
Bandit-Based Random Mutation Hill-Climbing
Jialin Liu

University of Essex
Colchester CO4 3SQ

United Kingdom
jialin.liu@essex.ac.uk

Diego Pérez-Liébana
University of Essex

Colchester CO4 3SQ
United Kingdom

dperez@essex.ac.uk

Simon M. Lucas
University of Essex

Colchester CO4 3SQ
United Kingdom
sml@essex.ac.uk

Abstract—The Random Mutation Hill-Climbing algorithm is
a direct search technique mostly used in discrete domains. It
repeats the process of randomly selecting a neighbour of a best-
so-far solution and accepts the neighbour if it is better than or
equal to it. In this work, we propose to use a novel method to
select the neighbour solution using a set of independent multi-
armed bandit-style selection units which results in a bandit-based
Random Mutation Hill-Climbing algorithm. The new algorithm
significantly outperforms Random Mutation Hill-Climbing in
both OneMax (in noise-free and noisy cases) and Royal Road
problems (in the noise-free case). The algorithm shows particular
promise for discrete optimisation problems where each fitness
evaluation is expensive.

Index Terms—RMHC, bandit, OneMax, Royal Road

I. INTRODUCTION

Evolutionary Algorithms (EA) have achieved widespread
use since their developments in the 1950s and 1960s [1], [2],
[3], [4], [5], [6], [7].

Their essence is relatively simple: to generate an initial
set of candidate solutions at random, and then to iteratively
improve the candidate set via a process of variation, evaluation
and selection. They have been the subject of much analysis,
development and a diverse range of applications. They have
also spawned related approaches (i.e. methods which can be
characterised by the outline description above) such as particle
swarm optimisation, and have been extended for application
to multi-objective optimisation.

This paper introduces a significant variation: the Bandit-
Based Evolutionary Algorithm. Bandit algorithms [8], [9]
have become popular for optimising either simple regret (the
best final decision after a number of exploratory trials) or
cumulative regret (best sum of rewards over a number of trials)
in A/B testing.

A popular bandit algorithm is the Upper Confidence Bound
(UCB) algorithm [10], [11] which balances the trade-off be-
tween exploration and exploitation. The UCB-style algorithms
have achieved widespread use within Monte Carlo Tree Search
(MCTS) [12], called UCT when applied to trees, the “T” being
for Trees.

A wide literature exists on bandits [10], [11], [13], [14],
[15], [16], [17] and many tools have been proposed for
distributing the computational power over the stochastic arms
to be tested. There are also some adaptations to other contexts:
time varying as in [18]; adversarial [19], [20]); or involving the

non-stationary nature of bandit problems in optimization port-
folios. St-Pierre and Liu [21] applied the Differential Evolution
algorithm [22] to some non-stationary bandit problem, which
outperformed the classical bandit algorithm on the selection
over a portfolio of solvers.

Browne et al. [12] noted the great potential for hybridising
MCTS with other approaches to optimisation and learning, and
in this paper we provide a hybridisation of an evolutionary
algorithm with a bandit algorithm.

There are examples of using evolution to tune MCTS
parameters [23], [24], [25]. Albeit robust, this application of
EA is not widespread, due to the computational cost involved
in performing fitness evaluations. It should be noted that Lucas
et al. [25] made fitness evaluations after each rollout, so they
could be rapidly optimised, albeit noisily.

The algorithm reported in this paper is a very different
hybrid: it uses bandits to represent the state of the evolving
system. This has some similarities with Estimation of Distri-
bution Algorithms (EDAs) [26] but the details are significantly
different.

To our knowledge, this is one of the very few times that
this type of hybridisation has been attempted; the only other
paper we are aware of in the same vein is Zhang et al. [27].
Zhang et al. used a bandit algorithm as a form of Adaptive
Operator Selection: the variation operators used within the
evolutionary algorithm were selected using a bandit-based
approach, showing promising results.

In this paper we develop a bandit-based version of the
Random Mutation Hill-Climbing (RMHC) algorithm, and
compare the two methods, i.e., the original and the bandit-
based algorithms.

To put this in some context, it should be noted that while
the RMHC algorithm is very simple, it is often surprisingly
competitive with more complex algorithms, especially when
deployed with random restarts.

For instance, Lucas and Reynolds evolved Deterministic
Finite Automata (DFA) [28], [29], using a multi-start RMHC
algorithm with very competitive results, outperforming more
complex evolutionary algorithms, and for some classes of
problems also outperforming the state of the art Evidence-
Driven State Merging (EDSM) algorithms.

Although Goldberg [30] used bandit models, they were
used to help understand the operation of a Simple Genetic
Algorithm. Our approach is different: we use them as the very

ar
X

iv
:1

60
6.

06
04

1v
1

 [
cs

.A
I]

 2
0

Ju
n

20
16

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/96933635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
jialin.liu@essex.ac.uk
dperez@essex.ac.uk
sml@essex.ac.uk

basis of the algorithm. The bandit model provides a natural
way to balance exploitation (sticking with what appears to be
good) versus exploration (trying things which have not been
sampled much).

In this paper we model the genome as an array of bandits.
In the case where the genome is a binary string of length n,
we model the state of the evolutionary system as an array of
2-armed bandits. If each element of the string can take on m
possible values, then each element is represented by an m-
armed bandit.

The main contribution in this work is this new bandit-based
RMHC algorithm, together with results on some standard
benchmark problems. The new algorithm significantly outper-
forms the standard RMHC in both OneMax (in noise-free and
noisy cases) and Royal Road problems in the noise-free case.
Tests on noisy Royal Road problems will be studied in future
work.

II. TEST PROBLEMS

In this work, we consider two benchmark optimisation
problems in a binary search space.

A. OneMax Problem

The OneMax problem [31] is a simple linear problem
aiming at maximising the number of 1 of a binary string, i.e.,
for a given n-bit string s

f(s) =

n∑
i=1

si, (1)

where si, denoting the ith bit in the string s, is either 1 or 0.
The complexity of OneMax problem is O(n log(n)) for

a n-bit string [32]. Doerr et al. proved that the black-box
complexity with memory restriction one is at most 2n [33].
More lower and upper bounds of the complexity of OneMax
in the different models are analysed [34], [35] and then
summarised in Table 1 of [35]. In their elitist model, only the
best-so-far solution can be kept in the memory. Our bandit-
based RMHC stores the best-so-far solution in the noise-free
environment and stores additionally its evaluation number in
the noisy environment (detailed in Section III-C).

B. Noisy OneMax Problem

We modify the OneMax problem by introducing an additive
noise with constant variance 1:

f ′(s) = f(s) +N (0, 1), (2)

N denotes a Gaussian noise. Thus, the noise standard devia-
tion is of same order as the differences between fitness values.
It is notable that our noise model is very different from the
one in [36], which used (1+1)-EA and a one-bit noise.

The influence of the noise strength on the runtime of (1+1)-
EA for the OneMax problem corrupted by one-bit noise is
firstly analysed by Droste [37]. In [37] and [36], the misrank-
ing occurs due to the change of exactly one uniformly chosen
bit of s by noise with probability p ∈ (0, 1), p is the noise
strength. Thus, the noise acts before fitness evaluation and the

evaluated individual (solution or search point) is possibly not
the correct one. The individual is infected by noise in their
model while in our model, the fitness function is infected by
noise.

C. Royal Road Function

The Royal Road functions are firstly introduced by Mitchell
et al. [38]. The function fitness gains only if all the bits in one
block are flipped to 1.1 The objective was to designing some
hierarchical fitness landscapes and studying the performance
of Genetic Algorithms (GA). Surprisingly, a simple Random
Mutation Hill-Climbing Algorithm outperforms GA on a sim-
ple Royal Road function, namely R1 in [38], [39]. R1 consists
of a list of block-composite bit strings as shown in Fig. 4, in
which ‘*’ denotes a either 0 or 1. The fitness R1(x) is recalled
as follows:

R1 =

n∑
i=1

ciδi(x), (3)

where δi = 1 if x ∈ si, otherwise, δi = 0.

Fig. 1: Royal Road function R1.

It’s notable that, due to the landscapes in the Royal Road
function and 1-bit mutation per generation, introducing noise
to the fitness is not trivial. When introducing a noise with
constant variance, with high probability, the mutated genome
has an identical noise-free fitness value to the one of its
ancestor. As a result, only the samples of introduced noise
are compared.

III. BANDIT-BASED RMHC

In contrast to the standard bandit terminology, where an arm
is pulled to gain some reward, the purpose of our bandits is to
select the element to mutate at each iteration of the algorithm.

We create an m-armed bandit for each gene of the genome
that can take on m possible values. Each bandit works by
recording how many times each arm has been pulled, i.e.,
the number of evaluations of each arm, and the difference in
empirical reward between the previous fitness of the genome
and the fitness obtained as a result of the selected mutation.

Note that instead of pulling an arm to gain some reward
as in the normal bandit terminology, each bandit stores a
state and has m arms where each arm i ∈ {1, . . . ,m} stores
the statistics of a transition: Ti ∈ Transitions(S) with

1Note that OneMax can be considered as a special case of the Royal Road
function with a block size of 1.

|Transitions(S)| = m. Transitions(S) denotes the set of
transitions at state S. Thus, for a genome of n genes, n multi-
armed bandits are created, assuming they are independent.

Each bandit can have a different number of arms, depending
on the problem and transition sets. In a n-dimensional OneMax
problem or Royal Road function R1, n 2-armed bandits are
required.

For the rest of this paper we assume that m = 2 i.e. we
are dealing with binary strings, though the extension to larger
alphabets should be straightforward.

For any position (gene) at a given state S, there is one single
possible action flip and two transitions, the next state will be

S′ =

{
1, if it’s 0 at state S
0, otherwise.

A. Urgency

At each iteration of the Bandit-based RMHC algorithm, the
bandit agents manage the selection of the gene with maximal
urgency to mutate:

i∗ = argmax
i∈{1,2,...,n}

urgencyi. (4)

The urgency of each bandit is derived from the standard
UCB equation, except that we invert the normal use of the
exploitation term, i.e. the first term in the RHS of Equation 5.
Intuitively, this says that if a particular state of a bandit is
already good, then it’s value should not be changed. The
exploration term is there to ensure that as the total number of
iterations Ni increases, so occasionally an apparently poorer
option will be tried.

For any 2-armed bandit i ∈ {1, 2, . . . , n}, the urgencyi is
defined as

urgencyi = − max
j∈{0,1}

∆̄i(j)+

√
log(Ni + 1)

2Ni(j)
+U(1e−6), (5)

where Ni is the number of times the ith bit is selected; Ni(j)
is the number of times the state j is reached when the ith bit
is selected; ∆̄i(j) is the empirical mean difference between
the fitness values if the state j is reached when the ith bit is
selected, i.e., the changing of fitness value; U(1e−6) denotes
a uniformly distributed value between 0 and 1e−6 which is
used to randomly break ties.

This means that for each position in the bit string (i.e. for
each gene) we have a simple bandit model that requires only
3 additional parameters for book-keeping: one parameter to
model the fitness change when flipping a bit from one to zero,
another one for the opposite flip, and one to count the number
of times that a bandit has been selected (Ni(j)).

B. Noise-free case

Algorithm 1 presents the bandit-based RMHC in the noise-
free case. To solve a noise-free problem, no resampling is
necessary if the evaluation number and fitness value of the
best-so-far genome can be saved. It is worth noting that, for
problems in which computing the fitness value is difficult or re-
quires high computational cost, saving the fitness of a solution

is far less expensive than re-evaluating it again. For the further
work, we are interested in applying our proposed approach to
more difficult problems (such as game level generation and
evaluation [40]). Our main interest is in improving the speed
of convergence to approximately optimal states.

Algorithm 1 Bandit-based RMHC in the noise-free case.

Require: n ∈ N∗: genome length
Require: m ∈ N∗: dimension of search space

1: Randomly initialise a genome x ∈ Rm

2: bestF itSoFar ← fitness(x)
3: N ← 1 . Total evaluation number
4: while time not elapsed do
5: Select the element i∗ to mutate using Eqs. 4 and 5
6: y← after mutating the element i∗ of x
7: Fity ← fitness(y)
8: N ← N + 1 . Update the counter
9: if Fity ≥ bestF itSoFar then

10: x← y . Update the best-so-far genome
11: bestF itSoFar ← Fity
12: end if
13: end while
14: return x

C. Noisy case

We now consider the noisy case. The Bandit-based RMHC
in the noisy case is formalised in Algorithm 2. In the noisy
case, the best-so-far genome requires multiple evaluations to
reduce the effect of noise, this is called resampling.

The statistics of the best-so-far genome are stored, thanks to
which, instead of comparing directly the fitness values of the
offspring to the one of the best-so-far genome, the average
fitness value of the best-so-far genome is compared at each
generation. Therefore, the computational cost involved in the
evaluation of the genome determines the computational cost
of this algorithm.

Resampling has been proved to be a powerful tool to im-
prove the local performance of EAs in noisy optimization [41],
[42] and a variety of resampling rules applied to EAs in con-
tinuous noisy optimization are studied in [43]. Interestingly,
Qian et al. [44] proved theoretically and empirically that under
some conditions, resampling is not beneficial for a (1+1)-EA
optimizing 10-OneMax under additive Gaussian noise. This is
contrary to our findings, though we use much larger bit string
lengths for our main results (from 50 to 1000, unlike the length
of 10 used by Qian et al.) and different algorithm (RMHC
using 1-bit mutation, unlike (1+1)-EA where every bit could
mutate with a probability), and we also found resampling to
not improve results for small strings (e.g. for N = 10).

IV. EXPERIMENTAL RESULTS

We apply first our proposed algorithm on the OneMax
problem and the Royal Road function R1 in a noise-free case,
and then evaluate the performance of our algorithm on the

Algorithm 2 Bandit-based RMHC in the noisy case.

Require: n ∈ N∗: genome length
Require: m ∈ N∗: dimension of search space

1: Randomly initialise a genome x ∈ Rm

2: bestF itSoFar ← fitness(x)
3: M ← 1 . Evaluation number of the best-so-far genome
4: N ← 1 . Total evaluation number
5: while time not elapsed do
6: Select the element i∗ to mutate using Eqs. 4 and 5
7: y← after mutating the element i∗ of x
8: Fitx ← fitness(x)
9: Fity ← fitness(y)

10: N ← N + 2 . Update the counter
11: averageF itness← bestF itSoFar∗M+Fitx

M+1
12: if Fity ≥ averageF itness then
13: x← y . Update the best-so-far genome
14: bestF itSoFar ← Fity
15: M ← 1
16: else
17: bestF itSoFar ← averageF itness
18: M ←M + 1
19: end if
20: end while
21: return x

0 200 400 600 800 1,000
Dimension

0

2,000

4,000

6,000

8,000

10,000

E
v
a
lu

a
ti

o
n
s

One Max Problem

Bandit-based RMHC Noise 0.0 (1)
RMHC Noise 0.0 (1)

Fig. 2: Average evaluations required to find the optimal
solution in the noise-free OneMax problem.

OneMax problem with the presence of noise. Each experiment
is repeated 100 times using randomly initialised strings.

A. OneMax

The results in noise-free OneMax problem of different
dimensions is presented in Fig. 2. In the noise-free case, the
average fitness evaluations used by bandit-based RMHC to
solve the problem is close to the problem dimension, while the
original RMHC required approximate 5 times more budget.

Fig. 3 illustrates the empirical average number of fitness
evaluations required to reach the optimum value using RMHC

and bandit-based RMHC in the OneMax problem of different
dimensions with constant variance noise (∼ N (0,1)). The
resampling number in the noisy case is given between brack-
ets. For comparison, the results in noise-free OneMax is also
included (blue curves).

As is exhibited in the graph, with the presence of constant
variance noise:

• Using RMHC, larger resampling number (10) leads to
a faster convergence to the optimum (Fig. 3a) on high-
dimension problems; when the problem dimension is low,
resampling number equals to 3, 4 or 5 leads to a faster
convergence to the optimum (Fig. 3c); the ratio of average
fitness evaluations to the problem dimension increases
noticeably when a small resampling number is used (Fig.
3c).

• Using bandit-based RMHC, the ratio of average fitness
evaluations to the problem dimension remains stable
when resampling is used (Fig. 3d); the total evaluation
number scales almost linearly with the problem dimen-
sion; the optimal resampling number is 2 (red curve).

• As can be seen clearly from the figures, for an identical
OneMax problem with the presence of noise, our pro-
posed bandit-based RMHC significantly outperforms the
standard RMHC by a very large margin - in some cases
requiring a factor of ten fewer fitness evaluations.

B. Royal Road

Fig. 4 shows the empirical average fitness evaluations
required to find the optimum of the noise-free Royal Road
function using RMHC and bandit-based RMHC, respectively.

For a fixed length, bigger block size results in a harder
problem and more fitness evaluations. The ratio of average
fitness evaluations to the problem dimension increases with
the problem dimension when a small resampling number is
used (Fig. 3c). For an identical problem, bandit-based RMHC
required far fewer fitness evaluations than RMHC to find the
optimal solution. It can be seen from the curves that for
an identical block size, using bandit-based RMHC, the total
evaluation number scales linearly with the problem dimension.

In addition, to find the optimum string of 8 blocks of size
8, our bandit-based RMHC used half number of function
evaluations than the RMHC used by Mitchell et al. [39], which
was the most efficient algorithm in their experiments.

The Royal Road functions involve a harder credit as-
signment [45] problem than standard OneMax, an important
aspect of sequential decision making. The reward for correctly
mutating a bit is usually delayed, and dependent on many other
correct bit settings.

Regarding credit assignment within the algorithm, the
bandit-based RMHC uses urgency (Eq. 5) to model this, by
attempting to track the fitness gained when switching a gene
to a particular value. More use is made of the available
information, leading to faster learning (see [46] and [47] for
more analysis of the information rates of simple evolutionary
algorithms).

0 200 400 600 800 1,000
Dimensions

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000
E
v
a
lu

a
ti

o
n
s

RMHC - One Max Problem

RMHC Noise 0.0 (1)
RMHC Noise 1.0 (2)
RMHC Noise 1.0 (3)
RMHC Noise 1.0 (4)
RMHC Noise 1.0 (5)
RMHC Noise 1.0 (10)

(a) Average evaluations used by RMHC.

0 200 400 600 800 1,000
Dimension

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

E
v
a
lu

a
ti

o
n
s

Bandit-based RMHC - One Max Problem

Bandit-based RMHC Noise 0.0 (1)
Bandit-based RMHC Noise 1.0 (1)
Bandit-based RMHC Noise 1.0 (2)
Bandit-based RMHC Noise 1.0 (3)
Bandit-based RMHC Noise 1.0 (4)
Bandit-based RMHC Noise 1.0 (5)
Bandit-based RMHC Noise 1.0 (10)

(b) Average evaluations used by bandit-based RMHC.

0 200 400 600 800 1,000
Dimension

0

200

400

600

800

1,000

E
v
a
lu

a
ti

o
n
s/

D
im

e
n
si

o
n

RMHC - One Max Problem

(c) RMHC. y-axis: average #evals/dim.

0 200 400 600 800 1,000
Dimension

0

10

20

30

40

50

E
v
a
lu

a
ti

o
n
s/

D
im

e
n
si

o
n

Bandit-based RMHC - One Max Problem

(d) Bandit-based RMHC. y-axis: average #evals/dim.

Fig. 3: Performance of RMHC (left) and bandit-based RMHC (right) in the OneMax problem, without noise and with constant
variance noise (∼ N (0,1)). The y-axis range of RMHC ((a) and (c)) is 20 times the ones of bandit-based RMHC ((b) and
(d)). The resampling number in the noisy case is given between brackets. The standard error is shown as well as a faded area
around the average. In the noisy case, our proposed bandit-based RMHC significantly outperforms RMHC. In the noisy case,
the RMHC without resampling is not shown in because it could not solve the problem within (1000×Dimension) function
evaluations.

If this information was exploited in a way that was too
naı̈ve or too greedy, this could lead the algorithm to rapidly
become stuck on poor values, especially for the noisy problems
tested in this paper. However, the exploration term naturally
counteracts such tendencies.

V. CONCLUSION

This paper presented the first bandit-based Random Muta-
tion Hill Climber (RMHC) - a simple but effective type of
evolutionary algorithm. The algorithm was compared with the
standard RMHC on the OneMax problem and Royal Road
function. Tests were also made using a noisy OneMax problem
together with resampling in each algorithm to ameliorate the
effects of the noise.

On noise-free and noisy OneMax problems and Royal Road
function, our bandit-based RMHC algorithm significantly out-

performs the RMHC, in some cases using a factor of ten fewer
evaluations in the noisy case.

Furthermore, the fitness evaluations required by the bandit-
based RMHC finding the optimal solution is an approximately
linear function of the problem dimension when the resampling
number is 2. For an identical Royal Road function 8 blocks
of size 8), the bandit-based RMHC used half the number
of function evaluations than the RMHC used by Mitchell et
al. in [39], which was the most efficient algorithm in their
experiments.

We obtain very promising results using this simple but
effective bandit-based RMHC. The algorithm is designed for a
large set of discrete optimisation problems where each fitness
evaluation is expensive and the fitness is possibly noisy due
to some uncertainties, which is quite common in real-world
applications.

64 128 256 512 1,024
Dimensions

0

50,000

100,000

150,000

200,000

250,000

300,000
E
v
a
lu

a
ti

o
n
s

RMHC - Royal Road Problem

RMHC Noise 0.0 (1) - Block size: 2
RMHC Noise 0.0 (1) - Block size: 4
RMHC Noise 0.0 (1) - Block size: 8

(a) Average evaluations used by RMHC.

64 128 256 512 1,024
Dimensions

0

10,000

20,000

30,000

40,000

50,000

60,000

E
v
a
lu

a
ti

o
n
s

Bandit-based RMHC - Royal Road Problem

BanditRMHC Noise 0.0 (1) - Block size: 2
BanditRMHC Noise 0.0 (1) - Block size: 4
BanditRMHC Noise 0.0 (1) - Block size: 8

(b) Average evaluations used by bandit-based RMHC.

64 128 256 512 1,024
Dimension

0

50

100

150

200

250

300

E
v
a
lu

a
ti

o
n
s/

D
im

e
n
si

o
n

RMHC - Royal Road Problem

(c) RMHC. y-axis: average #evals/dim.

64 128 256 512 1,024
Dimension

0

10

20

30

40

50

60

E
v
a
lu

a
ti

o
n
s/

D
im

e
n
si

o
n

Bandit-based RMHC - Royal Road Problem

(d) Bandit-based RMHC. y-axis: average #evals/dim.

Fig. 4: Performance of RMHC (left) and bandit-based RMHC (right) in the noise-free Royal Road problem with different
block sizes. Note that the y-axis range of RMHC in (a) and (c) is 5 times the ones of bandit-based RMHC in (b) and (d).
The standard error is also given as a faded area around the average.

FURTHER WORK

The main work in progress is the theoretical analysis on
expected evaluation number and accuracy, and the tests on
noisy Royal Road problems. Also, because the method makes
such efficient use of the fitness evaluations, it is ready to be
applied to expensive optimisation problems such as game level
design evaluation [40].

REFERENCES

[1] G. E. Box, “Evolutionary Operation: A Method for Increasing Industrial
Productivity,” Applied Statistics, pp. 81–101, 1957.

[2] G. J. Friedman, “Digital Simulation of an Evolutionary Process,” Gen-
eral Systems Yearbook, vol. 4, no. 171-184, 1959.

[3] W. Bledsoe, “The Use of Biological Concepts in the Analytical Study of
Systems,” in OPERATIONS RESEARCH, vol. 9. INST OPERATIONS
RESEARCH MANAGEMENT SCIENCES 901 ELKRIDGE LAND-
ING RD, STE 400, LINTHICUM HTS, MD 21090-2909, 1961, pp.
B145–B146.

[4] H. J. Bremermann, “Optimization through Evolution and Recombina-
tion,” Self-organizing systems, vol. 93, p. 106, 1962.

[5] I. Rechenberg, “Cybernetic Solution Path of an Experimental Problem,”
1965.

[6] L. J. Fogel, Artificial Intelligence Through Simulated Evolution.[By]
Lawrence J. Fogel... Alvin J. Owens... Michael J. Walsh. John Wiley
& Sons, 1966.

[7] J. Reed, R. Toombs, and N. A. Barricelli, “Simulation of Biological
Evolution and Machine Learning: I. Selection of Self-Reproducing
Numeric Patterns by Data Processing Machines, Effects of Hereditary
Control, Mutation Type and Crossing,” Journal of theoretical biology,
vol. 17, no. 3, pp. 319–342, 1967.

[8] J. C. Gittins, “Bandit Processes and Dynamic Allocation Indices,”
Journal of the Royal Statistical Society. Series B (Methodological), pp.
148–177, 1979.

[9] D. A. Berry and B. Fristedt, Bandit Problems: Sequential Allocation
of Experiments (Monographs on Statistics and Applied Probability).
Springer, 1985.

[10] T. Lai and H. Robbins, “Asymptotically Efficient Adaptive Allocation
Rules,” Advances in Applied Mathematics, vol. 6, pp. 4–22, 1985.

[11] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-Time Analysis of the
Multiarmed Bandit Problem,” Machine learning, vol. 47, no. 2-3, pp.
235–256, 2002.

[12] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A Survey of Monte Carlo Tree Search Methods,” Computational
Intelligence and AI in Games, IEEE Transactions on, vol. 4, no. 1,
pp. 1–43, 2012.

[13] P. Auer, “Using Confidence Bounds for Exploitation-Exploration Trade-
offs,” The Journal of Machine Learning Research, vol. 3, pp. 397–422,
2003.

[14] J.-Y. Audibert, R. Munos, C. Szepesvari et al., “Use of Variance
Estimation in the Multi-Armed Bandit Problem,” 2006.

[15] S. Bubeck, R. Munos, and G. Stoltz, “Pure Exploration in Multi-Armed
Bandits Problems,” in Algorithmic Learning Theory. Springer, 2009,
pp. 23–37.

[16] A. Garivier and O. Cappé, “The KL-UCB Algorithm for Bounded
Stochastic Bandits and beyond,” arXiv preprint arXiv:1102.2490, 2011.

[17] S. Bubeck and N. Cesa-Bianchi, “Regret Analysis of Stochastic
and Nonstochastic Multi-Armed Bandit Problems,” arXiv preprint
arXiv:1204.5721, 2012.

[18] L. Kocsis and C. Szepesvári, “Discounted UCB,” in 2nd PASCAL
Challenges Workshop, 2006.

[19] M. D. Grigoriadis and L. G. Khachiyan, “A Sublinear-Time Randomized
Approximation Algorithm for Matrix Games,” Operations Research
Letters, vol. 18, no. 2, pp. 53–58, Sep 1995.

[20] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “Gambling
in a Rigged Casino: the Adversarial Multi-Armed Bandit Problem,” in
Proceedings of the 36th Annual Symposium on Foundations of Computer
Science. IEEE Computer Society Press, Los Alamitos, CA, 1995, pp.
322–331.

[21] D. L. St-Pierre and J. Liu, “Differential Evolution Algorithm Applied
to Non-Stationary Bandit Problem,” in 2014 IEEE Congress on
Evolutionary Computation (IEEE CEC 2014), Beijing, Chine, Jul.
2014. [Online]. Available: http://hal.inria.fr/hal-00979456

[22] R. Storn and K. Price, “Differential Evolution – A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341–359, 1997.

[23] A. Benbassat and M. Sipper, “Evolving Artificial Neural Networks with
FINCH,” in Proceedings of the 15th annual conference companion on
Genetic and evolutionary computation. ACM, 2013, pp. 1719–1720.

[24] A. M. Alhejali and S. M. Lucas, “Using Genetic Programming to
Evolve Heuristics for a Monte Carlo Tree Search Ms Pac-Man agent,”
in Computational Intelligence in Games (CIG), 2013 IEEE Conference
on. IEEE, 2013, pp. 1–8.

[25] S. M. Lucas, S. Samothrakis, and D. Perez, “Fast Evolutionary Adap-
tation for Monte Carlo Tree Search,” in Applications of Evolutionary
Computation. Springer, 2014, pp. 349–360.

[26] P. Rolet and O. Teytaud, “Bandit-Based Estimation of Distribution
Algorithms for Noisy Optimization: Rigorous Runtime Analysis,” in
Learning and Intelligent Optimization. Springer, 2010, pp. 97–110.

[27] K. Li, A. Fialho, S. Kwong, and Q. Zhang, “Adaptive Operator Selec-
tion with Bandits for a Multiobjective Evolutionary Algorithm based
on Decomposition,” Evolutionary Computation, IEEE Transactions on,
vol. 18, no. 1, pp. 114–130, 2014.

[28] S. M. Lucas and T. J. Reynolds, “Learning DFA: Evolution versus
Evidence Driven State Merging,” in Evolutionary Computation, 2003.
CEC’03. The 2003 Congress on, vol. 1. IEEE, 2003, pp. 351–358.

[29] ——, “Learning Deterministic Finite Automata with a Smart State

Labeling Evolutionary Algorithm,” Pattern Analysis and Machine In-
telligence, IEEE Transactions on, vol. 27, no. 7, pp. 1063–1074, 2005.

[30] D. E. Goldberg et al., Genetic Algorithms in Search Optimization and
Machine Learning. Addison-wesley Reading Menlo Park, 1989, vol.
412.

[31] J. D. Schaffer and L. J. Eshelman, “On Crossover as an Evolutionarily
Viable Strategy,” in ICGA, vol. 91, 1991, pp. 61–68.

[32] S. Droste, T. Jansen, and I. Wegener, “Upper and Lower Bounds for
Randomized Search Heuristics in Black-Box Optimization,” Theory of
computing systems, vol. 39, no. 4, pp. 525–544, 2006.

[33] B. Doerr and C. Winzen, “Memory-Restricted Black-Box Complexity
of OneMax,” Information Processing Letters, vol. 112, no. 1, pp. 32–34,
2012.

[34] B. Doerr and C. Doerr, “Black-Box Complexity: from Complexity
Theory to Playing Mastermind,” in Proceedings of the 15th annual
conference companion on Genetic and evolutionary computation. ACM,
2013, pp. 617–640.

[35] C. Doerr and J. Lengler, “OneMax in Black-Box Models with Several
Restrictions,” Algorithmica, pp. 1–31, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s00453-016-0168-1

[36] C. Qian, Y. Yu, and Z.-H. Zhou, “Analyzing Evolutionary Optimization
in Noisy Environments,” Evolutionary computation, 2015.

[37] S. Droste, “Analysis of the (1+ 1) EA for a Noisy OneMax,” in Genetic
and Evolutionary Computation–GECCO 2004. Springer, 2004, pp.
1088–1099.

[38] M. Mitchell, S. Forrest, and J. H. Holland, “The Royal Road for Genetic
Algorithms: Fitness Landscapes and GA Performance,” in Proceedings
of the first european conference on artificial life. Cambridge: The MIT
Press, 1992, pp. 245–254.

[39] M. Mitchell and J. H. Holland, “When will a Genetic Algorithm
Outperform Hill-Climbing?” 1993.

[40] A. Khalifa, D. Perez-Liebana, S. M. Lucas, and J. Togelius, “General
Video Game Level Generation,” 2016.

[41] D. V. Arnold and H.-G. Beyer, “A General Noise Model and its Effects
on Evolution Strategy Performance,” Evolutionary Computation, IEEE
Transactions on, vol. 10, no. 4, pp. 380–391, 2006.

[42] H.-G. Beyer, The Theory of Evolution Strategies. Springer Science &
Business Media, 2013.

[43] J. Liu, “Portfolio Methods in Uncertain Contexts,” Ph.D. dissertation,
INRIA, 12 2015.

[44] C. Qian, Y. Yu, Y. Jin, and Z.-H. Zhou, “On the Effectiveness of
Sampling for Evolutionary Optimization in Noisy Environments,” in
Parallel Problem Solving from Nature–PPSN XIII. Springer, 2014,
pp. 302–311.

[45] R. S. Sutton, “Temporal Credit Assignment in Reinforcement Learning,”
1984.

[46] S. M. Lucas, “Investigating Learning Rates for Evolution and Temporal
Difference Learning,” in Computational Intelligence and Games, 2008.
CIG’08. IEEE Symposium On. IEEE, 2008, pp. 1–7.

[47] ——, “Estimating Learning Rates in Evolution and TDL: Results on a
Simple Grid-World Problem,” in Computational Intelligence and Games
(CIG), 2010 IEEE Symposium on. IEEE, 2010, pp. 372–379.

http://hal.inria.fr/hal-00979456
http://dx.doi.org/10.1007/s00453-016-0168-1

