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Abstract

This study develops and implements methods for determining whether

introducing new securities or relaxing investment constraints improves the

investment opportunity set for all risk averse investors. We develop a test

procedure for ‘stochastic spanning’ for two nested portfolio sets based on

subsampling and Linear Programming. The test is statistically consistent

and asymptotically exact for a class of weakly dependent processes. A Monte-

Carlo simulation experiment shows good statistical size and power properties

in finite samples of realistic dimensions. In an application to standard data

sets of historical stock market returns, we accept market portfolio efficiency

but reject two-fund separation, which suggests an important role for higher-

order moment risk in portfolio theory and asset pricing.
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1 Introduction
Stochastic Dominance (SD) ranks prospects based on general regularity conditi-
ons for decision making under risk (Quirk and Saposnik (1962), Hadar and Russell
(1969), Hanoch and Levy (1969) and Rothschild and Stiglitz (1970)). SD can be seen
as a model-free alternative to mean-variance (M-V) dominance. The M-V criterion
is consistent with Expected Utility for elliptical distributions such as the normal dis-
tribution (Chamberlain (1983), Owen and Rabinovitch (1983), Berk (1997)) but has
limited economic meaning when the probability distribution cannot be characterized
completely by its location and scale.

Simaan (1993), Athayde and Flores (2004) and Mencia and Sentana (2009) deve-
lop a mean-variance-skewness framework based on generalizations of elliptical dis-
tributions that are fully characterized by their first three moments. SD presents
a further generalization that accounts for all moments of the return distributions
without assuming a particular family of distributions.

SD is traditionally applied for comparing a pair of given prospects, for example,
two income distributions or two medical treatments. Davidson and Duclos (2000),
Barrett and Donald (2003) and Linton, Maasoumi and Whang (2005), among others,
develop statistical tests for such pairwise comparisons.

A more general, multivariate problem is that of testing whether a given prospect
is stochastically efficient relative to all mixtures of a discrete set of alternatives (Bawa
et al. (1985), Shalit and Yitzhaki (1994), Post (2003), Kuosmanen (2004), Roman,
Darby-Dowman and Mitra (2006)). This problem arises naturally in applications
of portfolio theory and asset pricing theory, where the mixtures are portfolios of fi-
nancial securities. Post and Versijp (2007), Scaillet and Topaloglou (2010), Linton,
Post and Whang (2014) and Post and Poti (2017) address this problem using vari-
ous statistical methods. Their stochastic efficiency tests can be seen as model-free
alternatives to tests for M-V efficiency, such as Gibbons, Ross and Shanken (1989).

In an analogous manner, the current study introduces the concept of ‘stochastic
spanning’, which can be viewed as a model-free alternative to M-V spanning (Huber-
man and Kandel (1987)). Spanning occurs if introducing new securities or relaxing
investment constraints does not improve the investment possibility set for a given
class of investors. We develop methods for implementing the concept of stochastic
spanning, which, unlike M-V spanning, accounts for higher-order moment risk in
addition to variance.

Higher-order moment risk is arguably more relevant for analyzing spanning than
for efficiency. Efficiency tests are generally applied to a given broad market in-
dex with limited skewness and kurtosis (at the typical monthly to annual return
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frequency), in which case the arguments of Levy and Markowitz (1979) for the
mean-variance approximation are compelling. By contrast, a spanning test evalua-
tes all feasible portfolios, including those concentrated in a small number of risky
securities, for which the same arguments are unlikely to hold.

Unfortunately, the spanning question is analytically difficult to resolve for pa-
rametric families of non-normal distributions, among other things, because relevant
distributions such as the log-normal are not stable and the statistical calculus is
complicated. For the aforementioned three-moment model, simplifications arise for
important families of parametric distributions, but this approach does not account
for higher-order moments. This study attempts to circumvent the analytical chal-
lenges by developing a statistical inference methodology and computational strategy
that are based on a nonparametric assumption framework.

We propose a theoretical measure for stochastic spanning and derive the exact
limit distribution for the associated empirical test statistic for a general class of
dynamic processes. In addition, we develop consistent and feasible test procedures
based on subsampling and Linear Programming (LP). A Monte-Carlo simulation
experiment shows good statistical size and power properties in finite samples of
realistic dimensions.

Spanning involves the comparison of two choice sets, with pairwise dominance
analysis and portfolio efficiency analysis arising as special cases that assume that
one or two of the choice sets is a singleton. In this respect, we expect that our
inference and optimization methods have a wider applicability for SD analysis.

Our focus is on the most common SD criterion of second-order stochastic do-
minance (SSD), which has a well-established economic interpretation in terms of
expected utility theory and Yaari’s (1987) dual theory of risk. Extensions to the
first-order rule (FSD) and third-order rule (TSD) would require large-scale mixed-
integer programs and quadratic programs, respectively, which are computationally
demanding when embedded in re-sampling routines.

The proofs to our propositions are available in the separate Supplementary Ap-

pendix.

2 Stochastic Spanning
The investment universe consists of M base assets with random investment returns
X := (x1, . . . , xM) with support bounded by XM := [x, x]M , −∞ < x < x < +∞.
X can be chosen arbitrarily if it is a superset of the maximal support of the base
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assets. It does not seem realistic to allow for unbounded investment opportuni-
ties, because of the risk of financial ruin and the associated negative spill-overs to
counterparties. For any realistic investment problem, private contracts, law and re-
gulation will limit the investment possibilities. These restrictions will, for example,
prevent that a risk neutral investor will borrow an infinite amount of money and
take an infinite and concentrated position in a single high-risk security.

In this study, the M -simplex Λ :=
{
λ ∈ RM

+ : 1T
Mλ = 1

}
represents the invest-

ment opportunity set. Importantly, the base assets are not restricted to be individual
securities. In general, the base assets are defined as the vertices of the opportunity
set, or the most extreme feasible combinations of the individual securities.

For example, some of the base assets could include a short position in a riskless
asset and a long position in risky assets, to allow for bounded riskless borrowing.
Similarly, some of the base assets could include a short position in risky assets and
a long position in the riskless asset, to allow for bounded short sales.

Since the portfolio set is represented in vertex form rather than halfspace form,
the convexity constraint 1T

Mλ = 1 should not be confused with the classic budget
constraint. Relaxing the budget constraint would affect the number of and the
composition of the base assets rather than the convexity constraint.

The analysis considers a myopic, single-period choice problem. However, dyna-
mic intertemporal choice problems could be allowed for by considering base assets
that are periodically rebalanced based on conditioning information.

Let F : RM → [0, 1] denote the continuous joint c.d.f. of X and F (y, λ) :=´
1(XTλ ≤ y)dF (X) the marginal c.d.f. for portfolio λ ∈ Λ. In order to define

stochastic dominance and stochastic efficiency, we use the following integrated c.d.f.:

F (2)(x, λ) :=

ˆ x

−∞
F (y, λ)dy =

ˆ x

−∞
(x− y)dF (y, λ). (1)

This measure corresponds to Bawa’s (1975) first-order lower-partial moment, or
expected shortfall, for return threshold x ∈ X .

Definition 1. (Weak Stochastic Dominance): Portfolio λ ∈ Λ weakly second-order
stochastically dominates portfolio τ ∈ Λ or λ ≽F τ , if

G(x, λ, τ ;F ) ≤ 0 ∀x ∈ X ; (2)
G(x, λ, τ ;F ) := F (2)(x, λ)− F (2)(x, τ). (3)
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Definition 2. (Strict Stochastic Dominance): Portfolio λ ∈ Λ strictly second-order
stochastically dominates portfolio τ ∈ Λ or λ ≻F τ , if

(λ ≽F τ) ∧ (G(x, λ, τ ;F ) < 0 for some x ∈ X ) . (4)

A well-known equivalent formulation says that stochastic dominance occurs if
and only if λ ∈ Λ is preferred to τ ∈ Λ by all risk averters; see Hadar and Russell
(1969), Hanoch and Levy (1969) and Rothschild and Stiglitz (1970).

Definition 3. (Stochastic Efficiency): Portfolio τ ∈ Λ is second-order stochasti-
cally efficient if there exists no other feasible portfolio that strictly second-order
stochastically dominates it: λ �F τ ∀λ ∈ Λ.

Equivalently, stochastic efficiency occurs if and only if portfolio τ ∈ Λ is the
optimum for some risk averters (Post (2003, Thm 1)). This result relies on convexity
of the choice set Λ, which allows us to apply Sion’s (1958) minimax theorem to the
joint analysis of portfolio weights and risk preferences. By contrast, for discrete
choice sets, non-dominance does not imply optimality (Fishburn, 1974). Stochastic
efficiency is not a trivial property. Notably, Post (2003) shows that a broad stock
market index is significantly stochastically inefficient relative to a set of actively
managed stock portfolios.

We use E(Λ) := {τ ∈ Λ : λ �F τ ∀λ ∈ Λ} to denote the set of all stochastically
efficient portfolios. E(Λ) is a model-free generalization of the M-V efficient set. For
important families of parametric distributions, E(Λ) is a proper subset of the M-V
efficient set (Ali (1975)). For these distributions, the M-V set is larger than E(Λ)

because the M-V rule can assign an irrationally high weight to variance. In general,
however, the two efficient sets are not nested, because the mean and the variance
do not capture all lower partial moments F (2)(x, λ), x ∈ X .

This study focuses on the effects of changing the set of base assets or investment
constraints. For this purpose, we introduce a non-empty polyhedral subset K ⊂ Λ. A
polyhedral structure is analytically convenient and arises naturally if we remove some
of the base assets or tighten the linear constraints which define Λ. The concluding
section briefly discusses the case with convex subsets (which can be non-polyhedral)
or simplicial complex subsets (which can be non-convex).
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Definition 4. (Stochastic Spanning): Portfolio set Λ is second-order stochastically
spanned by subset K ⊂ Λ if all portfolios λ ∈ Λ are weakly second-order stochastically
dominated by some portfolios κ ∈ K:

(κ ≽F λ κ ∈ K) ∀λ ∈ Λ ⇐⇒

((G(x, κ, λ;F ) ≤ 0 ∀x ∈ X ) κ ∈ K) ∀λ ∈ Λ. (5)

We will use R(Λ) := {K ⊆ Λ : (κ ≽F λ κ ∈ K) ∀λ ∈ Λ} to denote all relevant
subsets that span Λ. Spanning occurs if and only if K ∈ R(Λ). R(Λ) is non-empty
because it includes at least Λ; a span K ∈ R(Λ) may itself be spanned by another
span K′ ∈ R(K) ⊆ R(Λ).

This study analyzes a given subset K ⊂ Λ. In other applications, it may be
interesting to find an irreducible span Κ ⊆ R(Λ), so that R(K) = K. However, there
generally exist multiple irreducible spans due to the possibility that two distinct
portfolios have equivalent returns.

Below, we will discuss the relations between stochastic spanning, stochastic ef-
ficiency, expected utility and mutual fund separation, and introduce a measure for
stochastic spanning.

Proposition 1. Stochastic spanning occurs if the enlargement (Λ − K) does not
change the efficient set, that is,

K ∈ R(Λ) ⇐= E(Λ) ⊆ K. (6)

The reverse relation generally does not hold, because the weak dominance re-
lation does not possess the antisymmetric property. In other words, E(Λ) always
spans Λ, but it may be reducible by excluding equivalent elements. Consequently,
E(Λ) ⊆ K is a sufficient but not necessary condition for K ∈ R(Λ). In addition, the
sufficient condition E(Λ) ⊆ K is not practical, because E(Λ) is generally non-convex
and disconnected, which makes it difficult to identify all its elements and test the
sufficient condition directly. On the contrary, a small polyhedral span K ∈ R(Λ)

could be used as a practical approximation to the intractable efficient set E(Λ).
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We use the following scalar-valued functional of the population c.d.f. as a mea-
sure for deviations from stochastic spanning:

η(F ) := sup
λ∈Λ

inf
κ∈K

sup
x∈X

G(x, κ, λ;F ). (7)

The outer maximization searches for a feasible portfolio λ ∈ Λ that is not weakly
dominated by a portfolio κ ∈ Κ. If η(F ) = 0, then no such portfolio exists and Κ
spans Λ; if η(F ) > 0, then stochastic spanning does not occur.

Remark 1. Since G(x, κ, λ;F ) = EF [X
Tλ−XTκ], we find the following lower bound

for the stochastic spanning measure:

η(F ) ≥ sup
λ∈Λ

inf
κ∈K

G(x, κ, λ;F )

= sup
λ∈Λ

inf
κ∈K

EF [X
Tλ−XTκ]. (8)

To further clarify the economic meaning of the notion of stochastic spanning,
we can formulate it in terms of expected utility, by analogy to the aforementioned
formulation of dominance and efficiency.

Proposition 2. The stochastic spanning measure (7) can be reformulated as follows:

η(F ) = sup
λ∈Λ;w∈W

inf
κ∈K

H(w, κ, λ;F ); (9)

H(w, κ, λ;F ) :=

ˆ x

x

w(x)G(x, κ, λ;F )dx; (10)

W :=

{
w : X → [0, 1] :

ˆ x

x

w(x)dx = 1

}
. (11)

Alternatively,
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η(F ) = sup
λ∈Λ;u∈U2

inf
κ∈K

EF

[
u
(
XTλ

)
− u

(
XTκ

)]
; (12)

U2 :=

{
u ∈ C0 : u(y) =

ˆ x

x

w(x)r(y;x)dx w ∈ W
}
; (13)

r(y;x) := (y − x)1(y ≤ x), (x, y) ∈ X 2. (14)

In this formulation, U2 is a set of normalized, increasing and concave utility
functions that are constructed as convex mixtures of elementary Russell and Seo
(1989) ramp functions r(y;x), x ∈ X . Stochastic spanning (η(F ) = 0) occurs if no
risk averter (u ∈ U2) benefits from the enlargement (Λ − K). The lower bound (8)
represents the potential benefit of the enlargement to a risk-neutral investor with
utility function u(y) = (y − x).

Stochastic spanning can also be formulated in terms of mutual fund separation;
in portfolio theory, N -fund separation occurs if all rational risk averters combine
at most N ∈ N1 distinct mutual funds (see, for example, Ross (1978)). If we
assume a multivariate normal distribution and free portfolio formation, then two-
fund separation arises (N ≤ 2). Our definition of stochastic spanning however
allows for non-normality and investment restrictions. Using the Minkowski-Weyl
Theorem, the nested portfolio set Κ ⊂ Λ can be represented as the convex hull of
its V (K) ∈ N1 vertices. Hence, in case of stochastic spanning, rational investors can
limit their attention to combining the V (K) vertices of K, and thus N ≤ V (K).

Appendix A discusses the relation between our analysis of stochastic spanning
and the study of Scaillet and Topaloglou (2010), which was an important source of
inspiration for our analysis.

3 Statistical Theory
In empirical applications, the c.d.f. F is latent and the analyst has access to a
discrete time series of realized returns sT := (Xt)

T
t=1, Xt ∈ X , t = 1, · · · , T . This

section analyses the asymptotic behavior of a test statistic for stochastic spanning
in situations in which the number of assets M is fixed and the number of time series
observations T goes to infinity, which in practice means that M is much smaller
than T .

We make the following general assumptions on the multivariate return process:
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Assumption 1. (i) The return sequence (Xt)t∈N0 is α–mixing with mixing coef-
ficients (at)t∈N0 such that at = O(t−δ)) for some δ > 1. (ii) Furthermore, the
covariance matrix

EF

[
(X0 − EF [X0])(X0 − EF [X0])

T]+ 2
∞∑
t=1

EF

[
(X0 − EF [X0])(Xt − EF [Xt])

T]

is positive definite.
These assumptions allow for various stationary ARMA, GARCH and stochas-

tic volatility processes based on innovations with appropriately bounded supports
(Carrasco and Chen (2002)).

Let FT (x) := T−1
∑T

t=1 1(Xt ≤ x) denote the empirical joint c.d.f. constructed
from the sample sT . The multivariate empirical process CLT for strongly mixing
sequences implies that

√
T (FT − F ) weakly tends to the Gaussian process BF with

covariance kernel given by Cov(BF (x),BF (y)) =
∑

t∈Z Cov(1(X0 ≤ x), 1(Xt ≤ y))

and almost surely uniformly continuous sample paths defined on RM (see Thm 7.3
of Rio (2013)).

We consider the following scaled empirical analogue of (7) as a test statistic for
stochastic spanning:

ηT :=
√
Tη(FT ) =

√
T sup

λ∈Λ
inf
κ∈K

sup
x∈X

G(x, κ, λ;FT ) (15)

=
√
T sup

λ∈Λ;w∈W
inf
κ∈K

H(w, κ, λ;FT ). (16)

In general, computing the test statistic ηT is a challenging global optimization
problem. Appendix C forwards two alternative computational strategies based on
simulation or enumeration of a large number of small LP problems.

We use the test statistic ηT to test the null hypothesis of stochastic spanning,
H0 : η(F ) = 0, against the alternative hypothesis of no stochastic spanning, H1 :

η(F ) > 0. To derive the limit distribution of the test statistic under the null, we
first introduce some additional notation.

Under the null, the set Γ := W × Λ can be partitioned into the following two
subsets:
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Γ= :=

{
(w, λ) ∈ Γ : inf

κ∈K
H(w, κ, λ;F ) = 0

}
; (17)

Γ< :=

{
(w, λ) ∈ Γ : inf

κ∈K
H(w, κ, λ;F ) < 0

}
. (18)

Since Κ ⊆ Λ, we find Γ= ̸= Ø. In addition, for any (w, λ) ∈ Γ, Κ can be
decomposed into the following two subsets:

K≤
(w,λ) := {κ ∈ K : H(w, κ, λ;F ) ≤ 0 (w, λ) ∈ Γ} ; (19)

K>
(w,λ) := {κ ∈ K : H(w, κ, λ;F )>0 (w, λ) ∈ Γ} . (20)

Under the null, we have that ((H(w, κ, λ;F ) ≤ 0 ∀w ∈ W) κ ∈ K) for all λ ∈ Λ,
and hence K≤

(w,λ) ̸= Ø for all (w, λ) ∈ Γ.

Proposition 3. Under Assumption 1,

H
(
w, κ, λ;

√
T (FT − F )

)
 H(w, κ, λ;BF ); (21)

oper
(w,λ)∈AT

oper
κ∈BT

H
(
w, κ, λ;

√
T (FT − F )

)
 

oper
(w,λ)∈A

oper
κ∈B

H (w, κ, λ;BF ) . (22)

where  denotes weak convergence; oper and oper∗ are sup or inf; AT and A are
measurable subsets of Γ such that AT → A; BT and B are measurable subsets of K
such that BT → B.

The following proposition establishes the asymptotic distribution of the test
statistic ηT under the null:

Proposition 4. If Assumption 1 holds and H0 is true, then

ηT  η∞ := sup
(w,λ)∈Γ=

inf
κ∈K≤

(w,λ)

H(w, κ, λ;BF ). (23)
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Notice that H(·, ·, ·;BF ) is a well defined zero-mean Gaussian process due to the
moment existence condition and the rate of convergence of the mixing coefficients in
Assumption 1 (see for example inequality 1.12b in Rio (2013)). We were able to also
derive asymptotic unbiasedness for a class of non-trivial local alternative hypotheses.
For the sake of compactness, we do not report these additional results here and we
focus on testing the null hypothesis of stochastic spanning (H0 : η(F ) = 0).

Given the asymptotic null distribution, we can develop a test procedure based
on ηT and η∞. Let q(η∞, 1−α) denote the (1−α) quantile of the distribution of η∞
for any significance level α ∈ ]0, 1[. The basic decision rule to reject H0 against H1

if and only if ηT > q(η∞, 1− α) is infeasible due to the dependence of q(η∞, 1− α)

on the latent c.d.f. F . However, feasible decision rules can be obtained by using a
subsampling procedure to estimate q(η∞, 1− α) from the data.

To implement the subsampling procedure, we begin by generating (T − bT + 1)

maximally overlapping subsamples of bT ∈ N1 consecutive observations, sbT ;T,t :=

(Xs)
t+bT−1
s=t , t = 1, · · · , T − bT + 1, and compute test scores ηbT ;T,t =

√
bTη(FbT ;T,t)

for each subsample, where FbT ;T,t denotes the empirical joint c.d.f. constructed from
sbT ;T,t, t = 1, · · · , T − bT + 1. The distribution of subsample test scores can be
described by the following c.d.f. and quantile function:

ST,bT (y) :=
1

T − bT + 1

T−bT+1∑
t=1

1(ηbT ;T,t ≤ y); (24)

qT,bT (1− α) := inf
y
{y : ST,bT (y) ≥ 1− α} . (25)

Our decision rule is to reject the null H0 : η(F ) = 0 against the alternative
H1 : η(F ) > 0 at a significance level of α ∈ ]0, 1[ if and only if ηT > qT,bT (1 − α),
or, equivalently, 1 − ST,bT (ηT ) < α. As shown in Appendix B, this subsampling
routine is asymptotically exact and consistent under reasonable assumptions on the
subsample length and significance level.

Although the test has asymptotically correct size, simulation exercises show that
the quantile estimates qT,bT (1 − α) may be biased and sensitive to the subsample
size bT in finite samples of realistic dimensions (M and T ). To correct for small-
sample bias and reduce the sensitivity to the choice of bT , we propose a regression-
based bias-correction method that is motivated by our observations from simulation
exercises. For a given significance level α, we compute the quantiles qT,bT (1−α) for
a ‘reasonable’ range of the subsample size bT . Next, we estimate the intercept and
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slope of the following regression line using OLS regression analysis:

qT,bT (1− α) = γ0;T,1−α + γ1;T,1−α(bT )
−1 + νT ;1−α,bT . (26)

Finally, we estimate the bias-corrected (1 − α)-quantile as the OLS predicted
value for bT = T :

qBC
T (1− α) := γ̂0;T,1−α + γ̂1;T,1−α(T )

−1. (27)

Since qT,bT (1−α) converges in probability to q(η∞, 1−α) and (bT )
−1 converges to

zero as T → 0, γ̂0;T,1−α converges in probability to q(η∞, 1− α) and the asymptotic
properties are not affected. However, computational experiments show that the
bias-corrected method is more efficient and more powerful in small samples.

The (block) bootstrap is an obvious alternative to subsampling. Proposition 4 is
based on the properties of the partitions of Γ and K in (17) to (20) and the behavior
of the measure η (F ) on these subsets. Given the relevant discussion on page S67
of LPW2014, we expect that the use of a bootstrap critical value based on the ap-
propriately centered H would lead to a test which is consistent but asymptotically
conservative, and hence, less powerful than the subsampling approach under parti-
cular local alternatives. However, we believe that we can obtain an asymptotically
exact bootstrap procedure without centering, if we strengthen the null hypothesis
to hold for any element of some weak neighborhood of F . In any case, we expect
that the bootstrap is more powerful in finite samples than subsampling, since each
pseudo-sample utilizes the full sample information, rather than a subset of the obser-
vations. We leave the development of a bootstrap procedure for stochastic spanning
for further research.

4 Simulation Experiment
We use a Monte Carlo simulation experiment to analyze the small-sample properties
of our test procedure for stochastic spanning and compare those properties with
similar results for M-V spanning tests.

Typical data sets in empirical asset pricing consist of low-frequency returns to
diversified benchmark portfolios for multiple asset classes, market segments or in-
vestment styles. In this context, the primary factors that determine the statistical
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performance of the test procedure seem to be the number of base assets (M), the
number of time-series observations (T ), the mutual covariance structure and the
risk premiums of the risky assets. A serially i.i.d. multivariate normal return distri-
bution is a convenient way to capture these factors, although it cannot capture the
effects of higher-moment risk and weak dependence.

Our experiment is based on an investment problem with a riskless asset, a stock
index futures contract and (M − 2) other risky assets. We focus on testing the
hypothesis that all convex combinations of the M base assets (Λ) are spanned by
all convex combinations of the riskless asset and the futures contract (K). In this
setup, spanning amounts to ’two-fund separation’, where the riskless asset and the
futures contract are the two relevant funds.

The joint return distribution is serially i.i.d. normal with a mutual covariance
matrix that is fitted to the empirical distribution of monthly returns to the CRSP
all-share index and active stock portfolios from July 1963 to December 2015 from
the data library of Kenneth French. We set x = mini,t(xi,t) and x = maxi,t(xi,t).

The normal distribution is unbounded, which is unrealistic and violates our
assumption framework. However, truncating the normal distributions in the tails
has no material effect on our simulated size and power properties.

We consider sets of (M−2) = 6, 25 value-weighted portfolios that are formed by
classifying stocks based on their market capitalization of equity (ME) and book-to-
market-equity ratio (B/M). The risk-free return x1 = r is the one-month T-bill rate
and the futures contract is built using a short position of 100% in the T-bill and a
long position of 200% in the market index, so that its return is given by x2 = 2y−r,
where y is the index return. This futures contract obeys the spot-futures parity and
requires that 50 percent margin is deposited in an interest-bearing account.

We equate the risk-free return r and the expected return to the market index
EF [y] with the corresponding historical averages. For every risky asset, we set the
expected return using the following linear mean-beta relation:

EF [xi] = EF [y] + ξ(βi − 1) (EF [y]− r) , i = 3, · · · ,M. (28)

In this expression, βi is the market beta and 0 ≤ ξ < 1 is a parameter which
controls the deviations from the null. To measure the statistical size, we set ξ = 1,
which yields the Security Market Line equation of the Capital Asset Pricing Model
and which is consistent with the spanning hypothesis:

EF [xi] = r + βi (EF [y]− r) , i = 3, · · · ,M. (29)
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To measure the statistical power, we set ξ such that the expected return to the
lowest-beta asset equals the risk-free return:

min
i=3,··· ,M

EF [xi] = r, (30)

or, put differently,

ξ =
1

1− mini=3,··· ,M βi

. (31)

This specification violates the null of spanning, because mixtures of the T-bill
and high-beta assets dominate mixtures of the T-bill and the index futures contract.

We generate random samples of size T = 240, 480, 960, which corresponds to
20, 40 or 80 years of monthly observations, and apply our tests for stochastic
spanning and M-V spanning to every random sample. For the stochastic span-
ning test, the subsample lengths employed are {50, 55, 60, 65, 70, 75} for T = 240,
{60, 75, 90, 105, 120, 135} for T = 480, and {80, 120, 160, 200, 240, 280} for T = 960.

Since the test statistic is computed using hundreds of LP problems for every
sample and subsample, simulating the performance of the subsampling procedure
involves solving tens of millions of LP problems. The computational costs limit
the possibilities to calibrate the subsample lengths and the optimization procedure,
which may adversely affect the reported results.

Under the multivariate normal distribution, two-fund separation is equivalent to
M-V efficiency of the market portfolio, by Tobin’s (1958) separation theorem. We
may therefore use tests for M-V efficiency to test for M-V spanning. We employ two
tests for M-V efficiency: a classical one and another one based on subsampling.

The first test for M-V efficiency is the classical Gibbons, Ross and Shanken (GRS;
1989) test, which is based on Seemingly Unrelated Regression. In this experiment,
our test procedure cannot rival the GRS test, which correctly assumes a serially i.i.d.
normal distribution. In this respect, the GRS test functions as an ideal benchmark
and our objective is not to outperform the GRS test but to measure the divergence
between the performance of our procedure and that of the benchmark in small
samples.

However, the reported performance for the GRS test is clearly not representative
for dynamic and non-normal distributions. In order to separate the effect of the M-V
criterion and the effect of assuming i.i.d. normality, we also include a subsampling
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test for M-V efficiency which embeds the computation of the standard GRS test
statistic in the same subsampling and bias correction methodology that is employed
for the SSD spanning test.

Table I shows the size and power properties of the three tests as a function of
the data dimensions (M and T ). In small samples, important size distortions occur
for the subsampling method, which are attributable to imperfect calibration of the
grid points for the subsample lengths used in the bias correction method. To better
compare the power, we also report ’size-adjusted power’ as the difference between
the unadjusted power and the size.

The GRS test performs very well, as expected, in this experiment based on a
serially i.i.d. normal distribution. The statistical size is under control and the
power approximates 100% in all relevant cases. The use of the SSD criterion and
subsampling leads to a loss of power in small samples, which is a price to pay for
the ability to deal with dynamic and non-normal distributions.

Clearly, a narrow cross-section and long time-series are more important for the
stochastic spanning test than for the GRS test. For a broad cross-section (M − 2 =

25) and short time series T = 240, the stochastic spanning tests is rather under-
powered, with a rejection rate of 55.1 percent at a nominal significance level of 5
percent under the alternative. Encouragingly, the power increases quickly as we
reduce the number of assets or increase the number of observations and high power
levels are achieved for realistic data dimensions.

A more detailed simulation study would also analyze the effects of higher-moment
risk and serial dependence. However, for typical data sets of low-frequency returns
to diversified benchmark portfolios, the empirical deviations from i.i.d. multivariate
normality seem of secondary importance for the statistical properties of the test
procedure, despite their importance for investors more generally.

There are three obstacles to verifying this conjecture in this study. First, para-
metric specifications of dynamic and non-normal multivariate distributions tend to
be intractable for portfolio analysis. Second, the methods developed in the present
study do not allow for constructing a span K ∈ R(Λ) for a given portfolio set Λ,
which complicates the design of an experiment for simulating the statistical size of
the spanning test. Third, the computational burden prohibits experimentation with
the design of the simulation process and calibration of the methods.

Nevertheless, indirect evidence from earlier experiments by Post and Versijp
(2007) and Post and Poti (2017) supports the notion that higher-order risk and serial
dependence are of secondary importance here. In those experiments, the simulated
properties of stochastic efficiency tests are robust to independent sampling from
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the empirical distribution function instead of the normal distribution. Unreported
results show that the simulated properties are also not affected by sampling random
blocks of 12 consecutive monthly observations instead of individual months. Given
the similarities between the relevant stochastic orders and simulation conditions, the
robustness in the earlier experiments can be expected to carry over to the present
experiment.

[Insert Table I about here]

5 Empirical Application
This section applies efficiency and spanning tests to empirical data rather than
simulated data. Motivated by the above simulation experiment, we use a relatively
narrow cross-section and long time-series. Our investment universe consists of M =

12 distinct base assets: the one-month T-bill, an index futures contract based on
the CRSP all-share index and ten equity industry portfolios. We analyze monthly
excess returns from July 1926 to December 2014 (T = 1, 062) from Kenneth French
online data library. Returns are computed in excess of the monthly T-bill rate,
which means that the bill is treated as a riskless asset and has an excess return of
zero in every month.

Several features of these data justify our model-free approach to account for
higher-order moment risk and time-series dynamics. Firstly, the return distribu-
tion appears non-normal, witness, for example, the skewness of -/-0.511 and excess
kurtosis of 1.813 of the market returns. In addition, the data show clear dynamic
patterns; for example, the first-order auto-correlation coefficient for the market re-
turns is 8.52 percent (t-stat.: X.XX). The dimensions of the data set (M = 12,
T = 1, 062) also seem favorable for our model-free approach.

We find similar results as reported below in two sub-periods of roughly equal
length, as well as for a second data set of ten portfolios formed on estimated market
beta and a third data set of ten portfolios formed on ME.

We deliberately do not consider data sets of equal-weighted returns and/or
double-sorted portfolios that are formed on ME and a second stock characteristic
in order to avoid a bias towards micro-cap stocks that would lead to a predicta-
ble rejection of all our hypotheses and make the test results uninformative. This
consideration does not play a role in the above simulation experiment, because the
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simulation process was based on the theoretical mean-beta relation (28) rather than
the historical means.

We first analyze whether the market portfolio is stochastically efficient. This
hypothesis seems interesting because representative investor models of capital mar-
ket equilibrium predict that the market portfolio is efficient as a result of risk sharing
in sufficiently complete markets or, alternatively, aggregation across sufficiently ho-
mogeneous investors in incomplete markets. A market portfolio efficiency test can
also be interpreted as a revealed preference analysis of those individual investors
who adopt a passive strategy of broad diversification.

In this application, Λ consists of all convex combinations of the 12 base assets.
There is no need to explicitly allow for short selling in this application, because the
market portfolio has no binding short-sales restrictions; non-binding constraints do
not affect the efficiency classification. All risky assets have strictly positive market
capitalization weights. If some investor would benefit from short-selling some risky
asset, then she would also benefit from underweighting that asset without using a
negative weight. In other words, the short-sales constraints are not binding and
hence do not affect the efficiency classification.

To test market portfolio efficiency, we use the Linton, Post and Whang (2014)
test, using the same subsampling procedure as our spanning test. The four panels
of Figure 1 illustrate our results.

The optimal solution λ∗ ∈ Λ consists of large positions in the nondurables in-
dustry (46%) and energy industry (42%) and small positions in the health industry
(6%), telecom industry (5%) and T-bill (1%). In Panel A of Figure 1, the return
PDF of λ∗ appears less risky than that of the market portfolio. Panel B shows the
difference function G(x, τ, λ∗;FT ) for every return level x ∈ X T = [−25.15, 42.07],
from which it is clear that the market portfolio has a strictly higher expected short-
fall than the solution portfolio for every return level x ∈ X T ; it follows that
λ∗ ≻FT

τ . The value of the Linton, Post and Whang (2014) test statistic is
ζT =

√
T minx∈XT

G(x, τ, λ∗;FT ) = 0.114.
Panel C shows the decumulative subsampling distribution of the test statistic

for subsample sizes bT = 120 and bT = 480. Clearly, large values of the test statistic
occur more frequently in smaller subsamples, which underlines the need to correct
the quantile estimates for bias. Panel D shows the estimated OLS regression line (26)
based on the empirical quantiles qT,bT (1− α) for significance levels of α = 0.01 and
α = 0.10 using various subsample sizes bT ∈ [120, 480]. Using (27), the regression
estimate for the critical value for ζT is qBC

T (0.90) = 0.370, more than three times the
full-sample value ζT = 0.114. Hence, we cannot reject market portfolio efficiency at
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conventional significance levels.

[Insert Figure 1 about here.]

Our second research hypothesis is two-fund separation: do all rational risk aver-
ters combine the T-bill and the index futures contract?

In the simulation experiment, which was based on a multivariate normal DGP,
this hypothesis was equivalent to market portfolio efficiency. For non-normal dis-
tributions, two-fund separation generally does not occur, unless one assumes that
preferences are sufficiently similar across investors (see, for example, Cass and Stig-
litz (1970)). Our stochastic spanning test can analyze two-fund separation without
assuming a particular form for the return distribution or utility functions.

Figure 2 illustrates the estimation results for the industry data set. The optimal
solution κ∗ ∈ K consists of the T-bill (56%) and the index futures contract (44%).
The optimal solution λ∗ ∈ Λ consists of a large position in the nondurables industry
(42%) and smaller positions in the health industry (26%), energy industry (20%)
and telecom industry (12%). Panel B shows the difference function G(x, κ∗, λ∗;FT )

for every relevant return level x ∈ X . Clearly, we find a strictly positive difference
for large positive return levels and hence κ∗ �FT

λ∗; stochastic spanning does not
occur. We find maxx∈X G(x, κ∗, λ∗;FT ) = 0.138 and the test statistic amounts to
ηT = 4.480.

Panel C shows the decumulative subsampling distribution of the test statistic for
bT = 120 and bT = 480 months, with large values of the test statistic again occurring
more frequently in smaller subsamples. Panel D shows the estimated OLS regression
line (26) for significance levels of α = 0.01 and α = 0.10 using various subsample
sizes bT ∈ [120, 480]. Using (27), the regression estimate for the critical value for ηT
at α = 0.01 is qBC

T (0.99) = 4.354, below the full-sample value ηT = 4.480. Hence,
we can reject two-fund separation with at least 99% confidence.

[Insert Figure 2 about here.]

As a final step in our analysis, we test for two-fund separation using the M-V
criterion rather than the SSD criterion. Clearly, our rejection of stochastic spanning
is less informative if we can also reject M-V spanning.

We use the same methodology as for the above stochastic spanning test, but
we restrict the utility functions to take a quadratic (rather than piecewise linear)
shape. We solve the embedded expected-utility optimization problems (for every
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given quadratic utility function) using quadratic programming. This nested model
specification isolates the effect of the choice criterion (SSD vs. M-V).

Figure 3 summarizes the test results. In contrast to stochastic spanning, we
cannot reject M-V spanning at conventional significance levels.

[Insert Figure 3 about here.]

The combined results of the efficiency and spanning tests suggest that combining
the T-bill and market portfolio is optimal for some risk averters (market portfolio
efficiency) but suboptimal for other risk averters (no two-fund separation). Since
market portfolio efficiency and two-fund separation are equivalent under a multi-
variate normal distribution, the divergence of our two sets of test results points at
economically significant deviations from normality.

Harvey and Siddique (2000) and Dittmar (2002) analyze the empirical explana-
tory power of skewness and kurtosis in cross-sectional regression tests for market
portfolio efficiency. Their results, as the results of our structural efficiency test,
seem consistent with the notion that the market portfolio is optimal for some utility
functions with higher-order moment risk preferences. We caution however against
interpreting these results as evidence for representative-investor models of capital
market equilibrium.

If returns are not normally distributed, then aggregation across individual effi-
cient risky portfolios may not produce an efficient market portfolio. Our spanning
test results suggest that distinct risk averters will hold distinct risky portfolios.
Since the SSD efficient set is generally non-convex, aggregation across distinct effi-
cient risky portfolios unfortunately does not produce an efficient market portfolio.
Hence, we caution against confusing market portfolio efficiency and market equili-
brium models if two-fund separation is rejected.

We should mention that the GRS test, in contrast to the subsampling test,
rejects M-V efficiency of the market portfolio at every conventional significance
level. Similar results are found using the MacKinlay and Richardson (1991) test
which accounts for serial dependence and non-normality. However, our analysis
aims to isolate the effect of the choice criterion (SSD vs. M-V) and the effect of the
stochastic order (efficiency vs. spanning), using a nested model specification and
a single statistical methodology (subsampling). The point here is that, keeping all
else equal, we cannot reject market portfolio efficiency for either the SSD or M-V
criteria, but we can reject two-fund separation using a stochastic spanning test.
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6 Concluding Remarks
We have introduced the model-free concept of stochastic spanning together with
a consistent and feasible framework for implementation based on subsampling and
LP. Our simulation experiment shows good statistical size and power properties
in finite samples of realistic dimensions. The empirical application illustrates our
methodology and points at new evidence for the relevance of higher-order moment
risk in portfolio theory and asset pricing.

We conclude with a brief discussion of various extensions and generalizations
that appear non-essential for our empirical application but that may be of interest
in other applications.

First, although this study has worked with a polyhedral spanning set, the results
would go through with minor modifications if we allow K to be a non-polyhedral
convex set or a simplicial complex. Notably, in the non-polyhedral convex case,
the LP strategy in Proposition 8 could be substituted by some convex optimization
method, whereas in the simplicial complex case, the strategy would be implemented
in each one of the simplices that comprise the complex.

One interesting line of further research which builds on this generalization is
to construct an ‘outer approximation’ of the efficient set by considering decreasing
sequences of simplicial spanning sets.

Second, our statistical theory can be extended to the case of unbounded support
for the base assets, with some minor modifications of the definition and assumption
framework. If in such a case, W is defined by the additional condition that´ +∞
−∞ w (x) |x| dx ≤ +∞, and Assumption 1 includes the conditions that δ > 2, and
E ∥X∥2+ϵ < +∞, for some ϵ > 0, then results partially analogous to Propositions
2-4 would hold with the relevant modifications.

Third, if Assumption 1 is strengthened according to Theorem 2.3 of Andrews
and Pollard (1994) and via the use of Theorem B.0.1 of Politis, Romano and Wolf
(1999), the testing procedure can be shown to be asymptotically unbiased under
classes of sequences of local alternatives.

The authors are working to extend and generalize the present framework along

these lines.
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Appendix A: Superefficiency
Our definition of stochastic efficiency (Definition 3) should not be confused with an
alternative definition by Scaillet and Topaloglou (2010, henceforth ST2010), which
we label here as ‘stochastic superefficiency’:

Definition 5. (Stochastic superefficiency): Portfolio τ ∈ Λ is second-order stochas-
tically superefficient if it weakly second-order stochastically dominates all feasible
portfolios, or τ ≽F λ ∀λ ∈ Λ.
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Let S(Λ) := {τ ∈ Λ : τ ≽F λ ∀λ ∈ Λ} denote the set of all superefficient portfo-
lios. In order theory, S(Λ) amounts to the set of greatest elements, whereas E(Λ)

is the set of maximal elements. Clearly, stochastic superefficiency gives a suffi-
cient condition for stochastic efficiency; (τ ≽F λ ∀λ ∈ Λ) ⇒ (λ �F τ ∀λ ∈ Λ),
or S(Λ) ⊆ E(Λ). The reverse is not true, as all superefficient portfolios must be
equivalent and comparable, whereas efficient portfolios may be non-equivalent or
incomparable.

The superefficient set is either equal to the efficient set (S(Λ) = E(Λ)) or empty
(S(Λ) = Ø). In our applications, the efficient set generally has non-equivalent
and incomparable elements, and therefore S(Λ) = Ø. For example, an efficient
portfolio that maximizes expected return generally takes a concentrated position
in the individual asset with the highest mean. By contrast, an efficient portfolio
that minimizes semi-variance generally takes a diversified position in multiple risky
assets or a position in a risk-free asset.

Stochastic super-efficiency (τ ≽F λ∀λ ∈ Λ) occurs as the special case of stochas-
tic spanning if the portfolio set K is a singleton, or K = {τ}, τ ∈ Λ. In this case,
our measure reduces to

η(F ) = sup
λ∈Λ

sup
x∈X

G(x, κ, λ;F ). (32)

Furthermore, our test statistic (15) in this case equals the superefficiency test
statistic of ST2010:

ηT =
√
T sup

λ∈Λ
sup
x∈X

G(x, τ, λ;FT ). (33)

Our statistical theory thus also applies to the ST2010 test statistic. Notably,
using Proposition 4, we obtain the exact limit distribution of the ST2010 test sta-
tistic as the law of

η∞ = sup
(w,λ)∈Γ=

H(w, τ, λ;BF ). (34)
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Appendix B: Subsampling Estimation
This section analyzes the asymptotic properties of the subsampling procedure that
is described in Section 3. Our analysis uses M∗ ∈ N0, M∗ < V (Λ) for the number
of vertices of Λ that are also included in K.

The following (non-trivial) properties of the limit distribution are essential to
motivate our use of subsampling, by allowing us to invoke established results of
Politis et al. (1999):

Proposition 5. Under Assumption 1, (i) the distribution of η∞ has support [0,+∞[;
(ii) the c.d.f. of η∞ may have a jump discontinuity with a size of at most (M∗/M)

at zero; (iii) the c.d.f. of η∞ is continuous on ]0,+∞[.

To implement the subsampling procedure we begin by generating (T − bT + 1)

maximally overlapping subsamples of bT ∈ N1 consecutive observations, sbT ;T,t :=

(Xs)
t+bT−1
s=t , t = 1, · · · , T − bT + 1, and compute test scores ηbT ;T,t =

√
bTη(FbT ;T,t)

for each subsample, where FbT ;T,t denotes the empirical joint c.d.f. constructed from
sbT ;T,t, t = 1, · · · , T − bT + 1. The distribution of subsample test scores can be
described by the following c.d.f. and quantile function:

ST,bT (y) :=
1

T − bT + 1

T−bT+1∑
t=1

1(ηbT ;T,t ≤ y); (35)

qT,bT (1− α) := inf
y
{y : ST,bT (y) ≥ 1− α} . (36)

To establish the statistical properties of this subsampling procedure, we assume
that the subsample size bT and significance level α are selected appropriately:

Assumption 2. The positive sequence (bT ), possibly dependent on (Xt)
T
t=1, obeys

P(lT ≤ bT ≤ uT ) → 1, (37)

where (lT ) and (uT ) are deterministic sequences of natural numbers such that
1 ≤ lT ≤ uT for all T , lT → ∞ and uT/T → 0 as T → ∞.
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Assumption 3. The significance level obeys α < 1− (M∗/M).

Since K is a proper subset of Λ, we can safely assume that M∗ < V (Λ). The
smaller the overlap between K and Λ, the higher the significance level that we can
employ under Assumption 3.

The following proposition shows that our test based on the subsample critical
value is asymptotically exact and consistent:

Proposition 6. If Assumptions 1-3 hold, then we find the following asymptotic size
and power properties:

lim
T→∞

P (ηT > qT,bT (1− α) |H0 ) = α; (38)

lim
T→∞

P (ηT > qT,bT (1− α) |H1 ) = 1. (39)

Appendix C: Computational Strategy
This section outlines two possible strategies for computing the test statistic ηT using
LP.

If the enlargement (Λ− Κ) is small, then we may perform a quasi-Monte Carlo
simulation and solve an embedded LP problem for every simulated portfolio λ ∈
(Λ− Κ). Specifically, we can use the following reformulation of (15):

ηT = −
√
T inf

λ∈(Λ−K)
ηT (λ); (40)

ηT (λ) := sup
κ∈K

inf
x∈X

G(x, λ, κ;FT ). (41)

The embedded statistic ηT (λ) can be computed by solving an LP problem:

Proposition 7. The embedded test statistic ηT (λ) equals the optimal value of the
objective function of the following LP problem in canonical form:
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max
√
Tγ (42)

s.t. γ + T−1

T∑
t=1

θs,t ≤ F
(2)
T (Xsλ, λ), s = 1, · · · , T ;

−θs,t −XT
t κ ≤ −Xsλ, s, t = 1, · · · , T ;

M∑
i=1

κi = 1;

θs,t ≥ 0, s, t = 1, · · · , T ;

κi ≥ 0, i = 1, · · · ,M ;

γ free.

Although the problem has O(T 2 + M) variables and constraints, for a speci-
fic portfolio λ the computational burden is perfectly manageable with modern-day
computer hardware and solver software for the typical data dimensions in empirical
asset pricing research. Nevertheless, we need to solve the LP problem for a suffi-
ciently large number of portfolios λ ∈ (Λ − K) and the computational burden will
therefore explode if the enlargement (Λ−K) is large. For example, in our application
in Section 5, K is a 2-simplex and Λ is a 11-simplex; this enlargement is too large
to allow for an accurate and manageable discrete approximation.

An alternative strategy seems more appropriate when the enlargement (Λ− K)

is large but the return range (x− x) is limited. Using (12) and (15), we find

ηT =
√
T sup

u∈U2

(
sup
λ∈�

EFT

[
u
(
XTλ

)]
− sup

κ∈K
EFT

[
u
(
XTκ

)])
. (43)

The term in parentheses is the difference between the solutions to two standard
convex optimization problems of maximizing a quasi-concave objective function over
a polyhedral feasible set. The analytic complexity of computing ηT stems from
the search over all admissible utility functions (U2). However, the utility functions
are univariate, normalized, and have a bounded domain (X ). As a result, we can
approximate U2 with arbitrary accuracy using a finite set of increasing and concave
piecewise-linear functions in the following way.

The term in parentheses is the difference between the solutions to two standard
convex optimization problems of maximizing a quasi-concave objective function over
a polyhedral feasible set. The analytic complexity of computing ηT stems from
the search over all admissible utility functions (U2). However, the utility functions
are univariate, normalized, and have a bounded domain (X ). As a result, we can

27



approximate U2 with arbitrary accuracy using a finite set of increasing and concave
piecewise-linear functions in the following way.

We partition X into N1 equally spaced values as x = z1 < · · · < zN1 = x, where
zn := x + n−1

N1−1
(x − x), n = 1, · · · , N1; N1 ≥ 2. Instead of an equal spacing, the

partition could also be based on percentiles of the return distribution. Similarly,
we partition the interval [0, 1], as 0 < 1

N2−1
< · · · < N2−2

N2−1
< 1, N2 ≥ 2. Using this

partition, let

ηT :=
√
T sup

u∈U2

(
sup
λ∈�

EFT

[
u
(
XTλ

)]
− sup

κ∈K
EFT

[
u
(
XTκ

)])
; (44)

U2 :=

{
u ∈ C0 : u(y) =

N1∑
n=1

wnr(y; zn)w∈W
}
; (45)

W :=

{
w ∈

{
0,

1

N2 − 1
, · · · , N2 − 2

N2 − 1
, 1

}N1

:

N1∑
n=1

wn = 1

}
. (46)

Every element u ∈ U2 consists of at most N2 linear line segments with knots at
N1 possible outcome levels. Clearly, U2 ⊂ U2 and ηT approximates ηT from below as
we refine the partition (N1, N2 → ∞). The appealing feature of ηT is that we can
enumerate all N3 :=

1
(N1−1)!

∏N1−1
i=1 (N2 + i− 1) elements of U2 for a given partition,

and, for every u ∈ U2 , solve the two embedded maximization problems in (44) using
LP:

Proposition 8. Let

c0,n :=

N1∑
m=n

(c1,m+1 − c1,m) zm; (47)

c1,n :=

N1∑
m=n

wm; (48)

N := {n = 1, · · · , N1 : wn > 0}
∪

{N1} . (49)

For any given u ∈ U2, supλ∈�EFT

[
u
(
XTλ

)]
is the optimal value of the objective

function of the following LP problem in canonical form:
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maxT−1

T∑
t=1

yt (50)

s.t. yt − c1,nX
T
t λ ≤ c0,n, t = 1, · · · , T ;n ∈ N ;

M∑
i=1

λi = 1;

λi ≥ 0, i = 1, · · · ,M ;

yt free, t = 1, · · · , T.

The LP problem always has a feasible and finite solution and has O(T+M) vari-
ables and constraints, making it small for typical data dimensions. Our application
in Section 5 is based on the entire available history of monthly investment returns
to a standard set of benchmark assets (M = 11, T = 1, 062), and uses N1 = 10

and N2 = 5. This gives N3 = 1
9!

∏9
i=1(4 + i) = 715 distinct utility functions and

2N3 = 1, 430 small LP problems, which is perfectly manageable with modern-day
computer hardware and solver software.

The total run time of all computations for our application amounts to several
working days on a standard desktop PC with a 2.93 GHz quad-core Intel i7 processor,
16GB of RAM and using MATLAB with the external Gurobi Optimizer solver.
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