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Abstract

In order for predictive regression tests to deliver asymptotically valid inference,
account has to be taken of the degree of persistence of the predictors under test. There
is also a maintained assumption that any predictability in the variable of interest is
purely attributable to the predictors under test. Violation of this assumption by the
omission of relevant persistent predictors renders the predictive regression invalid,
and potentially also spurious, as both the finite sample and asymptotic size of the
predictability tests can be significantly inflated. In response we propose a predictive
regression invalidity test based on a stationarity testing approach. To allow for an
unknown degree of persistence in the putative predictors, and for heteroskedasticity
in the data, we implement our proposed test using a fixed regressor wild bootstrap
procedure. We demonstrate the asymptotic validity of the proposed bootstrap test
by proving that the limit distribution of the bootstrap statistic, conditional on the
data, is the same as the limit null distribution of the statistic computed on the
original data, conditional on the predictor. This corrects a long-standing error in
the bootstrap literature whereby it is incorrectly argued that for strongly persistent
regressors and test statistics akin to ours the validity of the fixed regressor bootstrap
obtains through equivalence to an unconditional limit distribution. Our bootstrap
results are therefore of interest in their own right and are likely to have applications
beyond the present context. An illustration is given by re-examining the results
relating to U.S. stock returns data in Campbell and Yogo (2006).
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1 Introduction

Predictive regression (hereafter PR) is a widely used tool in applied finance and economics,

and forms the basis for Granger causality testing. A very common application is in the con-

text of testing the linear rational expectations hypothesis. A core example of this is testing

whether future (excess) stock returns are predictable (Granger caused) by current infor-

mation, such as the dividend yield or the term structure of interest rates. Often it is found

that the posited predictor variable (e.g. dividend yield) exhibits persistence behaviour akin

to a (near) unit root autoregressive process, whilst the variable being predicted (e.g. the

stock return) resembles a (near) martingale difference sequence [m.d.s.].

In basic form, a test of predictability involves running an OLS regression of the variable

being predicted, yt say, on the lagged value of a posited predictor variable, xt say, and testing

the significance of the estimated coefficient on xt−1 using a standard regression t-ratio.

Here the null hypothesis is that yt is unpredictable (in mean) from ex-ante information;

the alternative is that it is predictable from xt−1. Cavanagh et al. (1995) [CES] show

that when the innovation driving xt is correlated with yt (as is often thought to be case

in practice; e.g., the stock price is a component of both the return and the dividend

yield), then these tests can be badly over-sized if xt is a local to unit root process but

critical values appropriate for the case where xt is a pure unit root process are used. This

over-size can be interpreted as a tendency towards finding spurious predictability in yt,

in that it is incorrectly concluded that xt−1 can be used to predict yt when in fact yt

is unpredictable; see also Rossi (2005) for a discussion of related issues. Attempting to

address this issue, CES discuss Bonferroni bound-based procedures that yield conservative

tests, while Campbell and Yogo (2006) [CY] consider a point optimal variant of the t-test

and employ confidence belts. Phillips (2014) proposes a modification to the test proposed

in CY which is asymptotically valid in the case where xt can be either local-to-unity or

stationary. Recently, Breitung and Demetrescu (2015) [BD] consider variable addition and

instrumental variable (IV) methods to correct test size. Near-optimal PR tests can also be

found in Elliott et al. (2015) and Jansson and Moreira (2006).

A misspecified PR of yt on xt−1 (with non-zero slope) can also arise from these tests in

cases where yt is in fact predictable and is Granger-caused (possibly by the process {xt}

1



and) by some other persistent process, {zt} say. The variable zt might be a manifest variable

or an unobserved latent variable.1 Here, and in the special case where xt−1 is an invalid

predictor variable (because yt is Granger-caused solely by {zt} and xt is uncorrelated with

zt), it is known that the regression of yt on xt−1 can lead to serious upward size distortions

in the standard PR tests, with the same conclusion of spurious predictability of yt by

xt−1 as discussed earlier; see Ferson et al. (2003a,b) and Deng (2014). More generally,

where both {xt} and {zt} Granger-cause yt, or xt and zt are correlated, a linear predictor

of yt by xt−1 would still be misspecified because it would be suboptimal with respect to

quadratic loss, even if the optimal linear predictor based on observables might involve xt−1.2

Specifically, in this case the optimal linear predictor for yt would involve the past of zt (if

zt is a manifest variable), or further variables among the lags of both yt and xt−1 (if zt is

latent). This fundamental misspecification problem in the estimated PR will affect all of

the predictability tests discussed above.

We demonstrate theoretically and by means of simulations the potential for a misspec-

ified PR of yt on xt−1 to arise in the context of a model where xt and zt follow persistent

processes, which we model as local-to-unity autoregressions, while modelling the coefficient

on zt−1 as being local-to-zero. As a consequence, it is important to be able to identify,

a priori, if yt is Granger caused by some ignored {zt}. Our approach involves testing

for persistence in the residuals from a regression of yt on xt−1. Consequently, any effect

that xt−1 may have on yt, through the value of its slope coefficient in the putative PR, is

eliminated from the residuals, and any persistence they display thereafter is attributable

to the unincluded variable zt−1, and would signal that the PR is misspecified. The test

for PR misspecification we suggest is based on the co-integration tests of Shin (1994) and

Leybourne and McCabe (1994), themselves variants of the stationarity test of Kwiatkowski

et al. (1992) [KPSS]. Although originally designed to detect pure unit root behaviour in re-

gression residuals, Müller (2005) shows these tests also reject when near unit root behaviour

1We distinguish between Granger causality, defined by conditioning on counterfactual information sets

that can be chosen to contain the past of the variable z, observable or not, and predictability as a pragmatic

concept based on available observations. Where zt is latent it cannot therefore be termed a predictor.
2Even where yt is not Granger-caused by {xt} but zt is a latent variable correlated with xt, xt−1 would

pick up some of the information from the past of zt and so xt−1 would not be a spurious predictor variable.
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is present, making them well-suited to the testing scenario of this paper.

An issue arising with our proposed test is that under its null hypothesis that zt−1 plays

no role in the data generating process [DGP] for yt, its limit distribution depends on the

local-to-unity parameter in the process for xt, even though the residuals used are invariant

to the coefficient on xt−1 in the DGP. In principle, this makes it difficult to control the size

of the test. However, we show a bootstrap procedure which treats xt−1 as a fixed regressor

(i.e. the observed xt−1 is used in calculating bootstrap analogues of our test statistic) can

be implemented to yield an asymptotically size-controlled test. This fixed regressor boot-

strap approach is not itself new to the literature and has been employed by, among others,

Gonçalves and Kilian (2004) and Hansen (2000). Because many financial and economic

time series are thought to display non-stationary volatility and/or conditional heteroskedas-

ticity in their innovations, it is also important for our proposed testing procedure to be

(asymptotically) robust to these effects. We therefore use a heteroskedasticity-robust vari-

ant of the fixed regressor bootstrap along the lines proposed in Hansen (2000). This uses

a wild bootstrap scheme to generate bootstrap analogues of yt. We show that our pro-

posed fixed regressor wild bootstrap test has local asymptotic power against the same local

alternatives that give rise to a misspecified PR of yt on xt−1.

We establish large sample validity of our bootstrap method by showing that the limit

distribution of the bootstrap statistic, conditional on the data, is the same as the limit

null distribution of the statistic computed on the original data, conditional on the posited

predictor variable. Our method of proof has wider applicability to other scenarios where

a fixed regressor bootstrap is used with (near-) integrated regressors. For instance, our

proof corrects an error in the bootstrap literature arising from Hansen (2000) who incor-

rectly suggests, in the context of a closely related test statistic, that for strongly persistent

regressors the validity of the fixed regressor bootstrap is due to the coincidence of the un-

conditional null limit distribution of the original statistic with that of the limit distribution

of the bootstrap statistic conditional of the data; actually, by following our proof, this

coincidence can be seen not to occur for Hansen’s statistic.

The paper is organised as follows. Section 2 presents the maintained DGP and sets out

the various null and alternative hypotheses regarding predictability of yt by xt−1 and zt−1.
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To aid lucidity, we consider a single putative predictor variable, xt, and single unincluded

variable, zt, both with m.d.s. errors. Generalisations to richer model specifications are

straightforward and discussed at various points. Section 3 details the asymptotic distribu-

tions of standard PR statistics under the various hypotheses, demonstrating the inference

problems caused by unincluded persistent variables. Section 4 introduces our proposed test

for PR invalidity, detailing its limit distribution and showing the validity of the fixed re-

gressor wild bootstrap scheme in providing asymptotic size control. The asymptotic power

of this procedure is also examined here and compared with the degree of size distortions

associated with PR tests. Section 5 presents the results of a set of finite sample simulations

investigating the size and power of our proposed bootstrap tests. An empirical illustration

reconsidering the results pertaining to U.S stock returns data in CY is given in Section 6.

Proofs and additional simulation results appear in a supplementary appendix.

We use the following notation: b·c is the floor function; I(·) is the indicator function;

x := y (x =: y) means that x is defined by y (y is defined by x);
w→ and

p→ for weak

convergence and convergence in probability, respectively. For a vector, x, ‖x‖ := (x′x)1/2,

the Euclidean norm. Finally, Dk := Dk[0, 1] is the space of right continuous with left limit

(càdlàg) functions from [0, 1] to Rk, equipped with the Skorokhod topology, and D := D1.

2 The Model and Predictability Hypotheses

The basic DGP we consider for observed yt is

yt = αy + βxxt−1 + βzzt−1 + εyt, t = 1, ..., T (1)

where xt and zt satisfy

xt = αx + sx,t, zt = αz + sz,t, t = 0, ..., T (2)

sx,t = ρxsx,t−1 + εxt, sz,t = ρzsz,t−1 + εzt, t = 1, ..., T (3)

where ρx := 1−cxT−1 and ρz := 1−czT−1, with cx ≥ 0 and cz ≥ 0, so that xt and zt are unit

root or local-to-unit root autoregressive processes. We let sx,0 and sz,0 be Op(1) variates.

Following CES and in order to examine the asymptotic local power of the test procedures
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we discuss, we parameterise βx and βz as βx = gxT
−1 and βz = gzT

−1, respectively, which

entails that when gx and/or gz are non-zero, yt is a persistent, but local-to-noise process.3

Our interest lies in examining the behaviour of predictability tests derived from the PR

of yt on xt−1 when yt is generated by the DGP in (1)-(3) with βz 6= 0, and subsequently

developing tests for the null hypothesis that βz = 0. In doing so, it is important to note

that the motivating issue of spurious predictability of yt by xt−1, in the case where there

is no correlation between xt−1 and zt−1, arises whenever xt−1 and the unincluded zt−1 are

both persistent processes. In the general case where no dependence restrictions are placed

between xt−1 and zt−1, the presence of zt−1 in (1) does not entail that xt−1 is a spurious

predictor for yt. Rather it implies that the PR of yt on xt−1 alone is misspecified.

In the context of (1), zt−1 could be either an omitted manifest variable or an unobserved

latent variable. An example of the latter is given by the case where yt are (currency,

commodity or bond) returns and xt−1 is either the lagged forward premium (spot minus

forward price/rate) or a lagged futures basis (spot minus futures price/rate). Here there is

an unobserved latent risk premium which is believed to be strongly persistent, and which in

combination with the strongly persistent predictor has been suggested as a possible driver

for empirically unorthodox findings, such as the well known forward premium (or Fama)

puzzle; see Gospodinov (2009). A second example is provided by the long-run risk model

of Bansal and Yaron (2004). Certain versions of their model can be re-written as PRs for

returns with an unobserved long-run persistent component in consumption. In the latent

case it would also be quite reasonable to view zt not through a literal interpretation of the

DGP in (1)-(3) but rather as a general proxy for underlying misspecification in the PR,

under which interpretation it would clearly not make sense for zt to be stationary rather

than persistent. Possible examples are provided by the case where the coefficient on xt−1

displays time-varying behaviour, such as has been considered in, for example, Paye and

Timmermann (2006) and Cai et al. (2015), or where the data on xt are observed with a

strongly persistent measurement error driven by relatively low variance innovations.

3Notice that an observationally equivalent formulation of the model can be obtained by treating βx

and βz as fixed constants but parameterising the variances of εxt and εzt to be local-to-zero; see, in

particular, the discussion following equation (10) later. We choose the local-to-zero coefficient formulation

for consistency with CES.
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The innovation vector εt := [εxt, εzt, εyt]
′ is taken to satisfy the following conditions:

Assumption 1. The innovation process εt can be written as εt = HDtet where:

(a) H and Dt are the 3× 3 non-stochastic matrices

H :=


h11 0 0

h21 h22 0

h31 h32 h33

 , Dt :=


d1t 0 0

0 d2t 0

0 0 d3t


with hij ∈ R, hii > 0 (i, j = 1, 2, 3), and HH ′ strictly positive definite. The volatility terms

dit satisfy dit = di (t/T ), where di ∈ D are non-stochastic, strictly positive functions.

(b) et is a 3×1 vector martingale difference sequence [m.d.s.] with respect to a filtration

Ft, to which it is adapted, with conditional covariance matrix σt := E(ete
′
t|Ft−1) satisfying:

(i) T−1
∑T

t=1 σt
p→ E(ete

′
t) = I3; (ii) suptE‖et‖4+δ <∞ for some δ > 0.

Remark 1. Assumption 1 implies that εt is a vector m.d.s. relative to Ft, with conditional

variance matrix Ωt|t−1 := E(εtε
′
t|Ft−1) = (HDt)σt(HDt)

′, and time-varying unconditional

variance matrix Ωt := E (εtε
′
t) = (HDt)(HDt)

′. Stationary conditional heteroskedasticity

and non-stationary unconditional volatility are obtained as special cases with Dt = I3

(constant unconditional variance, hence only conditional heteroskedasticity) and σt = I3

(so Ωt|t−1 = Ωt = Ω(t/T ), only unconditional non-stationary volatility), respectively.4

As discussed in Cavaliere, Rahbek and Taylor (2010), Assumption 1(a) implies that the

elements of Ωt are only required to be bounded and to display a countable number of jumps,

therefore allowing for an extremely wide class of potential models for the behaviour of the

variance matrix of εt, including single or multiple variance or covariance shifts, variances

which follow a broken trend, and smooth transition variance shifts.

Remark 2. Under Assumption 1, an identification issue regarding the parameters βx, βz

and h21 arises in the case where cx = cz. In this case, whenever the observables (yt, xt)

satisfy (1) for certain βx, βz 6= 0 and zt, they also satisfy (1) for βλx = βx + λ, βλz = βz, and

zλt = zt − λβ−1
z xt, for any λ, where zλt is also a (local-to-) unit root autoregressive process

and its innovations ελzt = εzt − λβ−1
z εxt are such that [εxt, ε

λ
zt, εyt]

′ satisfies Assumption

1, upon a redefinition of the matrix H. In particular, if βz 6= 0, then it is possible to

4The assumption that E(ete
′
t) = I3 made in part (b)(i) and the parameterisation of the unconditionally

homoskedastic case by Dt = I3 are without loss of generality, by non-identification considerations.
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choose λ = h21h
−1
11 βz such that εxt and ελzt, the innovations driving xt and zλt respectively,

are uncorrelated. In accordance with OLS identification conditions, we will discuss the

predictive implications of (1) under the identifying condition E(εxtεzt) = 0 (equivalently,

h21 = 0) if βz 6= 0, and under the condition βz = 0 otherwise. In the case where zt is a

named latent variable (such as an unobserved risk premium) or a manifest variable, the

value of E(εxtεzt) is implicitly fixed by the choice of zt and an alternative is to discuss (1)

by using this value for identification.

Remark 3. We notice that a PR based on xt−1 alone is misspecified whenever βz 6= 0,

regardless of the value of either βx or the correlation between εxt and εzt. If h21 = 0, xt−1

and zt−1 would be uncorrelated with one another and any conclusion of predictability from

the PR of yt on xt−1 in the case where βx = 0 and βz 6= 0 in (1) would be purely spurious

because the best linear predictor (with respect to symmetric quadratic loss) [BLP] of yt

given the past of {yt, xt} would not involve xt−1, although the BLP with respect to a larger

information set might involve xt−1. When h21 6= 0, xt−1 and zt−1 are correlated, and thus,

for forecasting purposes, xt−1 could act as a proxy for the information in zt−1. Nonetheless,

if βz 6= 0, the BLP of yt would not be a function of xt−1 alone: for a manifest variable zt,

the BLP given the past of {yt, xt, zt} would involve zt−1, whereas for a latent variable zt,

the BLP given the past of {yt, xt} would involve lags of yt and xt (even if βx = 0, as some

of the predictive power of zt−1 would be picked up by xt−1).

Remark 4. For transparency, the structure in (1)- (3) is exposited for a scalar variable, zt.

This is without loss of generality, as one may consider that zt = γ′z∗t where z∗t is a vector

of variables, which might therefore contain both omitted manifest and latent variables.

We are now ready to discuss, in the context of (1), the possibilities for the predictability

and causation of yt by the variables xt−1 and zt−1, focusing on linear predictors. One

potential case that has received much attention in the literature is that where yt is Granger-

caused only by the process {xt}, so that it is predictable only by xt−1, implying that βx 6= 0

while βz = 0 in (1). This forms the alternative hypothesis in the PR tests discussed in

section 3, where the corresponding null is that βx = 0, and, in the context of our model, the

maintained hypothesis that βz = 0, so that yt is unpredictable under the null. However,

it is also a possibility that yt is Granger-caused only by the process {zt}, unincluded in
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the PR. In this case, βx = 0 and βz 6= 0, thereby violating the aforementioned maintained

hypothesis, and a PR of yt on xt−1 alone would be misspecified, regardless of whether zt

is a manifest or latent variable (see Remark 3). In the special case where h21 = 0 and

xt−1 does not enter the BLP of yt, a conclusion to the contrary is an instance of spurious

predictability. A final possibility is that βx 6= 0 and βz 6= 0 so that yt is Granger-caused by

both processes {xt} and {zt}. In this last case if zt was an omitted manifest variable then a

correctly specified PR could be obtained by including zt−1 in the PR. If, on the other hand,

zt was a latent variable, a correctly specified BLP of yt would include more observables

(e.g., yt−1) than xt−1. We summarize these four cases using the following taxonomy of

hypotheses within the context of DGP (1):

Hu : βx = 0, βz = 0 yt is unpredictable (in mean)

Hx : βx 6= 0, βz = 0 yt is Granger-caused by {xt} alone

Hz : βx = 0, βz 6= 0 yt is Granger-caused by {zt} alone

Hxz : βx 6= 0, βz 6= 0 yt is Granger-caused by {xt} and {zt}

In hypothesis testing terms, standard PR tests attempt to distinguish between the null

Hu and the alternative Hx. Here, we consider the impact of the presence of zt−1 in the DGP

on such tests, that is we investigate the behaviour of PR tests of Hu against Hx when in

fact Hz or Hxz is true. In addition, we propose a test for possible PR invalidity, where the

appropriate composite null is Hu or Hx (Hu,Hx), and the alternative Hz or Hzx (Hz,Hzx).

We end this section by stating some implications of Assumption 1 for our asymptotic

analysis. Associated to a standard Brownian motion B = [B1, B2, B3]′ in R3, let Bη =

[Bη1, Bη2, Bη3]′ be the heteroskedastic Gaussian motion defined byBηi (r) := f
−1/2
i

∫ r
0
di(s)dBi(s),

r ∈ [0, 1], where fi :=
∫ 1

0
di(s)

2ds, i = 1, 2, 3. We can also write Bηi
d
= Bi(ηi), i = 1, 2, 3,

where ηi denotes the variance profile ηi (r) := f−1
i

∫ r
0
di(s)

2ds, r ∈ [0, 1], such that Bηi is

a time-changed Brownian motion; see, for example, Davidson (1994, p.486). In particular,

ηi (r) = r, r ∈ [0, 1], under unconditional homoskedasticity. Then the following functional

weak convergence result holds in D3 × R3×3, by Lemma 1 of Boswijk et al. (2016):(
T−1/2

bTrc∑
t=1

εt, T
−1

T∑
t=1

t−1∑
s=1

εsε
′
t

)
w→
(
Mη(r),

∫ 1

0

Mη(s)dMη(s)
′
)
, r ∈ [0, 1], (4)
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where Mη := [Mηx,Mηz,Mηy]
′ := HF 1/2Bη for the diagonal matrix F := diag{f1, f2, f3}.

Let Ωη := {ωab}a,b∈{x,y,z} := V ar{Mη(1)} = HFH ′, which in the unconditionally ho-

moskedastic case Dt = I3 reduces to

HH ′ =


h2

11 h11h21 h11h31

h11h21 h2
21 + h2

22 h21h31 + h22h32

h11h31 h21h31 + h22h32 h2
31 + h2

32 + h2
33

 =:


σxx σxz σxy

σxz σzz σzy

σxy σzy σyy

 =: Ω.

It will prove convenient to define the two Ornstein-Uhlenbeck-type processes Mηc,u(r) :=∫ r
0
e(s−r)cudMηu(s) for u = x, z and r ∈ [0, 1], along with the standardised analogues

Bηc,u(r) := ω
−1/2
uu Mηc,u(r) and their demeaned counterparts B̄ηc,u(r) := Bηc,u(r)−

∫ 1

0
Bηc,u(s).

3 Asymptotic Behaviour of Predictive Regression Tests

To fix ideas, as in CES, we first consider the basic PR test of Hu against Hx, based on the

t-ratio for testing βx = 0 in the fitted linear regression

yt = α̂y + β̂xxt−1 + ε̂yt, t = 1, ..., T. (5)

The test statistic is given by

tu :=
β̂x√

s2
y/
∑T

t=1(xt−1 − x̄−1)2

, β̂x :=

∑T
t=1(xt−1 − x̄−1)yt∑T
t=1(xt−1 − x̄−1)2

and s2
y := (T − 2)−1

∑T
t=1 ε̂

2
yt , with x̄−1 := T−1

∑T
t=1 xt−1.

In addition to the t-test, we also analyze a point optimal variant introduced by CY. For

a known value of ρx, the (infeasible) test statistic takes the following form:

Q :=
β̂x − (sxy/s

2
x)(ρ̂x − ρx)√

s2
y{1− (s2

xy/s
2
ys

2
x)}/

∑T
t=1(xt−1 − x̄−1)2

where β̂x and s2
y are as defined above, sxy := (T − 2)−1

∑T
t=1 ε̂xtε̂yt and s2

x := (T −

2)−1
∑T

t=1 ε̂
2
xt with ε̂xt denoting the OLS residuals from regressing xt on a constant and

xt−1, and where ρ̂x :=
∑T

t=1(xt−1 − x̄−1)xt/
∑T

t=1(xt−1 − x̄−1)2. In the case where sxy = 0,

Q and tu coincide.

The limit distributions of tu and Q under Assumption 1 are shown in the next theorem.
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Theorem 1. For the DGP (1), (2), (3) and under Assumption 1, the weak limits of tu

and Q as T →∞ are of the form∫ 1

0
M̄ηc,x(r)dNηy(r)√∫ 1

0
M̄ηc,x(r)2

+
gx
∫ 1

0
M̄ηc,x(r)

2 + gz
∫ 1

0
M̄ηc,x(r)Mηc,z(r)√

ny
∫ 1

0
M̄ηc,x(r)2

(6)

where M̄ηc,x(r) := Mηc,x(r) −
∫ 1

0
Mηc,x(s)ds, r ∈ [0, 1], and Nηy, ny are statistic-specific.

Thus, for the tu statistic, Nηy := ω
−1/2
yy Mηy and ny := ωyy, whereas for the Q statistic,

Nηy := ω
−1/2
y|x {Mηy − ωxyω−1

xxMηx} and ny := ωyy − ω2
xy/ωxx =:ωy|x.

Remark 5. Notice that the limit expressions for tu and Q in (6) are identical when

h31 = 0 (i.e. ωxy = 0). The limit expression in (6) shows the dependence of tu and Q on

gz under Hz (where gx = 0 but gz 6= 0). Consequently, even for infeasible versions of these

tests where all other nuisance parameters were known, the use of asymptotic critical values

appropriate for these tests under Hu will not result in size-controlled procedures under Hz

and raises the possibility that spurious rejections in favour of predictability of yt by xt−1

will be encountered when yt is actually predictable by zt−1 (cf. Ferson et al., 2003a,b, and

Deng, 2014, for related results under non-localized βz). Under Hxz, where both gx 6= 0

and gz 6= 0, any rejection by tu or Q could not uniquely be ascribed to the role of xt−1,

potentially suggesting the existence of a well-specified PR that is in fact under-specified

due to the omission of zt−1. The same issues also hold for the feasible versions of the tu

and Q tests developed in CES and in CY and Phillips (2014), respectively.

Remark 6. In the special case where cx = cz, the limit of tu in (6) can be written as∫ 1

0
B̄ηc,x(r)dMηy(r)√
ωyy
∫ 1

0
B̄ηc,x(r)2

+ g⊥x (
ωxx
ωyy

)1/2

√∫ 1

0
B̄ηc,x(r)2 + gz(

ωz|x
ωyy

)1/2

∫ 1

0
B̄ηc,x(r)Bηc,2(r)√∫ 1

0
B̄ηc,x(r)2

(7)

with Bηc,2(r) :=
∫ r

0
e(s−r)czdBη2(s) for r ∈ [0, 1], ωz|x := ωzz − ω2

xz/ωxx and g⊥x T
−1 :=

(gx + ωxzω
−1
xx gz)T

−1 representing the coefficient of xt−1 in a redefinition of (1) where xt−1

is orthogonal to the unincluded persistent variable (see Remark 2 with λ = h21h
−1
11 βz =

ωxzω
−1
xx gzT

−1). Not surprisingly, therefore, tu can be anticipated to have relatively low

power to reject Hu in favour of Hxz when the contribution of xt−1 to the variability of yt

(as measured by |g⊥x |ω
1/2
xx ω

−1/2
yy ) is low, and also the contribution of zt−1 corrected for xt−1

(as measured by |gz|ω1/2
z|xω

−1/2
yy ) is low. Additionally, the correlation between B̄ηc,x and Mηy
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(for h31 6= 0) renders the leading term in (7) non-Gaussian, affecting both the size and the

power of the test. These comments also apply to the limit of the Q statistic, except that

the first term in (7) is then standard Gaussian.

We will now proceed to investigate the extent of the size distortions that occur in the

tu and Q tests when gz 6= 0. Before doing so, it should be noted that other PR tests have

been proposed in the literature, including the near-optimal tests of Elliott et al. (2015) and

Jansson and Moreira (2006); see the useful recent summaries provided in BD and Cai et al.

(2015). The issues we discuss in this paper are pertinent irrespective of which particular

PR test one uses, in cases where the putative and unincluded predictors are persistent.

They are also relevant for the case where a putative PR contains multiple predictors.

3.1 Asymptotic Size of Predictive Regression Tests under Hz

To obtain as transparent as possible a picture of the large sample size properties of tu and

Q under Hz we abstract from any role that non-stationary volatility plays by setting di = 1,

i = 1, 2, 3. We then simulate the limit distributions using 10,000 Monte Carlo replications,

approximating the Brownian motion processes in the limiting functionals for (6) using

independent N(0, 1) random variates, with the integrals approximated by normalized sums

of 2,000 steps. Critical values are obtained by setting gx = gz = 0; for tu these depend

on cx and also (it can be shown) h2
31/(h

2
31 + h2

32 + h2
33) = σ2

xy/σxxσyy, while for Q, these

depend on cx alone. These quantities are assumed known, so we are essentially analyzing

the large sample behaviour of infeasible variants of tu and Q. We graph nominal 0.10-level

sizes of two-sided tests as functions of the parameter gz = {0, 2.5, 5.0, ...50.0} with gx = 0.

For cx = cz = c = {0, 10}we set σxx = σzz = σyy = 1, and consider σxy = σzy = 0 plus

σxy = −0.70 with σzy = {0,−0.70, 0.70} where σxz = 0 throughout. Setting cx = cz is

not a requirement here, but simply facilitates keeping xt and zt balanced in terms of their

persistence properties.

The results of this size simulation exercise are shown in Figure 1. For c = 0 we observe

the sizes of tu and Q growing monotonically from the baseline 0.10 level with increasing gz,

thereby giving rise to an ever-increasing likelihood of ascribing spurious predictive ability

to xt−1. Both tests’ sizes are seen to exceed 0.85 for gz = 50, while even a value of gz
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as small as gz = 12.5 produces sizes in excess of 0.50. The size patterns for tu and Q

are also quite similar, which is as we would expect given that gz impacts upon their limit

distributions in a very similar way. Of course, when σxy = 0, the tests have identical limits,

while for σxy = −0.7, there is a general tendency for Q to show slightly more pronounced

over-sizing than tu (possibly reflecting the relatively higher power that this test can achieve

under Hx). Size distortions appear little influenced by the value taken by σzy. With c = 10

qualitatively, the same comments apply here as for the case c = 0. That said, we do

observe that the over-sizing now manifests itself more slowly with increasing gz. Indeed,

when σzy = −0.70 some modest under-size is observed for small values of gz. However,

both sizes are still above 0.50 once gz = 50 so spurious predictability does remain a serious

issue. That the problem is less severe here simply reflects the fact that xt−1 and zt−1 are

lower (but still high) persistence processes.

It would be difficult to argue that spurious predictive ability is not a potentially impor-

tant consideration to take into account when employing either of the tu and Q tests to infer

predictability with high persistence processes. Although we have focussed this analysis on

OLS-based PR tests, similar qualitative results will pertain for other PR tests including

the recently proposed IV-based tests of BD whenever a high persistence IV is used. A low

persistence IV test should be less prone to over-size in the presence of a high persistence

unincluded variable zt−1, but the price paid for employing such an IV is that when a true

predictor xt−1 is highly persistent, the IV test will have very poor power. Basically, when-

ever there is scope for high persistence properties of regressors to yield good power for PR

tests, we should always remain alert to the possibility of spurious predictability.

4 A Test for Predictive Regression Invalidity

Given the potential for standard PR tests to spuriously signal predictability of yt by xt−1

(alone) when βz 6= 0, we now consider a test devised to distinguish between βz = 0 and

βz 6= 0. Non-rejection by such a test would indicate that zt−1 plays no role in predicting

yt, and hence that standard PR tests based on xt−1 are valid. Rejection, however, would

indicate the presence of an unincluded variable zt−1 in the DGP for yt, signalling the

invalidity of PR tests based on xt−1. Formally, then, we wish to test the null hypothesis
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that βz = 0, i.e. Hu,Hx, against the alternative that βz 6= 0, i.e. Hz,Hxz, in (1).

4.1 The Test Statistic and Conventional Asymptotics

The test we develop is based on testing a null hypothesis of stationarity; specifically, we

adapt the co-integration tests of Shin (1994) and Leybourne and McCabe (1994), which

are themselves variants of the KPSS test. We employ the statistic

S := s−2T−2

T∑
t=1

(
t∑
i=1

êi

)2

(8)

where s2 := (T − 3)−1
∑T

t=1 ê
2
t and êt are the OLS residuals from the fitted regression

yt = α̂y + β̂xxt−1 + β̂∆x∆xt + êt, t = 1, ..., T (9)

where, as in Shin (1994), the regressor ∆xt is included in (9) to account for the possibility

of correlation between εxt and εyt (h31 6= 0). Abstracting from the role of the regressor ∆xt,

when βz 6= 0, the residuals êt incorporate a contribution of the unincluded zt−1 term in (1),

hence the persistence in zt−1 is passed to êt, and the statistic S is a test of βz = 0 against

βz 6= 0, rejecting for large values of S. Specifically, assuming cz = 0, we can rewrite (1) as

yt = αy + βxxt−1 + rt−1 + εyt (10)

where rt = rt−1 +ut, initialised at r0 = βzαz (on setting sz,0 = 0 with no loss of generality)

with innovations ut = βzεzt. Testing the null of βz = 0 against βz = gzT
−1 in (1) is then

seen to be precisely the same problem as testing the null of V (ut) =: σuu = 0 against σuu

= g2
zT
−2σzz in the context of (10), with gz = 0 under both nulls. If we temporarily assume

that xt is strictly exogenous and εyt and εzt are independent IID normal random variates,

then S is the locally best invariant (to αy, αx, αz, βx and σyy) test of the null σuu = 0

against the local alternative σuu = g2
zT
−2σzz in (10). As such, the statistic S is relevant

for our testing problem where we seek to distinguish between βz = 0 and βz 6= 0. In our

model we do not impose cz = 0 (nor the other temporary assumptions above), so in these

more general circumstances we consider S to deliver a near locally best invariant test.

Notwithstanding the foregoing motivation, it is important to stress that a test based on

S should properly be viewed as a mis-specification test for the linear regression in (9). As
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such, a rejection by this test indicates that the fitted regression in (9) is not a valid PR.

As with the failure of any mis-specification test, this does not tell us why the regression

has failed. We do know that S delivers a test which is (approximately) locally optimal in

the direction of zt−1 being an unincluded variable (be it manifest or latent), but a rejection

does not mean that xt−1 is not a valid predictor for yt. Therefore, our proposed test is

one for the invalidity of the putative PR, not of the putative predictor, xt−1; see again the

discussion on this point in section 2.

In Theorem 2 we now detail the limiting distribution of S under Assumption 1.

Theorem 2. For the DGP (1), (2), (3) and under Assumption 1,

S
w→
∫ 1

0
{F (r, cx) + gzG(r, cx, cz)}2dr (11)

where

F (r, cx) := Bη,y|x(r)−
∫ 1

0
B̄ηc,x(s)dBη,y|x(s){

∫ 1

0
B̄ηc,x(s)

2}−1
∫ r

0
B̄ηc,x(s),

G(r, cx, cz) := (
ωzz
ωy|x

)1/2

{∫ r

0

B̄ηc,z(s)−
∫ 1

0
B̄ηc,x(s)Bηc,z(s)∫ 1

0
B̄2
ηc,x(s)

∫ r

0

B̄ηc,x(s)

}

with ωy|x := ωyy − ω2
xy/ωxx, Bη,y|x(r) := Bη,y|x(r) − rBη,y|x(1), r ∈ [0, 1], and Bη,y|x :=

ω
−1/2
y|x {Mηy − ωxyω−1

xxMηx} a standardised heteroskedastic Brownian motion independent of

B1.

Remark 7. Notice that the limit in (11) does not depend on h31 owing to the invariance of

the residuals êt to this parameter arising from the presence of the regressor ∆xt in (9). In

the special case cx = cz, the limit is also invariant to h21 (cf. Remark 2). In fact, as Mηz =

ωxzω
−1
xxMηx + ω

1/2
z|xBη2 for ωz|x := ωzz−ω2

xz/ωxx, in this case the equality of the decay rate

in the Ornstein-Uhlenbeck processes Mηc,x and Mηc,z ensures that Bηc,z|x := ω
−1/2
z|x {Mηc,z −

ωxzω
−1
xxMηc,x} equals the Ornstein-Uhlenbeck process Bηc,2 so G(r, cx, cz) reduces to

G(r, cx, cx) =

(
ωz|x
ωy|x

)1/2
{∫ r

0

B̄ηc,2(s)−
∫ 1

0
B̄ηc,x(s)Bηc,2(s)∫ 1

0
B̄2
ηc,x(s)

∫ r

0

B̄ηc,x(s)

}
.

The term gzG(r, cx, cz) in (11) is key in enabling the test S to potentially distinguish

between Hu,Hx and Hz,Hxz. Clearly if ωz|x/ωy|x ' 0, then such a test has low power. This

occurs when εxt and εzt are highly correlated (so ωz|x' 0, corresponding to the part of zt−1
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that is not shared and therefore not removed by the regressor xt−1, on average over t), or

more generally, when εzt corrected for εxt varies little relatively to εyt corrected for εxt. For

cx 6= cz the limit of S depends on h21 as G(r, cx, cx)−G(r, cx, cz) is proportional to h21h
−1
11 .

Remark 8. Under Hu,Hx, where gz = 0, the limit distribution of S in (11) simplifies to∫ 1

0
F (r, cx)

2 and depends only on cx and any unconditional heteroskedasticity present in εt.

Remark 9. We have assumed thus far that the εxt are serially uncorrelated, with et being

an m.d.s. More generally we may consider a linear process assumption for εxt of the form

εxt =
∑∞

i=0 θivx,t−i where vx,t is the first element of HDtet with the standard summability

and invertibility conditions
∑∞

i=0 i |θi| <∞ and
∑∞

i=0 θiz
i 6= 0 for all |z| ≤ 1, respectively,

satisfied. Under homoskedasticity, this would include all stationary and invertible ARMA

processes. Notice that εyt remains uncorrelated with the increments of xt at all lags (i.e. xt

is weakly exogenous with respect to εyt) under this structure. Here, it may be shown that

the limiting results given in Theorem 2 above and in Theorems 3-5 below continue to hold

provided we replace (9) in the calculation of S with the augmented variant

yt = α̂y + β̂xxt−1 + β̂∆x∆xt +

p∑
i=1

δ̂i∆xt−i + êt, t = p+ 1, ..., T (12)

where p satisfies the standard rate condition that 1/p + p3/T → 0, as T → ∞, and it is

assumed that T 1/2
∑∞

i=p+1 |δi| → 0, where {δi}∞i=1 are the coefficients of the AR(∞) process

obtained by inverting the MA(∞) for εxt. Similarly to BD, we would also need to restrict

the amount of serial dependence allowed in the conditional variances via the assumption

that supi,j≥1 ‖τ ij‖ < ∞, where τ ij := E(ete
′
t ⊗ et−ie′t−j), with ⊗ denoting the Kronecker

product. Serial correlation of a similar form in εzt will have no impact on our large sample

results under the null hypothesis, Hu,Hx, although an effect does arise under Hz,Hxz. As is

standard in the PR literature, we maintain the assumption that εyt is serially uncorrelated.

Remark 10. Extensions to the case where the putative PR contains multiple regressors

and/or more general deterministic components can easily be handled in the context of our

proposed PR invalidity test. Specifically, denoting the deterministic component as τ ′ft,

where ft is as defined in section 3.2 of BD, an obvious example being the linear trend case

where ft := (1, t)′, and the vector of putative regressors as xt−1, then we would need to

correspondingly construct S using the residuals from the regression of yt on ft, xt−1 and

∆xt−1. Doing so would alter the form of the limit distributions given in Theorem 2 and
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in the sequel, but would not alter the primary conclusion given in Corollary 1 below, that

the fixed regressor wild bootstrap implementation of this test is asymptotically valid.

A consequence of the result in Theorem 2 is therefore that if we wish to base a test

for PR invalidity on S, then we need to address the fact that under the null Hu,Hx the

limit distribution of S is not pivotal. In order to account for the dependence of inference

on any unconditional heteroskedasticity present, we employ a wild bootstrap procedure

based on the residuals êt. However, we also need to account for the dependence of the

limit distribution of S on cx, and this we carry out by using the observed outcome on

x := [x0, ..., xT ]′ as a fixed regressor in the bootstrap procedure which we detail next.

4.2 A Fixed Regressor Wild Bootstrap Stationarity Test

A standard approach to obtaining bootstrap critical values for S would involve repeated

generation of bootstrap samples for the original yt, such that they mimic (in a statistical

sense) the behaviour of yt with the null Hu, Hx imposed, together with repeated generation

of bootstrap samples for the original xt, to mimic the behaviour of xt. For each bootstrap

sample, these would then be used to calculate a bootstrap analogue of S, which should

reflect the behaviour of S under the null. Generation of bootstrap samples of yt with

suitable properties is quite straightforward, at least in large samples, using a standard wild

bootstrap re-sampling scheme from the residuals êt from (9). However, finding bootstrap

samples of xt presents a significant problem since xt = (1 − cxT
−1)xt−1 + εxt (assuming

αx = 0 for simplicity) and so any corresponding recursion used to construct bootstrap

samples for xt from bootstrap samples of ext requires, for a size-controlled test, that cx

should be known or consistently estimated. Unfortunately, it is well-known that consistent

estimation of cx is not feasible. To avoid this problem, we circumvent estimation of cx

altogether and instead follow the approach taken in Hansen (2000), considering a bootstrap

procedure which uses x as a fixed regressor; that is, the bootstrap statistic S∗ is calculated

from the same observed xt as was used in the construction of S itself.

We now outline the steps involved in our proposed fixed regressor wild bootstrap.

Algorithm 1 (Fixed Regressor Wild Bootstrap):
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(i) Construct the wild bootstrap innovations y∗t := êtwt, where wt, t = 1, . . . , T , is an

IIDN(0, 1) sequence independent of the data and êt are the residuals from either (9)

or (12).

(ii) Calculate the fixed regressor wild bootstrap analogue of S,

S∗ := (s∗y)
−2T−2

T∑
t=1

(
t∑
i=1

ε̂∗yi

)2

where (s∗y)
2 := (T−2)−1

∑T
t=1(ε̂∗yt)

2 and ε̂∗yt are OLS residuals from the fitted regression

y∗t = α̂∗y + β̂
∗
xxt−1 + ε̂∗yt, t = 1, ..., T. (13)

(iii) Define the corresponding p-value as P ∗T := 1−G∗T (S) withG∗T denoting the conditional

(on the original data) cumulative distribution function (cdf) of S∗. In practice, G∗T

is unknown, but can be approximated in the usual way by numerical simulation.

(iv) The wild bootstrap test of Hu, Hx at level ξ rejects in favour of Hz, Hxz if P ∗T ≤ ξ.

Remark 11. The wild bootstrap scheme used to generate y∗t is constructed so as to

replicate the pattern of heteroskedasticity present in the original innovations; this follows

because, conditionally on êt, y
∗
t is independent over time with zero mean and variance ê2

t .

Remark 12. By definition, the residuals êt from (9) are invariant to the value of βx in (1),

and so we can assume that βx = 0 with no loss of generality when generating the bootstrap

y∗t data. We also do not include ∆xt as an additional regressor (or lags thereof in the case

considered in Remark 9) in (13) because the êt are asymptotically free of any effects arising

from correlation between εxt and εyt, or from any weak dependence in εxt.

Remark 13. Although êt depends on gz under Hz,Hxz, we show in the next subsection

that this does not translate into large sample dependence of S∗ on gz.

4.3 Conditional Asymptotics and Bootstrap Validity

We show that the use of xt−1 as a fixed regressor in the construction of the bootstrap statis-

tic S∗ prevents S∗ from converging weakly in probability to any non-random distribution, in

contradistinction to most standard bootstrap applications we are aware of. Rather, under
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Assumption 1 and any of the hypotheses Hu, Hx, Hz and Hxz the distribution of S∗, given

the data, converges weakly to the random distribution which obtains by conditioning the

limit in (11) corresponding to gz = 0, on the weak limit B1 of the process T−1/2
∑bTrc

t=1 e1t,

r ∈ [0, 1]. This fact (along with some regularity conditions) makes it possible to conclude

that the bootstrap p-value P ∗T is asymptotically uniform U [0, 1]-distributed under Hu, Hx,

by using a general result on bootstrap validity from Cavaliere and Georgiev (2017, Theo-

rem 2). From a pragmatic perspective, such a conclusion ensures that the bootstrap test

is asymptotically sized controlled under the conditions of Assumption 1 alone.

However, under Assumption 1 alone, the shortcoming remains that the meaning of the

large-sample inference performed by our bootstrap test is unclear. Certainly, asymptotic

bootstrap inference is not unconditional because S∗ given the data does not converge to the

unconditional limit distribution of S. On the other hand, bootstrap inference need not be

asymptotically equivalent to conditional inference on x either. Indeed, it is well known that

Theorem 2, where the limit distribution of S is established, cannot be taken to imply that S

conditional on x converges weakly to the limit in (11) conditioned on B1 (the implication is

falsified by, e.g., Example 1 of LePage, Podgórski and Ryznar, 1997). Nevertheless, it is not

unreasonable to expect that this result holds true under certain additional requirements,

and we prove that this is in fact the case. We strengthen Assumption 1, so that under

Hu, Hx the distribution of the statistic S conditional on x converges weakly to the same

random distribution as S∗ given the data, which allows us to establish that our bootstrap

test in large samples has the meaning of a test conditional on x.

The results we present differ from those given in Hansen (2000) who considers a joint

structural stability test on the constant and slope parameters in a general regression set-

ting; our test of βz = 0 for the PR in (5) can be seen as the corresponding individual test

for stability of just the intercept. Hansen argues that, under his Assumption 2, the fixed

regressor (wild) bootstrap asymptotically implements unconditional inference (see Theo-

rems 5 and 6, Hansen, 2000) and that the convergence P ∗T
w→ U [0, 1] of bootstrap p−values

under the null hypothesis follows from the equivalence of the unconditional limiting null

distribution of the original statistic and the limiting distribution of the bootstrap statistic

given the data (see Corollaries 1 and 2, ibidem). The results given in this section show
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that any such claim about unconditional inference is not correct, at least for the non-empty

class of models satisfying both Hansen’s and our assumptions. Nonetheless the stated con-

vergence of bootstrap p-values is correct, albeit for a different reason. A fuller treatment

of this specific issue is given in Georgiev et al. (2016).

Theorem 2 is based on the invariance principle given in (4). Conditional and bootstrap

analogues of that theorem can be based on a conditional joint invariance principle for

the original and the bootstrap data. In order to obtain this result, we will strengthen

Assumption 1 as follows:

Assumption 2. Let Assumption 1 hold, together with the following conditions:

(a) et is drawn from a doubly infinite strictly stationary and ergodic sequence {et}∞t=−∞
which is a martingale difference w.r.t. its own past.

(b) {[e2t, e3t]}∞t=−∞ is an m.d.s. also w.r.t. X ∨Ft, where X and Ft are the σ-algebras

generated by {e1t}∞t=−∞ and {[e2s, e3s]}ts=−∞, respectively, and X ∨Ft denotes the smallest

σ-algebra containing both X and Ft.

(c) The initial values sx,0 and sz,0 are measurable w.r.t. X (in particular, they could be

fixed constants).

Remark 14. Arguably, the most restrictive condition in Assumption 2 is given in part (b).

A first leading example where it is satisfied is that of a symmetric multivariate GARCH

process with neither leverage nor asymmetric clustering. Specifically, let et = Ω
1/2
t εt, where

Ωt is measurable with respect to the past [ε2
1s, ε

2
2s, ε

2
3s]
′, s ≤ t− 1, and {εt}∞t=−∞ is an i.i.d.

sequence such that E(εit|ε1t, ε
2
2t, ε

2
3t) = 0, i = 2, 3. If E‖et‖ <∞, then it could be seen that

E(eit|X ∨Ft−1) = 0, i = 2, 3. Another example is that of a multivariate stochastic volatility

process et = H
1/2
t εt with {Ht}∞t=−∞ independent of {εt}∞t=−∞ and where {εt}∞t=−∞ is an i.i.d.

sequence with E(εit|ε1t) = 0, i = 2, 3 (which is certainly true if εt is multivariate standard

Gaussian, as is usually assumed in the stochastic volatility framework). If E‖et‖ < ∞,

then again E(eit|X ∨Ft−1) = 0, i = 2, 3. These two examples are also the leading examples

given in the univariate context by Deo (2000), and in section 3 of Gonçalves and Kilian

(2004). It would be interesting, although beyond the scope of our paper, to investigate how

Assumption 2(b) could be weakened to the case where {et} could be well approximated

by a sequence satisfying Assumption 2(b). For instance, following Rubshtein (1996), the
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conclusions of Theorem 5 in the supplementary appendix would remain valid if Assumption

2(b) was replaced by the condition that supt≥1E{E(
∑t

s=1 eis|X )}2 <∞, i = 2, 3.

In Theorem 3 we now establish three things: first, a conditional invariance principle

that can be assembled from results and ideas disseminated throughout the probabilistic lit-

erature (see, in particular, Awad, 1981, Rubshtein, 1996), second, a bootstrap extension of

that result, and third, associated convergence results for stochastic integrals. For simplic-

ity, a one-dimensional bootstrap partial-sum process is considered; it is constructed from

quantities ẽTt that we shall subsequently specify to be the residuals êt from the regression

in (9). Analogously to the definition of x, let y := [y1, ..., yT ]′ and z := [z0, ..., zT ]′.

Theorem 3. Let ẽTt (t = 1, ..., T ) be scalar measurable functions of x, y, z and such that∑bTrc
t=1 ẽ2

Tt

p→
∫ r

0
m2(s)ds for r ∈ [0, 1], where m is a square-integrable real function on [0, 1].

Introduce ε̃tb := wtẽTt (t = 1, ..., T ), and B̃η (r) :=
∫ r

0
m(s)dB̃1(s), r ∈ [0, 1], where B̃1 is a

standard Brownian motion independent of B. Under Assumption 2, the following converge

jointly as T →∞:(
T−1/2

bTrc∑
t=1

εt, T
−1

T∑
t=1

t−1∑
s=1

εxs[εyt, εzt]

)∣∣∣∣∣x w→
(
Mη(r),

∫ 1

0

Mηx(s)d[Mηy(s),Mηz(s)]

)∣∣∣∣B1,

r ∈ [0, 1], in the sense of weak convergence of random measures on D3 × R2, and(
T−1/2

bTrc∑
t=1

[e1t, ε̃tb], T
−1

T∑
t=1

t−1∑
s=1

εxsε̃tb

)∣∣∣∣∣x, y, z w→
(
B1(r), B̃η(r),

∫ 1

0

Mηx(s)dB̃η(s)

)∣∣∣∣B1,

r ∈ [0, 1], in the sense of weak convergence of random measures on D2 × R.

Remark 15. Let Ex(·) := E(·|x) and E∗(·) := E(·|x, y, z). The convergence concept used

in Theorem 3 is defined as follows. Let ζ, ζT and ξ, ξT (T ∈ N) be random elements of

the metric spaces S and T , respectively, such that ζ, ξ and B1 are defined on the same

probability space, and similarly for ζT , ξT and x, y, z. We say that ζT |x
w→ ζ|B1 and

ξT |x, y, z
w→ ξ|B1 jointly in the sense of weak convergence of random measures on S and T

if for all bounded continuous functions f : S → R and g : T → R it holds that

[Ex(f(ζT )), E∗(g(ξT ))]′
w→ [E (f (ζ)|B1) , E(g(ξ)|B1)]′

as T →∞, in the sense of standard weak convergence of random vectors in R2.
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We are already in a position to establish in Theorem 4 the large sample behaviour of S

conditional on x, and of S∗, its bootstrap analogue from Algorithm 1, conditional on the

data. These two limiting distributions will be seen to coincide under the null hypothesis.

Theorem 4. Under DGP (1)-(3) and Assumption 2, the following converge jointly as

T →∞, in the sense of weak convergence of random measures on R:

S|x w→
∫ 1

0
{F (r, cx) + gzG(r, cx, cz)}2dr

∣∣∣B1 (14)

S∗|x, y, z w→
∫ 1

0
F (r, cx)

2dr
∣∣∣B1, (15)

where the processes F and G are as defined in Theorem 2.

Remark 16. A comparison of (14) and (15) shows that the bootstrap statistic S∗, con-

ditional on the data, and the original statistic S, conditional on x, converge jointly to the

same random distribution when gz = 0; that is, under the null hypothesis, Hu,Hx. An

implication of this is that the bootstrap approximation is consistent in the sense that

sup
u∈R
|Px (S ≤ u)− P ∗(S∗ ≤ u)| p→ 0, (16)

given that the random cdf of
∫ 1

0
F (r, cx)

2dr
∣∣∣B1 is sample-path continuous. Here Px and

P ∗ denote probability conditional on x and on all the data, respectively. Thus, the dis-

tribution of the ‘fixed-regressor bootstrap’ statistic S∗ conditional on the data consis-

tently estimates the large-sample distribution of the original statistic S conditional on

the ‘fixed regressor’ x. This result differs from the usual formulation of bootstrap valid-

ity, where two cdfs with a common non-random limit are compared; here, in contrast,

Px (S ≤ u)
w→ P (

∫ 1

0
F (r, cx)

2dr ≤ u|B1), u ∈ R, with a non-degenerate random limit.

In Corollary 1 below we formulate the conclusion of asymptotic validity of the bootstrap

test based on S and S∗ in terms of the bootstrap p-values.

Corollary 1. Let P ∗T := P ∗(S∗ > S). Under Hu, Hx and Assumption 2, P ∗T |x
w→p U [0, 1]

and P ∗T
w→ U [0, 1].

An implication of Corollary 1 is that comparison of the statistic S with a ξ level boot-

strap critical value (approximated by the upper tail ξ percentile from the order statistic
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formed from B independent simulated bootstrap S∗ statistics, which we will denote by

cvξ,B), results in a bootstrap test with correct asymptotic size (ξ) under Hu, Hx, condition-

ally on x and unconditionally. In what follows we denote by SB the fixed regressor wild

bootstrap procedure outlined in Algorithm 1, whereby S is compared to the critical value

cvξ,B. The asymptotic local power of SB under Hz, Hxz depends on the parameter gz.

Remark 17. For the bootstrap statistic, S∗, the same limiting distribution is obtained in

(15) under the alternative hypothesis, Hz,Hxz, as under the null hypothesis. In contrast,

in the case of S, a stochastic offset, arising from the term gzG(r, cx, cz), is seen in the

limiting distributions (in (14) conditionally on x, and in (11) unconditionally). Although,

for a given alternative, the asymptotic local power is different for the bootstrap test based

on S∗ and an (infeasible) test based on the unconditional limit of S and knowledge of the

parameter cx (the former power is a random variable depending on B1 and the latter power

is a number), we comment in Remark 18 on some qualitative similarities.

Remark 18. The limiting functional for S in (11) and (14) is dominated in probability

(both unconditionally and conditionally on B1) by g2
z

∫ 1

0
G(r, cx, cz)

2dr for large gz and, as a

result, asymptotic local power approaches 1 as gz diverges. Nonetheless, asymptotic local

power is not monotone in |gz|. For example, in the case cx = cz, the null component

F (r, cx) in (11) and (14) involves a term in h32Bη2 (r), while the alternative component

gzG(r, cx, cz) involves a term in gz
∫ r

0
B̄ηc,2 (see Remark 7). Because Bη2 (r) and

∫ r
0
B̄ηc,2

are positively correlated, it can be shown that E{
∫ 1

0
F (r, cx)G(r, cx, cz)dr} 6= 0 for h32 6= 0,

and similarly for the conditional expectation given B1, a.s. As a result, when h32 6= 0, there

exist values of gz (dependent on B1 in the conditional case) which render the expectations

of the limits in (11) and (14) (respectively unconditional and conditional on B1), smaller

than their expectations under the null hypothesis. For such gz the limit distribution under

the alternative does not first-order stochastically dominate the limit distribution under the

null, translating into power being less than size for some size levels.

4.4 Asymptotic Local Power of Stationarity Tests under Hz

We now consider the asymptotic local power of S and SB, the latter on average over B1.

We use the same set of homoskedastic simulation models as for the size of tu and Q in
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Figure 1, so we overlay this information on them. For the asymptotic power of S under

Hz we use the limit expression (11), having first obtained 0.10-level critical values from

simulating (11) under gz = 0. Since these critical values depend on knowledge of cx, S here

is an infeasible test against which to benchmark the power of SB. The asymptotic power of

SB is also based on the limit distribution of S under Hz but compared against a simulated

limit bootstrap critical value cvξ,B with ξ = 0.10. For each replication, this critical value

is obtained by simulating the limit (15) using B = 2000 replications, conditioning on the

simulated B1 for that Monte Carlo replication.

When c = 0, we see the power of S rising rapidly with departures from gz = 0. For

gz = 50, its power is very close to 1. Turning attention to SB, it has a very similar power

profile to that of S; indeed, its power marginally exceeds that of S. It is of course anticipated

from Remark 17 that SB does not have the same asymptotic local power function as S,

but the fact that its power exceeds that of S is a welcome finding as SB, unlike S, is a

feasible procedure. When c = 10 the powers of S and SB are near identical, but at a lower

level than when c = 0. There is also a non-monotonicity in the power profiles of S and SB,

anticipated from Remark 18, for σzy = −0.70 when gz is small, with power dipping below

size. However, for large enough gz, this anomaly disappears.5

The important comparison here is between the power of SB (restricting attention to the

feasible procedure) and the size of tu and Q (as their size profiles are similar we only refer

to tu). When c = 0, the power of SB exceeds the size of tu, hence the invalidity of the PR

is detected with greater frequency than tu spuriously rejects in favour of predictability of

yt by xt−1. This demonstrates the capability of SB to detect PR invalidity in cases where

the important size problems associated with tu exist. That the power of SB exceeds the

size of tu under Hz is possibly to be expected, because S is designed to detect departures

from the null of gz = 0 whereas such departures simply represent model mis-specification

in the context of the PR test tu. With c = 10, we again see that the power of SB generally

out-strips the sizes of tu, with the size/power differences appearing even more marked than

for c = 0. Again, the only exception to this is for σzy = −0.7 when gz is small.

The Supplementary Appendix to this paper contains asymptotic power simulation re-

5We note that S is not LBI when we allow correlation between εyt and εzt so this anomalous behaviour

is perhaps not entirely surprising.
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sults for some additional parameter configurations (for which many possibilities exist). We

consider the current setup with c = 5 and c = 20 and we find that the power of SB with

c = 20 is lower than for c = 10 due to a less persistent zt−1 lessening the impact of model

misspecification. Other simulations where we allow cz to be different to cx confirm that the

main driver of power for SB is cz and not cx, as would be expected. We also consider σxz 6= 0

(with cz and cx equal or different; note that we reduce the magnitudes of σxy and σzy in

some cases to ensure Ω remains positive definite). Here the interplay between SB and tu

(Q) becomes rather more complex. For example, with cz = cx, setting σxz = ±0.5 causes

the power of SB to suffer while the frequency with which tu rejects increases, while for

cz 6= cx, only small changes are observed for σxz 6= 0 compared to σxz = 0.

5 Finite Sample Size and Power under Hz

We now evaluate the finite sample size properties of the PR tests and the size and power

of SB. For the PR tests, we consider the feasible versions of tu and Q, proposed by CES

and CY respectively, both of which rely on Bonferroni bounds to control size.6 We also

consider the IV-based test of BD that combines fractional and sine function instruments,

denoted IVcomb, comparing this with its asymptotic χ2(1) critical value. For SB we use

B = 499 replications.

To begin, we continue to abstract from heteroskedasticity and consider finite sample

DGPs for the same settings as used in the main asymptotic simulations. Specifically,

we simulate the DGP (1)-(3) for T = 200 with αy = αx = αz = 0, gx = 0, sx,0 =

sz,0 = 0, dit = 1 (i = 1, 2, 3), and et ∼ IIDN(0, I3). Figure 2 reports the finite sample

analogues of Figure 1, i.e. rejection frequencies of nominal 0.10-level (two-sided for tu, Q

and IVcomb) tests under Hz. Simulations are again conducted using 10,000 Monte Carlo

replications. On comparing Figure 2 with its large sample counterpart Figures 1, it is

clear that our asymptotic simulations provide a close approximation to the finite sample

rejection frequencies of tu, Q and SB, particularly in terms of the relative behaviour of the

tests, albeit in absolute terms the finite sample rejection frequencies tend to be slightly

lower than their asymptotic counterparts. For tu and Q this is partly due to the feasible

6We are grateful to Campbell and Yogo for making their Gauss code available for these two procedures.
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tests not having the same large sample properties as the infeasible tests. The general

observations made on the basis of the asymptotic simulations apply equally here; finite

sample size of the PR tests increases with gz, giving rise to an increasing likelihood of

concluding spurious predictive ability. As anticipated in the discussion of section 3.1, a

similar pattern of rejections is found for IVcomb; its sizes are close to those of tu and Q. As

regards SB, its finite sample power increases with gz, with the invalidity of the PR generally

being detected with greater frequency than the PR tests’ spurious rejections. Hence, the

ability of SB to detect PR invalidity in cases where well-known PR tests suffer problematic

over-size is displayed in finite samples also.

Lastly we examine the impact of unconditional heteroskedasticity in the DGP on the size

of SB and IVcomb when the error processes are subject to a single break in volatility.7 Specif-

ically, we again simulate the DGP (1)-(3) for T = 200 with gx = gz = 0, et ∼ IIDN(0, I3),

but setting dit = 1(t ≤ bτT c) + σi1(t > bτT c) for i = 1, 3. We set τ = {0.3, 0.7} thereby

allowing for two (common) volatility break timings, and σi = {1, 4, 1
4
} allowing for both

upward and downward volatility shifts (these magnitudes being substantial for illustrative

purposes). We consider cx = {0, 5, 10} and for simplification abstract from time-varying

correlation between εxt and εyt by setting h21 = h31 = h32 = 0. Table 1 reports the results

for nominal 0.10-level tests (two-sided for IVcomb). It is clear that the size of SB is very well

controlled across all the patterns of time-varying volatility of εxt and εyt. The wild boot-

strap aspect of the bootstrap methods that we propose therefore works well in achieving

size close to the nominal level even for the large volatility changes that we consider.8 The

IVcomb test also displays a good degree of robustness to heteroskedasticity, although size

can be a little inflated for some settings.

The Supplementary Appendix also contains results for the same settings as above but

with gz = 25 and gz = 50, i.e. power for SB and size for IVcomb, with cz = cx and

additionally allowing for a volatility break in εzt via d2t =1(t ≤ bτT c) + σ21(t > bτT c).

It is clear that the presence of (unconditional) heteroskedasticity can have a substantial

7We do not consider tu and Q here since these procedures are not robust to heteroskedastic errors.
8We also simulated the finite sample size of SB under a variety of conditionally heteroskedastic specifi-

cations, including multivariate GARCH and EGARCH, the latter an example of an asymmetric GARCH

process. The size of SB was found to be well controlled, with only minor deviations from the nominal level.
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influence on the level of power attainable. Other things equal, a volatility increase in

εzt (an increase in σ2) leads to higher SB power, with a volatility decrease in εzt having

the opposite effect, while volatility changes in εyt have the reverse effect, with an increase

(decrease) in σ3 resulting in lower (higher) power for SB. Volatility changes in εxt (changes

in σ1) appear to have relatively little effect. A similar pattern of rejection frequencies is

also observed for the sizes of the IVcomb test under heteroskedasticity. In the same cases

where SB power is increased (decreased), so the over-size of IVcomb increases (decreases).

It appears, therefore, that SB has attractive size and power properties in finite samples as

well as in the limit, and it is encouraging to see that for the most part these carry over to

situations where the errors are unconditionally heteroskedastic.

6 An Empirical Application to U.S. Equity Data

To illustrate how our proposed procedure may be used in practice, we reconsider the results

from the empirical analysis investigating the predictability of excess returns using the U.S.

equity data reported in CY. CY consider four different series of stock returns, dividend-

price ratio, and earnings-price ratio. The first is annual S&P 500 index data over the period

1871–2002. The other three series are annual, quarterly, and monthly NYSE/AMEX value-

weighted index data (1926–2002). Full data descriptions are provided in CY. The data can

be obtained from https://sites.google.com/site/motohiroyogo/home/research/

CY analyse the time series behaviour of these data and test for predictability in excess

returns (relative to an appropriate risk free rate), using as putative predictors for a variety of

sample windows: the dividend-price ratio, denoted d− p ; the earnings-price ratio, denoted

e−p ; the three-month T-bill rate, denoted r3, and a measure of the long-short yield spread,

denoted y − r1. Details on the construction of these variables can be found in CY; as is

conventional, excess returns and the predictor variables appear in logs. CY argue that all

of these possible predictors display high persistence with, in most cases, the 95% confidence

interval for the largest autoregressive root containing unity. A priori then, bivariate tests of

predictability would seem to be at potential risk from the spurious predictability problem.

Table 2 reports the application of a variety of statistics to the same sets of bivariate

PRs as in Table 5 of CY. Here S is our PR invalidity statistic; KPSS is the KPSS for
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stationarity of the predictor appearing in that regression; IVcomb is the PR test of BD. The

S statistic is implemented using BIC selection for the order of p in the fitted regression

(12), starting from pmax = 12, with an appropriate degrees of freedom adjustment made for

s2
y.

9 For the KPSS statistic the long run variance estimate is based on the QS kernel with

automatic bandwidth selection. For each test, a p-value is given. For S this relates to our

fixed regressor wild bootstrap test, SB using B = 9999 replications; for KPSS it is based

on the wild bootstrap method of Cavaliere and Taylor (2005), again using B = 9999; for

IVcomb it relates to a χ2(1) distribution. Finally, under Q, an entry of ∗ (NS) denotes that

CY’s Q test rejects (does not reject) the null of no predictability at the 0.10 level.

Notice first that the p-values for KPSS are relatively close to zero for most of the

predictors. The KPSS test is known to reject the null of stationarity with high probability

when a series displays local-to-unit root behaviour (increasingly as the local-to-unity pa-

rameter approaches zero), so the p-value can be viewed as an indicator of the strength of

persistence in a series (higher persistence associated with a lower p-value). We conclude

that, in accordance with the findings of CY and BD, these possible predictors all display

(to differing degrees) strongly persistent behaviour. The least persistent appears to be the

annual log earnings-price ratio, e − p, regardless of which sample window is considered.

Interestingly, while CY suggest that r3 and y− r1 are the least persistent variables, we find

small p-values for these series in almost every case, suggesting they are strongly persistent.

For both the full sample results in Panel A and the sub-sample considered in Panel B,

the Q test delivers rejections at the 0.10 level in the case of e − p, for all four of the data

series considered. The Q test also rejects at the 0.10 level for d−p, but only for annual data.

The IVcomb test also generally rejects with annual data. These results, when taken at face

value, signal significant predictability of excess returns by e − p in particular, but also by

d−p with annual data. However, in the case of e−p any such conclusions of predictability

are immediately thrown into serious question once we observe that SB also rejects very

strongly in all these cases, suggesting that such a PR model is potentially spurious, or at

the very least, under-specified by some unincluded persistent process. Interestingly, in the

annual data the SB test for d− p is highly insignificant in both Panels A and B suggesting

9We have simulated this means of selection of p across a number of different stationary ARMA DGPs

for εxt and it appears to control the size of SB well.
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no evidence that the significant outcome of the Q test is spurious here. So although the

evidence from the Q tests alone suggests that e− p has predictive power for excess returns

with a less consistent body of evidence of predictability from d− p, a consideration of the

Q tests in tandem with SB suggests that the stronger evidence for genuine predictability

may well lie with d− p; indeed the results are not inconsistent with d− p being an omitted

manifest persistent predictor when testing for predictability from e− p.

Turning to the results in Panel C, the Q test is seen to be significant at the 0.10 level

only for r3 and y− r1 for quarterly and monthly, but not annual, data. Among these cases,

only y−r1 for monthly data is flagged up as potentially spurious by SB. Consequently, with

this exception, the rejections delivered by Q in Panel C do not appear problematic when

judged by our PR validity test. For the IVcomb test in Panel C, significant predictability

at the 0.10 level is again (as with Q) signalled for monthly r3 and monthly y − r1, but

also signalled for annual d− p and both annual and quarterly r3. The results for SB again

suggest that most of these rejections do not appear to be obviously problematic, although

SB does reject at roughly the 0.05 level for annual d− p.

7 Conclusions

In this paper we have examined the issue of spurious predictability that can potentially

arise with recently proposed tests for predictability. We have shown that the outcomes

from these tests have considerable potential to spuriously signal that a putative predictor

is a genuine predictor whenever unincluded persistent (manifest and/or latent) variables are

present in the underlying data generation process. To guard against this possibility we have

proposed a diagnostic test for such PR invalidity based on a well-known stationarity testing

approach. In order to again allow for an unknown degree of persistence in the putative (and

latent) predictors, and to allow for both conditional and unconditional heteroskedasticity

in the data, a fixed regressor wild bootstrap test procedure was proposed and its asymp-

totic validity established. Doing so required us to establish some novel asymptotic results

pertaining to the use of the fixed regressor bootstrap with non-stationary regressors, which

are likely to have important applications beyond the present context. Monte Carlo simula-

tions were reported which suggested that our proposed methods work well in practice. A
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re-consideration of the empirical study of the predictability of U.S. stock returns reported

in CY highlighted the potential value of our procedure in practice.

We have proposed what we believe to be the first serious diagnostic testing exercise in

the context of fitted PRs, suggesting within-sample misspecification tests directed to have

power to detect the presence of persistent variables in the underlying DGP but not included

in the PR. We hope that this paper encourages further research in this area, developing

additional within- and out-of-sample diagnostic procedures for PRs.
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Table 1. Finite sample size of SB and IVcomb under volatility shifts:
T = 200, gx = gz = 0, dit = 1(t ≤ bτT c) + σi1(t > bτT c), i = 1, 3

cx = 0 cx = 5 cx = 10

τ = 0.3 τ = 0.7 τ = 0.3 τ = 0.7 τ = 0.3 τ = 0.7

σ1 σ3 SB IVcomb SB IVcomb SB IVcomb SB IVcomb SB IVcomb SB IVcomb

1 1 0.098 0.110 0.098 0.110 0.103 0.104 0.103 0.104 0.102 0.105 0.102 0.105
4 0.101 0.109 0.101 0.112 0.106 0.107 0.105 0.111 0.105 0.108 0.107 0.110
1
4

0.102 0.112 0.098 0.104 0.104 0.105 0.099 0.105 0.104 0.106 0.102 0.105

4 1 0.100 0.109 0.102 0.113 0.103 0.107 0.104 0.112 0.104 0.108 0.104 0.113
4 0.099 0.109 0.102 0.117 0.107 0.110 0.107 0.119 0.106 0.114 0.109 0.123
1
4

0.101 0.107 0.099 0.099 0.104 0.102 0.102 0.100 0.106 0.102 0.102 0.103
1
4

1 0.102 0.114 0.099 0.111 0.102 0.108 0.105 0.107 0.104 0.109 0.110 0.106
4 0.103 0.105 0.103 0.108 0.102 0.100 0.108 0.106 0.104 0.100 0.108 0.105
1
4

0.103 0.117 0.098 0.108 0.105 0.112 0.101 0.108 0.106 0.113 0.101 0.110

T.1



Table 2. Application to U.S. Equity Indices
Series Obs. Predictor S p-val. KPSS p-val. IV comb p-val. Q

Panel A: S&P 1880-2002, CRSP 1926-2002

S&P 500 123 d− p 0.358 0.057 0.669 0.043 0.187 0.426 NS
e− p 1.111 0.000 0.449 0.087 1.087 0.139 ∗

Annual 77 d− p 0.081 0.658 0.572 0.077 1.383 0.083 ∗
e− p 0.522 0.008 0.465 0.116 0.988 0.162 ∗

Quarterly 305 d− p 0.531 0.017 1.201 0.007 0.474 0.319 NS
e− p 1.302 0.000 0.889 0.026 0.624 0.267 ∗

Monthly 913 d− p 1.449 0.000 2.588 0.000 -0.423 0.337 NS
e− p 1.522 0.000 1.938 0.001 -0.139 0.445 ∗

Panel B: S&P 1880-1994, CRSP 1926-1994

S&P 500 115 d− p 0.346 0.081 0.495 0.028 0.388 0.350 NS
e− p 1.207 0.000 0.251 0.146 1.600 0.054 ∗

Annual 69 d− p 0.100 0.611 0.390 0.062 1.593 0.055 ∗
e− p 0.803 0.002 0.272 0.222 1.206 0.114 ∗

Quarterly 273 d− p 0.894 0.001 0.753 0.009 0.451 0.327 NS
e− p 2.028 0.000 0.420 0.114 0.711 0.239 ∗

Monthly 817 d− p 1.626 0.000 1.473 0.000 -0.598 0.276 NS
e− p 2.434 0.000 0.839 0.021 -0.164 0.435 ∗

Panel C: CRSP 1952-2002

Annual 51 d− p 0.368 0.051 0.351 0.210 1.286 0.099 NS
e− p 0.058 0.675 0.244 0.270 0.979 0.163 NS
r3 0.071 0.726 0.269 0.151 -1.391 0.082 NS

y − r1 0.085 0.657 0.626 0.014 0.472 0.381 NS
Quarterly 204 d− p 0.518 0.017 0.645 0.062 1.128 0.129 NS

e− p 1.511 0.000 0.550 0.064 0.764 0.223 NS
r3 0.071 0.659 0.585 0.017 -2.661 0.004 ∗

y − r1 0.235 0.146 0.855 0.003 0.946 0.172 ∗
Monthly 612 d− p 0.345 0.073 1.449 0.004 0.550 0.290 NS

e− p 1.729 0.000 1.264 0.004 0.363 0.358 NS
r3 0.091 0.535 1.296 0.000 -3.439 0.000 ∗

y − r1 0.422 0.028 1.373 0.000 1.856 0.032 ∗

Notes: Returns are for the annual S&P 500 index and the annual, quarterly, and monthly CRSP value-weighted index. The

predictor variables are the log dividend-price ratio d − p, the log earnings-price ratio e − p, the three-month T-bill rate r3,

and the long-short yield spread y − r1. In the column headed Q, ∗ (NS) indicates those cases where the Q test of Campbell

and Yogo (2006) rejects (does not reject) the null hypothesis of no predictability at the 10% level. The columns headed p-val.

indicate the p-values of the tests in the preceding column calculated as detailed in the main text.
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(a) c = 0, σxy = 0, σzy = 0 (b) c = 0, σxy = −0.7, σzy = 0 (c) c = 0, σxy = −0.7, σzy = −0.7 (d) c = 0, σxy = −0.7, σzy = 0.7

(e) c = 10, σxy = 0, σzy = 0 (f) c = 10, σxy = −0.7, σzy = 0 (g) c = 10, σxy = −0.7, σzy = −0.7 (h) c = 10, σxy = −0.7, σzy = 0.7

Figure 1. Asymptotic rejection frequencies of S, SB (power) and tu, Q (size): gx = 0, cx = cz = c;
S: – . – , SB: , tu: - - - , Q: – –

F
.1



(a) c = 0, σxy = 0, σzy = 0 (b) c = 0, σxy = −0.7, σzy = 0 (c) c = 0, σxy = −0.7, σzy = −0.7 (d) c = 0, σxy = −0.7, σzy = 0.7

(e) c = 10, σxy = 0, σzy = 0 (f) c = 10, σxy = −0.7, σzy = 0 (g) c = 10, σxy = −0.7, σzy = −0.7 (h) c = 10, σxy = −0.7, σzy = 0.7

Figure 2. Finite sample rejection frequencies of SB (power) and tu, Q, IVcomb, t
pre
u , Qpre, IV pre

comb (size): T = 200, gx = 0, cx = cz = c;
SB: , tu: - - - , Q: – – , IVcomb: · · ·

F
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S.1 Introduction

This supplement contains additional Monte Carlo results and proofs for our paper “A

Bootstrap Stationarity Test for Predictive Regression Invalidity. ”Equation references (S.n)

for n ≥ 1 refer to equations in this supplement and other equation references are to the

main paper.

The supplement is organised as follows. Additional Monte Carlo simulation results are

reported in section S.2. Section S.3 provides mathematical proofs for the large sample

results given in the main paper. All additional references are included at the end of the

supplement.

S.2 Additional Monte Carlo Results

Figure S.1 reports asymptotic simulation results for the same tests and DGP settings as

for Figure 1, but replacing c = 0 and c = 10 with c = 5 and c = 20, respectively. Figure

S.2 reports similar results, but allowing for cx 6= cz. Figures S.3-S.6 report, for various

combinations of cx and cz, results for σxz = ±0.5, with the magnitudes of σxy and σzy

reduced in some cases to ensure Ω remains positive definite.
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Tables S.1 and S.2 report finite sample results for the same tests and DGP settings as

for Table 1, but with gz = 25 and gz = 50, with cz = cx and additionally allowing for a

volatility break in εzt via d2t = 1(t ≤ bτT c) + σ21(t > bτT c).

S.3 Mathematical Proofs

We start with some preliminaries. First, we set sx,0 = sz,0 = 0 throughout the Appendix,

without loss of generality under our assumptions. Second, for centred variables we introduce

the notation ẙt := yt − ȳ, x̊t := xt − x̄−1 and ∆x̊t := ∆xt − ∆x, where ȳ := T−1
∑T

t=1 yt,

x̄−1 := T−1
∑T−1

t=0 xt and ∆x := T−1
∑T

t=1 ∆xt.

Third, we will repeatedly use the following result, which holds under Assumption 1 by

virtue of Lemma A.1 of Boswijk et al. (2016),

T−1

T∑
t=1

εtε
′
t

p→ Ωη = H[

∫ 1

0

diag{d2
1(r), d2

2(r), d2
3(r)}dr]H ′ = Hdiag{f1, f2, f3}H ′ = HFH ′

(S.1)

where diag{v} denotes a diagonal matrix with v on the main diagonal.

Fourth, we will also use the functional Orstein-Uhlenbeck convergence

T−1/2

 xbTrc

zbTrc

 w→
∫ r

0

 e−(r−s)cxdMηx(s)

e−(r−s)czdMηz(s)

 =

 Mηc,x(r)

Mηc,z(r)

 =: Mηc(r), r ∈ [0, 1], (S.2)

and the associated convergence to stochastic integrals

T−1

T∑
t=1

 xt−1

zt−1

 [ε′t,∆xt,∆zt]
w→
∫ 1

0

Mηc(s)d[Mη(s)
′,Mηc(s)

′]. (S.3)

These obtain from (4) by routine arguments using a standard approximation of the expo-

nential function, partial summation and integration, and the continuous mapping theorem

[CMT].

Proof of Theorem 1: We may set αy, αx and αz to zero, without loss of generality.

First write tu as

tu =
T−1

∑T
t=1 x̊t−1yt√

s2
yT
−2
∑T

t=1 x̊
2
t−1

.
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Then, we can write

T−1

T∑
t=1

x̊t−1yt = gxT
−2

T∑
t=1

x̊t−1xt−1 + gzT
−2

T∑
t=1

x̊t−1zt−1 + T−1

T∑
t=1

x̊t−1εyt

w→ gx
∫ 1

0
M̄ηc,x(r)

2 + gz
∫ 1

0
M̄ηc,x(r)Mηc,z(r) +

∫ 1

0
M̄ηc,x(r)dMηy(r)

and T−2
∑T

t=1 x̊
2
t−1

w→
∫ 1

0
M̄ηc,x(r)

2 using (S.2), (S.3) and the CMT. Also,

s2
y = T−1

T∑
t=1

ẙ2
t − T−1{T−1

∑T
t=1 x̊t−1yt}2

T−2
∑T

t=1 x̊
2
t−1

+ op(1) = T−1

T∑
t=1

y2
t − ȳ2 + op(1)

= T−1

T∑
t=1

(gxT
−1xt−1 + gzT

−1zt−1 + εyt)
2

−

{
T−1

T∑
t=1

(gxT
−1xt−1 + gzT

−1zt−1 + εyt)

}2

+ op(1)

= T−1

T∑
t=1

ε2yt + op(1)
p→ ωyy

by (S.1). Consequently, by the CMT,

tu
w→
gx
∫ 1

0
M̄ηc,x(r)

2 + gz
∫ 1

0
M̄ηc,x(r)Mηc,z(r) +

∫ 1

0
M̄ηc,x(r)dMηy(r)√

ωyy
∫ 1

0
M̄ηc,x(r)2

.

It follows from the previous discussion of
∑T

t=1 x̊t−1yt and
∑T

t=1 x̊
2
t−1 that

T β̂x
w→
gx
∫ 1

0
M̄ηc,x(r)

2 + gz
∫ 1

0
M̄ηc,x(r)Mηc,z(r) +

∫ 1

0
M̄ηc,x(r)dMηy(r)∫ 1

0
M̄ηc,x(r)2

.

Also,

T (ρ̂x − ρx) =
T−1

∑T
t=1 x̊t−1εxt

T−2
∑T

t=1 x̊
2
t−1

w→
∫ 1

0
M̄ηc,x(r)dMηx(r)∫ 1

0
M̄ηc,x(r)2

since T−1
∑T

t=1 x̊t−1εxt
w→
∫ 1

0
M̄ηc,x(r)dMηx(r) using (S.2), (S.3) and the CMT. Now

ε̂xt = xt − x̄− ρ̂xx̊t−1

= ρxxt−1 + εxt − ρxx̄−1 − ε̄x − ρ̂xx̊t−1

= −(ρ̂x − ρx)̊xt−1 + εxt − ε̄x

3



giving

s2
x = T−1

T∑
t=1

{−(ρ̂x − ρx)̊xt−1 + εxt − ε̄x}2 + op(1)

= (ρ̂x − ρx)2T−1

T∑
t=1

x̊2
t−1 + T−1

T∑
t=1

(εxt − ε̄x)2

−2(ρ̂x − ρx)T−1

T∑
t=1

x̊t−1(εxt − ε̄x) + op(1)

= T−1

T∑
t=1

ε2xt + op(1)
p→ ωxx

by (S.1), and

sxy = T−1

T∑
t=1

ε̂xtε̂yt + op(1)

= T−1

T∑
t=1

{−(ρ̂x − ρx)̊xt−1 + εxt − ε̄x}{βxx̊t−1 + βz z̊t−1 + (εyt − ε̄y)− β̂xx̊t−1}+ op(1)

= T−1

T∑
t=1

εxtεyt + op(1)
p→ ωxy

using (S.1).

So, using the limit of s2
y from the discussion of tu, we find that

Q =
T β̂x − (sxy/s

2
x)T (ρ̂x − ρx)√

s2
y{1− (s2

xy/s
2
ys

2
x)}/T−2

∑T
t=1(xt−1 − x̄−1)2

w→
gx
∫ 1

0
M̄ηc,x(r)

2 + gz
∫ 1

0
M̄ηc,x(r)Mηc,z(r) +

∫ 1

0
M̄ηc,x(r)dMηy(r)− ωxyω−1

xx

∫ 1

0
M̄ηc,x(r)dMηx(r)√

(ωyy − ω2
xy/ωxx)

∫ 1

0
M̄ηc,x(r)

2

=
gx
∫ 1

0
M̄ηc,x(r)

2 + gz
∫ 1

0
M̄ηc,x(r)Mηc,z(r) +

∫ 1

0
M̄ηc,x(r)d{Mηy(r)− ωxyω−1

xxMηx(r)}√
ωy|x

∫ 1

0
M̄ηc,x(r)2

�

Proof of Theorem 2: We may set αy, αx and αz to zero, and gx to −ch−1
11 h31, without

loss of generality, since the êt are invariant to these parameters. Let yxt := yt− h−1
11 h31∆xt,

ẙxt := ẙt − h−1
11 h33∆x̊t and εxyt := εyt − h31d1te1t = h32d2te2t + h33d3te3t. For later reference
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we first observe that

T−1

T∑
t=1

x̊t−1y
x
t = T−1

T∑
t=1

x̊t−1ε
x
yt + gzT

−1

T∑
t=1

x̊t−1zt−1 (S.4)

w→
∫ 1

0

M̄ηc,x(r)d{ω1/2
y|xBη,y|x(r)}+ gz

∫ 1

0

M̄ηc,x(r)Mηc,z(r)

using (S.2), (S.3) and the CMT, with ωy|x = h2
32f2+h2

33f3 andBη,y|x(r) = ω
−1/2
y|x {h32f

1/2
2 Bη2(r)+

h33f
1/2
3 Bη3(r)}.

Next, consider the limit of the partial sum process for êt, which we write as

T−1/2

bTrc∑
t=1

êt = T−1/2

bTrc∑
t=1

ẙt −
[
T−3/2

∑bTrc
t=1 x̊t−1 T−1/2

∑bTrc
t=1 ∆x̊t

]
NT β̂ (S.5)

with NT := diag{1, T} and

NT β̂ :=

 T−2
∑T

t=1 x̊
2
t−1 T−1

∑T
t=1 x̊t−1∆xt

T−2
∑T

t=1 x̊t−1∆xt T−1
∑T

t=1(∆x̊t)
2

−1  T−1
∑T

t=1 x̊t−1yt

T−1
∑T

t=1 ∆x̊tyt

 .
Before passing to the limit in (S.5), we focus on NT β̂. It holds that

NT β̂ = ∆−1
T

 T−1
∑T

t=1(∆x̊t)
2 −T−1

∑T
t=1 x̊t−1∆xt

op(1) T−2
∑T

t=1 x̊
2
t−1

 T−1
∑T

t=1 x̊t−1yt

T−1
∑T

t=1 ∆x̊tyt

 , (S.6)

where ∆T := T−3{
∑T

t=1 x̊
2
t−1

∑T
t=1(∆x̊t)

2−(
∑T

t=1 x̊t−1∆xt)
2} = T−3

∑T
t=1 x̊

2
t−1

∑T
t=1(∆x̊t)

2+

op(T
−3) because

∑T
t=1 x̊t−1∆xt = Op(T ) by (S.2) and (S.3). Further, as also

∑T
t=1 x̊t−1yt =

Op(T ) by the proof of Theorem 1, it holds that

NT β̂ = ∆−1
T

 T−2{
∑T

t=1 x̊t−1yt
∑T

t=1(∆x̊t)
2 −

∑T
t=1 x̊t−1∆xt

∑T
t=1 ∆x̊tyt}

T−3
∑T

t=1 x̊
2
t−1

∑T
t=1 ∆x̊tyt + op(1)


= ∆−1

T

 T−2{
∑T

t=1 x̊t−1y
x
t

∑T
t=1(∆x̊t)

2 −
∑T

t=1 x̊t−1∆xt
∑T

t=1 ∆x̊ty
x
t }

T−3 h31
h11

∑T
t=1 x̊

2
t−1

∑T
t=1(∆x̊t)

2 + T−3
∑T

t=1 x̊
2
t−1

∑T
t=1 ∆x̊ty

x
t + op(1)


= ∆−1

T

 T−2
∑T

t=1 x̊t−1y
x
t

∑T
t=1(∆x̊t)

2 + op(1)

T−3 h31
h11

∑T
t=1 x̊

2
t−1

∑T
t=1(∆x̊t)

2 + op(1)

 (S.7)

because
∑T

t=1 ∆x̊ty
x
t =

∑T
t=1 ∆xtε

x
yt + gzT

−1
∑T

t=1 ∆xtzt−1 − T−1(xT − x1){
∑T

t=1 ε
x
yt +

gzT
−1
∑T

t=1 zt−1} = op(T ) given that (i)
∑T

t=1 ∆xtε
x
yt =

∑T
t=1 εxtε

x
yt − cT−1

∑T
t=1 xt−1ε

x
yt =
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op(T ) using (S.1) and the convergence T−1
∑T

t=1 xt−1ε
x
yt

w→
∫ 1

0
Mηc,x(s)d{ω1/2

y|xBη,y|x(s)} im-

plied by (S.3), (ii) T−1
∑T

t=1 ∆xtzt−1
w→
∫ 1

0
Mηc,z(r)dMηc,x(r) as a consequence of (S.3), (iii)

T−1/2(xT −x1)
w→Mηc,x(1) by (S.2) and the CMT, (iv) T−1/2

∑T
t=1 ε

x
yt

w→ ω
1/2
y|xBη,y|x(1), and

(v) T−3/2
∑T

t=1 zt−1
w→
∫ 1

0
Mηc,z(s) by (S.2) and the CMT. Finally,

NT β̂ =
[

(T−1
∑T

t=1 x̊
2
t−1)−1

∑T
t=1 x̊t−1y

x
t h−1

11 h31

]′
+ op(1) (S.8)

because T−1
∑T

t=1(∆x̊t)
2 = T−1

∑T
t=1 ε

2
tx−2cxT

−2
∑T

t=1 εtxxt−1+T−3c2
x

∑T
t=1 x

2
t−1−T−2(xT−

x1)2 = T−1
∑T

t=1 ε
2
tx + op(1)

p→ ωxx by (S.1), so T−1
∑T

t=1(∆x̊t)
2 is bounded away from zero

in P -probability.

Given (S.8), (S.5) simplifies to

T−1/2

bTrc∑
t=1

êt = T−1/2

bTrc∑
t=1

ẙxt −
∑T

t=1 x̊t−1y
x
t

T−1
∑T

t=1 x̊
2
t−1

T−3/2

bTrc∑
t=1

x̊t−1 + ρT (r), (S.9)

where

T−1/2

bTrc∑
t=1

ẙxt = T−1/2

bTrc∑
t=1

εxyt + T−3/2gz

bTrc∑
t=1

zt−1 −
bTrc − 1

T 3/2
{

T∑
t=1

εxyt + T−1gz

T∑
t=1

zt−1}

w→ ω
1/2
y|x (Bη,y|x(r)− rBη,y|x(1)) + gz(

∫ r

0

Mηc,z(s)− r
∫ r

0

Mηc,z)

on D, and ρT (r) = op(1)T−3/2
∑bTrc

t=1 x̊t−1 + op(1)T−1/2
∑bTrc

t=1 ∆x̊t is such that

sup
r∈[0,1]

|ρT (r)| ≤ op(1) sup
r∈[0,1]

|T−3/2

bTrc∑
t=1

x̊t−1|+ op(1)T−1/2 sup
t=0,...,T

|xt| = op(1) (S.10)

because supr∈[0,1] |T−3/2
∑bTrc

t=1 x̊t−1|
w→ supr∈[0,1] |

∫ r
0
M̄ηc,x(s)| and T−1/2 supt=0,...,T |xt|

w→

supr∈[0,1] |Mηc,x(r)| by the CMT. Therefore, using also (S.4) and the CMT again,

T−1/2

bTrc∑
t=1

êt
w→ ω

1/2
y|x{Bη,y|x(r)− rBη,y|x(1)−

∫ 1

0
M̄ηc,x(s)dBη,y|x(s)∫ 1

0
M̄2

ηc,x(s)

∫ r

0

M̄ηc,x(s)}

+ gz{
∫ r

0

Mηc,z(s)− r
∫ 1

0

Mηc,z(s)−
∫ 1

0
M̄ηc,x(s)Mηc,z(s)∫ 1

0
M̄2

ηc,x(s)

∫ r

0

M̄ηc,x(s)}

= ω
1/2
y|x{F (r, cx) + gzG(r, cx, cz)}

on D.
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Next, using the previously established order of magnitude results, we have that,

T∑
t=1

ê2
t =

T∑
t=1

ẙ2
t −

[
T−1

∑T
t=1 x̊t−1yt

∑T
t=1 ∆x̊tyt

]
NT β̂ (S.11)

=
T∑
t=1

ẙ2
t − h−1

11 h31

T∑
t=1

∆x̊tyt −
T∑
t=1

x̊t−1yt(
T∑
t=1

x̊2
t−1)−1

T∑
t=1

x̊t−1y
x
t + op(T )

=
T∑
t=1

ẙ2
t − h−2

11 h
2
31

T∑
t=1

(∆x̊t)
2 − h−1

11 h31

T∑
t=1

∆x̊ty
x
t + op(T )

=
T∑
t=1

(ẙxt )2 + h−1
11 h31

T∑
t=1

yxt ∆x̊t + op(T )

=
T∑
t=1

(εxyt)
2 − 2T−1gz

T∑
t=1

zt−1εyt + T−2g2
z

T∑
t=1

z2
t−1 + op(T ) =

T∑
t=1

(εxyt)
2 + op(T ),

where T−1
∑T

t=1(εxyt)
2 p→ h2

32f2 + h2
33f3 = ωy|x by (S.1). Consequently,

s2 p→ ωy|x, (S.12)

and by the CMT, S
w→
∫ 1

0
{F (r, cx) + gzG(r, cx, cz)}2dr. �

Before proceeding to the proof of Theorem 5, we make the assumption, without loss

of generality and maintained throughout, that well-defined conditional distributions exist.

Indeed, whenever interest is in the random elements of a Polish space, the existence of condi-

tional distributions is guaranteed and we assume without loss of generality that conditional

probabilities are regular (Dudley (2004), Th. 10.2.2, p.345). We also define some addi-

tional notation related to the conditional convergence modes used in the remainder of the

Appendix. Let Ex(·) := E(·|x) and E∗(·) := E(·|x, y, z). For weak convergence of random

measures induced by conditioning, i.e., of the form (·)|x w→ (◦)|B1 and (N)|x, y, z w→ (4)|B1,

we write (·) wx→ (◦)|B1 and (·) w∗→ (4)|B1 respectively, the definitions being Ex{f(·)} w→

E{f(◦)|B1} and E∗{g(N)} w→ E{g(4)|B1} for all bounded continuous real functions f and

g, where ·, ◦, N and 4 are placeholders for random elements. We say that the wx and

w∗ convergence are joint if (Ex{f(·)}, E∗{g(N)})′ w→ (E{f(◦)|B1}, E{g(4)|B1})′ for the

same class of functions f, g. This is distinct from the case where two wx convergence facts,

(·) wx→ (◦)|B1 and (N)
wx→ (4)|B1, are joint, where Ex{h(·,N)} w→ E{h(◦,4)|B1} should

hold for bounded continuous h (and similarly, for w∗). We write (·)T = Ox
p(1) to denote
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that for every ε > 0 there exists a C > 0 such that P (P (‖(·)T‖ > C|x) > ε) < ε, and

(·)T = oxp(1) if (·)T
wx→ 0, where ‖·‖ is a norm (for random processes, the uniform norm).

The corresponding notation O∗p(1) and o∗p(1) is introduced similarly for conditioning on the

data.

In Theorem 5 we now establish a homoskedastic joint conditional and bootstrap invari-

ance principle.

Theorem 5. Define the partial sums Uti := T−1/2
∑t

s=1 eis (i = 1, 2, 3), Ut := [Ut1, Ut2, Ut3]′

and Utb := T−1/2
∑t

s=1 esws. Moreover, let B† := [B†1, B
†
2, B

†
3]′ denote a standard Brownian

motion in R3, independent of B. Under Assumption 2, the following converge jointly as

T →∞:

UbT ·c|x
w→ B|B1

and

[UbT ·c1, U
′
bT ·cb]

′∣∣x, y, z w→ [B1, (B
†)′]′
∣∣B1

in the sense of weak convergence of random measures on D3 and D4.

According to the notation introduced previously, the meaning of the joint weak con-

vergence of random measures result established in Theorem 5, is that for all bounded

continuous real functions f and g on D3 and D4, respectively, it holds that Ex(f(U ′bT ·c))

E∗(g(UbT ·c1, U
′
bT ·cb))

 w→

 E (f (B′)|B1)

E(g(B1, (B
†)′)
∣∣B1)


as T →∞, in the sense of standard weak convergence of random vectors in R2.

Proof of Theorem 5: From Theorem 2 of Rubshtein (1996), by extending the ar-

gument to the trivariate case, it follows that E(f(UbT ·c2, UbT ·c3)|X )
a.s.→ E (f (B2, B3)) for

continuous bounded real f on D2. Then, by the bounded and martingale convergence

theorems,

Exf(UbT ·c2, UbT ·c3)
p→ Ef (B2, B3) (S.13)

for these functions f . As additionally UbT ·c
w→ B inD3 (a special case of (4)), from Corollary

4.1 of Crimaldi and Pratelli (2005) it follows that

Exf(U ′bT ·c)
w→ E(f(B′)|B1) (S.14)
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for continuous bounded real f on D3. Here we have used the result that conditioning on

x and UbT ·c1 are equivalent.

Next, we note that Utb, given the data, is a Gaussian process with independent incre-

ments, mean zero and variance function VT (r) := V ar∗(UbTrcb) = T−1
∑bTrc

t=1 ete
′
t

p→ rI3

(r ∈ [0, 1]), by Lemma A.1 of Boswijk et al. (2015). As VT are component-wise increasing

in r and their point-wise limit is continuous in r, the convergence of VT is uniform in r,

and it follows that

E∗f(U ′bT ·cb)
p→ Ef(B†′) (S.15)

for continuous bounded real f on D3. Additionally, [U ′bT ·c, U
′
bT ·cb]

′ w→ [B′, B†′]′ on D6 by

the martingale functional CLT [MFCLT] of Brown (1971), and so from Corollary 4.1 of

Crimaldi and Pratelli (2005) it follows further that, for continuous bounded real f on D6,

E∗f(U ′bT ·c, U
′
bT ·cb)

w→ E{f(B′, B†′)|B};

here we have used the result that conditioning on x, y, z and UbT ·c are equivalent. In partic-

ular, for f that do not depend on UbT ·c1, UbT ·c2, restricted to D4, the bootstrap counterpart

of (S.14) is obtained:

E∗f(UbT ·c1, U
′
bT ·cb)

w→ E{f(B1, B
†′)|B} = E{f(B1, B

†′)|B1}, (S.16)

the last equality following by the independence of the components of [B′, B†′]′.

To see that (S.14) and (S.16) are joint, it is sufficient, according to the Cramer-Wald

device, to obtain the convergence

aExf(U ′bT ·c) + bE∗g(UbT ·c1, U
′
bT ·cb)

w→ E(af(B′) + bg(B1, B
†′)|B1) (S.17)

for arbitrary a, b ∈ R and for continuous bounded real f and g on D3 and D4, respectively.

To this end, by Skorokhod’s representation theorem applied to the Polish space D6, and

since [B′, B†′]′ has a.s. continuous sample paths, we can consider a probability space where

[UbT ·c, U
′
bT ·cb]

′ → [B′, B†′]′ a.s. On this probability space, by Corollary 4.4 of Crimaldi

and Pratelli (2005), (S.14) and (S.16) hold in probability instead of weakly, and hence,

(S.17) holds in probability. Since the distribution of the involved conditional expectations

only depends on the distribution of [U ′bT ·c, U
′
bT ·cb]

′ and [B′, B†′]′, it follows that on general

probability spaces (S.17) holds weakly. �
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Proof of Theorem 3: Let Ũtb := T−1/2
∑t

s=1 ε̃sb be the bootstrap partial sums. Intro-

duce also ε̃it := dteit, Ũti := T−1/2
∑t

s=1 ε̃is, M̃i (r) :=
∫ r

0
di(s)dBi(s) (i = 1, 2, 3; r ∈ [0, 1]),

Ũt := [Ũt1, Ũt2, Ũt3]′, M̃ := [M̃1, M̃2, M̃3]′. Given that εt is a linear transformation of ε̃t,

and linear transformations are continuous on the support of the process M̃ , it suffices to

establish that(
ŨbT ·c,

T∑
t=1

Ũt−1,1[∆Ũt2,∆Ũt3]

)
wx→
(
M̃,

∫ 1

0

M̃1(s)d[M̃2(s), M̃3(s)]

)∣∣∣∣B1 (S.18)

jointly with(
UbT ·c1, ŨbT ·cb,

T∑
t=1

Ũt−1,1∆Ũtb

)
w∗→
(
B1, B̃η,

∫ 1

0

M̃1(s)dB̃η(s)

)∣∣∣∣B1. (S.19)

We shall prove Theorem 3 in this way.

Notice first that, given the data, ŨbT ·cb is a Gaussian process with independent incre-

ments, mean zero and variance function V ar∗(ŨbTrcb) = T−1
∑bTrc

t=1 ẽ2
Tt. Under the assump-

tion that T−1
∑bTrc

t=1 ẽ2
Tt

p→
∫ r

0
m2(s)ds, r ∈ [0, 1], this convergence is uniform in r because

T−1
∑bTrc

t=1 ẽ2
Tt are increasing in r and the limit integral is continuous in r. This suffices

for the conclusion that ŨbT ·cb given the data (and thus, given UbT ·c) converges weakly in

probability to B̃η:

E∗g(ŨbT ·cb)
p→ Eg(B̃η) (S.20)

for all bounded continuous real g on D, where B̃η is a Gaussian process with indepen-

dent increments, zero mean and variance function
∫ ·

0
m2(s)ds. On the other hand, since

UbT ·c
w→ B by the MFCLT of Brown (1971), and since D3 ×D is separable, it follows that

[U ′bT ·c, ŨbT ·cb]
′ w→ [B′, B̃η]

′ on D3 × D, with B and B̃η independent (see Theorem 2.8 of

Billingsley (1999)), and also on D4, because the limit process is continuous.

In view of Skorokhod’s representation theorem and the a.s. continuity of [B′, B̃η]
′’s

sample paths, we may assume in the remainder of the proof that [U ′bT ·c, ŨbT ·cb]
′ and [B′, B̃η]

′

are defined on the same probability space (say S), and

[U ′bT ·c, ŨbT ·cb]
′ → [B′, B̃η]

′ a.s. (S.21)

By using (S.21) and the distributional properties of [U ′bT ·c, ŨbT ·cb]
′ (though not functional

relations with the data and the bootstrap multipliers, which need not be defined on S), we

10



show that on S the convergence in (S.18)-(S.19) holds in probability, so in general it holds

weakly. To be specific, we write Ũti =
∑t

s=1 di(s/T )∆Usi (i = 1, 2, 3), and establish that

on S,

Exφ

(
Ũ ′bT ·c,

T∑
t=1

Ũt−1,1[∆Ũt2,∆Ũt3]

)
p→ E

[
φ

(
M̃ ′,

∫ 1

0

M̃1(s)d[M̃2(s), M̃3(s)]

)∣∣∣∣B1

]
(S.22)

and

E∗ψ

(
UbT ·c1, ŨbT ·c,b,

T∑
t=1

Ũt−1,1∆Ũtb

)
p→ E

[
ψ

(
B1, B̃η,

∫ 1

0

M̃1(s)dB̃η(s)

)∣∣∣∣B1

]
(S.23)

for every bounded and continuous real φ and ψ on D3 × R2 and D2 × R, respectively. On

S, Ex and E∗ denote exclusively E(·|UbT ·c1) and E(·|UbT ·c). In view of (S.13) and (S.20),

on S we can still invoke

Exf(UbT ·c2, UbT ·c3)
w→ Ef (B2, B3) and E∗g(ŨbT ·cb)

w→ Eg(B̃η)

for arbitrary bounded and continuous real f and g on D2 and D, respectively, because the

distributions of the conditional expectations depend only on the distributions of [U ′bT ·c, ŨbT ·cb]
′

and [B′, B̃η]
′. Moreover, in view also of (S.21), by Corollary 4.4 of Crimaldi and Pratelli

(2005), it holds on S that

Exh(U ′bT ·c)
p→ E{h(B′)|B1} and E∗g(UbT ·c1, ŨbT ·cb)

p→ E{g(B1, B̃η)|B1} (S.24)

for arbitrary bounded and continuous real h and g on D3 and D2.

It is well known that (S.22)-(S.23) cannot be put in the form of (S.24) for any choice of

h and g because, in general, the stochastic integrals involved are not continuous transfor-

mations. Therefore, we resort to their continuous approximations, as is habitually done.

We approximate:

(a) ŨbT ·cj by ξδj(UbT ·cj) (j = 1, 2, 3), where ξδj : D → D are defined by ξδj(X) =

X(·)δj(·) −
∫ ·

0
X(s)dδj(s) and are continuous on the support C[0, 1] of Bj for every fixed

smooth function δj : [0, 1] → R. Then, using (S.24) and integration by parts, it follows

that

Exm(ξδ1(UbT ·c1), ξδ2(UbT ·c2), ξδ3(UbT ·c3))
p→ E{m(ξδ1(B1), ξδ2(B2), ξδ3(B3))|B1}

= E{m(

∫ ·
0

δ1 (s) dB1 (s) ,

∫ ·
0

δ2 (s) dB2 (s) ,

∫ ·
0

δ3 (s) dB3 (s))|B1}
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and

E∗n(UbT ·c1, ξδ1(UbT ·c1), ŨbT ·cb)
p→ E{n(B1, ξδ1(B1), B̃η)|B1}

= E{n(B1,

∫ ·
0

δ1 (s) dB1 (s) , B̃η)|B1}.

for continuous m,n : D3 → R. It then needs to be argued that the integrals involving

smooth δj approximate those involving dj, in conditional distribution, such that it also

holds that Exm(ŨbT ·c)
p→ E{m(M̃)|B1} and

E∗n(UbT ·c1, ŨbT ·c1, ŨbT ·cb)
p→ E{n(B1, M̃1, B̃η)|B1}.

(b)
∫ 1

0
ŨbTs−c1dŨbTscj (j = 2, 3) and

∫ 1

0
ŨbTs−c1dŨbTscb by ζL(ŨbT ·c1, ŨbT ·cj) and ζL(ŨbT ·c1, ŨbT ·cb),

where ζL : D2 → R is defined by

ζL(X, Y ) := X(1)Y (1)−
L∑
i=1

Y (
i

L
)

{
X(

i

L
)−X(

i− 1

L
)

}
=

∫ 1

0

XL(s−)dY (s),

with

XL(s) :=

L∑
i=1

X(
i− 1

L
)I{i− 1

L
≤ s <

i

L
}+X(1)I{s = 1},

and is continuous on the support of [M̃1, M̃j]
′ and [M̃1, B̃η]

′ for every L ∈ N. Then, by an

appropriate choice of m and n above, it follows that

Exφ
(
ŨbT ·c, ζL(ŨbT ·c1, ŨbT ·c2), ζL(ŨbT ·c1, ŨbT ·c3)

)
p→ E

[
φ
(
M̃, ζL(M̃1, M̃2), ζL(M̃1, M̃3)

)∣∣∣B1

]
and

E∗ψ
(
UbT ·c1, ŨbT ·cb, ζL(ŨbT ·c1, ŨbT ·cb)

)
p→ E

[
ψ
(
B1, B̃η, ζL(M̃1, B̃η)

)∣∣∣B1

]
for φ and ψ as in (S.22)-(S.23). To complete the proof, it remains to be shown that, as

L → ∞, ζL approximates the stochastic integrals of interest sufficiently well, again in

conditional distribution.

We turn to the accuracy of the approximations introduced previously, starting from

point (a) and proceeding in two steps.

(a.1) By partial summation and the mean-value theorem,

max
r∈[0,1]

|ŨbTrcj − ξδj(UbT ·cj)(r)| ≤ max
r∈[0,1]

∣∣∣∣∣
brTc∑
t=1

{dj(
t

T
)− δj(

t

T
)}∆Utj

∣∣∣∣∣+ max
r∈[0,1]

|RT (r)|, (S.25)
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where RT (r) := UbrT cj{δj(r)− δj(brT c/T )}, satisfies

max
r∈[0,1]

|RT (r)| ≤ T−1 max
r∈[0,1]

|δ′j(r)| max
t=1,...,T

|Utj| = oxp(1)

because {maxt=1,...,T |Utj|}|x → max[0,1] |Bj| (a.s. for j = 1 and weakly in probability for

j = 2, 3) by continuity of the sup on the support of Bj. Moreover, for j = 1 and every

λ > 0, by Doob’s inequality and the property E(∆Ut1∆Us1) = T−1I{t = s} (inherited on S

from the martingale difference property of e1t and the standardisation Ee2
1t = 1), it holds

that

P

{
Px

(
max
r∈[0,1]

∣∣∣∣∣
brTc∑
t=1

{d1(
t

T
)− δ1(

t

T
)}∆Ut1

∣∣∣∣∣ ≥ λ

)
= 0

}

= 1− P

(
max
r∈[0,1]

∣∣∣∣∣
brTc∑
t=1

{d1(
t

T
)− δ1(

t

T
)}∆Ut1

∣∣∣∣∣ ≥ λ

)

≥ 1− 1

λ2E

(
T∑
t=1

{d1(
t

T
)− δ1(

t

T
)}∆Ut1

)2

= 1− 1

λ2T

T∑
t=1

{d1(
t

T
)− δ1(

t

T
)}2 →

T→∞
1− 1

λ2

∫ 1

0

(d1 − δ1)2.

Since smooth functions are dense in L2[0, 1], this limit can be made as close to 1 as desired by

choosing δ1 according to λ. On the other hand, for j = 2, 3, by using Ex(∆Utj|{∆Usj}t−1
s=1) =

0 (inherited on S from Ex(ejt|Ft−1) = 0, which is a distributional property), it follows from

the conditional version of Doob’s inequality that

Px

(
max
r∈[0,1]

∣∣∣∣∣
brTc∑
t=1

{dj(
t

T
)− δj(

t

T
)}∆Utj

∣∣∣∣∣ ≥ λ

)
(S.26)

≤ 1

λ2Ex

(
T∑
t=1

{dj(
t

T
)− δj(

t

T
)}∆Utj

)2

=
1

λ2

T∑
t=1

{dj(
t

T
)− δj(

t

T
)}2Ex[(∆Utj)

2]

and from Markov’s inequality that

P

(
1

λ2

T∑
t=1

{dj(
t

T
)− δj(

t

T
)}2Ex[(∆Utj)

2] ≥ λ

)
≤ E[(∆U1j)

2]

λ3

T∑
t=1

{dj(
t

T
)− δj(

t

T
)}2

→
T→∞

λ−3

∫ 1

0

(dj − δj)2,

which can be made as small as desired by the choice of δj.
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(a.2) By the continuous-time version of Doob’s inequality,

P

(
max
r∈[0,1]

∣∣∣∣∫ r

0

{dj(u−)− δj(u−)}dBj(u)

∣∣∣∣ ≥ λ

)
≤ 1

λ2E

(∫ 1

0

{dj(u−)− δj(u−)}dBj(u)

)2

= λ−2

∫ 1

0

(dj − δj)2

can be made as small as desired by the choice of δj, as in step (a.1).

We consider next the integral approximations in point (b), starting from the non-

bootstrap case. Let ∆j
TL :=

∑T
t=1 Ũt−1,1∆Ũtj−ζL(ŨbT ·c1, ŨbT ·cj). As Ex(∆Utj|{∆Usj}t−1

s=1) =

0 (j = 2, 3, t = 1, ..., T ), with {T li}Li=0 = {
⌊
Ti
L

⌋
}Li=0 and j = 2, 3 it holds that

Ex{∆j
TL}

2 = Ex{
L∑
i=1

T li∑
t=T li−1+1

(Ũt−1,1 − ŨT li−1,1)∆Ũtj}2

=
L∑
i=1

T li∑
t=T li−1+1

(Ũt−1,1 − ŨT li−1,1)2d2
j(
t

T
)Ex[(∆Utj)

2]

≤ sup
[0,1]

|d2
j |

L∑
i=1

max
t=T li−1+1,...,T li

(Ũt−1,1 − ŨT li−1,1)2

T li∑
t=T li−1+1

Ex[(∆Utj)
2].

Here, first, ŨbT ·c1
p→ M̃1 can be established on S by using the approximation of ŨbT ·c1

with ξδ1(UbT ·c1) as was previously done, and second, γT ij :=
∑T li

t=T li−1+1(∆Utj)
2 satisfies

ExγT ij
p→ li − li−1 as T →∞. Indeed, ExγT ij = Γ≤T ij,K + Γ>Tij,K for every K > 0, where

Γ≤T ij,K := Ex

T−1

T li∑
t=T li−1+1

T (∆Utj)
2I{T (∆Utj)

2 ≤ K}


p→ (li − li−1)E[e2

j1I{e2
j1 ≤ K}] → li − li−1

as T →∞ followed by K →∞, by the bounded and martingale convergence theorems (as

T →∞) and then the monotone convergence theorem (as K →∞), and

Γ>Tij,K := Ex

T−1

T li∑
t=T li−1+1

T (∆Utj)
2I{T (∆Utj)

2 > K}

 p→ 0

as T →∞ followed by K →∞, by Markov’s inequality and the uniformly bounded fourth

moment of T 1/2∆Utj. Therefore, by Chebyshev’s inequality, Px(|∆j
TL| ≥ λ) for every λ > 0

is bounded above by λ−2 times a r.v. converging in probability to

sup
[0,1]

|d2
j |

L∑
i=1

max
r∈[li−1,li]

|M̃1(r)− M̃1(li−1)|2.(li − li−1).
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Further, using Doob’s sub-martingale inequality,

P

(
L∑
i=1

max
r∈[li−1,li]

|M̃1(r)− M̃1(li−1)|2.(li − li−1) ≥ λ

)

≤
L∑
i=1

li − li−1

λ
V ar(M̃1(li)− M̃1(li−1)) =

L∑
i=1

li − li−1

λ

∫ li

li−1

d2
1(s)ds

≤ 1

λ
max
i=1,...,L

|li − li−1|
∫ 1

0

d2
1(s)ds→ 0

as L→∞ for every λ > 0. Hence,

lim
L→∞

lim sup
T→∞

P

(
Px

(∣∣∣∣∣
T∑
t=1

Ũt−1,1∆Ũtj − ζL(ŨbT ·c1, ŨbT ·cj)

∣∣∣∣∣ ≥ λ

)
≥ λ

)
= 0.

On the other hand, it also holds that

ζL(M̃1, M̃2) =

∫ 1

0

M̃L
1 (s−)dM̃j(s)

p→
∫ 1

0

M̃1 (s−) dM̃j (s) as L→∞

because
∫ 1

0
(M̃L

1 (s)− M̃1 (s))2ds
p→ 0 as L→∞.

Regarding bootstrap integrals, the argument is similar except that E∗(∆Ũtb)
2 appears

instead of Ex(∆Utj)
2. Since E∗(∆Ũtb∆Ũsb) = 0 for t 6= s (inherited on S from the indepen-

dence of wt), it holds that

E∗{
L∑
i=1

T li∑
t=T li−1+1

(Ũt−1,1 − ŨT li−1,1)∆Ũtb}2 =
L∑
i=1

T li∑
t=T li−1+1

(Ũt−1,1 − ŨT li−1,1)2E∗(∆Ũtb)
2

≤
L∑
i=1

max
t=T li−1+1,...,T li

(Ũt−1,1 − ŨT li−1,1)2

T li∑
t=T li−1+1

E∗(∆Ũtb)
2

p→
L∑
i=1

max
r∈[li−1,li]

|M̃1(r)− M̃1(li−1)|2
∫ li

li−1

m2(s)ds

as T →∞, as
∑T li

t=T li−1+1 E
∗(∆Ũtb)

2 p→
∫ li
li−1

m2(s)ds is a distributional property inherited

on S from T−1
∑T li

t=T li−1+1 ẽ
2
Tt

p→
∫ li
li−1

m2(s)ds. The rest of the argument proceeds as for

non-bootstrap integrals. This completes the proof of the theorem. �

We next discuss some implications of Theorem 3 for Orstein-Uhlenbeck limits and
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stochastic integrals involving them. With sx,0 = αx = 0, the standard evaluation

max
r∈[0,1]

∣∣∣∣∣∣xbTrc − e−cx bTrc
T

bTrc∑
i=1

ecx
i
T εxi

∣∣∣∣∣∣ ≤ max
r∈[0,1]

bTrc−1∑
i=0

∣∣∣(1− cx/T )i − e−cx
i
T

∣∣∣ |εx,bTrc−i|
≤

∣∣(1− cx/T )T − e−cx
∣∣max

[0,1]
|d1|

T∑
t=1

|e1t| = O(1)

holds for almost all x, by the ergodic theorem. As
∑bTrc

i=1 ecx
i
T εxi = h11

∑bTrc
i=1 ecx

i
T d1( i

T
)e1i,

by applying Theorem 3 with ecx(·)d1(·) in place of d1(·), it follows that

T−1/2xbT ·c
wx→ h11e

−cx(·)
∫ ·

0

ecxsd1(s)dB1(s)

∣∣∣∣B1 = Mηc,x|B1,

and similarly, T−1/2zbT ·c
wx→ Mηc,z|B1, jointly with the convergence in Theorem 3, by the

argument for that theorem.

Regarding stochastic integrals, for ε̃it (i = 2, 3) introduced in the proof of Theorem 3,

we find by partial summation that

(1− cx
T

)
T∑
t=1

sx,t−1ε̃it = sx,T

T∑
t=1

ε̃it −
T∑
t=1

εxt

t−1∑
s=1

ε̃is +
cx
T

T∑
t=1

sx,t−1

t−1∑
s=1

ε̃is −
T∑
t=1

εxtε̃it,

where the following jointly converge by the CMT, Theorem 3 and the discussion in the

previous paragraph:

T−1sx,T

T∑
t=1

ε̃it
wx→ Mηc,x(1)M̃i(1)|B1

T−1

T∑
t=1

εxt

t−1∑
s=1

ε̃is
wx→ h11

∫ 1

0

[dM̃1(s)]M̃i(s)|B1

T−2

T∑
t=1

sx,t−1

t−1∑
s=1

ε̃is
wx→ h11

∫ 1

0

M̃1(s)M̃i(s)ds|B1.

Moreover, T−1
∑T

t=1 εxtε̃it = oxp(1) by the conditional Chebyshev inequality, as

T−1V arx(
T∑
t=1

εxtε̃it) ≤ KT−1

T∑
t=1

e2
1tExe

2
it → KE(e2

1te
2
it) a.s. (S.27)

using the martingale difference property and the ergodic theorem, withK := h2
11 sup[0,1] |d2

1d
2
i |.
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Therefore,

T−1

T∑
t=1

sx,t−1ε̃it
wx→

(
Mηc,x(1)M̃i(1)− h11

∫ 1

0

[dM̃1(s)]M̃i(s) + cxh11

∫ 1

0

M̃1(s)M̃i(s)ds

)∣∣∣∣B1

=

∫ 1

0

M̃i(s)dMηc,x(s)

∣∣∣∣B1

jointly with the convergence in Theorem 3 and its implications. By continuity again, as

T−2
∑T

t=1 sx,t−1zt−1
wx→
∫ 1

0
Mηc,x (s)Mηc,z (s) ds|B1 and T−3/2

∑T−1
t=1 sx,t

wx→
∫ 1

0
Mηc,x(s)ds|B1,

it follows for s̊x,t := sx,t − T−1
∑T−1

i=1 sx,i and εxyt := εyt − h31d1te1t that

T−1

T∑
t=1

s̊x,t−1y
x
t = T−1

T∑
t=1

s̊x,t−1(εxyt + T−1gzzt−1) (S.28)

wx→
{∫ 1

0

M̄ηc,x (s) d[ω
1/2
y|xBη,y|x (s)] + gz

∫ 1

0

M̄ηc,x (s)Mηc,z (s) ds

}∣∣∣∣B1,

if gx = 0, where Bη,y|x is defined in Theorem 2.

Proof of Theorem 4: We again set αy, αx, αz to zero and gx to −h−1
11 h31cx, without

loss of generality. Notice for further reference that for a sequence ξT of r.v.’s,

ξT
p→ K = const implies that ξT

wx→ K (S.29)

because ξT
p→ K implies, for bounded continuous f , that Exf (ξT )

p→ f(K).

From relations (S.9)-(S.10), with ξT = supr∈[0,1] |ρT (r)|, it follows that

T−1/2

bTrc∑
t=1

êt = T−1/2

bTrc∑
t=1

ẙxt −
∑T

t=1 x̊t−1y
x
t

T−1
∑T

t=1 x̊
2
t−1

T−3/2

bTrc∑
t=1

x̊t−1 + oxp(1)

uniformly in r. Here, from Theorem 3, the convergence T−1/2zbT ·c
wx→ Mηc,z|B1 and the

CMT,

T−1/2

bTrc∑
t=1

ẙxt = T−1/2

bTrc∑
t=1

εxyt + T−3/2gz

bTrc∑
t=1

zt−1 −
bTrc − 1

T 3/2
{

T∑
t=1

εxyt + T−1gz

T∑
t=1

zt−1}

wx→ {ω1/2
y|x (Bη,y|x(r)− rBη,y|x(1)) + gz(

∫ r

0

Mηc,z (s) ds− r
∫ 1

0

Mηc,z (s) ds)}
∣∣∣∣B1

[as random measures] on D, so using also (S.28), the convergence T−1/2xbT ·c
wx→ Mηc,x|B1

and the CMT, we have that on D,

T−1/2

bTrc∑
t=1

êt
wx→ ω

1/2
y|x{F (r, cx) + gzG(r, cx, cz)}|B1.
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Next, (S.12) and (S.29) with ξT = s2
y imply that s2

y
wx→ ωy|x. Consequently, by the CMT,

S
wx→
∫ 1

0
{F (r, cx) + gzG(r, cx, cz)}2dr|B1. (S.30)

We proceed to convergence (15). The bootstrap process T−1/2
∑bT ·c

t=1 y
∗
t is of the form

of ŨbT ·cb of Theorem 3, with ẽTt = êt satisfying T−1
∑bTrc

t=1 ê2
t = T−1

∑bTrc
t=1 (εxyt)

2 + op(1),

r ∈ [0, 1]. Under Assumption 1, using Lemma 3 of Boswijk et al. (2015), we conclude that

T−1
∑bTrc

t=1 ê2
t

p→ h2
32

∫ r
0
d2

2(s)ds+h2
33

∫ r
0
d2

3(s)ds =
∫ r

0
m2(s)ds withm (s) =

√
h2

32d
2
2(s) + h2

33d
2
3(s).

From Theorem 3 and its discussion it follows thatUbT ·c1, T−1/2

bT ·c∑
t=1

y∗t ,
T∑
t=1

Ũt−1,1y
∗
t

 w∗→
(
B1, B

†
η,

∫ 1

0

M̃1(s)dB†η(s)

)∣∣∣∣B1

jointly with T−1/2xbT ·c
w∗→ Mηc,x|B1 and (S.30), where B†η is a Gaussian process with inde-

pendent increments, mean zero and V ar(B†η(r)) =
∫ r

0
[h2

32d
2
2(s) + h2

33d
2
3(s)]ds.

Next,

T−1/2

bTrc∑
t=1

ε̂∗yt = T−1/2

bTrc∑
t=1

(y∗t − ȳ∗)− T−3/2

bTrc∑
t=1

x̊t−1
T−1

∑T
t=1 x̊t−1y

∗
t

T−2
∑T

t=1 x̊
2
t−1

,

where by the CMT, the following converge jointly, and jointly with (S.30): T−1/2
∑bTrc

t=1 (y∗t−

ȳ∗)
w∗→ {B†η(r)−rB†η(1)}|B1 inD, T−3/2

∑bTrc
t=1 x̊t−1

w∗→
∫ r

0
M̄ηc,x(s)ds|B1 inD, T−1

∑T
t=1 x̊t−1y

∗
t
w∗→∫ 1

0
M̄ηc,x(s)dB

†
η(s)|B1 analogously to (S.28), T−2

∑T
t=1 x̊

2
t−1

w∗→
∫ 1

0
M̄2

ηc,x(s)ds|B1, and since

the two limit processes in D are continuous,

T−1/2

bTrc∑
t=1

ε̂∗yt
w∗→
(
B†η(r)− rB†η(1)−

∫ r
0
M̄ηc,x(s){

∫ 1

0
M̄2

ηc,x(s)}−1
∫ 1

0
M̄ηc,x(s)dB

†
η(s)

)∣∣∣B1

=
(
B†η(r)− rB†η(1)−

∫ r
0
B̄ηc,x(s){

∫ 1

0
B̄2
ηc,x(s)}−1

∫
B̄ηc,x(s)dB

†
η(s)

)∣∣∣B1

= ω
1/2
y|xF

†(r, cx)|B1

inD, where F †(r, cx) := ω
−1/2
y|x [B†η(r)−rB†η(1)−

∫ r
0
B̄ηc,x(s){

∫ 1

0
B̄ηc,x(s)

2}−1
∫ 1

0
B̄ηc,x(s)dB

†
η(s)],

r ∈ [0, 1], and convergence is joint with (S.30). Moreover, using the previous convergence
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results we have that,

s∗2y = T−1

T∑
t=1

(y∗t − ȳ∗)2 − T−1{T−1
∑T

t=1 x̊t−1y
∗
t }2

T−2
∑T

t=1 x̊
2
t−1

+ o∗p(1)

= T−1

T∑
t=1

y∗2t + o∗p(1) = T−1

T∑
t=1

w2
t ê

2
t + o∗p(1)

= T−1

T∑
t=1

ê2
t + T−1

T∑
t=1

(w2
t − 1)ê2

t + o∗p(1)

= T−1

T∑
t=1

ê2
t + o∗p(1)

because E∗{T−1
∑T

t=1(w2
t − 1)ê2

t}2 = 2T−2
∑T

t=1 ê
4
t = op(1) under the assumption that the

fourth moments are finite. We conclude that s∗2y
w∗→ h2

32f2 +h2
33f3 = ωy|x and, by the CMT,

that S∗
w∗→
∫ 1

0
F †(r, cx)

2dr
∣∣∣B1 jointly with (S.30). Finally, E(g(

∫ 1

0
F †(r, cx)

2dr)|B1) and

E(g(
∫
F (r, cx)

2dr)|B1) are a.s. equal to the the same measurable function of B1, for every

fixed continuous real function g, because (F †, B1) and (F,B1) have the same distribution.

This allows us to replace
∫ 1

0
F †(r, cx)

2dr by
∫ 1

0
F (r, cx)

2dr in the limit of S∗. �

Proof of Corollary 1: The asymptotic validity of the bootstrap rests on the result

that, as T →∞, S conditional on x, under Hu/Hx, and S∗ conditional on the data, under

all considered hypotheses, jointly converge weakly to the same random measure.

By Theorem 4, it holds that [Exf (S) , E∗f(S∗)]′
w→ [E{f(S∞)|B1}, E{f(S∞)|B1}]′ un-

der Hu/Hx, for all continuous bounded real functions f , where S∞ :=
∫ 1

0
F (r, cx)

2dr .

This implies weak convergence of the (random) cumulative distribution functions (or pro-

cesses) of S given x and S∗ given the data, see e.g. Daley and Vere-Jones (2008, pp.143-

144). Specifically, if G denotes the cumulative process of S∞ conditional on B1 (i.e.,

G(z) := P (S∞ ≤ z|B1), all z), then [Px(S ≤ ·), P ∗(S∗ ≤ ·)]′
w→ [G,G]′ in D(R) × D(R).

As the distribution of S∞ conditional on B1 is atomless a.s. (this follows from the rep-

resentation of the distribution in question as the distribution of an infinite weighted sum

of independent χ2 variables, similarly to Nyblom, 1989, and Rao and Swift, 2006, pp.472-

473) and so G is sample-path continuous a.s., the latter convergence holds also in D2(R)

and implies that supz∈R |Px(S ≤ z) − P ∗(S∗ ≤ z)| = op(1). Therefore, if GT denotes

the cumulative process of S conditional on x (i.e., GT (z) := Px(S ≤ z), all z), then
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P ∗(S∗ ≤ S) = GT (S)+op(1); here we have used the fact that P ∗(S∗ ≤ z)|z=S = P ∗(S∗ ≤ S)

due to the measurability of S with respect to the data.

Further, define the quantile transformation using the right-continuous version of the

generalised inverse. Then {GT (S) ≤ θ} = {S ≤ G−1
T (θ)} for all θ ∈ (0, 1). As the quantile

transformation is continuous in the Skorokhod metric, it holds that (GT , G
−1
T )

w→ (G,G−1)

in D2(R). Therefore, for every θ ∈ (0, 1) where G−1 is a.s. continuous, (GT , G
−1
T (θ))

w→

(G,G−1(θ)) in D2(R)× R and

Px (GT (S) ≤ θ) = Px(S ≤ G−1
T (θ)) = GT (G−1

T (θ))
w→ G(G−1(θ)) = θ

a.s., the second equality by the measurability of G−1
T (θ) w.r.t. the σ-algebra generated by

x, and the same convergence holds in probability as the limit is a constant. Since such θ

are all but countably many, we can conclude that GT (S)|x w→p U [0, 1], and since P ∗(S∗ ≤

S) = GT (S) + op(1), by (S.29) also P ∗(S∗ ≤ S)|x w→p U [0, 1]. Finally, by the bounded

convergence theorem, the unconditional convergence P ∗(S∗ ≤ S)
w→ U [0, 1] follows. The

statements in the corrollary can now be ontained by taking 1− P ∗(S∗ ≤ S).
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Table S1. Finite sample rejection frequencies of SB (power) and IVcomb (size) under volatility shifts:
T = 200, gx = 0, gz = 25, dit = 1(t ≤ bτT c) + σi1(t > bτT c), i = 1, 2, 3

cx = cz = 0 cx = cz = 5 cx = cz = 10

τ = 0.3 τ = 0.7 τ = 0.3 τ = 0.7 τ = 0.3 τ = 0.7

σ1 σ2 σ3 SB IVcomb SB IVcomb SB IVcomb SB IVcomb SB IVcomb SB IVcomb

1 1 1 0.910 0.712 0.910 0.712 0.742 0.381 0.742 0.381 0.568 0.244 0.568 0.244
4 0.478 0.444 0.585 0.511 0.252 0.162 0.308 0.202 0.174 0.130 0.198 0.145
1
4

0.970 0.760 0.944 0.739 0.880 0.487 0.828 0.420 0.754 0.340 0.688 0.277

4 1 0.997 0.843 0.977 0.763 0.985 0.634 0.919 0.537 0.960 0.478 0.842 0.403
4 0.905 0.738 0.815 0.624 0.761 0.401 0.612 0.349 0.585 0.241 0.462 0.229
1
4

0.999 0.854 0.987 0.776 0.995 0.670 0.947 0.567 0.986 0.533 0.895 0.437
1
4

1 0.656 0.556 0.864 0.705 0.469 0.252 0.661 0.348 0.340 0.180 0.481 0.219
4 0.245 0.275 0.534 0.495 0.153 0.127 0.251 0.190 0.131 0.117 0.168 0.140
1
4

0.817 0.638 0.904 0.735 0.641 0.351 0.754 0.389 0.482 0.247 0.588 0.247

4 1 1 0.907 0.722 0.912 0.685 0.739 0.383 0.745 0.384 0.569 0.240 0.576 0.253
4 0.464 0.427 0.602 0.386 0.254 0.160 0.317 0.170 0.175 0.127 0.204 0.140
1
4

0.971 0.795 0.942 0.764 0.885 0.552 0.823 0.517 0.751 0.412 0.680 0.375

4 1 0.996 0.856 0.968 0.755 0.982 0.643 0.907 0.580 0.956 0.477 0.828 0.461
4 0.896 0.738 0.781 0.555 0.754 0.386 0.577 0.324 0.579 0.229 0.432 0.226
1
4

0.999 0.870 0.978 0.782 0.993 0.691 0.940 0.637 0.983 0.548 0.882 0.536
1
4

1 0.679 0.551 0.886 0.662 0.487 0.239 0.688 0.322 0.351 0.167 0.505 0.203
4 0.253 0.260 0.576 0.361 0.158 0.127 0.279 0.154 0.135 0.118 0.178 0.132
1
4

0.826 0.685 0.919 0.751 0.660 0.400 0.771 0.460 0.494 0.287 0.601 0.307
1
4

1 1 0.909 0.695 0.914 0.719 0.744 0.377 0.733 0.367 0.573 0.257 0.567 0.234
4 0.494 0.504 0.584 0.569 0.255 0.201 0.291 0.257 0.174 0.144 0.190 0.177
1
4

0.975 0.721 0.943 0.733 0.874 0.421 0.828 0.385 0.755 0.288 0.687 0.246

4 1 0.996 0.835 0.979 0.760 0.988 0.621 0.913 0.498 0.965 0.475 0.838 0.348
4 0.920 0.765 0.824 0.662 0.791 0.471 0.614 0.387 0.606 0.305 0.466 0.256
1
4

0.999 0.842 0.989 0.767 0.996 0.637 0.946 0.507 0.988 0.493 0.894 0.359
1
4

1 0.603 0.571 0.855 0.719 0.444 0.289 0.649 0.357 0.323 0.215 0.468 0.224
4 0.214 0.339 0.515 0.553 0.150 0.156 0.235 0.248 0.129 0.133 0.161 0.170
1
4

0.785 0.608 0.897 0.736 0.596 0.322 0.750 0.368 0.448 0.240 0.585 0.235
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Table S2. Finite sample rejection frequencies of SB (power) and IVcomb (size) under volatility shifts:
T = 200, gx = 0, gz = 50, dit = 1(t ≤ bτT c) + σi1(t > bτT c), i = 1, 2, 3

cx = cz = 0 cx = cz = 5 cx = cz = 10

τ = 0.3 τ = 0.7 τ = 0.3 τ = 0.7 τ = 0.3 τ = 0.7

σ1 σ2 σ3 SB IVcomb SB IVcomb SB IVcomb SB IVcomb SB IVcomb SB IVcomb

1 1 1 0.987 0.804 0.987 0.804 0.944 0.545 0.944 0.545 0.866 0.393 0.866 0.393
4 0.761 0.630 0.848 0.682 0.527 0.276 0.607 0.345 0.356 0.175 0.414 0.221
1
4

0.996 0.830 0.992 0.815 0.981 0.617 0.968 0.576 0.949 0.480 0.924 0.425

4 1 1.000 0.860 0.996 0.813 0.997 0.686 0.976 0.634 0.992 0.555 0.944 0.518
4 0.984 0.821 0.956 0.749 0.946 0.566 0.857 0.517 0.871 0.390 0.740 0.374
1
4

1.000 0.866 0.998 0.817 0.999 0.700 0.983 0.645 0.996 0.572 0.958 0.532
1
4

1 0.886 0.714 0.973 0.804 0.777 0.421 0.908 0.522 0.639 0.298 0.809 0.365
4 0.465 0.458 0.796 0.678 0.293 0.185 0.530 0.315 0.210 0.142 0.339 0.205
1
4

0.951 0.767 0.983 0.818 0.882 0.526 0.948 0.558 0.793 0.404 0.882 0.400

4 1 1 0.988 0.813 0.987 0.785 0.942 0.548 0.946 0.546 0.860 0.387 0.874 0.398
4 0.759 0.614 0.861 0.577 0.520 0.258 0.625 0.271 0.353 0.161 0.431 0.181
1
4

0.996 0.845 0.992 0.820 0.981 0.651 0.970 0.633 0.948 0.524 0.925 0.508

4 1 0.999 0.873 0.994 0.791 0.996 0.690 0.977 0.647 0.990 0.542 0.944 0.545
4 0.982 0.828 0.943 0.700 0.940 0.554 0.845 0.490 0.866 0.365 0.726 0.364
1
4

1.000 0.877 0.996 0.800 0.998 0.704 0.984 0.666 0.994 0.566 0.961 0.571
1
4

1 0.891 0.713 0.978 0.774 0.784 0.404 0.922 0.495 0.649 0.270 0.826 0.334
4 0.487 0.437 0.829 0.552 0.297 0.167 0.575 0.225 0.218 0.135 0.370 0.156
1
4

0.957 0.797 0.985 0.822 0.894 0.572 0.952 0.612 0.797 0.451 0.889 0.467
1
4

1 1 0.987 0.792 0.987 0.808 0.947 0.549 0.941 0.538 0.869 0.409 0.857 0.381
4 0.773 0.677 0.847 0.729 0.536 0.353 0.589 0.436 0.356 0.241 0.400 0.293
1
4

0.997 0.799 0.992 0.815 0.980 0.575 0.969 0.552 0.949 0.440 0.924 0.392

4 1 0.999 0.861 0.997 0.815 0.998 0.691 0.975 0.619 0.993 0.574 0.939 0.486
4 0.985 0.832 0.958 0.773 0.955 0.617 0.852 0.554 0.884 0.462 0.736 0.413
1
4

1.000 0.861 0.998 0.820 0.999 0.697 0.983 0.621 0.997 0.583 0.954 0.491
1
4

1 0.849 0.716 0.970 0.813 0.749 0.464 0.901 0.532 0.623 0.355 0.798 0.368
4 0.407 0.540 0.790 0.730 0.285 0.261 0.498 0.419 0.204 0.200 0.320 0.281
1
4

0.946 0.735 0.982 0.821 0.851 0.496 0.944 0.542 0.761 0.389 0.878 0.379

ST.2



(a) c = 5, σxy = 0, σzy = 0 (b) c = 5, σxy = −0.7, σzy = 0 (c) c = 5, σxy = −0.7, σzy = −0.7 (d) c = 5, σxy = −0.7, σzy = 0.7

(e) c = 20, σxy = 0, σzy = 0 (f) c = 20, σxy = −0.7, σzy = 0 (g) c = 20, σxy = −0.7, σzy = −0.7 (h) c = 20, σxy = −0.7, σzy = 0.7

Figure S1. Asymptotic rejection frequencies of S, SB (power) and tu, Q (size): gx = 0, cx = cz = c;
S: – . – , SB: , tu: - - - , Q: – –

S
F
.1



(a) cx = 0, cz = 10, (b) cx = 0, cz = 10, (c) cx = 0, cz = 10, (d) cx = 0, cz = 10,

σxy = 0, σzy = 0 σxy = −0.7, σzy = 0 σxy = −0.7, σzy = −0.7 σxy = −0.7, σzy = 0.7

(e) cx = 10, cz = 0, (f) cx = 10, cz = 0, (g) cx = 10, cz = 0, (h) cx = 10, cz = 0,

σxy = 0, σzy = 0 σxy = −0.7, σzy = 0 σxy = −0.7, σzy = −0.7 σxy = −0.7, σzy = 0.7

Figure S2. Asymptotic rejection frequencies of S, SB (power) and tu, Q (size): gx = 0;
S: – . – , SB: , tu: - - - , Q: – –
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(a) σxz = 0.5, (b) σxz = 0.5, (c) σxz = 0.5, (d) σxz = 0.5,

σxy = 0, σzy = 0 σxy = −0.7, σzy = 0 σxy = −0.7, σzy = −0.7 σxy = −0.35, σzy = 0.35

(e) σxz = −0.5, (f) σxz = −0.5, (g) σxz = −0.5, (h) σxz = −0.5,

σxy = 0, σzy = 0 σxy = −0.7, σzy = 0 σxy = −0.35, σzy = −0.35 σxy = −0.7, σzy = 0.7

Figure S3. Asymptotic rejection frequencies of S, SB (power) and tu, Q (size): gx = 0, cx = cz = 0;
S: – . – , SB: , tu: - - - , Q: – –
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(a) σxz = 0.5, (b) σxz = 0.5, (c) σxz = 0.5, (d) σxz = 0.5,

σxy = 0, σzy = 0 σxy = −0.7, σzy = 0 σxy = −0.7, σzy = −0.7 σxy = −0.35, σzy = 0.35

(e) σxz = −0.5, (f) σxz = −0.5, (g) σxz = −0.5, (h) σxz = −0.5,

σxy = 0, σzy = 0 σxy = −0.7, σzy = 0 σxy = −0.35, σzy = −0.35 σxy = −0.7, σzy = 0.7

Figure S4. Asymptotic rejection frequencies of S, SB (power) and tu, Q (size): gx = 0, cx = cz = 10;
S: – . – , SB: , tu: - - - , Q: – –
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(a) σxz = 0.5, (b) σxz = 0.5, (c) σxz = 0.5, (d) σxz = 0.5,

σxy = 0, σzy = 0 σxy = −0.7, σzy = 0 σxy = −0.7, σzy = −0.7 σxy = −0.35, σzy = 0.35

(e) σxz = −0.5, (f) σxz = −0.5, (g) σxz = −0.5, (h) σxz = −0.5,

σxy = 0, σzy = 0 σxy = −0.7, σzy = 0 σxy = −0.35, σzy = −0.35 σxy = −0.7, σzy = 0.7

Figure S5. Asymptotic rejection frequencies of S, SB (power) and tu, Q (size): gx = 0, cx = 0, cz = 10;
S: – . – , SB: , tu: - - - , Q: – –
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(a) σxz = 0.5, (b) σxz = 0.5, (c) σxz = 0.5, (d) σxz = 0.5,

σxy = 0, σzy = 0 σxy = −0.7, σzy = 0 σxy = −0.7, σzy = −0.7 σxy = −0.35, σzy = 0.35

(e) σxz = −0.5, (f) σxz = −0.5, (g) σxz = −0.5, (h) σxz = −0.5,

σxy = 0, σzy = 0 σxy = −0.7, σzy = 0 σxy = −0.35, σzy = −0.35 σxy = −0.7, σzy = 0.7

Figure S6. Asymptotic rejection frequencies of S, SB (power) and tu, Q (size): gx = 0, cx = 10, cz = 0;
S: – . – , SB: , tu: - - - , Q: – –
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