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Abstract 

 

Sensory events contribute to body ownership, the feeling that the body belongs to me. 

However, the encoding of sensory events is not only reactive, but also proactive in 

that our brain generates prediction about forthcoming stimuli. In previous studies we 

have shown that prediction of sensory events is a sufficient condition to induce the 

sense of body ownership. In this study we investigate the underlying neural 

mechanisms. Participants were seated with their right arm resting upon a table just 

below another smaller table. Hence, the real hand was hidden from the participant’s 

view and a life-sized rubber model of a right hand was placed on the small table in 

front of them. Participants observed a wooden plank while approaching – without 

touching - the rubber hand. We measured the phenomenology of the illusion by 

means of questionnaire. Neural activity was recorded by means of near infrared 

spectroscopy (fNIRS). Results showed higher activation of multisensory parietal 

cortices in the rubber hand illusion induced by touch expectation. Furthermore, 

such activity was correlated with the subjective feeling of owning the rubber 

hand.  

Our results enrich current models of body ownership suggesting that our 

multisensory brain regions generate prediction on what could be my body and 

what could not. This finding might have interesting implications in all those cases in 

which body representation is altered, anorexia, bulimia nervosa and obesity, among 

others.  
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Introduction 

A fundamental function of our brain is to generate predictions about upcoming events 

using prior information and contextual cues (Friston et al., 2006; Bubic et al., 2010; 

Friston, 2010). Such top-down probabilistic representations are plastic, constantly 

updated, and affect the way we perceive and interact with the external world (Brown 

& Brüne, 2012). Indeed, valid predictions allow optimization of bottom-up sensory 

processing (van Ede et al., 2010; van Ede et al., 2011), and enhance behavioural 

responses to environment stimuli (Lunghi et al., 2014). For instance, top-down 

prediction of low-level features (e.g., colour, direction of motion) leads to facilitated 

processing of stimuli containing those features (Ball & Sekuler, 1981; Corbetta et al., 

1990; Saenz et al., 2002). 

 A still unanswered question is whether and, if so, to what extent the predictive 

features of the brain may also contribute to the plasticity of multisensory body 

representation (Blanke, 2012; Ehrsson, 2012). For instance, does the ability of the 

brain to generate probabilistic predictions of the upcoming events regarding the body 

(i.e., if an approaching object will hurt it) affect the experience of owning a body and 

its multisensory representation? 

Answering this question is relevant for at least two reasons: first, it would 

improve our understanding of how bottom-up mechanisms (e.g. sensory 

perception) and top-down mechanisms (e.g. knowledge about one’s body and its 

relation to events in the environment) interact to generate a coherent 

representation of the body.  Second, it would reveal a new role of multisensory 

brain regions, that is, to support changes in body representations due to 

probabilistic predictions.  
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 Behavioural evidence from the literature on the rubber hand illusion (RHI) 

supports the idea that ability of the brain to generate probabilistic predictions of 

upcoming events has a role to play in the plasticity of our multisensory body 

representation (Ferri et al., 2013; Ferri et al., 2014). In the original version of the 

illusion (Botvinick & Cohen, 1998; Tsakiris & Haggard, 2005; Costantini, 2014; 

Tsakiris, 2016), after synchronous visuo-tactile stimulation of a rubber hand and the 

participant’s hidden hand, participants reported feeling of ownership towards the 

former (Tsakiris & Haggard, 2005; Costantini & Haggard, 2007; Thakkar et al., 

2011). Recently, we showed that the RHI can be induced even if tactile stimuli 

are merely expected, rather than experienced (Ferri et al., 2013; Ferri et al., 

2014; for different findings see: Guterstam et al., 2016, but see: Ferri & 

Costantini, 2016 for a commentary). In that study, participants observed the 

experimenter’s hand while approaching – without touching - a rubber hand 

placed on a small table in front of them. Their real hand was hidden below the 

same table. We measured the phenomenology of the illusion by means of Skin 

Conductance Response and questionnaire. Both measures indicated that participants 

experienced the illusion that the experimenter’s hand was about to touch their hidden 

hand rather than the rubber hand, as if the latter replaced their own hand. Autonomic 

responses revealed that embodiment of the rubber hand occurred once the 

approaching hand entered participants’ peripersonal space (PPS). This did not occur 

when the rubber hand was rotated by 180° or replaced by a piece of wood. In a further 

study we showed that mere exposure to the rubber hand was not enough to induce a 

full-blow embodiment of the RH (Ferri et al., 2013; Ferri & Costantini, 2016). 

 Regarding the original version of the RHI, a theoretical explanation in terms 

of probabilistic predictions and prediction errors (Friston et al., 2006; Friston, 2010) 
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has been recently proposed by Apps & Tsakiris (Apps & Tsakiris, 2013). According 

to these authors, under synchronous multisensory stimulation between the 

participant’s hand and the rubber hand, ownership would arise as the result of 

probabilistic predictions generated in multisensory areas to explain away the 

“surprise”, or prediction error, of seeing and feeling touch at different locations. 

Hence, within this theoretical framework, abstract supramodal representations of 

sensory input that are processed in multisensory cortices alter body perception and 

sense of ownership. Several multisensory brain regions including the temporo-parietal 

junction, the inferior parietal lobe, the anterior insula, and the inferior frontal gyrus 

are activated (Azanon et al., 2010; Ionta et al., 2011a; Ionta et al., 2011b; Serino et 

al., 2013; Ionta et al., 2014) when participants experience the classic rubber-hand 

illusion (Ehrsson et al., 2004; Ehrsson et al., 2005; Makin et al., 2007; Tsakiris et al., 

2007; Makin et al., 2008; Olive et al., 2015).  

Is it reasonable to expect that any of these multisensory regions play a role also 

when the RHI arises as an effect of anticipation of touch, rather than from the conflict 

of seeing and feeling touch at different locations?  

In the RHI induced by tactile expectation (Ferri et al., 2013; Ferri et al., 2014) 

prediction errors would be generated by anticipation, rather than actual perception, of 

sensory events on the participant’s and the rubber hand. In this context, 

multisensory brain regions would generate probabilistic predictions that affect body 

ownership, based on prior information about the body as the target of touch events 

anytime external stimuli approach it (Apps & Tsakiris, 2013). Interestingly, among 

the multisensory regions activated during the classic RHI, the parietal cortices 

have been shown to respond during anticipation of sensory consequences of 
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actions (Halje et al., 2015; Rizzolatti & Sinigaglia, 2016) and somatosensory (i.e., 

tickling) stimuli (Carlsson et al., 2000). Based on this evidence, suggestions have 

been made that sensory predictions and processing of actual sensory input are 

subserved by similar neural substrates. In sum, there are reasons to hypothesize 

that multisensory parietal regions, play a role in the RHI induced by expected, 

besides felt, touch.  

In the present fNIRS study, we sought to test this hypothesis and, thus, provide 

evidence, for the first time, that multisensory parietal regions support the role of 

sensory expectation in the plasticity of body representation. We employed fNIRS 

(functional Near Infrared Spectroscopy) as it is suitable for more ecological 

applications, compared to fMRI (Cutini & Brigadoi, 2014). Indeed, to perform 

valid body illusion tasks, such as the RHI, it is essential to have the participants 

sit in a comfortable and natural position, with a perfect real hand/rubber hand 

alignment, and able to have full control and a clear view of their limbs (Ionta et 

al., 2011b).  

Materials and Methods 

Participants 

Sixteen healthy naive participants (10 males, mean age 24.2 years, range 20-29), with 

normal or corrected to normal vision, took part in this study after their written 

informed consent was obtained.  One participant was removed due to technical issues 

with the digitizing procedure (1 male, see Arizono & Kondo, 2015; Arizono, Ohmura, 

Yano, & Kondo, 2016; Shimada, Hiraki, & Oda, 2005 for similar sample size). All 

participants had normal or corrected to normal visual acuity and were right handed. 

The study was approved by the Ethics committee of the ‘G. d’Annunzio’ University 
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of Chieti and was conducted in accordance with the ethical standards of the 2013 

Declaration of Helsinki. 

Procedure 

The experimental apparatus and procedure were similar to those described previously 

(Ferri et al., 2013; Ferri et al., 2014). In brief, participants sat in front of a table with 

their right arm placed on it in a relaxed position at a fixed point. A wooden frame (80 

× 30 × 20, L × W × H) was positioned over the table to both hide the participant’s 

hand and support the experimental object. This object was either a realistic prosthetic 

rubber hand (RH) or a wooden object (WO), a wooden block of approximately the 

same size of the RH and with hand-like features. The two objects were presented in 

separate experimental blocks. The participants' hand and the viewed object were 

aligned on the vertical axis and were positioned at 20 cm from each other.  

The experimenter stood at the participant's right side, completely hidden 

from the participants’ view behind a black curtain. He slowly introduced a 

wooden plank from behind the curtain into the participants’ field of view and 

then moved it towards the viewed object with a constant velocity of 20 mm/s (SD 

< 3 mm/s as revealed by post hoc analysis on switch timing, Ferri et al., 2013), 

starting from a distance of 70 cm from the viewed object and stopping at 15 cm 

away from the viewed object; the wooden plank was then slowly removed from 

the participants’ view. Each approaching movement thus lasted approximately 

30 s. The wooden plank never touched the viewed object. The consistency of the 

experimenter’s movements was assured by audio instructions delivered via earphones.  

Figure 1 
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Four pairs of mechanical switches fixed onto two vertical rods enabled recording 

experimenter's movements, speed, and position. The four pairs of switches were 

positioned on each rod at 60, 45, 30, 15 cm from the viewed object. A further switch 

was located at the starting point (70 cm). The switch located at 30 cm allowed us to 

code the location of the approaching wooden block as being either within the 

participants’ peripersonal space (PPS) or his/her extrapersonal space (EPS), that is, 

when it was either ≤ 30 cm or > 30 cm from the viewed object. Although our main 

interest was in the distinction between PPS and EPS locations, we decided to use 4 

switches to better control for velocity of the approach, as changes in this parameter 

might increase arousal levels. Each switch sent a signal to a PowerLab system 

(ADInstrument), thus allowing post-hoc validation of experimenter's movements and 

time-locking of experimenter’s movements with the fNIRS signal.  

The experiment consisted of two recording sessions -one for each 

hemisphere- separated by a short rest period during which the optic fibers were 

placed over the other hemisphere (see Functional Near-Infrared Spectroscopy 

measurement). Each session consisted of two blocks (one for each experimental 

condition: rubber hand and wooden object). The presentation order of both 

sessions and blocks within a session was counterbalanced between participants. 

Each block lasted approximately 5 min during which eight approaching 

movements were performed. The eight movements were interleaved by brief 

pauses (≈15 s). At the beginning of the experiment, participants were instructed to 

pay attention to the wooden plank moving towards the object placed in front of them 

(i.e., either the RH or the WO) and to avoid moving both their right arm and head. 

After receiving instructions participants wore earphones through which white noise 

was delivered for the entire duration of each block. After each block participants took 



Page 9 of 33 

 

 

off earphones and were required to complete a questionnaire (see 2.3. Rubber Hand 

Illusion questionnaire).  

Rubber Hand Illusion questionnaire  

As we intended to replicate our previous findings (e.g., Ferri et al., 2013), we 

investigated whether expectation of touch experience arising at the sight of an object 

approaching a rubber hand was enough to induce in our participants a sense of body 

ownership over the same rubber hand, that is, even when no physical tactile 

stimulation was applied on either the rubber hand or the participant's real hand. To 

this aim, we used the same questionnaire as in our previous works (Ferri et al., 2013; 

Ferri et al., 2014) in a paper-and-pencil version.  

In brief, 21 items taken from Longo et al. (Longo et al., 2008) assessed the four 

different components of the subjective experience of the rubber hand illusion: 1) The 

experience of embodiment of the RH, assessed by eleven items related to the feelings 

that the RH belonged to the participant or had taken on features of the actual hand, 

that the RH and real hand were in the same location, and that the participant had 

control over the RH. 2) The experience of loss of one’s hand, assessed by five items 

related to the feelings of being unable to move one’s hand, and to the feeling of one’s 

hand disappearing or being out of one’s control. 3) The feeling of movement, assessed 

by three items related to perceived motion of one’s own hand, and to movement of the 

RH. 4) The affect component, assessed by two items related to the appeal and 

enjoyment of the experience. Although the original questionnaire used by Longo and 

colleagues included 27 items, only 21 items we grouped in clusters of experience 

(Longo et al., 2008). 
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Participants completed four versions of the questionnaire, one for each 

experimental block. They were asked to indicate the extent of their agreement or 

disagreement with the 21 statements by using a 7-point Likert Scale. A response of –3 

indicated strong disagreement with the statement, +3 strong agreement, and 0 neither 

agreement nor disagreement. 

Functional Near-Infrared Spectroscopy measurement 

Brain activity was recorded using a commercial frequency-domain near infrared 

spectrometer (Imagent, ISS Inc., Champaign, IL). The Imagent system was equipped 

with 32 laser diodes sources (16 emitting at 690 nm and 16 at 830 nm) modulated at 

110 MHz and 4 photomultiplier tube (PMT) detectors modulated at 110.005 MHz. 

The sources were time-multiplexed during recording (switch mode 32, one light 

active at once) resulting in a sampling frequency of 8.68 Hz. Low NIR attenuation 

silica optic fibers were used to inject the light emitted by the diodes into the scalp. 

Back-scattered light was collected through 3-mm diameter fiber optic bundles 

connected to the PMTs. The diodes light power at the fiber end was < 4 mW⁄cm
2
, 

within the limits of the American National Standards Institute and thus permitting 

safe measurements.  

The front ends of the optic fibers (optodes) were arranged on a custom-build 

rubber holder (recording pad) that was attached to the participants’ head by using 

Velcro strips. The optodes spatial configuration is showed in Figure 2. The source-

detector pairs were arranged in a nearest neighbor geometry creating 24 source-

detector combinations (measurements channels). The source-detector distance was set 

at 3 cm as in most of fNIRS studies on adults (Okada et al., 1997; Boas et al., 2004; 

Shimada et al., 2005; Arizono et al., 2016). The recording pad was placed unilaterally 
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over the parietal and dorsal posterior temporal regions of one hemisphere in separate 

recording sessions. In order to place the recording pad in a reliable way across all the 

participants, we adopted a neuronavigation procedure. Before the experiment, a T1-

weighted MR scan was obtained from each participant using a Siemens 3T scanner (1 

× 1 × 1 mm, sagittal acquisition). We then identified on the individual’s scalp two 

points of reference (for the temporo-parietal junction and the lateral part of the 

parieto-occipital sulcus) by coregistering reference scalp locations to individual MR 

images using a neuronavigation system (Fastrak Polhemus) running a SofTaxic 

software. The two points of reference were localized on each hemisphere according to 

individually determined well-defined anatomical landmarks. The temporo-parietal 

junction was localized at the intersection of the posterior end of the Sylvian fissure, 

the inferior parietal lobule, and the lateral occipital cortex. The parieto-occipital 

sulcus was localized on the lateral surface of each hemisphere just posteriorly to the 

posterior end of the intraparietal sulcus. The recording pad was thus placed according 

to these two anatomical landmarks on an individual basis to cover the posterior 

parietal cortex as well as the posterior temporal regions.  

Figure 2  

For each participant, the optodes positions and the four cranial reference points 

(nasion, inion and preauricolar points), were digitized using a 3D digitizer (Fastrak 

Polhemus). The digitized locations in real coordinates were then converted into the 

MNI space coordinates and localized onto the anatomical MR image using the four 

cranial reference points. The channels spatial registration into the MNI space was 

performed using the NFRI toolbox (Okamoto & Dan, 2005; Singh et al., 2005) in the 

NIRS-SPM software package (Ye et al., 2009). 
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Functional Near-Infrared Spectroscopy data analysis 

Data analysis of fNIRS signal was carried out separately for each hemisphere. 

Alternating current (AC), direct current (DC) and phase (Φ) components were 

computed for each channel and for each wavelength. The optical signal pre-

processing was performed using the Homer2 NIRS Processing package (Huppert et 

al., 2009). The DC signals (light intensity) were converted into changes in optical 

density (OD) for each source-detector pair. After a visual inspection, motion artifacts 

were detected on the basis of the number of standard deviations (SD) between the 

outlier points and the signal mean (Huppert et al.). Data points exceeding the 

threshold (i.e., 5 SDs) in a time-period of 1 second and points at ±1 second from these 

outliers were marked as motion-artifacts (Brigadoi et al., 2014). A channel-based 

cubic spline interpolation (p parameter = 0.99) was employed to correct for motion 

artifacts (Scholkmann et al., 2010; Cooper et al., 2012). Signals were then band-pass 

filtered (3
rd

 order Butterworth filter) with cutoff frequencies of 0.01-0.5 Hz in order to 

reduce physiological noises (e.g. heart beat) and slow drifts.  

OD signals were converted into changes in concentration of oxyhemoglobin 

(HbO) and deoxyhemoglobin (HbR) using the modified Beer-Lambert law (Cope & 

Delpy, 1988) with an age-corrected differential-pathlength factor (DPF) (Duncan et 

al., 1996). DPFs at 830 nm and 690 nm were set at 5.5 and 6 using the equations 

provided by Duncan et al. (1996). A correlation-based signal improvement method 

(CBSI) (Cui et al., 2010; Brigadoi et al., 2014) was used to maximize the negative 

correlation between HbO and HbR. In order to enhance any residual spikes, the 

carrier components of the concentration signals were subtracted from the time-series 

and cubic spline interpolation was run again in case of large motion errors. 
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Single-subject and group analyses were then performed using the NIRS-SPM 

analysis package (Ye et al., 2009). In order to obtain corrected statistics, the 

precoloring method (Ye et al., 2009) was employed to swamp any intrinsic temporal 

correlation existing in fNIRS signals. This is achieved by smoothing the data with a 

low-pass filter shaped as the canonical hemodynamic response function (HRF) 

(Worsley & Friston, 1995).  

Possible significant neural activations in response to the approaching movements 

were assessed by means of a general linear model (GLM approach, (Friston et al., 

1994). In particular, the design matrix modeled the eight experimental events 

resulting from the combinations of the two experimental conditions (i.e., the viewed 

object: RH vs WO) and the four distances of the approaching object from the viewed 

object (corresponding to the four switches located at 60, 45, 30, 15 cm from the 

viewed object, see Procedure). The transitions of the approaching object at the four 

distances were modeled as events using a stick function convolved with the HRF (Ye 

et al., 2009). The eight regressors were then compared to the HbO and HbR time-

series to yield appropriate parameter estimates of the experimental effects (beta 

values).  

Next, starting from the resulting beta values, we computed T statistics 

corresponding to the contrasts of interest testing for the experimental effects 

relevant for our hypothesis. In doing this, the distance of the approaching object 

was defined dichotomically in relation to the switch located at 30 cm: the 

movement phase during which the approaching object was farther than 30 cm 

form the participants’ hand (corresponding to the events for the 60 and 45 cm 

distances) was coded as extrapersonal space (EPS), while the movement phase 
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during which the approaching object was closer than 30 cm form the 

participants’ hand (corresponding to the events for the 30 and 15 cm distances) 

was coded as peripersonal space (PPS). We did so to increase statistical power 

since in our previous work we showed that the autonomic response to a stimulus 

approaching the RH occurred only when the approaching stimulus entered the 

participant's PPS and it was not significantly different between 30 and 15 cm, and 

between 60 and 45 (Ferri et al., 2013).   

Therefore, the resulting four experimental conditions were: 1) Rubber Hand 

– Extrapersonal Space (RH_EPS), in which the wooden plank approached the 

rubber hand but it still in the participant's extrapersonal space (i.e., a distance 

larger than 30 cm from the RH); 2) Rubber Hand – Peripersonal Space 

(RH_PPS), in which the wooden plank approaching the rubber hand has crossed 

the boundary of the participant's peripersonal space (i.e., a distance smaller than 

30 cm from the RH); 3) Wood Object - Extrapersonal Space (WO_EPS), in 

which the wooden plank approached the wooden object but it was in the 

participant's extrapersonal space; 4) Wood Object - Peripersonal Space 

(WO_PPS), in which the wooden plank approaching the wood object has crossed 

the participant's PPS boundary.  

 The resulting T scores were then interpolated using the Gaussian random field 

interpolation (Ye et al., 2009) and activation maps were rendered onto a standard 

MNI brain template. In the group analysis, the subjects’ interpolated maps were 

aligned in the MNI space and second level statistics were computed for the 

intersection region of each subject’s cortical area covered by the optodes. To control 
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for false positives, all the resulting p values were corrected by false discovery rate 

(FDR < .05; (Singh & Dan, 2006). 

Correlational analyses between RHI questionnaire responses and fNIRS data 

We here aimed to investigate whether neural activity related to the RHI was linked to 

the participants' introspective ratings of their RHI experience. To assess the vividness 

of participants' RHI, differential RHI scores were measured by subtracting mean 

ratings provided after RH blocks from those provided after WO blocks for each of the 

components detailing the RHI experience. We then compared correlation coefficients 

(see Correlation between introspective evidence and fNIRS data) between these RHI 

scores and the beta values of the contrasts of interest for the NIRS channels 

surrounding regions of significant group activation based on the results of the GLM 

analyses.  

Results 

Introspective evidence  

As described in Rubber Hand Illusion questionnaire, at the end of each of the four 

recording blocks the participants provided responses for a total of 21 items referring 

to four principal components of the subjective experience of the RHI: 1) 

Embodiment; 2) Loss of one’s own hand; 3) Movement; and 4) Affect.  

First, the mean ratings for each component were submitted to a 2 × 2 repeated 

measure ANOVA with the recording session (left vs. right parietal lobe) and the 

viewed object (RH vs. WO) as main factors. The distance between the approaching 

stimulus and the viewed cannot be used as a factor as participants filled in only one 

questionnaire after every approaching movement block. The ANOVAs led to similar 
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results for all of the four principal components of the RHI experience. Indeed, the 

main effect of the viewed object was significant, with higher mean ratings for the RH 

condition compared to the WO condition (Embodiment: F(1,14) = 52.66, p < .0001, 

ηp
2
 = .79; RH = 0.92, WO = -.81. Loss: F(1,14) = 5.91, p = .029, ηp

2
 = .30; RH = -.69, 

WO = -1.4. Movement: F(1,14) = 9.09, p = .009, ηp
2
 = .39; RH = -1.66, WO = -2.53. 

Affect: F(1,14) = 11.79, p = .004, ηp
2
 = .46; RH = 1.07, WO = -.65, See Figure 3). 

These results showed that our paradigm was effective in inducing a more vivid 

experience of embodiment of the RH compared to WO in our participants. The main 

effect of the recording session and the two-way interaction were not significant 

(respectively, Embodiment: F(1,14) = .12 and .50, p = .735 and .493, Loss: F(1,14) = 

.16 and 1.18, p = .696 and .295, Movement: F(1,14) = 2.40 and .25, p = .144 and 

.624, Affect: F(1,14) = .003 and .16, p = .959 and .692). The pattern of results was 

confirmed by a multivariate analysis of variance (viewed object: Wilks’ Λ = .197; 

F(4,11) = 11.19, p < .001; recording session: Wilks’ Λ = .766; F(4,11) = .84, p = 

.527; two-way interaction: Wilks’ Λ = .810; F(4,11) = .65, p = .640), as well as by 

nonparametric analyses (Wilcoxon signed-rank test; data not shown). 

Next, we examined which component of the RHI experience was reliably elicited 

by our experimental manipulation. We thus performed a series of one-tailed one 

sample t-tests against 0 on the main ratings of the four components assessed by the 

RHI questionnaire after each of the four experimental blocks. The analysis revealed 

that only Embodiment items consistently received mean ratings significantly higher 

than 0 in the RH condition (left hemisphere: M = .91, t(14) = 2.07, p = .029, d = .54; 

right hemisphere: M = 0.93, t(14) = 2.23, p = .021, d = .58). Moreover, the Affect 

items received mean rating significantly higher than 0 in the right hemisphere session 

(M = 1.13, t(14) = 2.26, p = .02, d = .58) but not in the left hemisphere session (M = 
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1.00, t(14) = 2.22, p = .051, d = .45). The mean ratings of all of the other variables 

were not significantly higher than 0.  

Figure 3 

Functional Near-Infrared Spectroscopy results 

We aimed to reveal neural correlates of the sense of body ownership over a RH 

induced proactively by the expectation of touch from an approaching object. To this 

aim, we tested the linear contrast testing for the interaction effect that was relevant for 

our hypothesis [(RH_PPS-RH_EPS)-(WO_PPS-WO_EPS)]. 

The analysis on HbO revealed a distinct activation cluster in the inferior parietal 

lobule (IPL) in the left hemisphere (p < 0.05, FDR corrected, see Fig. 4a). This group 

activation cluster included the cortex surrounding the posterior end of the Sylvian 

fissure as well as the inferior parietal lobule and the temporo-parietal junction (see 

Fig. 2a). This result showed that an approaching object elicited significantly larger 

positive changes in HbO concentration when it fell within, rather than outside, the 

participant's PPS, and this differential activation was significantly more pronounced 

when the object approached the RH located just above the participant's hand, 

compared to when the same object approached the WO. Further supporting this 

finding, we ran the contrast (RH_PPS vs RH_EPS), testing for the simple effect of the 

moving object location when approaching the RH. The result of this analysis revealed 

that significantly larger changes in HbO concentration (p < 0.05, FDR corrected) were 

elicited in the same cortical region when the object approaching the RH fell within, 

rather than outside, the participant's PPS. In contrast, the (WO_PPS-WO_EPS) 

contrast did not reveal significant activations. 
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The result of the HbO analysis were confirmed by the analysis on HbR change, 

which revealed a smaller cluster of significant group activation that overlapped the 

anterior part of the cluster emerged in the HbO analysis (see Fig. 4b). This result 

showed that the significant changes in HbO concentration revealed by the analysis 

reported above were closely mirrored by analogous significant changes in HbR 

concentration, both for the [(RH_PPS-RH_EPS)-(WO_PPS-WO_EPS)] contrast 

testing for the interaction effect relevant for our hypothesis, and for the (RH_PPS-

RH_EPS) contrast testing for the simple effect of the moving object location in the 

RH condition (both ps < 0.05, FDR corrected). The smaller dimension of the cluster 

may be related to the fact that the magnitude of the HbR response is 2-3 times smaller 

than HbO, resulting in a lower sensitivity but higher spatial selectivity for HbR signal 

changes (Plichta et al., 2007; Gagnon et al., 2012; Mihara et al., 2012). 

The same analysis carried out for the right hemisphere did not reveal any 

significant group changes in either HbO or HbR (all ps > .05, FDR corrected). 

Figure 4  

To investigate the selectivity of touch anticipation on the rubber hand illusion in 

the peripersonal space, we tested the contrast [RH_EPS-WO_EPS]. No statistically 

significant differences were found for this contrast, in both hemispheres and for both 

chromophores (i.e. HbO and HbR). 

Correlation between introspective evidence and fNIRS data 

We explored whether neural activity related to the proactive RHI was linked to the 

participants' introspective ratings of their RHI experience by means of a GLM 

analysis (separate-slopes model). In order to limit the number of statistic tests, we 



Page 19 of 33 

 

 

chose to restrict the analysis: i) to the seven channels located more posteriorly (i.e., 

channels 18:24, see Fig. 2), which were those that covered the cluster of significant 

group activation based on the results of the GLM analyses on HbO for the left 

hemisphere (see Functional Near-Infrared Spectroscopy results), and ii) to the 

corresponding mean ratings for the Embodiment component of the RHI questionnaire, 

which was the only relevant component reflecting the embodiment of the RHI that 

received reliable mean agreement ratings consistently (that is, mean ratings 

significantly higher than 0, see Introspective evidence).  

We thus carried out a separate-slopes analysis testing for significant across-

channels differences in correlation (slopes) between the beta values for the 

[(RH_PPS-RH_EPS)-(WO_PPS-WO_EPS)] contrasts of interest and mean 

Embodiment RHI experience (see 2.6. Correlational analyses between RHI 

questionnaire responses and fNIRS data). The analysis revealed the significance of 

the interaction term accounting for across-channels difference in the association link 

between beta values and mean Embodiment RHI (F(6,98) = 2.85, p = .013, ηp
2
 = .15). 

Post-hoc correlational analyses corrected for multiple comparisons (Bonferroni’s 

corrected alpha level: .05/7 = .007) revealed that the association link between beta 

values and mean Embodiment RHI (Pearson's correlation coefficient) was significant 

for the channel 21 only (r = .70, t(13) = 3.58, p = .003), that is, the channel that more 

closely matched the location of peak significant activation in the group map (Figure 

5). 

Figure 5  

Moreover, since correlation analyses are particularly sensitive to deviant observations 

(Rousselet & Pernet, 2012), we confirmed this result by performing a robust 
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correlation analysis. Specifically, we computed skipped parametric (Pearson) and 

nonparametric (Spearman) correlations (Wilcox, 2004) using the Robust Correlation 

toolbox (Pernet et al., 2012) and conducted null hypothesis statistical significance 

testing using the nonparametric percentile bootstrap test (2000 resamples; one-sided 

95% confidence interval, corresponding to an alpha level of .05), which is more 

robust against heteroscedasticity compared with the traditional t-test  (Pernet et al., 

2012); see also (Ambrosini & Vallesi, 2016). The results of the robust correlation 

analyses replicated the significant correlation between mean Embodiment RHI and 

beta values for the channel 21 only, thus showing that this result was not flawed by 

the presence of outliers or by the characteristics of our data. 

 

Discussion 

In a prior study (Ferri et al., 2013) we showed that people experience the illusion 

that a rubber hand, located just above their hidden hand, is part of their body anytime 

an approaching object generates an expectation of touch. In that study, 

phenomenology of the illusion was measured by means of questionnaire and skin 

conductance response. We interpreted the RHI induced by touch expectation as an 

indication that our brain does not build a sense of self in a merely reactive way, via 

perceptual correlations; rather, it generates predictions on what may or may not 

belong to itself. The present study follows up and extends our prior work as it 

shows that the RHI induced by touch expectation relies upon activity in 

multisensory parietal cortices. Thus, for the first time, we reveal that parietal 

cortices critically support the role of sensory expectation in the plasticity of body 

representation. 
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We employed the fNIRS because it allowed us testing bodily self-representation in a 

natural position, as compared to the horizontal and unnatural position assumed within 

a magnetic resonance scanner. Hence, this also prevented any methodological 

confound that might interfere with the role of the vestibular system in bodily self-

consciousness (Haggard et al., 2003; Blanke et al., 2004; Blanke & Mohr, 2005; 

Lopez et al., 2008; Blanke, 2012; Lopez et al., 2012). Indeed, vestibular signals are 

believed to contribute to bodily perceptions ranging from low-level (i.e., touch) to 

higher-level bodily perceptions (i.e., the sense of owning a body) (Lopez, 2015).  

The present fNIRS study lead to two main new findings: i) the controlateral 

inferior parietal cortex is selectively activated when an object approaching the 

rubber hand, rather than a piece of wood, falls within the participant’s 

peripersonal space; ii) the activity in the left inferior parietal cortex predicts the 

individual proneness to experience the RHI evoked by tactile expectation, as 

specifically revealed by the correlation with subjective reports of the 

Embodiment of the rubber hand.  

Interestingly, from a dynamic perspective, neural responses in the parietal 

cortices showed similar temporal patterns as previously exhibited by autonomic 

responses during the same task (Ferri et al., 2013): both revealed that 

embodiment of the rubber hand occurs as soon as the approaching object has 

entered the participant’s peripersonal space (PPS). Such similarity between 

dynamics of predictive neural and autonomic responses suggests a possible role 

of brain-body interaction in the prediction of external events. Future studies 

specifically testing this hypothesis are warranted. 
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All in all, our results are in agreement with the idea that during the RHI elicited 

by touch expectation, ownership would arise as the result of probabilistic 

predictions generated in multisensory parietal cortices – on the basis of prior 

information about the body as the target of approaching external stimuli - to 

explain away the prediction error of anticipating touch, on the seen rubber hand 

and the felt own hand. 

But, what is the neuronal mechanism enabling the effect of an expected tactile 

stimulus on the perception of a delivered visual stimulus?  

Single unit recordings in awake monkeys have shown that there are neurons in the 

bilateral parietal cortex with somatic anticipation responses (MacKay & Crammond, 

1987). This anticipatory activity was expressed as a change in discharge rate anytime 

a stimulus approaching a specific body part was presented. The same neurons also 

responded to somatosensory stimulation with a somatic receptive field corresponding 

to the region being approached. According to the authors’ suggestions, a possible 

source of anticipatory information could be represented by the convergent projections 

that target the posterior parietal regions originating from sensory areas, prefrontal 

cortex, limbic areas (Mesulam et al., 1977; Stanton et al., 1977), the pulvinar nuclei 

(Burbaud et al., 1985; Petersen et al., 1985), and the polysensory zone of the superior 

temporal sulcus (Seltzer & Pandya, 1980) with neurons responding to somatic 

approach (or withdrawal) (Perrett et al., 1985). Drawing from their results, the authors 

argued that the approach response of parietal neurons signals the anticipation of a 

specific somatosensory stimulus. Specifically, the visual stimulus would serve to cue 

an internal model that predicts following events based on previously experienced 

associations (MacKay & Crammond, 1987).  
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 Anticipatory responses to tactile stimuli in the parietal cortices have been 

shown also in humans. Carlsson et al. (Carlsson et al., 2000) found that brain 

activation in response to the expectation of a tactile stimulus, as a tickle provided with 

a light touch of painter’s brush on the foot sole, is similar to the one engaged during 

actual somatosensory stimulation. Anticipation responses, however, are not 

specifically confined to the somatosensory domain. More recently, Kok and 

colleagues (Kok et al., 2014), using fMRI, demonstrated that expectation of a visual 

stimulus induces an activation of the visual cortex which resembles the ones induced 

by the real stimulus. The mechanisms leading to the generation of anticipated 

responses seems to be related to low-frequency oscillatory activity of the brain and 

temporal regularity of the stimuli. Cravo and colleagues (Cravo et al., 2013) showed 

that the perception of the orientation of visual stimuli was modulated by the fact that 

the stimuli were embedded within temporally regular and predictable streams of 

noise-patches, compared to irregular and unpredictable ones. At the neural level, the 

temporal regularities led to phase entrainment of slow oscillatory activity in 

anticipation of the expected event so that the stimulus occurred at the phase with 

optimal performance. Based on this evidence, we can speculate that in our study the 

temporal regularity of the approaching stimuli might led to similar phase entrainment 

of slow oscillatory activity leading to neural responses to the expected touch. In other 

words, during the new version of the rubber hand illusion, top-down expectations 

would interact with bottom-up somatosensory responses (occurring in the parietal 

cortex even in the absence of actual stimulation) via phase entrainment. Future 

research is warranted to test this hypothesis. 

However, even if the specific mechanism involved is still to be clarified, the fact that 

the embodiment of the rubber hand elicited by touch expectation is predicted by 
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anticipatory response in multisensory regions (i.e., the parietal cortex) suggests that 

sensory region play a pivotal role in proactive sense of ownership. In addition, the 

evidence that only the contralateral parietal is activated by the object approaching the 

participant’s right hand further suggests that the predictive response is purely 

sensorial, rather than cognitive.  

Our results enrich current models of body ownership suggesting that body ownership 

does not only arise reactively to multisensory information, rather predictions are 

generated on what could be my body and what could not. This finding might have 

interesting implications in all those cases in which body representation is altered. One 

might think to alter multisensory body representations by altering the expectation that 

participants have about the morphological and structural features of their body. For 

instance, combining multisensory stimulation and expectation of a thin body in obese 

participants, might produce a change in the way they experience their body. This is 

relevant as obese people have a distorted representation of the body (Scarpina et al., 

2014), in that they tend to perceive themselves as thinner than they actually are.      
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Figure captions 

Figure 1: Experiment set-up to evaluate rubber hand illusion. The experimenter 

moved a wooden plank towards the viewed object (which varied according to the 

experimental condition) with a velocity of 0.02 m s–1 starting from a distance of 70 

cm from the viewed object and stopping at 15 cm away from it. The experimenter's 

hand never touched the viewed object. RH: rubber hand. 

Figure 2. Estimated cortical locations of the 24 NIRS channels (see Functional Near-

Infrared Spectroscopy measurement for details).  

Figure 3: Participants' mean ratings at the RHI questionnaire as a function of the RHI 

component and the experimental condition (L, left hemisphere; R, Right hemisphere; 

RH, rubber hand; WO, wood object). Error bars represent 95% confidence intervals. 

Figure 4. Group activation T maps (p < .05, FDR corrected) for the (RH_PPS-

RH_EPS)-(WO_PPS-WO_EPS) contrast on HbO (panel a) and HbR (panel b) fNIRS 

data.  

Figure 5. Relation between the vividness of the RHI experience, as revealed by 

Embodiment statements, (y-axis) and the increase in BOLD signal (x-axis, Estimated 

Beta-value) for all participants. 

 


