid x}$ is defined in Theorem 2.
Proof of Theorem 4: We again set $\alpha_{y}, \alpha_{x}, \alpha_{z}$ to zero and g_{x} to $-h_{11}^{-1} h_{31} c_{x}$, without loss of generality. Notice for further reference that for a sequence ξ_{T} of r.v.'s,

$$
\begin{equation*}
\xi_{T} \xrightarrow{p} K=\text { const } \quad \text { implies that } \quad \xi_{T} \xrightarrow{w_{7}} K \tag{S.29}
\end{equation*}
$$

because $\xi_{T} \xrightarrow{p} K$ implies, for bounded continuous f, that $E_{x} f\left(\xi_{T}\right) \xrightarrow{p} f(K)$.
From relations (S.9)-(S.10), with $\xi_{T}=\sup _{r \in[0,1]}\left|\rho_{T}(r)\right|$, it follows that

$$
T^{-1 / 2} \sum_{t=1}^{\lfloor T r\rfloor} \hat{e}_{t}=T^{-1 / 2} \sum_{t=1}^{\lfloor T r\rfloor} \dot{y}_{t}^{x}-\frac{\sum_{t=1}^{T} \stackrel{\circ}{x}_{t-1} y_{t}^{x}}{T^{-1} \sum_{t=1}^{T} \grave{x}_{t-1}^{2}} T^{-3 / 2} \sum_{t=1}^{\lfloor T r\rfloor} \stackrel{\circ}{x}_{t-1}+o_{p}^{x}(1)
$$

uniformly in r. Here, from Theorem 3, the convergence $T^{-1 / 2} z_{\lfloor T .\rfloor} \xrightarrow{w_{\mathcal{F}}} M_{\eta c, z} \mid B_{1}$ and the CMT,

$$
\begin{aligned}
T^{-1 / 2} \sum_{t=1}^{\lfloor T r\rfloor} \grave{y}_{t}^{x}= & T^{-1 / 2} \sum_{t=1}^{\lfloor T r\rfloor} \epsilon_{y t}^{x}+T^{-3 / 2} g_{z} \sum_{t=1}^{\lfloor T r\rfloor} z_{t-1}-\frac{\lfloor T r\rfloor-1}{T^{3 / 2}}\left\{\sum_{t=1}^{T} \epsilon_{y t}^{x}+T^{-1} g_{z} \sum_{t=1}^{T} z_{t-1}\right\} \\
& \xrightarrow{w_{z}}\left\{\omega_{y \mid x}^{1 / 2}\left(B_{\eta, y \mid x}(r)-r B_{\eta, y \mid x}(1)\right)+g_{z}\left(\int_{0}^{r} M_{\eta c, z}(s) d s-r \int_{0}^{1} M_{\eta c, z}(s) d s\right)\right\} \mid B_{1}
\end{aligned}
$$

[as random measures] on \mathcal{D}, so using also (S.28), the convergence $T^{-1 / 2} x_{\lfloor T .\rfloor} \xrightarrow{w_{\mathcal{F}}} M_{\eta c, x} \mid B_{1}$ and the CMT, we have that on \mathcal{D},

$$
T^{-1 / 2} \sum_{t=1}^{\lfloor T r\rfloor} \hat{e}_{t} \xrightarrow{w_{x}} \omega_{y \mid x}^{1 / 2}\left\{F\left(r, c_{x}\right)+g_{z} G\left(r, c_{x}, c_{z}\right)\right\} \mid B_{1} .
$$

Next, (S.12) and (S.29) with $\xi_{T}=s_{y}^{2}$ imply that $s_{y}^{2} \xrightarrow{w_{\mathcal{F}}} \omega_{y \mid x}$. Consequently, by the CMT,

$$
\begin{equation*}
S \xrightarrow{w_{x}} \int_{0}^{1}\left\{F\left(r, c_{x}\right)+g_{z} G\left(r, c_{x}, c_{z}\right)\right\}^{2} d r \mid B_{1} \tag{S.30}
\end{equation*}
$$

We proceed to convergence (15). The bootstrap process $T^{-1 / 2} \sum_{t=1}^{\lfloor T \cdot\rfloor} y_{t}^{*}$ is of the form of $\tilde{U}_{\lfloor T \cdot\rfloor b}$ of Theorem 3, with $\tilde{e}_{T t}=\hat{e}_{t}$ satisfying $T^{-1} \sum_{t=1}^{\lfloor T r\rfloor} \hat{e}_{t}^{2}=T^{-1} \sum_{t=1}^{\lfloor T r\rfloor}\left(\epsilon_{y t}^{x}\right)^{2}+o_{p}(1)$, $r \in[0,1]$. Under Assumption 1, using Lemma 3 of Boswijk et al. (2015), we conclude that $T^{-1} \sum_{t=1}^{\lfloor T r\rfloor} \hat{e}_{t}^{2} \xrightarrow{p} h_{32}^{2} \int_{0}^{r} d_{2}^{2}(s) d s+h_{33}^{2} \int_{0}^{r} d_{3}^{2}(s) d s=\int_{0}^{r} m^{2}(s) d s$ with $m(s)=\sqrt{h_{32}^{2} d_{2}^{2}(s)+h_{33}^{2} d_{3}^{2}(s)}$.
From Theorem 3 and its discussion it follows that

$$
\left(U_{\lfloor T \cdot\rfloor 1}, T^{-1 / 2} \sum_{t=1}^{\lfloor T \cdot\rfloor} y_{t}^{*}, \sum_{t=1}^{T} \tilde{U}_{t-1,1} y_{t}^{*}\right) \xrightarrow{w^{*}}\left(B_{1}, B_{\eta}^{\dagger}, \int_{0}^{1} \tilde{M}_{1}(s) d B_{\eta}^{\dagger}(s)\right) \mid B_{1}
$$

jointly with $T^{-1 / 2} x_{\lfloor T \cdot\rfloor} \xrightarrow{w^{*}} M_{\eta c, x} \mid B_{1}$ and (S.30), where B_{η}^{\dagger} is a Gaussian process with independent increments, mean zero and $\operatorname{Var}\left(B_{\eta}^{\dagger}(r)\right)=\int_{0}^{r}\left[h_{32}^{2} d_{2}^{2}(s)+h_{33}^{2} d_{3}^{2}(s)\right] d s$.

Next,

$$
T^{-1 / 2} \sum_{t=1}^{\lfloor T r\rfloor} \hat{\epsilon}_{y t}^{*}=T^{-1 / 2} \sum_{t=1}^{\lfloor T r\rfloor}\left(y_{t}^{*}-\bar{y}^{*}\right)-T^{-3 / 2} \sum_{t=1}^{\lfloor T r\rfloor} \stackrel{\circ}{x}_{t-1} \frac{T^{-1} \sum_{t=1}^{T} \stackrel{\grave{x}}{t-1}^{y_{t}^{*}}}{T^{-2} \sum_{t=1}^{T} \dot{x}_{t-1}^{2}}
$$

where by the CMT, the following converge jointly, and jointly with (S.30): $T^{-1 / 2} \sum_{t=1}^{\lfloor T r\rfloor}\left(y_{t}^{*}-\right.$ $\left.\bar{y}^{*}\right) \xrightarrow{w^{*}}\left\{B_{\eta}^{\dagger}(r)-r B_{\eta}^{\dagger}(1)\right\} \mid B_{1}$ in $\mathcal{D}, T^{-3 / 2} \sum_{t=1}^{\lfloor T r\rfloor} \dot{x}_{t-1} \xrightarrow{w^{*}} \int_{0}^{r} \bar{M}_{\eta c, x}(s) d s \mid B_{1}$ in $\mathcal{D}, T^{-1} \sum_{t=1}^{T} \stackrel{\grave{x}}{t-1}^{y_{t}^{*}} \xrightarrow{w^{*}}$ $\int_{0}^{1} \bar{M}_{\eta c, x}(s) d B_{\eta}^{\dagger}(s) \mid B_{1}$ analogously to (S.28), $T^{-2} \sum_{t=1}^{T} \grave{x}_{t-1}^{2} \xrightarrow{w^{*}} \int_{0}^{1} \bar{M}_{\eta c, x}^{2}(s) d s \mid B_{1}$, and since the two limit processes in \mathcal{D} are continuous,

$$
\begin{aligned}
& T^{-1 / 2} \sum_{t=1}^{\lfloor T r\rfloor} \hat{\epsilon}_{y t}^{*} \xrightarrow{w^{*}}\left(B_{\eta}^{\dagger}(r)-r B_{\eta}^{\dagger}(1)-\int_{0}^{r} \bar{M}_{\eta c, x}(s)\left\{\int_{0}^{1} \bar{M}_{\eta c, x}^{2}(s)\right\}^{-1} \int_{0}^{1} \bar{M}_{\eta c, x}(s) d B_{\eta}^{\dagger}(s)\right) \mid B_{1} \\
= & \left(B_{\eta}^{\dagger}(r)-r B_{\eta}^{\dagger}(1)-\int_{0}^{r} \bar{B}_{\eta c, x}(s)\left\{\int_{0}^{1} \bar{B}_{\eta c, x}^{2}(s)\right\}^{-1} \int \bar{B}_{\eta c, x}(s) d B_{\eta}^{\dagger}(s)\right) \mid B_{1} \\
= & \omega_{y \mid x}^{1 / 2} F^{\dagger}\left(r, c_{x}\right) \mid B_{1}
\end{aligned}
$$

in \mathcal{D}, where $F^{\dagger}\left(r, c_{x}\right):=\omega_{y \mid x}^{-1 / 2}\left[B_{\eta}^{\dagger}(r)-r B_{\eta}^{\dagger}(1)-\int_{0}^{r} \bar{B}_{\eta c, x}(s)\left\{\int_{0}^{1} \bar{B}_{\eta c, x}(s)^{2}\right\}^{-1} \int_{0}^{1} \bar{B}_{\eta c, x}(s) d B_{\eta}^{\dagger}(s)\right]$, $r \in[0,1]$, and convergence is joint with (S.30). Moreover, using the previous convergence
results we have that,

$$
\begin{aligned}
s_{y}^{* 2} & =T^{-1} \sum_{t=1}^{T}\left(y_{t}^{*}-\bar{y}^{*}\right)^{2}-T^{-1} \frac{\left\{T^{-1} \sum_{t=1}^{T} \stackrel{\circ}{x}_{t-1} y_{t}^{*}\right\}^{2}}{T^{-2} \sum_{t=1}^{T} \stackrel{ஷ}{x}_{t-1}^{2}}+o_{p}^{*}(1) \\
& =T^{-1} \sum_{t=1}^{T} y_{t}^{* 2}+o_{p}^{*}(1)=T^{-1} \sum_{t=1}^{T} w_{t}^{2} \hat{e}_{t}^{2}+o_{p}^{*}(1) \\
& =T^{-1} \sum_{t=1}^{T} \hat{e}_{t}^{2}+T^{-1} \sum_{t=1}^{T}\left(w_{t}^{2}-1\right) \hat{e}_{t}^{2}+o_{p}^{*}(1) \\
& =T^{-1} \sum_{t=1}^{T} \hat{e}_{t}^{2}+o_{p}^{*}(1)
\end{aligned}
$$

because $E^{*}\left\{T^{-1} \sum_{t=1}^{T}\left(w_{t}^{2}-1\right) \hat{e}_{t}^{2}\right\}^{2}=2 T^{-2} \sum_{t=1}^{T} \hat{e}_{t}^{4}=o_{p}(1)$ under the assumption that the fourth moments are finite. We conclude that $s_{y}^{* 2} \xrightarrow{w^{*}} h_{32}^{2} f_{2}+h_{33}^{2} f_{3}=\omega_{y \mid x}$ and, by the CMT, that $S^{*} \xrightarrow{w^{*}} \int_{0}^{1} F^{\dagger}\left(r, c_{x}\right)^{2} d r \mid B_{1}$ jointly with (S.30). Finally, $E\left(g\left(\int_{0}^{1} F^{\dagger}\left(r, c_{x}\right)^{2} d r\right) \mid B_{1}\right)$ and $E\left(g\left(\int F\left(r, c_{x}\right)^{2} d r\right) \mid B_{1}\right)$ are a.s. equal to the the same measurable function of B_{1}, for every fixed continuous real function g, because $\left(F^{\dagger}, B_{1}\right)$ and $\left(F, B_{1}\right)$ have the same distribution. This allows us to replace $\int_{0}^{1} F^{\dagger}\left(r, c_{x}\right)^{2} d r$ by $\int_{0}^{1} F\left(r, c_{x}\right)^{2} d r$ in the limit of S^{*}.

Proof of Corollary 1: The asymptotic validity of the bootstrap rests on the result that, as $T \rightarrow \infty, S$ conditional on x, under H_{u} / H_{x}, and S^{*} conditional on the data, under all considered hypotheses, jointly converge weakly to the same random measure.

By Theorem 4, it holds that $\left[E_{x} f(S), E^{*} f\left(S^{*}\right)\right]^{\prime} \xrightarrow{w}\left[E\left\{f\left(S_{\infty}\right) \mid B_{1}\right\}, E\left\{f\left(S_{\infty}\right) \mid B_{1}\right\}\right]^{\prime}$ under H_{u} / H_{x}, for all continuous bounded real functions f, where $S_{\infty}:=\int_{0}^{1} F\left(r, c_{x}\right)^{2} d r$. This implies weak convergence of the (random) cumulative distribution functions (or processes) of S given x and S^{*} given the data, see e.g. Daley and Vere-Jones (2008, pp.143144). Specifically, if G denotes the cumulative process of S_{∞} conditional on B_{1} (i.e., $G(z):=P\left(S_{\infty} \leq z \mid B_{1}\right)$, all $\left.z\right)$, then $\left[P_{x}(S \leq \cdot), P^{*}\left(S^{*} \leq \cdot\right)\right]^{\prime} \xrightarrow{w}[G, G]^{\prime}$ in $\mathcal{D}(\mathbb{R}) \times \mathcal{D}(\mathbb{R})$. As the distribution of S_{∞} conditional on B_{1} is atomless a.s. (this follows from the representation of the distribution in question as the distribution of an infinite weighted sum of independent χ^{2} variables, similarly to Nyblom, 1989, and Rao and Swift, 2006, pp.472473) and so G is sample-path continuous a.s., the latter convergence holds also in $\mathcal{D}^{2}(\mathbb{R})$ and implies that $\sup _{z \in \mathbb{R}}\left|P_{x}(S \leq z)-P^{*}\left(S^{*} \leq z\right)\right|=o_{p}(1)$. Therefore, if G_{T} denotes the cumulative process of S conditional on x (i.e., $G_{T}(z):=P_{x}(S \leq z)$, all z), then
$P^{*}\left(S^{*} \leq S\right)=G_{T}(S)+o_{p}(1)$; here we have used the fact that $\left.P^{*}\left(S^{*} \leq z\right)\right|_{z=S}=P^{*}\left(S^{*} \leq S\right)$ due to the measurability of S with respect to the data.

Further, define the quantile transformation using the right-continuous version of the generalised inverse. Then $\left\{G_{T}(S) \leq \theta\right\}=\left\{S \leq G_{T}^{-1}(\theta)\right\}$ for all $\theta \in(0,1)$. As the quantile transformation is continuous in the Skorokhod metric, it holds that $\left(G_{T}, G_{T}^{-1}\right) \xrightarrow{w}\left(G, G^{-1}\right)$ in $\mathcal{D}^{2}(\mathbb{R})$. Therefore, for every $\theta \in(0,1)$ where G^{-1} is a.s. continuous, $\left(G_{T}, G_{T}^{-1}(\theta)\right) \xrightarrow{w}$ $\left(G, G^{-1}(\theta)\right)$ in $\mathcal{D}^{2}(\mathbb{R}) \times \mathbb{R}$ and

$$
P_{x}\left(G_{T}(S) \leq \theta\right)=P_{x}\left(S \leq G_{T}^{-1}(\theta)\right)=G_{T}\left(G_{T}^{-1}(\theta)\right) \xrightarrow{w} G\left(G^{-1}(\theta)\right)=\theta
$$

a.s., the second equality by the measurability of $G_{T}^{-1}(\theta)$ w.r.t. the σ-algebra generated by x, and the same convergence holds in probability as the limit is a constant. Since such θ are all but countably many, we can conclude that $G_{T}(S) \mid x \xrightarrow{w}_{p} U[0,1]$, and since $P^{*}\left(S^{*} \leq\right.$ $S)=G_{T}(S)+o_{p}(1)$, by (S.29) also $P^{*}\left(S^{*} \leq S\right) \mid x \xrightarrow{w}_{p} U[0,1]$. Finally, by the bounded convergence theorem, the unconditional convergence $P^{*}\left(S^{*} \leq S\right) \xrightarrow{w} U[0,1]$ follows. The statements in the corrollary can now be ontained by taking $1-P^{*}\left(S^{*} \leq S\right)$.

References

Billingsley P. (1999). Convergence of Probability Measures. John Wiley \& Sons, New York.

Brown, B. (1971). Martingale central limit theorems. The Annals of Mathematical Statistics 42, 59-66.

Crimaldi, I. and L. Pratelli (2005). Convergence results for conditional expectations. Bernoulli 11, 737-745.

Daley, D. and D. Vere-Jones (2008). An Introduction to the Theory of Point Processes, Volume II: General Theory and Structure, Springer-Verlag, New York.

Dudley, R.M. (2004). Real Analysis and Probability. Cambridge University Press, Cambridge.

Nyblom, J. (1989). Testing for the constancy of parameters over time. Journal of the American Statistical Association 84, 223-230.

Rao, M.M. and R. J. Swift (2006). Probability Theory with Applications. New York: Springer.

Table S1. Finite sample rejection frequencies of S_{B} (power) and $I V_{\text {comb }}$ (size) under volatility shifts:

$$
T=200, g_{x}=0, g_{z}=25, d_{i t}=1(t \leq\lfloor\tau T\rfloor)+\sigma_{i} 1(t>\lfloor\tau T\rfloor), i=1,2,3
$$

σ_{1}	σ_{2}	σ_{3}	$c_{x}=c_{z}=0$				$c_{x}=c_{z}=5$				$c_{x}=c_{z}=10$			
			$\tau=0.3$		$\tau=0.7$		$\tau=0.3$		$\tau=0.7$		$\tau=0.3$		$\tau=0.7$	
			S_{B}	$I V_{\text {comb }}$										
1	1	1	0.910	0.712	0.910	0.712	0.742	0.381	0.742	0.381	0.568	0.244	0.568	0.244
		4	0.478	0.444	0.585	0.511	0.252	0.162	0.308	0.202	0.174	0.130	0.198	0.145
		$\frac{1}{4}$	0.970	0.760	0.944	0.739	0.880	0.487	0.828	0.420	0.754	0.340	0.688	0.277
	4	1	0.997	0.843	0.977	0.763	0.985	0.634	0.919	0.537	0.960	0.478	0.842	0.403
		4	0.905	0.738	0.815	0.624	0.761	0.401	0.612	0.349	0.585	0.241	0.462	0.229
		$\frac{1}{4}$	0.999	0.854	0.987	0.776	0.995	0.670	0.947	0.567	0.986	0.533	0.895	0.437
	$\frac{1}{4}$	1	0.656	0.556	0.864	0.705	0.469	0.252	0.661	0.348	0.340	0.180	0.481	0.219
		4	0.245	0.275	0.534	0.495	0.153	0.127	0.251	0.190	0.131	0.117	0.168	0.140
		$\frac{1}{4}$	0.817	0.638	0.904	0.735	0.641	0.351	0.754	0.389	0.482	0.247	0.588	0.247
4	1	1	0.907	0.722	0.912	0.685	0.739	0.383	0.745	0.384	0.569	0.240	0.576	0.253
		4	0.464	0.427	0.602	0.386	0.254	0.160	0.317	0.170	0.175	0.127	0.204	0.140
		$\frac{1}{4}$	0.971	0.795	0.942	0.764	0.885	0.552	0.823	0.517	0.751	0.412	0.680	0.375
	4	1	0.996	0.856	0.968	0.755	0.982	0.643	0.907	0.580	0.956	0.477	0.828	0.461
		4	0.896	0.738	0.781	0.555	0.754	0.386	0.577	0.324	0.579	0.229	0.432	0.226
		$\frac{1}{4}$	0.999	0.870	0.978	0.782	0.993	0.691	0.940	0.637	0.983	0.548	0.882	0.536
	$\frac{1}{4}$	1	0.679	0.551	0.886	0.662	0.487	0.239	0.688	0.322	0.351	0.167	0.505	0.203
		4	0.253	0.260	0.576	0.361	0.158	0.127	0.279	0.154	0.135	0.118	0.178	0.132
		$\frac{1}{4}$	0.826	0.685	0.919	0.751	0.660	0.400	0.771	0.460	0.494	0.287	0.601	0.307
$\frac{1}{4}$	1	1	0.909	0.695	0.914	0.719	0.744	0.377	0.733	0.367	0.573	0.257	0.567	0.234
		4	0.494	0.504	0.584	0.569	0.255	0.201	0.291	0.257	0.174	0.144	0.190	0.177
		$\frac{1}{4}$	0.975	0.721	0.943	0.733	0.874	0.421	0.828	0.385	0.755	0.288	0.687	0.246
	4	1	0.996	0.835	0.979	0.760	0.988	0.621	0.913	0.498	0.965	0.475	0.838	0.348
		4	0.920	0.765	0.824	0.662	0.791	0.471	0.614	0.387	0.606	0.305	0.466	0.256
		$\frac{1}{4}$	0.999	0.842	0.989	0.767	0.996	0.637	0.946	0.507	0.988	0.493	0.894	0.359
	$\frac{1}{4}$	1	0.603	0.571	0.855	0.719	0.444	0.289	0.649	0.357	0.323	0.215	0.468	0.224
		4	0.214	0.339	0.515	0.553	0.150	0.156	0.235	0.248	0.129	0.133	0.161	0.170
		$\frac{1}{4}$	0.785	0.608	0.897	0.736	0.596	0.322	0.750	0.368	0.448	0.240	0.585	0.235

Table S2. Finite sample rejection frequencies of S_{B} (power) and $I V_{\text {comb }}$ (size) under volatility shifts:

$$
T=200, g_{x}=0, g_{z}=50, d_{i t}=1(t \leq\lfloor\tau T\rfloor)+\sigma_{i} 1(t>\lfloor\tau T\rfloor), i=1,2,3
$$

σ_{1}	σ_{2}	σ_{3}	$c_{x}=c_{z}=0$				$c_{x}=c_{z}=5$				$c_{x}=c_{z}=10$			
			$\tau=0.3$		$\tau=0.7$		$\tau=0.3$		$\tau=0.7$		$\tau=0.3$		$\tau=0.7$	
			S_{B}	$I V_{\text {comb }}$										
1	1	1	0.987	0.804	0.987	0.804	0.944	0.545	0.944	0.545	0.866	0.393	0.866	0.393
		4	0.761	0.630	0.848	0.682	0.527	0.276	0.607	0.345	0.356	0.175	0.414	0.221
		$\frac{1}{4}$	0.996	0.830	0.992	0.815	0.981	0.617	0.968	0.576	0.949	0.480	0.924	0.425
	4	1	1.000	0.860	0.996	0.813	0.997	0.686	0.976	0.634	0.992	0.555	0.944	0.518
		4	0.984	0.821	0.956	0.749	0.946	0.566	0.857	0.517	0.871	0.390	0.740	0.374
		$\frac{1}{4}$	1.000	0.866	0.998	0.817	0.999	0.700	0.983	0.645	0.996	0.572	0.958	0.532
	$\frac{1}{4}$	1	0.886	0.714	0.973	0.804	0.777	0.421	0.908	0.522	0.639	0.298	0.809	0.365
		4	0.465	0.458	0.796	0.678	0.293	0.185	0.530	0.315	0.210	0.142	0.339	0.205
		$\frac{1}{4}$	0.951	0.767	0.983	0.818	0.882	0.526	0.948	0.558	0.793	0.404	0.882	0.400
4	1	1	0.988	0.813	0.987	0.785	0.942	0.548	0.946	0.546	0.860	0.387	0.874	0.398
		4	0.759	0.614	0.861	0.577	0.520	0.258	0.625	0.271	0.353	0.161	0.431	0.181
		$\frac{1}{4}$	0.996	0.845	0.992	0.820	0.981	0.651	0.970	0.633	0.948	0.524	0.925	0.508
	4	1	0.999	0.873	0.994	0.791	0.996	0.690	0.977	0.647	0.990	0.542	0.944	0.545
		4	0.982	0.828	0.943	0.700	0.940	0.554	0.845	0.490	0.866	0.365	0.726	0.364
		$\frac{1}{4}$	1.000	0.877	0.996	0.800	0.998	0.704	0.984	0.666	0.994	0.566	0.961	0.571
	$\frac{1}{4}$	1	0.891	0.713	0.978	0.774	0.784	0.404	0.922	0.495	0.649	0.270	0.826	0.334
		4	0.487	0.437	0.829	0.552	0.297	0.167	0.575	0.225	0.218	0.135	0.370	0.156
		$\frac{1}{4}$	0.957	0.797	0.985	0.822	0.894	0.572	0.952	0.612	0.797	0.451	0.889	0.467
$\frac{1}{4}$	1	1	0.987	0.792	0.987	0.808	0.947	0.549	0.941	0.538	0.869	0.409	0.857	0.381
		4	0.773	0.677	0.847	0.729	0.536	0.353	0.589	0.436	0.356	0.241	0.400	0.293
		$\frac{1}{4}$	0.997	0.799	0.992	0.815	0.980	0.575	0.969	0.552	0.949	0.440	0.924	0.392
	4	1	0.999	0.861	0.997	0.815	0.998	0.691	0.975	0.619	0.993	0.574	0.939	0.486
		4	0.985	0.832	0.958	0.773	0.955	0.617	0.852	0.554	0.884	0.462	0.736	0.413
		$\frac{1}{4}$	1.000	0.861	0.998	0.820	0.999	0.697	0.983	0.621	0.997	0.583	0.954	0.491
	$\frac{1}{4}$	1	0.849	0.716	0.970	0.813	0.749	0.464	0.901	0.532	0.623	0.355	0.798	0.368
		4	0.407	0.540	0.790	0.730	0.285	0.261	0.498	0.419	0.204	0.200	0.320	0.281
		$\frac{1}{4}$	0.946	0.735	0.982	0.821	0.851	0.496	0.944	0.542	0.761	0.389	0.878	0.379

Figure S1. Asymptotic rejection frequencies of S, S_{B} (power) and t_{u}, Q (size): $g_{x}=0, c_{x}=c_{z}=c$;

$$
S:--, S_{B}:-, t_{u}:--, Q:--
$$

Figure S2. Asymptotic rejection frequencies of S, S_{B} (power) and t_{u}, Q (size): $g_{x}=0$;

$$
S:-\cdots, S_{B}:-, t_{u}:--, Q:--
$$

Figure S3. Asymptotic rejection frequencies of S, S_{B} (power) and t_{u}, Q (size): $g_{x}=0, c_{x}=c_{z}=0$;

$$
S:-\cdot-, S_{B}:-, t_{u}:---, Q:--
$$

(a) $\sigma_{x z}=0.5$,
$\sigma_{x y}=0, \sigma_{z y}=0$
[2
I
i

(b) $\sigma_{x z}=0.5$,
$\sigma_{x y}=-0.7, \sigma_{z y}=0$

$$
\text { (f) } \sigma_{x z}=-0.5
$$

$\sigma_{x y}=-0.7, \sigma_{z y}=0$

(c) $\sigma_{x z}=0.5$,
$\sigma_{x y}=-0.7, \sigma_{z y}=-0.7$

(g) $\sigma_{x z}=-0.5$,
$\sigma_{x y}=-0.35, \sigma_{z y}=-0.35$

(d) $\sigma_{x z}=0.5$,
$\sigma_{x y}=-0.35, \sigma_{z y}=0.35$

(h) $\sigma_{x z}=-0.5$,
$\sigma_{x y}=-0.7, \sigma_{z y}=0.7$

Figure S4. Asymptotic rejection frequencies of S, S_{B} (power) and $t_{u}, Q($ size $): g_{x}=0, c_{x}=c_{z}=10$;

$$
S:---, S_{B}:-, t_{u}:--, Q:--
$$

(a) $\sigma_{x z}=0.5$,
$\sigma_{x y}=0, \sigma_{z y}=0$
π
M1
cr

(e) $\sigma_{x z}=-0.5$,
$\sigma_{x y}=0, \sigma_{z y}=0$

(b) $\sigma_{x z}=0.5$,
$\sigma_{x y}=-0.7, \sigma_{z y}=0$

$$
\text { (f) } \sigma_{x z}=-0.5
$$

$\sigma_{x y}=-0.7, \sigma_{z y}=0$

(c) $\sigma_{x z}=0.5$,
$\sigma_{x y}=-0.7, \sigma_{z y}=-0.7$

(g) $\sigma_{x z}=-0.5$,
$\sigma_{x y}=-0.35, \sigma_{z y}=-0.35$

(d) $\sigma_{x z}=0.5$,
$\sigma_{x y}=-0.35, \sigma_{z y}=0.35$

(h) $\sigma_{x z}=-0.5$,
$\sigma_{x y}=-0.7, \sigma_{z y}=0.7$

Figure S5. Asymptotic rejection frequencies of S, S_{B} (power) and $t_{u}, Q($ size $): g_{x}=0, c_{x}=0, c_{z}=10$;

$$
S:-\cdots, S_{B}:-, t_{u}:--, Q:--
$$

(a) $\sigma_{x z}=0.5$,
$\sigma_{x y}=0, \sigma_{z y}=0$
π
0
0

(b) $\sigma_{x z}=0.5$,
$\sigma_{x y}=-0.7, \sigma_{z y}=0$

$$
\text { (f) } \sigma_{x z}=-0.5
$$

$\sigma_{x y}=-0.7, \sigma_{z y}=0$

(c) $\sigma_{x z}=0.5$,
$\sigma_{x y}=-0.7, \sigma_{z y}=-0.7$

(g) $\sigma_{x z}=-0.5$,
$\sigma_{x y}=-0.35, \sigma_{z y}=-0.35$

(d) $\sigma_{x z}=0.5$,
$\sigma_{x y}=-0.35, \sigma_{z y}=0.35$

(h) $\sigma_{x z}=-0.5$,
$\sigma_{x y}=-0.7, \sigma_{z y}=0.7$

Figure S6. Asymptotic rejection frequencies of S, S_{B} (power) and $t_{u}, Q($ size $): g_{x}=0, c_{x}=10, c_{z}=0$;

$$
S:-\cdots, S_{B}:-, t_{u}:--, Q:--
$$

[^0]: ${ }^{*}$ We are grateful to the Editor, Todd Clark, an anonymous Co-Editor and three anonymous referees for their helpful and constructive comments. We particularly thank one of the referees for suggesting the examples relating to latent predictors discussed in section 2. Correspondence to: Robert Taylor, Essex Business School, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom. Email: rtaylor@essex.ac.uk.

[^1]: ${ }^{1}$ We distinguish between Granger causality, defined by conditioning on counterfactual information sets that can be chosen to contain the past of the variable z, observable or not, and predictability as a pragmatic concept based on available observations. Where z_{t} is latent it cannot therefore be termed a predictor.
 ${ }^{2}$ Even where y_{t} is not Granger-caused by $\left\{x_{t}\right\}$ but z_{t} is a latent variable correlated with x_{t}, x_{t-1} would pick up some of the information from the past of z_{t} and so x_{t-1} would not be a spurious predictor variable.

[^2]: ${ }^{3}$ Notice that an observationally equivalent formulation of the model can be obtained by treating β_{x} and β_{z} as fixed constants but parameterising the variances of $\epsilon_{x t}$ and $\epsilon_{z t}$ to be local-to-zero; see, in particular, the discussion following equation (10) later. We choose the local-to-zero coefficient formulation for consistency with CES.

[^3]: ${ }^{4}$ The assumption that $E\left(e_{t} e_{t}^{\prime}\right)=I_{3}$ made in part (b)(i) and the parameterisation of the unconditionally homoskedastic case by $D_{t}=I_{3}$ are without loss of generality, by non-identification considerations.

[^4]: ${ }^{5}$ We note that S is not LBI when we allow correlation between $\epsilon_{y t}$ and $\epsilon_{z t}$ so this anomalous behaviour is perhaps not entirely surprising.

[^5]: ${ }^{6}$ We are grateful to Campbell and Yogo for making their Gauss code available for these two procedures.

[^6]: ${ }^{7}$ We do not consider t_{u} and Q here since these procedures are not robust to heteroskedastic errors.
 ${ }^{8}$ We also simulated the finite sample size of S_{B} under a variety of conditionally heteroskedastic specifications, including multivariate GARCH and EGARCH, the latter an example of an asymmetric GARCH process. The size of S_{B} was found to be well controlled, with only minor deviations from the nominal level.

[^7]: ${ }^{9}$ We have simulated this means of selection of p across a number of different stationary $A R M A$ DGPs for $\epsilon_{x t}$ and it appears to control the size of S_{B} well.

