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Abstract

Cells adhere to each other and to the extracellular matrix (ECM) through protein

molecules on the surface of the cells. The breaking and forming of adhesive bonds, a

process critical in cancer invasion and metastasis, can be influenced by the mutation

of cancer cells. Several molecules have been reported to play a crucial role in cellular

adhesion and proliferation, and eventually in cancer progression, with TGF-β being

one of the most important.

In this thesis, we propose a general framework to model cancer cells movement and ag-

gregation, in response to nonlocal social interactions (that is, attraction towards neigh-

bours that are far away, repulsion from those that are near by, and alignment with

neighbours at intermediate distances), as well as other molecules’ effect, e.g., TGF-β .

We develop nonlocal mathematical models describing cancer invasion and metastasis

as a result of integrin-controlled cell-cell adhesion and cell-matrix adhesion, for two

cancer cell populations with different levels of mutation. The models consist of nonlin-

ear partial differential equations, describing the dynamics of cancer cells and TGF-β

dynamics, coupled with nonlinear ordinary differential equations describing the ECM

and integrins dynamics. We study our models analytically and numerically, and we

demostrate a wide range of spatiotemporal patterns. We investigate the effect of muta-

tion and TGF-β concentration on the speed on cancer spread, as well as the effect of

nonlocal interactions on cancer cells’ speed and turning behaviour.

xii



Chapter 1

Introduction

1.1 Biological background

Normal cells proliferate, divide and die in a highly controlled manner. This prolifer-

ation requires mitogenic signals, which are transmitted into the cell by the transmem-

brane receptors and bind signalling molecules, i.e. diffusible growth factors, extra-

cellular matrix components and cell-cell adhesion molecules (Hanahan and Weinberg,

2000). When a cell divides, its DNA is copied by the two new cells. However, if

the DNA is damaged or not copied correctly, the new damaged cells will either die

or start to proliferate in an uncontrolled manner, creating a signalling of oncogenes

that act by mimicking growth signalling (Hanahan and Weinberg, 2000), eventually

leading to an abnormal mass of tissues from cells that differ in clinically important

phenotypic features-the tumour (Marusyk et al., 2012). More precisely, tumour forma-

tion is a result of clonal expansion driven by somatic mutation, developed by a single

precursor (monoclonal) that undergoes genetic and biological changes (Khalique et al.,

2007; Nowell, 1976). This transformation of normal cells to cancer cells is a multistep

process described via the steps of hyperplasia (i.e., increase in the number of cells in
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an organ or tissue that appear normal under a microscope), premalignant change (i.e.,

a state of disordered morphology of cells that is associated with an increased risk of

cancer) and dysplasia (i.e., condition marked by abnormal cells that can lead to en-

larged tissue or pre-cancerous cells) (Beckmann et al., 1997). Cancer cells lose their

ability to regulate genome stability which leads to further genetic changes and tumour

development (Khalique et al., 2007). Over the last three decades it has been shown

experimentally that tumours consist of heterogeneous populations of cells, which are

the result of genetic instability (Stackpole, 1983; Khalique et al., 2007; Loeb and Loeb,

2000; Martelotto et al., 2014). Intra-tumour heterogeneity appears in almost all phe-

notypic cell features: from cell morphology, to gene expression, motility, prolifera-

tion, immunogenicity and metastatic potential (Nicholson, 1984, 1987; Marusyk and

Polyak, 2010). It should be mentioned that also normal cells are heterogeneous for

various characteristics (e.g., surface antigens). Nevertheless, cellular heterogeneity is

more pronounced in malignant neoplasms (Nicholson, 1987). Since the characteristics

of the most abundant cell types inside these heterogeneous tumours might not neces-

sarily predict the properties of mixed populations (Marusyk et al., 2012), we need to

gain a better understanding of the dynamics of tumours formed of different mutated

cell types. In fact, experimental studies have shown complex interactions between

clonal sub-populations: from stable coexistence to dominant behaviours (Schuh et al.,

2012). For example, some studies have shown the possibility of having competitive

exclusion of clonal cancer cell sub-populations in heterogeneous tumours (Leith et al.,

1989; Schuh et al., 2012). Other studies have shown that some tumour clones can

compete with alternating dominance (Keats et al., 2012). We emphasise that the clonal

composition of heterogeneous tumours usually changes over time (Greaves and Ma-

ley, 2012), and hence we can expect to see different competition outcomes as time

increases (e.g., from transient coexistence of multiple clones to long-term competitive

exclusion). Moreover, in some cancer clones there is evidence of contact domination,
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i.e., the inhibition of growth in some clones is the result of cell-cell contact between

various cell sub-populations (Aabo et al., 1994).

The metastatic and invasive potential of heterogeneous tumours is influenced by the

interactions among cells, and the interactions between cells and the extracellular ma-

trix (ECM), via cell surface receptors and various cytokines and chemokines. A major

group of cell surface receptors is represented by the integrins, which are involved in

both cell-cell adhesion and cell-matrix adhesion (Weitzman et al., 1995). In particular,

the successful colonisation of new sites by cancer cells requires changes in integrin ex-

pression (Hanahan and Weinberg, 2000). Another group of molecules involved in cell-

cell adhesion is represented by the cadherin families (Hanahan and Weinberg, 2000).

The processes through which cells bind to each other and to ECM via these surface

receptors, are responsible for tissue formation, stability and breakdown (Armstrong

et al., 2006). In particular, to detach from the main aggregation/tissue, cells loose cell-

cell adhesion and strengthen cell-matrix adhesion, which leads to ECM remodelling

and degradation (with the help of enzymes called matrix metalloproteinases; MMPs),

thus helping cell migration through the ECM (Friedl and Wolf, 2003).

1.2 Mathematical background

Over the last twenty years, mathematical models have been used intensively to try

to gain a better understanding regarding the mechanisms behind cancer invasion and

metastasis or the mechanisms behind the aggregation of other types of cells (see, for

example, Ambrosi and Preziosi (2002); Andasari and Chaplain (2012); Andasari et al.

(2011); Anderson et al. (2000); Armstrong et al. (2006); Byrne and Preziosi (2003);

Chaplain et al. (2011); Cristini et al. (2009); Deakin and Chaplain (2013); Domschke

et al. (2014); Dyson et al. (2016); Enderling et al. (2006, 2010); Gerisch and Chaplain
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(2008); Green et al. (2010); Knútsdóttir et al. (2014); Mogilner and Edelstein-Keshet

(1995); Mogilner et al. (1996); Painter et al. (2010); Sherratt et al. (2009); Painter

et al. (2015) and many references therein). The early mathematical models were de-

scribed by local systems of partial differential equations incorporating some generic

chemotaxis or haptotaxis mechanisms (Gerisch and Chaplain, 2008; Painter, 2009),

or incorporating implicit cell-cell interactions via tumour surface forces (Byrne and

Chaplain, 1996). For example, Anderson et al. (2000) developed a local PDE model

of parabolic type for the invasion of cancer cells via cell-matrix interactions that lead

to ECM degradation. Byrne and Chaplain (1996) modelled phenomenologically the

influence of cell adhesion on tumour growth, by considering surface forces on tu-

mour spheroids. As it became more clear that the movement in response to chemi-

cal/haptotactic gradients was facilitated by the binding and unbinding of cell surface

molecules to other cells and to ECM, new mathematical models of parabolic type have

been derived to describe these cell-cell and cell-matrix adhesion processes (Armstrong

et al., 2006; Dyson et al., 2016; Gerisch and Chaplain, 2008; Gerish and Painter, 2010;

Green et al., 2010; Painter et al., 2015). Since these models incorporate the assumption

that cells at position x bind/unbind to/from other cells at position x± s (for some s > 0

within cells sensing radius), they are generally nonlocal. For example, Armstrong

et al. (2006) focused on cells movement due to cell-cell adhesion, and introduced a

nonlocal term that described the nature, the direction, as well as the strength of the

adhesive forces between cancer cells. The authors also extended the nonlocal model

to two populations that interact via adhesive forces (thus incorporating self-population

and cross-population adhesion), and studied the effect of different adhesion strengths

on the sorting or the mixing of cell populations. A similar two-population nonlocal

model of parabolic type, which incorporated also cell proliferation and cell movement

in response to cell “packing”, was described and investigated by Painter et al. (2015).
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The model in Armstrong et al. (2006) was further generalised by Gerisch and Chap-

lain (2008); Painter et al. (2010); Domschke et al. (2014), to include also cell-matrix

interactions. While the majority of these models investigated cell-cell and cell-matrix

adhesion in one cell population, a few models considered also multiple interacting

cell populations (Domschke et al., 2014). In particular, Domschke et al. (2014) also

assumed mutation between different cell populations.

We should emphasise here that all these nonlocal models for cell invasion are variations

or generalisations of nonlocal models developed over the last two decades to describe

the dynamics of cell populations (Edelstein-Keshet and Ermentrout, 1990) or the dy-

namics of self-organised animal populations (Mogilner and Edelstein-Keshet, 1999;

Topaz et al., 2006; Eftimie et al., 2007; Fetecau and Eftimie, 2010; Carrillo de la Plata

et al., 2015; Fetecau, 2011). While the models describing collective cell movement are

usually of parabolic type, the latest models for collective animal movement are usually

of hyperbolic type.

The malignant feature of cancer leads to an urgent need to study the cancer progression

when several cancer cell populations, with different levels of mutation, appear. It is

mathematically interesting and biologically realistic to assume two different cancer

cell populations, with different movement characteristics, as well as different levels of

mutation and proliferation. In general, the more populations we assume, the better the

biological approximation of the model. However, this is out of the scope of this thesis,

since we are interested in a mathematical approximation of a biological model, which

allows us to distill key biological features that can explain observed dynamics.

The main scope of this thesis is to develop mathematical models that will answer ques-

tions like: How does the mutation rate affect the behaviour of cancer cells? What type

of patterns can we obtain for a model of two cancer cell populations? What is the effect

of different molecules, e.g., TGF-β , on those patterns? How do the social interactions,
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i.e., attraction towards neighbours that are far away, repulsion from those that are near

by, and alignment with neighbours at intermediate distances, lead to different patterns?

To address these questions, in this thesis we develop novel models of nonlocal nonlin-

ear parabolic-hyperbolic partial different equations for collective cancer cell movement

and aggregation, that take into account the signals that cells receive from other cells

and molecules. Moreover, we present an innovative parabolic-hyperbolic multiscale

model of tumour invasion based on multiscale dynamics. We emphasize that there are

no analytical results for models that combine all these aspects in the literature.

1.3 Thesis outline

The outline of this thesis is as follows. In Chapter 2, we develop a new nonlocal math-

ematical model describing cancer cell invasion and movement as a result of integrin-

controlled cell-cell adhesion and cell-matrix adhesion, for two cancer cell populations

with different levels of mutation. The parabolic-hyperbolic partial differential equa-

tions for cell dynamics are coupled with ordinary differential equations describing the

extracellular matrix (ECM) degradation and the production and decay of integrins. We

perform a linear stability analysis of the model, to investigate the stability of the ho-

mogeneous steady states and the possibility of having heterogeneous patterns. Then,

we compare these linear stability results with the numerical results showing the type

of patterns displayed by the models in the neighbourhoods of steady-state points. In

Chapter 3, we incorporate also one more parabolic equation describing the dynamics

of TGF-β , a cytokine playing a crucial role in cancer progression. We prove the ex-

istence of solutions to our model and we investigate numerically the effect of TGF-β

on cell proliferation and adhesion. In Chapter 4 we introduce a two-population model

incorporating alignment (i.e., polarisation) into the social forces between cells. The

6



model assumes density-dependent turning rates and attractive and repulsive speeds.

Concluding remarks and directions for future research are given in Chapter 5.
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Chapter 2

A mathematical model of two cancer

cell sub-populations

2.1 Introduction

In this chapter 1, we will investigate the role of cancer mutation on the possibility

of clonal competition with alternating dominance or even competitive exclusion be-

tween two cancer cell sub-populations (as discussed before, these types of competition

have been observed experimentally (Leith et al., 1989; Keats et al., 2012; Schuh et al.,

2012)). To this end, we will introduce a nonlocal model for cell-cell and cell-matrix

adhesion for two populations of cells (this model is a generalization of the models in

Armstrong et al. (2006); Gerisch and Chaplain (2008); Painter et al. (2015)). However,

in contrast to these previous models which are of parabolic type, here we consider a

parabolic-hyperbolic model. More precisely, we assume that one early stage cancer

1A version of this chapter has been submitted for publication.

Bitsouni et al. (2016), Aggregation and travelling wave dynamics in a two-population model of cancer
cell growth and invasion
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cell population moves both randomly and in a directed manner in response to cell-cell

and cell-matrix adhesive forces, while a second late stage cancer cell population (i.e.,

a mutated clone) moves predominantly in a directed manner following cell-cell inter-

actions (with cells from both populations) and cell-matrix interactions (as suggested

by experimental observations in Goswami et al. (2005); Hagemann et al. (2005)). By

incorporating this assumption, we aim to bring a more realistic approach to the models

since the various intra-tumour cell sub-populations have been shown to be distinct not

only in their adhesion capabilities but also in their motility and metastatic potential

(Marusyk and Polyak, 2010). Moreover, we are interested in investigating the effect of

mutation on the spreading speed of the mutated cancer cells, since the invasion levels

of the late stage cancer cells are higher compared to those of early stage cancer cells

(Chapman et al., 2014; Wojciechowska and Patton, 2015). Also, while previous non-

local models have assumed constant adhesive interactions (see for example Armstrong

et al. (2006); Chaplain et al. (2011); Gerisch and Chaplain (2008) and many references

therein), here we will assume that these adhesive interactions depend on the level of

integrins. We then investigate this nonlocal parabolic-hyperbolic model in terms of

pattern formation, with particular attention being paid to the role of mutation rate on

the coexistence (or not) of cell sub-populations that form stationary aggregations or

travelling wave patterns.

The layout of this chapter is as follows. In Section 2.2 we formulate a model of partial

integro-differential equations for the dynamics of two cancer cell populations, coupled

with ordinary differential equations describing ECM and integrins dynamics. In Sec-

tion 2.3 we use linear stability analysis to investigate the ability of the model to form

cell aggregations. In Section 2.4 we investigate numerically some types of spatio-

temporal patterns exhibited by this nonlocal model. In Section 2.5 we investigate nu-

merically and analytically travelling wave behaviours. We conclude in Section 2.6

with a summary and discussion of the results.
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2.2 The mathematical model

Cancer invasion is a complex process involving cell-cell interactions, and interactions

between cells and non-cellular components (Calvo and Sahai, 2011). To develop our

model we consider two populations of cancer cells, an early stage cancer population

and a late stage (descendant clone) cancer population, which interact with each other

as well as with the ECM via long-range adhesive and repulsive forces (Deman et al.,

1976; Geiger, 1991); see Fig. 2.1.

x−rx−R x+R

[2nd (highly mutated) cancer cell population]

x+rx
ECM

[1st cancer cell population]

Figure 2.1: A caricature illustration of movement decisions made by cells at x, follow-
ing interactions with neighbouring cells at x− r and x+ r, and with the ECM. For very
strong attraction (represented here by thicker arrows), cells move towards larger cell
aggregations.

Let Ω⊂Rn denote a bounded spatial domain with smooth boundary ∂Ω (here we con-

sider only n = 1; for a 2-dimensional version of the model see Section 2.3.2), with pe-

riodic boundary conditions. Let IT = [0,∞) be the time interval. Denote by u1 (t,x) the

density of early stage cancer cells at position x and time t, and by u2 (t,x) the density

of late stage cancer cells at position x and time t. We also denote by f (t,x) the ECM

density, and by c(t,x) the density of integrin receptors on the surface of cancer cells

(receptors involved in cell-cell and cell-matrix interactions). For compact notation, we

define the vectors u(t,x) =
(
u1 (t,x) ,u2 (t,x)

)> and υ (t,x) =
(
u(t,x) , f (t,x)

)>.
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Dynamics of cancer cells. Experimental studies (Chapman et al., 2014) have shown

that cancer cells can switch from a homogeneous type of invasion to a heterogeneous

type of invasion described by invading chains (Chapman et al., 2014; Friedl and Wolf,

2003; Wojciechowska and Patton, 2015). Here, we assume that u1 cells can mutate

into u2 cells at a constant rate M. We can derive a model for heterogeneous cancer cell

populations by considering the equations

∂ui

∂ t
=−∂Ji

∂x
+(−1)iMu1 +Gi (u) , i = 1,2, (2.1)

where Ji, i = 1,2, are the cell fluxes and Gi (u) , i = 1,2, are the growth functions of

populations ui, i = 1,2. The fluxes describe the factors that define cell movement. In

this chapter we assume that the movement of the early stage cancer cell population u1

is governed by random motility (which underlines a homogeneous type of invasion), as

well as directed motility in response to cell-cell and cell-matrix adhesive forces (which

underlines the heterogeneous type of invasion) (Calvo and Sahai, 2011). In contrast,

the late stage u2 cell population moves only in a directed manner (hence exhibiting

a heterogeneous type of invasion) in response to cell-cell and cell-matrix adhesion

forces. Biologically, this directed movement of late stage (more invasive) cancer cells

can be explained by the increase of macrophage density near highly mutated cancer

cells (Lin et al., 2006), which promotes the directed movement and invasion of these

cancer cells, and decreases their random movement (Goswami et al., 2005; Hagemann

et al., 2005). Therefore, in this chapter we assume that the movement of the u2 popu-

lation due to random walk can be considered negligible. In this case, the total fluxes

will be

J1 = JD + Ja1 and J2 = Ja2 , (2.2)

where JD is the flux due to Fickian diffusion, given by JD = −D∂u1/∂x, with D to

be the diffusion coefficient, and Jai, i = 1,2, are the adhesive fluxes for cell-cell and
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cell-matrix adhesion. In the case of u2 the diffusion is considered very small and thus

we ignore it.

Cell-cell/cell-matrix adhesion-mediated directed cancer cell migration occurs as a re-

sult of the social forces, i.e., attraction and repulsion, between cells and between cell

and ECM components, when adhesive bonds are formed and broken. Cell-cell ad-

hesion is described as the adhesion between cells of the same population, as well as

cross-adhesion between cells of the two sub-populations. The cell-cell/cell-matrix ad-

hesion forces are created through the binding of adhesion molecules, e.g., integrins, at

the cell surface. To model these forces, let us define Rs > 0 to be the sensing radius of

the cells, i.e., the maximum range over which cells can detect other surrounding cells,

which biologically represent the extent of the cell protrusions (e.g., filopodia) (Arm-

strong et al., 2006). Let gi
(
υ (t,x+ r) ,c(t,x)

)
, i = 1,2, describe the nature of the

cell-cell and cell-matrix adhesive forces created at x due to signalling with cell/ECM

components at x+ r. These functions increase when the cell density and ECM den-

sity increase, and accordingly they decrease when the cell density and ECM density

decrease. The functions gi, i = 1,2, are given by

g1
(
υ (t,x+ r) ,c(t,x)

)
:=S1

(
c(t,x)

)
u1 (t,x+ r)+S

(
c(t,x)

)
u2 (t,x+ r)

+C1
(
c(t,x)

)
f (t,x+ r) , (2.3)

and

g2
(
υ (t,x+ r) ,c(t,x)

)
:=S2

(
c(t,x)

)
u2 (t,x+ r)+S

(
c(t,x)

)
u1 (t,x+ r)

+C2
(
c(t,x)

)
f (t,x+ r) , (2.4)

where Si
(
c(t,x)

)
is the cell-cell self-adhesion strength function for populations ui,
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S
(
c(t,x)

)
is the cell-cell cross-adhesion strength function between the two popula-

tions, and Ci
(
c(t,x)

)
is the adhesion strength function between population ui and

ECM. We should mention here that a similar term was considered before by Chap-

lain et al. (2011). Other studies (Armstrong et al., 2006; Gerisch and Chaplain, 2008)

consider a volume filling effect to avoid unbounded aggregations. While unbounded

aggregations are possible in this type of nonlocal models, these have not been observed

in our system (at least not for the parameter ranges used in this study).

We define these adhesion strength functions in terms of the integrin density c: the more

integrins a cell has, the stronger its adhesion force (Gallant et al., 2005). However, the

adhesion strength reaches a plateau for great densities of integrins (Maheshwari et al.,

2000). Thus, we require an increasing, bounded function, so that we avoid extreme

phenomena for large values of integrin density. A biologically realistic choice is a

sigmoid function, as there have been several examples of sigmoid functions describ-

ing a biological process in the literature, including cell adhesion and spread (Cutler

and Garcı́a, 2003; Michael et al., 2009; Schakenraad et al., 1986), oxygen saturation

(Shiao and Ou, 2007), artificial neural network (Basheer and Hajmeer, 2000), and

many other biological processes. Note also that since cell mutation could lead to more

integrins (Kidera et al., 2010), we consider strength functions with different integrin

levels for each of the two populations. To this end, we choose the adhesion strength

functions to be given by:

S1 (c) = s1
∗ (1+ tanh(a1c)

)
, S2 (c) = s2

∗ (1+ tanh(a2c)
)
, S (c) = s∗

(
1+ tanh(dc)

)
,

C1 (c) = c1
∗ (1+ tanh(b1c)

)
, C2 (c) = c2

∗ (1+ tanh(b2c)
)
, (2.5)

where d,ai,bi, i = 1,2, and s∗,si
∗,ci
∗, i = 1,2, are positive real numbers.

Within this sensing radius, let us now define Kcc and Kcm, the kernels for cell-cell and
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cell-matrix adhesion ranges, respectively:

Kcc (r) =

K11 (r) K12 (r)

K21 (r) K22 (r)

 , Kcm (r) =

K1 (r)

K2 (r)

 .
These interaction kernels describe the dependency of the force magnitude on the dis-

tance r from x. Here Ki j, i, j = 1,2, are the interaction kernels between population i and

population j (i.e., cell-cell interactions), and Ki, i = 1,2 are the kernels for cell-matrix

interactions (for the two populations). For simplicity, throughout this study we will

consider (see also Domschke et al. (2014)):

K11 = K12 = K1 and K22 = K21 = K2. (2.6)

Moreover, we assume that these kernels are attractive at medium/long ranges (i.e., at

the edges of the cell) and repulsive at very short ranges (i.e., over cell surface), and

thus can be defined as

K1,2 (r) := qaK1,2
a (r)−qrK1,2

r (r) , (2.7)

with qa and qr describing the magnitudes of attractive and repulsive interactions, and

K1,2
a (r) and K1,2

r (r) describing the spatial ranges over which these interactions take

place. We will discuss various examples of attractive (Ka) and repulsive (Kr) kernels

in Section 2.3, in the context of linear stability analysis.

Therefore, the local cell-cell and cell-matrix adhesion forces will be described by the

product of functions gi and Ki (r) , i = 1,2. To describe the nonlocal cell-cell and cell-

matrix adhesion and repulsion forces (Deman et al., 1976; Geiger, 1991), we sum all
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such forces by integrating over space to obtain the total forces:

F1 [u, f ,c] (t,x) :=
1
Rs

∫ Rs

0

1

∑
k=0

η (k)K1 (r)g1

(
υ
(
t,x+ rη (k)

)
,c(t,x)

)
dr, (2.8)

and

F2 [u, f ,c] (t,x) :=
1
Rs

∫ Rs

0

1

∑
k=0

η (k)K2 (r)g2

(
υ
(
t,x+ rη (k)

)
,c(t,x)

)
dr, (2.9)

where η (k) = (−1)k ,k = 0,1, is the direction of the forces. Thus, the full nonlocal

interaction terms are described by

F1 [u, f ,c] (t,x) =
1
Rs

∫ Rs

0

1

∑
k=0

η (k)K1 (r)
[
S1 (c)u1

(
t,x+ rη (k)

)
+S (c)u2

(
t,x+ rη (k)

)]
dr

+
1
Rs

∫ Rs

0

1

∑
k=0

η (k)K1 (r)C1 (c) f
(
t,x+ rη (k)

)
dr, (2.10)

and

F2 [u, f ,c] (t,x) =
1
Rs

∫ Rs

0

1

∑
k=0

η (k)K2 (r)
[
S2 (c)u2

(
t,x+ rη (k)

)
+S (c)u1

(
t,x+ rη (k)

)]
dr

+
1
Rs

∫ Rs

0

1

∑
k=0

η (k)K2 (r)C2 (c) f
(
t,x+ rη (k)

)
dr. (2.11)

We assume that the adhesive fluxes are proportional to the density of the cells and the

nonlocal adhesion forces, Fi, i = 1,2. Thus we obtain the following expressions for

the two adhesive fluxes:

Jai = uiFi [u, f ,c] , i = 1,2. (2.12)

Substituting (2.12) into the general mass conservation equations, we have the following
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equations describing the dynamics of the two cancer cell populations:

∂u1

∂ t
= D

∂ 2u1

∂x2 −
∂

∂x

(
u1F1 [u, f ,c]

)
−Mu1 +G1 (u) , (2.13a)

∂u2

∂ t
=− ∂

∂x

(
u2F2 [u, f ,c]

)
+Mu1 +G2 (u) . (2.13b)

We assume that both u1 and u2 cells can proliferate in a logistic manner (to describe the

observed slow-down in tumour growth following the loss of nutrients (Laird, 1964)).

Thus, the growth functions are given by

Gi (u) = riui

(
1− u1 +u2

ku

)
, i = 1,2, (2.14)

where r1 and r2 are the growth rates of the u1 and u2 populations, respectively, and ku

is the carrying capacity. Note that these growth functions incorporate also the principle

of competition between clonal sub-populations in heterogeneous tumours (Leith et al.,

1989).

ECM dynamics. Cancer cell populations degrade the ECM upon contact. Moreover,

ECM density is remodelled back to normal levels, at a constant rate of δ ≥ 0. Thus,

the dynamics of ECM, f (t,x), can be described by:

∂ f
∂ t

=−αu1 f −βu2 f +δ f
(

1− f
fm

)
, (2.15)

where α and β are the positive rate constants of ECM degradation by u1 and u2 cell

population, respectively, and fm is the maximum ECM density at which the ECM fills

up all available physical space. Following the approach of Anderson et al. (2000);

Gerisch and Chaplain (2008), we choose to ignore the ECM remodelling terms for this

model, i.e. we assume here that δ = 0.
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Integrin dynamics. We assume that the level of integrins depends on cancer cell

density. Moreover, we assume that cell mutation changes the density of receptors

(since in highly metastatic cancers, the expression of integrins is up-regulated (Kidera

et al., 2010)). Therefore, the dynamics of integrins c(t,x) can be described by

∂c
∂ t

= p1u1 + p2u2−qc, (2.16)

where q is the decay rate of c, and p1 and p2 are the production rates of integrins by

u1 and u2 cancer cell population, respectively. To model the increase in receptors on

highly mutated cancer cells, we assume that p2 > p1 (see Table 2.2). Note that integrins

are produced at the positions where these cells exist, and as cells move to different

spatial positions the integrins will be produced at these new positions, too (this can

be seen more clearly in Figs. 2.4-2.10). We emphasize here that cell dynamics are

described by mean field equations, and equation (2.16) describes the average density

of integrins on cells in space. A different direction where the model could be taken

is to structure the cells based on integrins (as in Engwer et al. (2015)). In this way

the equation describing integrin dynamics would arise as characteristic equation along

trajectories. However, this approach is beyond the scope of this study.

We impose the following initial conditions

ui (0,x) = ui0 (x)≥ 0, i= 1,2, f (0,x) = f0 (x)≥ 0, c(0,x) = c0 (x)≥ 0, in Ω. (2.17)

To complete our model we need to impose boundary conditions. A boundary condition

describes the way that the flux through the boundary is connected to the concentration

across the boundary (Hadeler, 1999). Throughout this chapter we assume that the

cancer cell populations u1 and u2 move on a circular finite domain of length L, that is

x ∈ [0,L], where they leave the domain at one end and enter it again at the other end.
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The periodic boundary conditions that model this movement are the following

u1 (t,0) = u1 (t,L) and u2 (t,0) = u2 (t,L) . (2.18)

2.2.1 Non-dimensionalisation of the model

To non-dimensionalise system (2.13) and equations (2.15)-(2.16), we define the fol-

lowing quantities:

t̃ =
t
τ
, x̃ =

x
L0

, ũ1 =
u1

ku
, ũ2 =

u2

ku
, f̃ =

f
fm
, c̃ =

c
cm

, R̃s =
Rs

L0
, r̃ =

r
L0

,

S̃ (c̃) =
τku

L2
0

S (cmc̃) , S̃i (c̃) =
τku

L2
0

Si (cmc̃) , C̃i (c̃) =
τ fm

L2
0

Ci (cmc̃) , i = 1,2. (2.19)

Here L0 is a length scale, defined as the maximum invasion distance of the cancer cells

at the early stage of invasion (Anderson et al., 2000). Usually L0 is in the range of

0.1-1cm. We rescale time with τ := L2
0/Dτ , where Dτ is the characteristic diffusion

coefficient (∼ 10−6cm2s−1). In addition, we rescale the cancer cells, the ECM and the

integrins with ku, fm and cm, respectively. Here ku is the carrying capacity of the cancer

cell populations and it is taken to be ∼ 6.7 · 107cell/volume, and fm is the maximum

ECM density at which the ECM fills up all available physical space and it is taken to

be equal to 4 mg/volume, as in Domschke et al. (2014). Finally, cm is the maximum

integrin density and it is taken to be 5 · 104 integrins per cell (as in Benedetto et al.

(2006)). For the kernels Ki (r) , i = 1,2, we choose (as in Domschke et al. (2014)) the

dimensionless functions K̃i (r̃) , i = 1,2, given by

K̃i (r̃) := L0Ki (L0r̃) = L0Ki (r) , i = 1,2.
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We define the dimensionless functions g̃i

(
ũ, f̃ , c̃

)
, i = 1,2, by

g̃i

(
ũ, f̃ , c̃

)
:=

τ

L2
0

gi (u, f ,c) , i = 1,2.

Therefore we have for the nonlocal terms Fi [u, f ,c] , i = 1,2, that

F̃i

[
ũ, f̃ , c̃

]
:=

τ

L0
Fi [u, f ,c] , i = 1,2.

Finally, we obtain the dimensionless parameters:

D̃ =
D
Dτ

, M̃ = τM, α̃ = ταku, β̃ = τβku, q̃ = τq, r̃i = τri, p̃i =
τ piku

cm
, i = 1,2.

(2.20)

After dropping the tildes for notational convenience, we obtain the following non-

dimensionalised system:

∂u1

∂ t
= D

∂ 2u1

∂x2 −
∂

∂x

(
u1F1 [u, f ,c]

)
−Mu1 + r1u1 (1−u1−u2) , (2.21a)

∂u2

∂ t
=− ∂

∂x

(
u2F2 [u, f ,c]

)
+Mu1 + r2u2 (1−u1−u2) , (2.21b)

∂ f
∂ t

=−αu1 f −βu2 f , (2.21c)

∂c
∂ t

= p1u1 + p2u2−qc. (2.21d)

From now on, we will always refer to the non-dimensional quantities in this chapter.
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2.3 Linear stability analysis of the model

Next, we investigate the conditions under which the two populations of cancer cells

form aggregations. We first calculate the spatially homogeneous steady states of the

model, and then apply standard linear stability analysis to investigate the conditions

(for parameter values) under which the two cancer cell populations can form aggrega-

tions.

To start, we look for the homogeneous steady states of the ODE model associated to

system (2.21), that describes the growth and mutation of the two cancer cell popula-

tions and the temporal dynamics of ECM and integrins (i.e., no spatial movement):

∂u1

∂ t
=−Mu1 + r1u1 (1−u1−u2) = 0, (2.22a)

∂u2

∂ t
= Mu1 + r2u2 (1−u1−u2) = 0, (2.22b)

∂ f
∂ t

=−αu1 f −βu2 f = 0, (2.22c)

∂c
∂ t

= p1u1 + p2u2−qc = 0, (2.22d)

which has the following steady state solutions
(
u∗1,u

∗
2, f ∗,c∗

)
:

(
0,0, f ∗,0

)
and

(
0,1,0,

p2

q

)
, (2.23)

with f ∗ ≥ 0. Here we consider only the non-negative solutions, since we require bi-

ological realism. Note that all these homogeneous steady states have u1 = 0 (so the

more invasive population u2 persists longer). However, as we will see in Section 2.4,

the model can exhibit non-homogeneous steady states with u1 (t,x) , 0.

We now investigate the stability of the steady states for the spatially homogeneous and
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spatially heterogeneous systems to see if the introduction of spatial dynamics (i.e., cell

movement and cell-cell/cell-matrix adhesion) can lead to instabilities. First, we sub-

stitute the steady states (2.23) into the Jacobian matrix of the spatially homogeneous

system (2.22) and calculate the four eigenvalues corresponding to each steady state.

Thus, for the steady state
(
u∗1,u

∗
2, f ∗,c∗

)
= (0,0, f ∗,0) we have the eigenvalues

λ1 = 0, λ2 =−M+ r1, λ3 = r2 > 0 and λ4 =−q < 0. (2.24)

Since λ3 > 0, this state is unstable. For the steady state
(
u∗1,u

∗
2, f ∗,c∗

)
=
(
0,1,0, p2/q

)
we obtain the eigenvalues

λ1 =−β < 0, λ2 =−M < 0, λ3 =−r2 < 0 and λ4 =−q < 0. (2.25)

Since all eigenvalues are negative, the state
(
0,1,0, p2/q

)
is always linearly stable to

homogeneous perturbations.

Next, we investigate the linear stability analysis of the spatial system (2.21). To this

end, we apply small spatial perturbations to the previous homogeneous steady states:

ui (t,x) = u∗i + ūi (t,x) , i = 1,2, f (t,x) = f ∗ + f̄ (t,x), c(t,x) = c∗ + c̄(t,x), where

ū1, ū2, f̄ and c̄ denote the small perturbations. (Note that, to avoid negative solutions

when we perturb the zero steady states, we consider ū1 (t,x), ū2 (t,x), f̄ (t,x) , c̄(t,x)≥

0.) Substituting these into the system (2.21) (after the adhesion strength functions
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Si(c), S(c), Ci(c), i = 1,2, have been expanded in Taylor series), and ignoring non-

linear terms, leads to the following linearised system:

∂ ū1

∂ t
=D

∂ 2ū1

∂x2 −
u∗1
Rs

∂

∂x

{∫ Rs

0
K1 (r)

[
S1
(
c∗
)(

ū1 (t,x+ r)− ū1 (t,x− r)
)
+

+S
(
c∗
)(

ū2 (t,x+ r)− ū2 (t,x− r)
)
+C1

(
c∗
)(

f̄ (t,x+ r)− f̄ (t,x− r)
)]

dr

}
−Mū1 + r1ū1

(
1−2u∗1−u∗2

)
− r1u∗1ū2, (2.26a)

∂ ū2

∂ t
=−

u∗2
Rs

∂

∂x

{∫ Rs

0
K2 (r)

[
S2
(
c∗
)(

ū2 (t,x+ r)− ū2 (t,x− r)
)
+

+S
(
c∗
)(

ū1 (t,x+ r)− ū1 (t,x− r)
)
+C2

(
c∗
)(

f̄ (t,x+ r)− f̄ (t,x− r)
)]

dr

}
+Mū1 + r2ū2

(
1−u∗1−2u∗2

)
− r2u∗2ū1, (2.26b)

∂ f̄
∂ t

=−α
(
ū1 f ∗+u∗1 f̄

)
−β

(
ū2 f ∗+u∗2 f̄

)
, (2.26c)

∂ c̄
∂ t

=p1ū1 + p2ū2−qc̄. (2.26d)

We look for solutions of the form Au1eikx+λ t , Au2eikx+λ t , A f eikx+λ t and Aceikx+λ t with

|Au1|, |Au2|, |A f |, |Ac| � 1, where k and λ are the wave number and frequency, respec-

tively. Then system (2.26) reduces to

λAu1 =− k2DAu1 +
2ku∗1
Rs

[
S1
(
c∗
)

Au1 +S
(
c∗
)

Au2 +C1
(
c∗
)

A f

]
K̂s

1 (k)−MAu1

+ r1Au1

(
1−2u∗1−u∗2

)
− r1u∗1Au2, (2.27a)

λAu2 =
2ku∗2
Rs

[
S2
(
c∗
)

Au2 +S
(
c∗
)

Au1 +C2
(
c∗
)

A f

]
K̂s

2 (k)+MAu1

+ r2Au2

(
1−u∗1−2u∗2

)
− r2u∗2Au1, (2.27b)

λA f =−α
(
Au1 f ∗+u∗1A f

)
−β

(
Au2 f ∗+u∗2A f

)
, (2.27c)

λAc =p1Au1 + p2Au2−qAc, (2.27d)

where K̂s
1,2 (k) =

∫ Rs
0 K1,2 (r)sin(kr)dr are the Fourier sine transforms of the kernels
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K1,2 (r). For simplicity, throughout the rest of this chapter, we will assume that K1(r) =

K2(r) =: K(r) and thus K̂s
1(k) = K̂s

2(k) =: K̂s(k).

Cellular aggregations form when the steady states (u∗1,u
∗
2, f ∗,c∗) are unstable to spatial

perturbations, and for this to happen we require the maximum real part of eigenvalues

of the Jacobian matrix of system (2.27) to be positive, for at least one discrete value of

k > 0.

• For the state
(
u∗1,u

∗
2, f ∗,c∗

)
= (0,0, f ∗,0) we obtain the eigenvalues

λ1 = 0, λ2 =−k2D−M+ r1, λ3 = r2 > 0, λ4 =−q < 0. (2.28)

Thus the steady state
(
u∗1,u

∗
2, f ∗,c∗

)
= (0,0, f ∗,0) is unstable.

• For the state
(
u∗1,u

∗
2, f ∗,c∗

)
=
(
0,1,0, p2/q

)
we obtain the eigenvalues

λ1 =−β < 0, λ2 =−k2D−M < 0, λ3 = S2
(
c∗
)

Y (k)− r2, λ4 =−q < 0,

(2.29)

where Y (k) =
2k
Rs

K̂s (k). Recall that in the absence of diffusion and advection,

the steady state
(
u∗1,u

∗
2, f ∗,c∗

)
=
(
0,1,0, p2/q

)
is linearly stable. Thus, for ag-

gregation to form, we require this state to be unstable to spatially inhomogeneous

perturbations (Benson et al., 1993), i.e. the maximum real part of the eigenval-

ues to be greater than zero. Since λ1,λ2,λ4 < 0, the steady state
(
0,1,0, p2/q

)
is unstable if the following dispersion relation holds:

Re
(
λ3 (k)

)
= Re

−r2 +
2ks∗2
Rs

(
1+ tanh

(
a2

p2

q

))
K̂s (k)

> 0. (2.30)

We notice that this dispersion relation, and therefore the possibility of cell aggregations
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to form, depends on the choice of the interaction kernel. Mogilner and Edelstein-

Keshet (1999) showed that the type of kernel affects the possibility of movement and/or

aggregation. Throughout the rest of this chapter, we will consider translated Gaussian

attraction and repulsion kernels (as in Eftimie et al. (2007); Carrillo de la Plata et al.

(2015)):

K (x) =
qa√
2πm2

a
e
− (x−sa)2

2m2a − qr√
2πm2

r
e
− (x−sr)2

2m2r , (2.31)

where sa and sr represent half of the length of attraction and repulsion ranges, respec-

tively, with sr < sa. Also, m j = s j/8, j = a,r, represent the width of the attractive and

the repulsive interaction ranges. (The constants m j, j = a,r, are chosen such that the

support of more than 98% of the mass of the kernels is inside the interval [0,∞) (Ef-

timie et al., 2007).) In Section 2.3.1 we will investigate how different types of kernels

lead to different dispersion relations.

Figure 2.2: Plot of the dispersion relation (2.33) for the steady state
(
0,1,0, p2/q

)
.

The curves represent Re(λ3(k)) for: (a) qr = 0.01,qa = 0.09 (solid green curve); (b)
qr = 0.0065,qa = 0.0585 (dashed black curve); (c) qr = 0.003,qa = 0.027 (dotted
red curve); the rest of the model parameters are given in Table 2.2. The diamonds
on the x-axis represent the discrete wave numbers k j = 2π j/L, j = 1,2, . . . . The two
critical wave numbers that become unstable at the same time (giving rise to steady-
state/steady-state mode interactions) are k12 and k13.
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The Fourier sine transform of kernel (2.31) is given by

K̂s (k) =
∫

∞

−∞

K (r)sin(kr)dr = qae−
(kma)2

2 sin(ksa)−qre−
(kmr)2

2 sin(ksr). (2.32)

Therefore relation (2.30) becomes

− r2 +
2ks∗2
Rs

(
1+ tanh

(
a2

p2

q

))(
qae−

(kma)2
2 sin(ksa)−qre−

(kmr)2
2 sin(ksr)

)
> 0,

(2.33)

where the imaginary part of the eigenvalue λ3 (k) will be zero.

An example of such dispersion relation is shown in Figure 2.2. Note the Steady-

state/Steady-state mode interaction that occurs when we increase the parameters qa

and qr (i.e., the strength of attractive and repulsive cell-cell interactions). There is a

range of k−values for which Re
(
λ3 (k)

)
is positive, and thus aggregations can arise

from spatial perturbations of the steady state
(
u∗1,u

∗
2, f ∗,c∗

)
=
(
0,1,0, p2/q

)
. This

means that the steady state
(
0,1,0, p2/q

)
, which is linearly stable for the homoge-

neous system, is destabilised due to the spatial dynamics (diffusion and advection).

Setting diffusion coefficient zero we observe that there is still a range of k−values for

which Re
(
λ3 (k)

)
> 0, implying the adhesion-driven instability.

Remark 2.3.1. Note that model (2.21) does not exhibit Hopf bifurcations (that is

Re
(
λ (k)

)
= 0, Im

(
λ (k)

)
, 0). Therefore, although aggregations will develop, there

will be no traveling patterns that arise via Hopf bifurcations.

2.3.1 Aggregation with different types of kernel

In Mogilner and Edelstein-Keshet (1999) it was shown that even kernels give rise to

group drift, while odd kernels have a greater effect in regions where the distribution of

the density is uneven (e.g. the edges of the population), leading to stationary groups.

25



Considering the importance of the symmetry of the interaction kernels, we next discuss

the cases of even and odd kernels, and compare these results with our previous results

where we used a translated Gaussian kernel (see equation (2.31)), to investigate the

possibility of cell aggregations to form from spatial perturbation of the steady state(
u∗1,u

∗
2, f ∗,c∗

)
=
(
0,1,0, p2/q

)
.

• Aggregation with even kernel

We consider the situation that the interaction kernel is an even function with

respect to the y-axis. We choose the following Gaussian kernel (Mogilner and

Edelstein-Keshet, 1999):

K (x) :=
qa√
2πm2

a
exp
(
−x2/2m2

a

)
− qr√

2πm2
r

exp
(
−x2/2m2

r

)
, (2.34)

where qa,qr,ma and mr have the same meaning as in equation (2.31). The

Fourier sine transform of the above even kernel is zero: K̂s (k) = 0. We know

(see equation (2.29)) that the Jacobian matrix of system (2.27) has three negative

eigenvalues λ1,2,4 < 0. For the even kernel considered here we also have

λ3 (k) =−r2 < 0. (2.35)

Therefore, the steady state
(
u∗1,u

∗
2, f ∗,c∗

)
=
(
0,1,0, p2/q

)
is stable, and no ag-

gregations will form.

• Aggregation with an odd kernel

We investigate now the stability of
(
u∗1,u

∗
2, f ∗,c∗

)
=
(
0,1,0, p2/q

)
when we con-

sider an odd kernel with respect to the origin. To this end, we choose

K (x) :=
qax√
2πm2

a
exp
(
−x2/2m2

a

)
− qrx√

2πm2
r

exp
(
−x2/2m2

r

)
, (2.36)
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where qa,qr,ma and mr have the same meaning as in equation (2.31). Then the

Fourier sine transform of the kernel (2.36) is

K̂s (k) = qakm2
aexp(−(kma)

2/2)−qrkm2
r exp(−(kmr)

2/2). (2.37)

As before, the Jacobian matrix of system (2.27) has three negative eigenvalues:

λ1,2,4 < 0. The stability of the state
(
0,1,0, p2/q

)
is given by the sign of

Re
(
λ3 (k)

)
=−r2+

2k2s∗2
Rs

(
1+ tanh

(
a2

p2

q

))(
qam2

ae−
(kma)2

2 −qrm2
r e−

(kmr)2
2

)
.

(2.38)

Figure 2.3: Plot of the dispersion relation (2.38) for the steady state
(
u∗1,u

∗
2, f ∗,c∗

)
=(

0,1,0, p2/q
)
. Here qa = 0.5. The rest of the model parameters are given in Table

2.2. The solid curve represents the real part of λ3, while the diamonds represent the

discrete wave numbers k j = 2π
j
L
, j = 0,1,2, . . . .

In Figure 2.3 we plot Re(λ3 (k)) against the wave number k for this steady state.

We observe that for values of qa greater than those in the translated Gaussian case

(see Fig. 2.2), there is a range of k−values for which Re
(
λ3 (k)

)
is positive, thus

the steady state
(
0,1,0, p2/q

)
can become unstable, and spatial aggregations

could arise.
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2.3.2 Extension of the model to two dimensions

The derivation of the model in two dimensions is a straightforward extension of the

methods used in Section 2.2.1. Let Ω ⊂ R2 denote again the bounded spatial do-

main and IT = [0,+∞) be the time interval. We only consider a rectangle with pe-

riodic boundary conditions. We denote again by u(t,x) =
(
u1 (t,x) ,u2 (t,x)

)> the

vector-valued cancer cell density of the two populations, by f (t,x) the ECM den-

sity and by c(t,x) the integrin density. Our two-dimensional system, obtained after

non-dimensionalization, is given by

∂u1

∂ t
= D∆u1−∇ ·

(
u1F1 [u, f ,c]

)
−Mu1 + r1u1 (1−u1−u2) , (2.39a)

∂u2

∂ t
=−∇ ·

(
u2F2 [u, f ,c]

)
+Mu1 + r2u2 (1−u1−u2) , (2.39b)

∂ f
∂ t

=−αu1 f −βu2 f , (2.39c)

∂c
∂ t

= p1u1 + p2u2−qc. (2.39d)

We now assume that cells interact with each other within a circle of sensing radius

Rs > 0. Therefore, the nonlocal terms, Fi [u, f ,c] , i = 1,2, are given as in Gerisch and

Chaplain (2008) by the following relations

Fi [u, f ,c] (t,x) :=
1
Rs

∫ Rs

0

∫ 2π

0
η (θ)Ki (r)gi

(
υ

(
t,x+ rη (θ)

)
,c(t,x)

)
rdθdr,

(2.40)

where η (θ) := (cosθ ,sinθ)> is the unit outer normal vector corresponding to angle

θ . The functions gi, i = 1,2, are given by

gi
(
u(t,x) , f (t,x) ,c(t,x)

)
= Si (c)ui (t,x)+S (c)u j (t,x)+Ci (c) f (t,x) , i, j = 1,2, i, j

(2.41)
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Linear stability analysis for the two dimensional model. Following the same ap-

proach as in the one-dimensional case (see Section 2.3), we analyse the stability of the

steady states given by the relation (2.23). To this end, we let

u1 (t,x) = u∗1 +Au1eik x+λ t , u2 (t,x) = u∗2 +Au2eik x+λ t , f (t,x) = f ∗+A f eik x+λ t ,

c(t,x) = c∗+Aceik x+λ t , with |Au1|, |Au2|, |A f |, |Ac| � 1.

Here k = (k1,k2) is a perturbation wave vector and λ is the linear growth rate. Substi-

tuting these expressions into model (2.39) we obtain the following linearised system:

λAu1 =−|k|
2DAu1−

iku∗1
Rs

[
S1
(
c∗
)

Au1 +S
(
c∗
)

Au2 +C1
(
c∗
)

A f

]
K̂ (k)−MAu1

+ r1Au1

(
1−2u∗1−u∗2

)
− r1u∗1Au2,

λAu2 =−
iku∗2
Rs

[
S2
(
c∗
)

Au2 +S
(
c∗
)

Au1 +C2
(
c∗
)

A f

]
K̂ (k)+MAu1

+ r2Au2

(
1−u∗1−2u∗2

)
− r2u∗2Au1,

λA f =−α
(
Au1 f ∗+u∗1A f

)
−β

(
Au2 f ∗+u∗2A f

)
,

λAc =p1Au1 + p2Au2−qAc,

where K̂ (k) =
∫ Rs

0
∫ 2π

0 η (θ)K (r)eik rη(θ)rdθdr is the Fourier transform of the kernel

K (x). Note that K̂ (k) corresponds to the 1D Fourier sine transform (see Section 2.3),

since K̂s (k) =
∫ Rs

0 K (r)sin(kr)dr =
1
2i
∫ Rs

0 K (r)
(

eikr− e−ikr
)

dr.

As in one dimensional case, for the steady state (0,0, f ∗,0) , f ∗ ≥ 0, we obtain the

eigenvalues

λ1 = 0, λ2 =−|k|2D−M+ r1, λ3 = r2 > 0 and λ4 =−q < 0. (2.42)
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For the steady state
(
0,1,0, p2/q

)
we obtain the eigenvalues

λ1 =−β < 0, λ2 =−|k|2D−M < 0, λ3 =−S2
(
c∗
)

Y (k)− r2 and λ4 =−q < 0,

(2.43)

where Y (k)=
ik
Rs

K̂ (k), with K (x) := qaKa (x)−qrKr (x). Here Ka and Kr are the attrac-

tion and repulsion kernels, and qa and qr are the constants representing the magnitudes

of the attraction and repulsion interactions, respectively. For simplicity we choose the

following 2D interaction kernel

K (x) =
qa|x|
2πm2

a
exp
(
−|x|2/

(
2m2

a

))
− qr|x|

2πm2
r

exp
(
−|x|2/

(
2m2

r

))
, (2.44)

which corresponds to the 1D kernel (2.36). The Fourier transform of the above kernel

is given by the following relation

K̂ (k) =

(
qaim2

ak1e−
m2

a|k|2
2 −qrim2

r k1e−
m2

r |k|2
2 ,qaim2

ak2e−
m2

a|k|2
2 −qrim2

r k2e−
m2

r |k|2
2

)
.

(2.45)

Therefore, the steady state
(
0,1,0, p2/q

)
is unstable provided that the real part of the

eigenvalue λ3 satisfies

Re
(
λ3 (k)

)
=− r2 +

|k|2s∗2
Rs

(
1+ tanh

(
a2

p2

q

))(
qam2

ae−
m2

a|k|2
2 −qrm2

r e−
m2

r |k|2
2

)
> 0.

(2.46)

This expression is similar to the one obtained in the 1D case (see equation (2.38)).

Therefore we deduce that there is a range of k−values for which Re
(
λ3 (k)

)
is posi-

tive, and thus spatial aggregations could develop also for the 2D model (2.39) when

applying small spatial perturbations of the steady state
(
0,1,0, p2/q

)
.
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2.4 Numerical results

In this Section we investigate numerically the stability of model (2.21). To discretise

our model we use a time-splitting approach, i.e., we split up the equations into their

terms and deal with each term separately. The advantage of the time spliting approach

is that we can use numerical schemes (either explicit or implicit) that can best approx-

imate each term. More precisely, let us define A(u, f ,c) = (A1,A2,0,0)(u, f ,c) =

(−u1F1 [u, f ,c] ,−u2F2 [u, f ,c] ,0,0)>, the flux term of the model, and R(u, f ,c) =

(R1,R2,R3,R4)(u, f ,c)= (−Mu1+r1u1 (1−u1−u2) ,Mu1+r2u2 (1−u1−u2) ,−αu1 f

−βu2 f , p1u1 + p2u2−qc)>, the reaction term of the model. We then rewrite the sys-

tem (2.21) as

∂u1

∂ t
= D

∂ 2u1

∂x2 +
∂

∂x
A1 (u, f ,c)+R1 (u) , (2.47a)

∂u2

∂ t
=

∂

∂x
A2 (u, f ,c)+R2 (u) , (2.47b)

∂ f
∂ t

= R3 (u, f ) , (2.47c)

∂c
∂ t

= R4 (u,c) . (2.47d)

We discretize the space-time plane choosing a time step ∆t = k (throughout the sim-

ulations we use the time step k = 0.001), and a space step ∆x = h, and we define the

discrete mesh points
(
tn,x j

)
= (nk, jh) ,k ∈ N and j = 0, . . . ,N−1 (where N−1 =

L
h

is the number of the mesh points). The solution
(

un
1 j
,un

2 j
, f n

j ,c
n
j

)
is seen as approxi-

mation of the cell averages of (u1,u2, f ,c)(tn,x):

un
i j
=

1
h

∫ x j+1/2

x j−1/2

ui (tn,x)dx, i= 1,2, f n
j =

1
h

∫ x j+1/2

x j−1/2

f (tn,x)dx, cn
j =

1
h

∫ x j+1/2

x j−1/2

c(tn,x)dx.

We define the discrete advection terms An
j = A

(
un

j , f n
j ,c

n
j

)
and the discrete reaction

terms Rn
j = R

(
un

j , f n
j ,c

n
j

)
. First, we focus on the reaction terms and we solve the

31



ordinary differential equations:

(
∂u1

∂ t
,
∂u2

∂ t
,
∂ f
∂ t

,
∂c
∂ t

)>
= R(u, f ,c) . (2.48)

Let LR be the solution operator of this system. Thus, we can write the solution as(
ū1 (t,x) , ū2 (t,x) , f̄ (t,x) , c̄(t,x)

)>
= LR

(
ū1 (0,x) , ū2 (0,x) , f̄ (0,x) , c̄(0,x)

)>. Then,

we use this solution as the initial condition for the advection term

(
∂u1

∂ t
,
∂u2

∂ t
,
∂ f
∂ t

,
∂c
∂ t

)>
=
(
A(u, f ,c)

)
x . (2.49)

Similarly, let LA be the solution operator of this system. Then, we use this solution as

the initial condition for the diffusion term

(
∂u1

∂ t
,
∂u2

∂ t
,
∂ f
∂ t

,
∂c
∂ t

)>
= (Du1,0,0,0)

>
xx , (2.50)

and in a similar way we denote by LD the solution operator of this system. Therefore,

the final solution of the model (2.21) can be given by

(
ū1 (t,x) , ū2 (t,x) , f̄ (t,x) , c̄(t,x)

)>
= LDLALR

(
ū1 (0,x) , ū2 (0,x) , f̄ (0,x) , c̄(0,x)

)>
.

This approach for the numerical method can be achieved by replacing the solution

operators LR,LA and LD with numerical schemes. Then we have (LeVeque, 2007):

(
u∗1,u

∗
2, f ∗,c∗

)>
= NR

(
k,un

1,u
n
2, f n,cn) ,(

u∗∗1 ,u∗∗2 , f ∗∗,c∗∗
)>

= NA
(
k,u∗1,u

∗
2, f ∗,c∗

)
,(

un+1
1 ,un+1

2 , f n+1,cn+1
)>

= ND
(
k,u∗∗1 ,u∗∗2 , f ∗∗,c∗∗

)
,
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where NR
(
k,un

1,u
n
2, f n,cn) represents some one-step numerical method that solves

(2.48) over a time step of length k with starting data
(
un

1,u
n
2, f n,cn). Similarly, NA(k,u∗1,

u∗2, f ∗,c∗) represents some one-step numerical method that solves (2.49) over a time

step of length k with starting data
(
u∗1,u

∗
2, f ∗,c∗

)
, and ND(k,u∗∗1 ,u∗∗2 , f ∗∗, c∗∗) repre-

sents some one-step numerical method that solves (2.50) over a time step of length k

with starting data
(
u∗∗1 ,u∗∗2 , f ∗∗,c∗∗

)
. Thus the numerical solution at the next time step

will be (
un+1

1 ,un+1
2 , f n+1,cn+1

)>
= NDNANR

(
un

1,u
n
2, f n,cn)> .

For the time-propagation of the reaction terms (see relation (2.48)) we use a classi-

cal forth order Runge-Kutta algorithm (LeVeque, 2007; Press et al., 2007), where the

integrals are further discretized using the Simpson’s rule.

To solve the advection equations (see relation (2.49)), we use a high-resolution method

introduced by Nessyahu-Tadmor (Nessyahu and Tadmor, 1990). In this case the solu-

tions un
1 j

and un
2 j

are seen as approximations over of the cells
[
x j,x j+1

]
:

un
i j+1/2

=
1
h

∫ x j+1

x j

ui (tn,x)dx, i = 1,2.

Let un
j =
(

un
1 j
,un

2 j

)
. Then the numerical scheme is described by the equations:

un+1/2
j = un

j −
k
2

(
An

j

)′
,

un+1
j+1/2 =

1
2

(
un

j +un
j+1

)
+

h
8

((
un

j

)′
+
(

un
j+1

)′)
− k

h

((
An+1/2

j+1

)
−
(

An+1/2
j

))
,

where
(

An
j

)′
=

((
An

1 j

)′
,
(

An
2 j

)′)>
approximates the derivatives of the flux, and

(
un

j

)′
approximates the slopes ux.
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To calculate these derivatives, we use the min-mod limiter:

(
un

j

)′
= minmod

(
un

j −un
j−1

h
,
un

j+1−un
j

h

)
,

(
Fn

j

)′
= minmod

(
Fn

j −Fn
j−1

h
,
Fn

j+1−Fn
j

h

)
,

where

minmod (a,b) =
1
2
(
sgn(a)+ sgn(b)

)
min

(
|a|, |b|

)
.

Since Runge-Kutta scheme computes the solution at
(
tn,x j

)
, and Nessyahu-Tadmor

(NT) scheme computes the solution at an intermediate point
(

tn,x j+1/2

)
, we have to

apply NT scheme twice to obtain the solution at
(
tn,x j

)
.

Finally, we use a Crank-Nicolson scheme (LeVeque, 2007) to propagate the solution

of the diffusion term (see relation 2.50). This one step method can be written as

un+1
1 j

= un
1 j
+

k
2h2

(
un

1 j−1
−2un

1 j
+un

1 j+1
+un+1

1 j−1
−2un+1

1 j
+un+1

1 j+1

)
. (2.51)

This is an implicit method and gives a tridiagonal system of equations to solve for all

the values of un+1
1 j

. It is as sufficient as an explicit method and it is considered as a very

efficient method for the diffusion equation, which is “stiff” (LeVeque, 2007).

All simulations are performed on a domain of length L = 10 with periodic boundary

conditions, and for time up to t = 500. The initial conditions for the cancer cell popu-

lations are either small random perturbations of spatially homogeneous steady states

ui(0,x) = u∗i + rand(0,10−4), i = 1,2,

f (0,x) = f ∗+ rand(0,10−4),

c(0,x) = c∗+ rand(0,10−4),
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or small random perturbations of rectangular-shaped aggregations located in the mid-

dle of the domain

ui(0,x) =

 uc
i + rand(0,10−4), x ∈ (L/2−1,L/2+1)

0, everywhere else
(2.52)

with uc
1 = 0 and uc

2 as specified in the caption of the figures. For the ECM, we assume

that the tumour has already degraded some of its surrounding tissues:

f (0,x) = 1−0.5u1 (0,x)−0.5u2 (0,x) . (2.53)

Finally, the integrin density, c, is proportional to the initial tumour cell density

c(0,x) = 0.5u1 (0,x)+0.5u2 (0,x) . (2.54)

Stationary aggregation patterns. To check the validity of our results obtained via

linear stability analysis (see Fig. 2.2), we first run simulations for small random pertur-

bations of the spatially homogeneous steady state
(
u∗1,u

∗
2, f ∗,c∗

)
=
(
0,1,0, p2/q

)
, and

for qa = 0.09 and qr = 0.01. The results, presented in Fig. 2.4, show 12-13 stationary

pulses (corresponding to critical wave numbers k12− k13). The spread of cancer cells

over the whole domain (panels (a),(b)) leads to the degradation of ECM (panel (c)).

The integrin density (panel(d)) follows the patterns in the density of cancer cells. We

observe here a coexistence between a low u1 population and a high u2 population.

To check the effect of initial data on model dynamics, in Fig. 2.5 we investigate the

behaviour of model (2.21) when we change the initial conditions to a rectangular

pulse describing an initial aggregation of tumour cells. The magnitudes of attractive-

repulsive interactions (and all other parameter values) are the same as in Fig. 2.4.

The short-term results in Fig. 2.5(a)-(d) show a travelling pulse behaviour exhibited
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by the u2 population that moves away from population u1 (which is mostly stationary

- although even this population spreads a bit). This faster spreading of the u2 cells

compared to the u1 cells is consistent with experimental observations (Chapman et al.,

2014; Wojciechowska and Patton, 2015). The movement of u2 population eventually

stops near the boundary (due to the periodic boundary conditions, the left-moving and

right-moving subgroups can sense each other across the boundary). The fast-moving u2

cells degrade the ECM (panel (c)). We also note the high density of integrins associated

with the u1 population (panel (d)). The long-term results in Fig. 2.5(a’)-(d’) show the
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Figure 2.4: Patterns exhibited by model (2.21) for small random perturbations of the
steady state

(
0,1,0, p2/q

)
, corresponding to the dispersion shown in Fig. 2.2. Here, we

use the cell-cell interaction kernel given by relation (2.31), and the model parameters
given in Table 2.2. (a) Density of u1 cell population; (b) Density of u2 (highly mutated)
cell population; (c) ECM density f ; (d) Integrin density c. Note the formation of 12
or 13 peaks (if counting separately the peaks on the periodic boundaries) of high cell
density corresponding to critical wave numbers k12/k13.
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Figure 2.5: Short-term and long-term patterns exhibited by model (2.21). The initial
conditions for the two cancer cell populations are described by a rectangular pulse (see
(2.52)) with uc

2 = 1.0. We use the interaction kernel given by (2.31), and the model
parameters given in Table 2.2. (a),(a’) Density of u1 population; (b),(b’) Density of u2
(highly mutated) population; (c),(c’) ECM density f ; (d),(d’) Integrin density c.
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formation of new aggregations of cells at distant positions in space. For t ∈ (100,250),

the two tumour populations coexist. For t > 250, population u1 is slowly eliminated

and population u2 dominates the dynamics of model (2.21). We also note that despite

some chaotic-like dynamics exhibited by the u1 and u2 populations for t < 300, in the

long term the system approaches stationary pulses defined by 13 peaks (corresponding

to unstable wave number k13).

In Figs. 2.6 and 2.7 we investigate the effect of various mutation rates on the dynam-

ics of the u1 and u2 populations. In Fig. 2.6 we choose M = 0.001 (see Table 2.2),

and observe that population u2 vanishes for t > 400, while population u1 persists and
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Figure 2.6: Patterns exhibited by model (2.21). Here, we use the interaction kernel
given by (2.31). The initial conditions for the cancer cell populations consist of a
rectangular pulse (see (2.52)) with uc

2 = 0.001. The mutation rate is M = 0.001. The
rest of model parameters are given in Table 2.2. (a) Density of u1 population; (b)
Density of u2 population; (c) ECM density f ; (d) Integrin density c.
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Figure 2.7: Patterns exhibited by model (2.21). Here, we use the interaction kernel
given by (2.31). The initial conditions for the cancer cell populations consist of a
rectangular pulse (see (2.52)) with uc

2 = 0.001. The mutation rate in M = 0.05. The
rest of model parameters are given in Table 2.2. (a) Density of u1 population; (b)
Density of u2 population; (c) ECM density f ; (d) Integrin density c.

forms small high-density aggregations of cells. This unexpected behaviour might be

explained by the combined effect of three factors: (i) the mutation rate (M = 0.001) that

is much smaller than the growth rates (r1,2 = 0.1) of the two cancer cell populations;

(ii) The lack of diffusion for u2, and (iii) the competition for nutrients between the two

cell populations (which is modelled implicitly by the logistic terms G1,2; see equations

(2.14)). This eventually leads to an overall increase in the first population, u1, and a

decrease in the second (highly mutated) population, u2. In Fig. 2.7 we increase the

mutation rate to M = 0.05, while chosing the growth rates fixed at r1 = r2 = 0.1. We

observe that faster mutation rates lead to a decrease and eventual elimination of the

u1 population. The u2 population increases and dominates the long-term dynamics of
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model (2.21).

Travelling wave patterns. Choosing again rectangular pulse initial conditions, we

reduce the magnitudes of cell-cell attractive and repulsive interactions to qa = 0.00025

and qr = 0.0005. The numerical simulations in Fig. 2.8 show travelling waves that

propagate in opposite directions at a constant speed. Similar behaviour is obtained for

qa > qr. The evolution of the travelling waves is shown in Fig. 2.9 for t = 25 j, j =

1, . . . ,9. We observe that the waves connect the unstable steady states
(
0,1,0, p2/q

)
,

with p2/q = 0.5, and (0,0, f ∗,0), with f ∗ = 1.
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Figure 2.8: Patterns exhibited by model (2.21) for initial conditions for the two
cancer cell populations consisting of a rectangular pulse with uc

2 = 0.001. Here,
qr = 0.0005,qa = 0.00025, and the rest of the model parameters are given in Table
2.2. We use the interaction kernel given by (2.31). (a) Cell density for u1 population;
(b) Cell density for u2 population; (c) ECM density f ; (d) Integrin density c. Travelling
waves are obtained for the translated Gaussian kernel given by relation (2.31).
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Figure 2.9: The evolution of the travelling waves under small perturbations for qr =
0.0005,qa = 0.00025, and the rest of the model parameters given in Table 2.2, of (a)
Cancer cell density u1 of the first (early stage) population; (b) Cancer cell density u2
of the second (late stage) population; (c) ECM density f ; (d) Integrin density c.

Finally, we check the effect that an increase in the mutation rate M has on the travelling

wave behaviour exhibited by model (2.21). Fig. 2.10 shows that for high mutation rates

(M = 0.05) the first population still exhibits a travelling wave before vanishing.

Remark 2.4.1. To understand the long-term behaviour of model (2.21) with odd ker-

nels, we also ran numerical simulations using the interaction kernel given by (2.36).

The spatial patterns obtained in this case were similar to the patterns obtained for the

translated Gaussian kernel (see relation (2.31)).
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2.4.1 Summary of model variables and parameters

Here we present two tables with the model variables and parameters. In Table 2.1 we

list the model variables with their units. In Table 2.2 we list the parameters of our

model and their corresponding units and non-dimensional values used in the simula-

tions.

Parameter estimation.
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Figure 2.10: Patterns exhibited by model (2.21) for higher mutation rates (M = 0.05)
and initial conditions for the two cancer cell populations consisting of a rectangular
pulse with uc

2 = 0.001. Here, qr = 0.0005,qa = 0.00025, and the rest of the model
parameters are given in Table 2.2. We use the interaction kernel given by (2.31). (a)
Cell density for u1 population; (b) Cell density for u2 population; (c) ECM density f ;
(d) Integrin density c. Travelling waves are obtained for the translated Gaussian kernel
given by relation (2.31)
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Table 2.1: A list of model variables with their units. Since we are in 1D, length and
volume coincide and we express the variables in terms of domain length.
Variable Description Dimensional Units
u1 Early stage cancer cell density cell/length
u2 Late stage cancer cell density cell/length
f ECM density mg/length
c Integrin density integrins/cell

• For the diffusion coefficient Chaplain and Lolas (2006) has shown a range be-

tween D̃ = 10−5 and D̃ = 10−3. In this chapter, we choose D̃ = 10−4.

• The sensing radius was based on the range of values given in (Armstrong et al.,

2006; Gerisch and Chaplain, 2008). In this chapter, we choose R̃s = 0.99.

• Attraction and repulsion ranges were chosen to be smaller or equal to sensing

radius, with the repulsion range to be smaller than the attraction range (Green

et al., 2010).

• Various experimental studies (Cunningham and You, 2015; Morani et al., 2014)

have shown that doubling times for tumour cells range from 1− 10 days. This

corresponds to growth rates between
(
ln(2)/10, ln(2)/1

)
= (0.07,0.7). In this

chapter, we assume that r̃1 = r̃2 = 0.1.

• Experimental studies (Cillo et al., 1987; Hill et al., 1984; Mareel et al., 1991)

have shown that the mutation rate ranges between M = 10−3/day and M =

0.1/day. Thus the non-dimensional value of the mutation rate is in the range

between M̃ = 0.001 and M̃ = 0.1 (for highly aggressive tumours). In this chap-

ter, we choose M̃ = 0.001.

• The parameters ai,d,bi,s∗i ,s
∗,c∗i , i = 1,2, were based on the range of the adhe-

sion strength parameters used in Armstrong et al. (2006).

• Experimental studies (Kidera et al., 2010) have shown greater production of in-

tegrins for mutated cancer cells. Thus, we choose p̃1 < p̃2.
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• Experimental studies (Delcommenne and Streuli, 1995; Davis et al., 2001; Liu

et al., 2011; Lobert et al., 2010) have shown that the half-lifes of the integrins

range from 0.04−4 days. This corresponds to decay rate between(
ln(2)/4, ln(2)/0.04

)
= (0.17,17.3). In this chapter, we assume that q̃ = 0.2.

Table 2.2: A list of model parameters with their units

and their non-dimensional values, obtained from (2.19) and

(2.20), which we used during numerical simulations.

Param. Description Dimensional Units Non-dim.

value (p̃)

Reference

D Diffusion coefficient length2/time 10−4 Chaplain

and Lolas

(2006)

Rs Sensing radius length 0.99 Armstrong

et al.

(2006)

qa Magnitude of attraction length2/cell 0.09 Estimated

qr Magnitude of repulsion length2/cell 0.01 Estimated

sa Attraction range length 0.99 Estimated

sr Repulsion range length 0.25 Estimated

ma Width of attraction kernel length 0.99/8 Estimated

mr Width of repulsion kernel length 0.25/8 Estimated

Continued on next page
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Table 2.2 – Continued from previous page

Param. Description Dimensional Units Non-dim.

value (p̃)

Reference

r1 Growth rate of u1 1/time 0.1 Cunningham

and You

(2015);

Morani

et al.

(2014)

r2 Growth rate of u2 1/time 0.1 Cunningham

and You

(2015);

Morani

et al.

(2014)

M Mutation rate 1/time 0.001 Cillo et al.

(1987);

Hill et al.

(1984);

Mareel

et al.

(1991)

a1 Coeff. related to the number

of integrins necessary for max

self-adhesion between u1

cell/integrins 0.3 Estimated

Continued on next page
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Table 2.2 – Continued from previous page

Param. Description Dimensional Units Non-dim.

value (p̃)

Reference

a2 Coeff. related to the number

of integrins necessary for max

self-adhesion between u2

cell/integrins 0.01 Estimated

d Coeff. related to the number

of integrins necessary for max

cross-adhesion

cell/integrins 0.5 Estimated

b1 Coeff. related to the number

of integrins necessary for max

cell-ECM adhesion for u1

cell/integrins 1.8 Estimated

b2 Coeff. related to the number

of integrins necessary for max

cell-ECM adhesion for u2

cell/integrins 5 Estimated

s∗1 Magnitude of self-adhesion

forces of u1

length/(time · cell) 0.9 Estimated

s∗2 Magnitude of self-adhesion

forces of u2

length/(time · cell) 0.2 Estimated

s∗ Magnitude of cross-adhesion

forces

length/(time · cell) 1 Estimated

c∗1 Magnitude of cell-ECM

forces of u1

length/(time · cell) 1.5 Estimated

c∗2 Magnitude of cell-ECM

forces of u2

length/(time · cell) 5.5 Estimated

Continued on next page
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Table 2.2 – Continued from previous page

Param. Description Dimensional Units Non-dim.

value (p̃)

Reference

α Rate of ECM degradation by

u1

length/(time · cell) 1 Sherratt

et al.

(2009)

β Rate of ECM degradation by

u2

length/(time · cell) 2 Sherratt

et al.

(2009)

p1 Production rate of c by u1 integrins/(time · cell) 0.05 Estimated

p2 Production rate of c by u2 integrins/(time · cell) 0.1 Estimated

q Decay rate of c 1/time 0.2 Liu et al.

(2011)

2.5 Speed of travelling waves

The numerical simulations showed that the model exhibits travelling wave solutions

(see Fig. 2.8 and 2.9). In this section we estimate the minimum speed at which these

waves could propagate (assuming that the travelling waves do exist). We assume that

close to the invading front, the nonlinear differential equations describing the spread of

a population have similar speeds as their linear approximation (see the approaches in

Medlock and Kot (2003); Mollison (1991)). Therefore, we first calculate the linearised

system (2.26) at the steady state
(
u∗1,u

∗
2, f ∗,c∗

)
=
(
0,1,0, p2/q

)
. In travelling wave

coordinates z= x−wt (where ui (t,x) =Ui (z) , i= 1,2, f (t,x) =F (z) , c(t,x) =C (z)),
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this system becomes:

−wU ′1 (z) =DU ′′1 (z)−MU1 (z) , (2.55a)

−wU ′2 (z) =−
1
Rs

∂

∂ z

{∫ Rs

0
K (r)

[
S2
(

p2/q
)(

U2 (z+ r)−U2 (z− r)
)
+

+S
(

p2/q
)(

U1 (z+ r)−U1 (z− r)
)
+C2

(
p2/q

)(
F (z+ r)−F (z− r)

)]
dr

}
+MU1 (z)− r2

(
U1 (z)+U2 (z)

)
, (2.55b)

−wF ′ (z) =−βF (z) , (2.55c)

−wC′ (z) =p1U1 (z)+ p2U2 (z)−qC (z) . (2.55d)

Let s1,s2,s3,s4 > 0 be the steepness (i.e., exponent of an exponential decay/increase

profile) of u1,u2, f ,c. The minimum of w
(
s j
)

for s j > 0, j = 1, . . . ,4, gives an upper

bound on the rightward travelling wave speed of the nonlinear system. Thus, we make

the general exponential ansatz

U1 (z) = A1e−s1z, U2 (z) = A2e−s2z, F (z) = A3es3z and C (z) = A4e−s4z, (2.56)

where A j ∈R, j = 1, . . . ,4, such that asymptotically we have Ui (z)→ 0, i= 1,2, F (z)→

f ∗, C (z)→ 0 as z→+∞. First we investigate the s j, j = 1, . . . ,4, numerically. In Fig.

2.11 we fit these exponential ansatz profiles (given by (2.56)) to the numerical solu-

tions u1(t,x),u2(t,x), f (t,x) and c(t,x) at time t = 175 (dotted curve). We obtain the
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following ansatz profiles (continuous curve in Fig. 2.11):

E1 (x) = A1 · exp(−3.17x) , with A1 = 0.063 · exp(24.5675) , (2.57)

E2 (x) = A2 · exp(−3.17x) , with A2 = 0.8 · exp(24.2505) , (2.58)

E3 (x) = A3 · exp(6x) , with A3 = 0.82 · exp(−52.5) , (2.59)

E4 (x) = A4 · exp(−3.17x) with A4 = 0.4 · exp(24.092) . (2.60)

t=175

2
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Figure 2.11: Plot of the numerical simulations of the travelling wave profile, shown in
Figs. 2.8-2.9, for (a) population u1 and the exponential ansatz function E1 (x) given by
relation (2.57) with A1 = 0.063 · exp(24.5675); (b) population u2 and the exponential
ansatz function E2 (x) given by relation (2.58) with A2 = 0.8 · exp(24.2505); (c) ECM
density, f , and the exponential ansatz function E3 (x) given by relation (2.59) with
A3 = 0.82 · exp(−52.5); (d) inttegrin density, c, and the exponential ansatz function
E4 (x) given by relation (2.60) with A4 = 0.4 · exp(24.092). Here, qr = 0.0005,qa =
0.00025, and the rest of the model parameters are given in Table 2.2.

Whence we deduce that the travelling wave profiles of U1 (z) ,U2 (z) and C (z) have
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the same steepness s := s1 = s2 = s4 = 3.17, while the profile of F (z) has steepness

s3 = 6. Therefore, we replace the exponential ansatz given by (2.56) with U1 (z) =

A1e−sz, U2 (z) = A2e−sz, F (z) = A3es3z and C (z) = A4e−sz. Let us assume that K (r)

has a moment generating function, M̃ (s), defined as M̃ (s) :=
∫+∞

−∞
K (r)

(
e−sr− esr)dr.

Then we obtain from system (2.55):

A1

(
sw− s2D+M

)
= 0, (2.61a)

A1

(
−S
(

p2/q
) sM̃ (s)

Rs
−M+ r2

)
+A2

(
sw−S2

(
p2/q

) sM̃ (s)
Rs

+ r2

)

+A3e(s+s3)z

(
−C2

(
p2/q

) s3M̃ (s3)

Rs

)
= 0,

(2.61b)

A3 (s3w−β ) = 0, (2.61c)

−A1 p1−A2 p2 +A4 (sw+q) = 0. (2.61d)

Taking now the determinant of the system equal to zero we have the characteristic

relation

(
sw− s2D+M

)(
sw−S2

(
p2/q

) sM̃ (s)
Rs

+ r2

)
(s3w−β )(sw+q) = 0. (2.62)

Since we are looking for the minimum positive speed with respect to s > 0 and s3 > 0,

in Fig. 2.12(a) we plot implicitly equation (2.62) in the (s,s3,w)-space. Note that the

steepness coefficient s3 (for the ECM degradation profile) does not have any significant

effect on the minimum positive wave speed w (of the invading u1 and u2 populations).

For this reason, in Fig. 2.12(b) we plot the relation (2.62) in the (s,w)-plane for fixed

s3 > 0. We see that indeed we cannot have a travelling wave with positive speed unless

the wave has a steepness s > 3.17. Moreover, faster waves have higher steepness.
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(a)

(b)

Figure 2.12: Plot of the relation (2.62) for qr = 0.0005,qa = 0.00025, and the rest of
the model parameters as given in Table 2.2. The plot shows the relation between the
speed and the steepness of the travelling waves in the (a) (s,s3,w)-space; (b) (s,w)-
plane.

Finally, we are interested in investigating how the speed of the invading waves corre-

lates with their steepness, as we vary different model parameters. In Fig. 2.13(a) we

see that a decrease in the diffusion coefficient D by one order of magnitude leads to a

reduction in the velocity w > 0. In Fig. 2.13(b) we see that an increase in the mutation

rate M (from 0.001 to 0.05) leads to a slightly lower velocity w > 0 and a higher steep-

ness. (Note that for s > 100, the invading speed obtained for M = 0.001 and M = 0.05

is the same - not shown here.)
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(a) (b)

Figure 2.13: Plot of the relation (2.62) for qr = 0.0005,qa = 0.00025, and the rest
of the model parameters given in Table 2.2, as we vary: (a) Diffusion coefficient D:
D = 10−4 (black solid line) and D = 10−5 (red dashed line); (b) Mutation rate M:
M = 0.001 (blue solid line) and M = 0.05 (red dashed line).

2.6 Conclusion and discussion

In this chapter we introduced a model of integro-differential equations describing the

dynamics of two cancer cell populations: an early stage cell population that exhibits

both random and directed movement, and a late stage cell population that exhibits only

directed movement. The model incorporated both nonlocal cell-cell interactions and

cell-matrix interactions. Moreover, unlike other models in the literature, in our model

these interactions were not constant but depended on the cellular level of integrins.

Linear stability analysis of the non-dimensional model showed that aggregations could

arise only via real bifurcations (the system could not exhibit Hopf bifurcations). We

studied the effect of the interaction kernel on the formation of aggregations and we

applied linear stability analysis for the 2D model to compare the results with the one

dimensional case. Numerical results showed that these aggregations were described

by a large number of stationary pulses (e.g., 13 pulses corresponding to the critical un-

stable wave number k13). Moreover, numerics also showed the existence of travelling

waves. We investigated the speed of these waves, which seemed to be affected by the
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diffusion coefficient and the mutation rate of cells.

The rate at which cancer cells mutate seemed to play a critical role in our model. In

Figs. 2.6 and 2.7 (as well as Figs. 2.8 and 2.10) we showed that depending on the mag-

nitude of the mutation rate, either the u1 or the u2 cell populations can be eliminated

(or, in some cases they can coexist - see Figs. 2.4 and 2.8). The existence of these dom-

inant behaviours exhibited by the u1 or u2 populations are consistent with the principle

of competitive exclusion of clonal sub-populations in heterogeneous tumours (Egan

et al., 2012; Keats et al., 2012; Leith et al., 1989). In Fisher et al. (2013) the authors

interpreted the experimental data, showing suppression and reappearance of cancer

clones in myeloma patients (Keats et al., 2012) and chronic lymphocytic leukaemia

patients (Schuh et al., 2012), by suggesting that two subclones can exist in a dynamic

equilibrium. While all these experimental studies record the survival/suppression of

tumour clones in various cancers, they do not offer a mechanistic explanation for the

factors that could lead to these behaviours. In contrast, our numerical results (see Figs.

2.6 & 2.7, 2.8 & 2.10) offer such a mechanistic explanation by identifying the mag-

nitude of the mutation rate as a factor that could explain the experimentally-observed

suppression and reappearance of cancer clones.

This issue of cancer heterogeneity has significant implications of cancer drug therapies,

since it can lead to drug resistance. For example, clinical studies have shown the

emergence of imatinib-resistant mutations in patients with chronic myeloid leukaemia,

which can co-exist with subclones that carry different imatinib-resistant mutations in

treatment-naı̈ve patients (Shah et al., 2002).

Overall, these clinical observations suggest that a single drug might not be successful in

treating a genetically heterogeneous tumour, since sub-populations of cancer cells with

drug-resistant mutations could become dominant, thus leading to therapeutic failure.
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We note that the spatial distribution of the two cancer sub-populations – with the origi-

nal u1 population in the centre of the aggregation, surrounded by the mutated u2 clones

(see Fig. 2.5 for t ∈ [0,10] or Fig. 2.6 for t ∈ [100,300])– is consistent with experimen-

tal studies on the spatial relationship between clonal sub-populations of hepatocellular

carcinoma (HCC) tumour (Ling et al., 2015). In this experimental study, the authors

investigated the clonal diversity of a HCC-15 tumour (and the spatial distribution of

these clones), and showed the ancestral clones being positioned in the middle of the

tumour, with the descendant clones radiating outward.

In general, the numerical results of the model presented in this chapter, show that

cell-cell/cell-matrix adhesion combined with cell proliferation (in the presence of cell

competition) and cell mutation, can impact which tumour clones survive (see Figs.

2.4-2.8 and 2.10).

In this chapter we focused on a one-dimensional model. However, real life cell dy-

namics occurs in two or three dimensions. In Section 2.3.2 we extended model (2.21)

to two spatial dimensions and applied linear stability analysis. We showed that for

similar kernels, we obtained similar dispersion relations. Therefore, we expect that the

2D model (2.39) would exhibit stationary pulses similar to the ones exhibited by the

1D model (2.21). Future work will consider extending the numerical results in 2D.

Moreover, an interesting future model derivation for integrin dynamics inside the cells

would be an individual-based model.
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Chapter 3

Modelling the multiple roles of TGF-β

pathways on heterogeneous cancer

cells proliferation and adhesion

3.1 Introduction

Cellular adhesion, i.e., cell-cell and cell-matrix adhesion, and cellular proliferation

are fundamental features of multicellular organisms, linked to maintenance of order

in the organisms, e.g., tissue formation, stability and breakdown (Armstrong et al.,

2006). These interactions between cells and the extracellular matrix (ECM) are me-

diated though cell surface receptors, a major group of which is represented by the

integrins (Weitzman et al., 1995), and various cytokines and chemokines. Another

group of molecules involved in cell-cell adhesion is represented by the cadherin fami-

lies (Hanahan and Weinberg, 2000). There are several signalling pathways that control

normal cell processes like cell proliferation, division, cellular adhesion and apoptosis,

with transforming growth factor β (TGF-β ) pathway to be one of the most critical.
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Belonging to a large family of multifunctional polypeptides, TGF-β regulates the pro-

liferation, differentiation, adhesion, migration and apoptosis of many cell types, in-

cluding endothelial cells, hematopoietic cells and lymphocytes (Miyazono, 2009), and

extracellular matrix production (Kaminska et al., 2005).

Various signals, including integrin, Notch, Wnt, TNF-a, and EGF signals, have been

reported to cooperate or synergize with TGF-β signalling and stimulate tumour inva-

sion and metastasis (Miyazono, 2009). Experimental studies (Markowitz et al., 1995)

showed that the loss of TGF-β responsiveness is one of the events that initiate fibrotic

disease and malignant progression of cancer, as well as cancer metastasis (Venkatra-

man et al., 2012). TGF-β induces morphological, biochemical and transcriptional

changes towards a mesenchymal phenotype, a process called epithelial to mesenchy-

mal transition (EMT) (see Mamuya and Duncan (2012); Moustakas and Heldin (2007)

and many references therein). EMT occurs when epithelial cells lose their epithelial

cell characteristics and become mesenchymal. Mesenchymal cells can return to an ep-

ithelial phenotype, a process called mesenchymal-epithelial transition (MET). Through

these processes, cancer cells become metastatic and form new colonies at distant sites.

Experimental studies (Khalique et al., 2007; Loeb and Loeb, 2000) have shown that

tumours consist of heterogeneous populations of cells, which are the result of genetic

instability. Intra-tumour heterogeneity appears in almost all phenotypic cell features:

from cell morphology, to gene expression, motility, proliferation, immunogenicity and

metastatic potential (Marusyk and Polyak, 2010). While both normal cells and can-

cer cells appear to be heterogeneous for various characteristics (e.g., surface antigens),

cellular heterogeneity is shown (Nicholson, 1987) to be more pronounced in malignant

neoplasms. As discussed in Chapter 2, experimental studies have shown complex in-

teractions between clonal cancer cell sub-populations in heterogeneous tumours: from

stable coexistence to competitive exclusion (Leith et al., 1989). The metastatic and

invasive potential of heterogeneous tumours is influenced by the interactions among
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the cells, and the interactions between cells and ECM components. To detach from

the main aggregation/tissue, cells loose cell-cell adhesion and strengthen cell-matrix

adhesion (these changes in cell-cell/cell-ECM adhesion can be influenced by TGF-β

signalling), which leads to ECM remodelling and degradation (with the help of en-

zymes called matrix metalloproteinases; MMPs).

Over the last three decades there have been multiple mathematical models introduced

to investigate the formation and movement of various cell aggregations (see, for ex-

ample, Ambrosi and Preziosi (2002); Armstrong et al. (2006); Bellomo et al. (2016,

2008); Byrne and Preziosi (2003); Mogilner and Edelstein-Keshet (1995); Mogilner

et al. (1996); Outada et al. (2016); Painter et al. (2010); Sherratt et al. (2009) and

the many references therein). While there are mathematical models in the literature

that investigate the roles of TGF-β on cancer dynamics, generally these models focus

on particular aspects of cancer progression (e.g., growth (Michelson and Leith, 1991;

Turner et al., 2004)). There are very few models that investigate, in an integrated man-

ner, the multiple roles of TGF-β on cancer evolution (see, for example Ascolani and

Liò (2014); Wang et al. (2009)), and in general these models focus on the motility and

growth rate of early stage cancer cells.

In this chapter 1, we present a novel mathematical model which investigates in a in-

tegrated manner the various roles of TGF-β on tumour growth/decay, and on cell-

cell and cell-matrix interactions, but paying particular attention to the opposite role

of TGF-β on early stage versus late stage cancer cells. To this end, we generalise

the mathematical model introduced in Chapter 2, described by a nonlocal hyperbolic-

parabolic model for cell-cell and cell-matrix adhesion for two cancer cell populations:

an early stage cancer population, moving both randomly and in a directed manner in

1A version of this chapter has been published.

Bitsouni et al. (2017), Mathematical modelling of cancer invasion: The multiple roles of TGF-β path-
way on tumour proliferation and cell adhesion, Math. Models Methods Appl. Sci., 27(10):1929-1962.
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response to cell-cell and cell-matrix adhesive forces, and a late stage cancer population

(i.e., a mutated clone) moving only in a directed manner following self-adhesive and

cross-adhesive cell-cell forces, as well as matrix interactions. Since TGF-β does not

affect only tumour growth, but impacts also cell adhesion (Ascolani and Liò, 2014),

we model the interactions between TGF-β and integrins that influence the cell-cell and

cell-matrix adhesive forces. The computational results show a range of heterogeneous

invasion patterns, as a result of the opposite role of TGF-β in early and late stages

of cancer. Analytical results show the global existence of bounded solutions (hence

existence of various types of invasion patterns). We note that existence results have

been shown for local nonlinear parabolic PDEs for cell movement coupled with ODEs

describing the ECM dynamics with tissue remodelling (Fan and Zhao, 2014; Kang

and Lee, 2015; Tao, 2011; Tao and Winkler, 2014), as well as for nonlocal parabolic

models describing cancer invasion when the ECM production is zero (Chaplain et al.,

2011) and when it is nonzero (Szymańska et al., 2009). Existence results have been

also shown for local hyperbolic models for chemo-sensitive movement (Hillen et al.,

2001). However, in contrast to these previous results, here we show existence for a

nonlocal parabolic-hyperbolic model for cancer cell movement.

The structure of this chapter is as follows. In Section 3.2 we present our mathematical

model, which consists of partial integro-differential equations describing the dynamics

of cell populations in early and late stages of cancer, coupled with ordinary differential

equations describing ECM and integrins dynamics, and a parabolic partial differen-

tial equation describing TGF-β dynamics. In Section 3.3 we present a suitable notion

of weak solution to the model and we prove the global-in-time existence of bounded

solutions to our system as the vanishing viscosity limit of a classical solution to an

associated parabolic problem. In Section 3.4 we undertake numerical simulations to

investigate the effect of TGF-β on cancer cell movement, and observe a range of pat-

terns obtained for different values of parameters of the model. Finally, in Section 3.5
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we summarise our results and give some concluding remarks.

3.2 The mathematical model of TGF-β regulatory net-

work in cancer

TGF-β plays a crucial role in embryonic development, wound healing and cancer.

Moreover, TGF-β signalling stimulates EMT in certain epithelial cells (Moustakas

and Heldin (2007) and many references therein) and consequently induces various

diseases, including cancer. The way that TGF-β interacts with cancer cells varies

between early and late stages of cancer (see Fig. 3.1), making its behaviour difficult

to analyse. We consider a two-population model describing the behaviour of an early

stage cancer population and a late stage cancer (descendant clone) population, which

interact with each other, as well as with the ECM, via long-range integrin-controlled

adhesive and repulsive forces (Deman et al., 1976; Geiger, 1991) on bounded spatial

domain Ω ⊂ Rn with smooth boundary ∂Ω. The model presented in this chapter is

similar to the one presented in the previous chapter. However, here we consider also

the TGF-β consecration in the nonlinear differential equations.

For T > 0 let ΩT = (0,T )×Ω. As in Chapter 2 we denote by u1 (t,x) and u2 (t,x) the

density of early and late stage cancer cells, respectively, at position x and time t, by

f (t,x) the ECM density, and by c(t,x) the density of integrin receptors on the surface

of cancer cells (receptors involved in cell-cell and cell-matrix interactions). Finally,

we denote by b(t,x) the TGF-β concentration. For compact notation, we define the

vectors u(t,x) =
(
u1 (t,x) ,u2 (t,x)

)> and υ (t,x) =
(
u(t,x) , f (t,x)

)>.
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EMT

Late stages cancer cells

Apoptotic bodies

−Apoptosis

Healthy cells or early stage cancer cells

Loss of cell−cell adhesion

Metastasis

−Tumour promoter−Regulator of cellular adhesion and proliferation

−EMT inducer−Tumour suppressor

−
TGF β−

TGF β

Figure 3.1: A caricature summarising the dual role of TGF-β in cancer progression.

Cancer cells dynamics. Cancer cells can switch from a homogeneous type of in-

vasion to a heterogeneous type of invasion described by (directionally moving) in-

vading chains (Chapman et al., 2014). Therefore, we assume that the movement of

the early stage cancer cell population u1 is governed by random motility (which un-

derlines a homogeneous type of invasion), as well as directed motility in response to

cell-cell and cell-matrix adhesive forces (which underlines the heterogeneous type of

invasion) (Calvo and Sahai, 2011). Let Du describe the random motility coefficient and

Fβ

1 [u, f ,c,b] describe the nonlocal directed motility. In contrast, the late stage cancer

cell population, u2, moves only in a directed manner (hence exhibiting a heterogeneous

type of invasion) in response to cell-cell and cell-matrix adhesion forces (described by

a nonlocal term Fβ

2 [u, f ,c,b]). Moreover, the u1 cells can mutate into u2 cells at a con-

stant rate M. TGF-β has been found to have bidirectional functions in the progression

of cancer. In early stages of cancer, TGF-β is an antiproliferative and proapoptotic sig-

nal, while in late stages of cancer it acts as a tumour promoter (Principe et al., 2014).

Thus we have the following equations describing the dynamics of the two cancer cell
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populations:

∂u1

∂ t
= Du∆u1−∇ ·

(
u1Fβ

1 [u, f ,c,b]
)
−Mu1 +G1 (u,b) , (3.1a)

∂u2

∂ t
=−∇ ·

(
u2Fβ

2 [u, f ,c,b]
)
+Mu1 +G2 (u,b) . (3.1b)

Taking into account the effect of TGF-β on cancer cell proliferation and assuming that

both u1 and u2 cells can proliferate in a logistic manner (to describe the observed slow-

down in tumour growth following the loss of nutrients (Laird, 1964)), we choose the

growth functions to be given by

Gi (u,b) = riui

(
1− u1 +u2

ku

)(
1+(−1)i cb

b
bm

)
, i = 1,2, (3.2)

where r1 and r2 are the growth rates of the u1 and u2 populations, respectively, ku is

the carrying capacity, bm is the maximum TGF-β concentration, and cb is a coefficient

related to the effect of TGF-β on cancer cell proliferation/decay. In particular, the term

(−1)i models the anti-tumour effect of TGF-β on early tumours (i = 1), and the pro-

tumour effect on late tumours (i= 2). Note that these growth functions incorporate also

the principle of competition between clonal sub-populations in heterogeneous tumours

(Leith et al., 1989).

The nonlocal cell-cell and cell-matrix adhesion and repulsion forces for cancer cell

populations u1 and u2, are described by a function that depends on cell densities, ECM

and integrin densities, and concentrations of TGF-β molecules

Fβ

i : C
(
Ω̄ : R

)5 7→C1,ζ (
Ω̄ : Rn) ,ζ ∈ (0,1] , i = 1,2, (3.3)
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given by the following relation

Fβ

i [u, f ,c,b] (x) :=
∫

Ω

K
(
|y− x|

)
gβ

i
(
u(y) , f (y) ,c(x) ,b(x)

)
dy, i = 1,2, (3.4)

where K ∈ L∞ (Ω), with ∂xK ∈ L∞ (Ω). The functions gβ

i (u, f ,c,b) , i = 1,2, describe

the nature of the cell-cell and cell-matrix adhesive forces. These functions increase

when the cell density and ECM density increase, and accordingly they decrease when

the cell density and ECM density decrease. The functions gβ

i , i = 1,2, are given by

gβ

i (u, f ,c,b) := Sβ

i (c,b)ui +Sβ (c,b)u j +Cβ

i (c,b) f , i, j = 1,2, i , j, (3.5)

where Sβ

i (c,b) is the cell-cell self-adhesion strength function for populations ui, Sβ (c,b)

is the cell-cell cross-adhesion strength function between the two populations, and

Cβ

i (c,b) is the adhesion strength function between population ui and ECM.

Integrins are molecules known to have a regulative role in cell-cell and cell-matrix ad-

hesion (Ascolani and Liò, 2014), while the role of TGF-β in cellular adhesion is dual:

(i) Promotes cell-matrix adhesion by inducing the synthesis and the secretion of ECM-

adhesion molecules laminin and fibronectin and the upregulation of integrin expres-

sion for these matrix-adhesion molecules (Huang and Chakrabarty, 1994; Wang et al.,

2004); (ii) Decreases cell-cell adhesion (Nawshad et al., 2005; Wang et al., 2009).

Thus, to define these adhesion strength functions we consider the integrin density, c,

and TGF-β concentration, b. Since cell mutation could lead to more integrins (Kidera

et al., 2010), we consider strength functions with different integrin levels for each of

the two populations. The more integrins a cell has, the stronger its adhesion force (Gal-

lant et al., 2005). Therefore, biologically realistic choices for these adhesion strength

functions are the increasing, bounded and positive functions given by (see also Section

62



2.2) :

Sβ

i (c,b) = si
∗
(

1+ tanh
(
aic−abib

))
, Sβ (c,b) = s∗

(
1+ tanh(dc−dbb)

)
,

Cβ

i (c,b) = ci
∗
(

1+ tanh
(
eic+ ebib

))
, i = 1,2, (3.6)

where ai,abi,d,db,ei,ebi and si
∗,s∗,ci

∗, i = 1,2, are positive real numbers.

ECM dynamics. The extracellular matrix is considered as non-motile matter, with

changes to its density due to degradation by u1 and u2 cell populations upon contact

at rates α > 0 and β > 0, respectively, and ECM density remodelling back to normal

levels, at a constant rate of δ . In contrast to equation (2.15) presented in Chapter 2,

here we choose to consider the ECM remodelling term by choosing δ > 0. Moreover,

TGF-β induces the synthesis of extracellular matrix adhesion molecules (Wang et al.,

2004, 2009), at a rate of θβ > 0. Thus the dynamics of ECM, f (t,x), is described by:

∂ f
∂ t

=−αu1 f −βu2 f +θβ b f +δ f
(

1− f
fm

)
, (3.7)

where fm is the maximum ECM density at which the ECM fills up all available physical

space.

Integrin dynamics. We assume that the level of integrins depends on cancer cell

density, such that cell mutation changes the density of receptors (since in highly metastatic

cancers, the expression of integrins is up-regulated (Kidera et al., 2010)). Moreover,

TGF-β signalling up-regulates the integrin expression (Ascolani and Liò, 2014; Ma-

muya and Duncan, 2012), at a rate of p3. Therefore, the dynamics of integrins, c(t,x),

can be described by:
∂c
∂ t

= p1u1 + p2u2 + p3bc−qc, (3.8)
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where q is the decay rate of c, and p1 and p2 are the production rates of integrins by

u1 and u2 cancer cell populations, respectively. To model the increase in receptors on

highly mutated cancer cells, we assume that p2 > p1 (see Table 3.2).

TGF-β dynamics. Finally, TGF-β is assumed to diffuse freely in the spatial domain,

after being released by u1 and u2 cells, and decay at a rate of qb > 0. Therefore, the

dynamics of TGF-β , b(t,x), is described by:

∂b
∂ t

= Db∆b+λ (u)−qbb, (3.9)

where Db is the TGF-β diffusion coefficient and λ (u) is the TGF-β production term.

Here, we choose λ (u) = µ1u1 + µ2u2, with µ1 and µ2 to be the production rates of

TGF-β by u1 and u2, respectively.

The relations (3.1)-(3.9) are summarised in the following system:

∂u1

∂ t
= Du∆u1−∇ ·

(
u1Fβ

1 [u, f ,c,b]
)
−Mu1 +G1 (u,b) , (3.10a)

∂u2

∂ t
=−∇ ·

(
u2Fβ

2 [u, f ,c,b]
)
+Mu1 +G2 (u,b) , (3.10b)

∂ f
∂ t

=−αu1 f −βu2 f +θβ b f +δ f
(

1− f
fm

)
, (3.10c)

∂c
∂ t

= p1u1 + p2u2 + p3bc−qc, (3.10d)

∂b
∂ t

= Db∆b+µ1u1 +µ2u2−qbb. (3.10e)

We impose the following initial conditions

ui (0,x) = ui0 (x)≥ 0, i = 1,2, f (0,x) = f0 (x)≥ 0, c(0,x) = c0 (x)≥ 0,

b(0,x) = b0 (x)≥ 0, in Ω. (3.11)
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Finally, we assume that there is no-flux of both cancer cells and TGF-β proteins on the

boundary of the domain,

〈∇ui,ν〉= 0 = 〈∇b,ν〉, i = 1,2, on (0,∞)×∂Ω (3.12)

and

〈Fβ

i [u, f ,c,b] ,ν〉= 0, i = 1,2, on (0,∞)×∂Ω, (3.13)

where ν is the outward unit normal vector to ∂Ω.

3.3 Existence of solution

To prove the existence of solution for system (3.10) we use the theory of semigroups

combined with the vanishing viscosity method (to transform equation (3.10b) into a

parabolic equation). Then we show that in the vanishing viscosity limit, we obtain

weak solutions for (3.10). We note that the steps in this proof of existence of ap-

proximate solution follow similar approaches taken in Chaplain et al. (2011), where

a simpler parabolic-ODE model with no production term in the ODE (i.e., the ODE

in Chaplain et al. (2011) contains only a decay term, which implies global bound-

edness of its solution) is considered, whereas in our model the production terms in

(3.10c)-(3.10d) add an extra layer of complexity to the proof. Moreover, for the proof

of vanishing viscosity limit we use techiques similar to those in Hillen et al. (2001)

for a hyperbolic-elliptic model. The link between these two proofs is based on the

extraction of the appropriate estimates for the vanishing viscosity limit, for our more

complex system of nonlocal parabolic-hyperbolic equations coupled with ODEs.
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3.3.1 Existence of approximate solution

We will approximate system (3.10) by the following system

∂uε
1

∂ t
−Du∆uε

1 +Muε
1 =−∇uε

1 ·F
β

1
[
uε

1,u
ε
2, f ε ,cε ,bε

]
−uε

1

(
∇ ·Fβ

1
[
uε

1,u
ε
2, f ε ,cε ,bε

])
+G1

(
uε

1,u
ε
2,b

ε
)
, (3.14a)

∂uε
2

∂ t
− ε∆uε

2 +uε
2 =−∇uε

2 ·F
β

2
[
uε

1,u
ε
2, f ε ,cε ,bε

]
−uε

2

(
∇ ·Fβ

2
[
uε

1,u
ε
2, f ε ,cε ,bε

])
+h1

(
uε

1,u
ε
2,b

ε
)
, (3.14b)

∂ f ε

∂ t
=h2

(
uε

1,u
ε
2,b

ε
)

f ε − δ

fm
f ε2

, (3.14c)

∂cε

∂ t
=h3

(
uε

1,u
ε
2
)
+ cεh4

(
bε
)
, (3.14d)

∂bε

∂ t
−Db∆bε +qbbε =h5

(
uε

1,u
ε
2
)
, (3.14e)

for 0 < ε ≤ 1, where

h1
(
uε

1,u
ε
2,b

ε
)
= Muε

1 +uε
2 +G2

(
uε

1,u
ε
2,b

ε
)
, h2

(
uε

1,u
ε
2,b

ε
)
=−αuε

1−βuε
2 +θβ bε +δ ,

h3
(
uε

1,u
ε
2
)
= p1uε

1 + p2uε
2, h4

(
bε
)
= p3bε −q and h5

(
uε

1,u
ε
2
)
= µ1uε

1 +µ2uε
2.

(3.15)

The ICs are given by

uε
i (0,x) = ui0 (x)≥ 0, i = 1,2, f ε (0,x) = f0 (x)≥ 0, cε (0,x) = c0 (x)≥ 0,

bε (0,x) = b0 (x)≥ 0, in Ω. (3.16)

Finally, the BCs corresponding to (3.12)-(3.13) are given by the relations

〈∇uε
i ,ν〉= 0 = 〈∇bε ,ν〉, i = 1,2, on (0,∞)×∂Ω (3.17)
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and

〈Fβ

i
[
uε

1,u
ε
2, f ε ,cε ,bε

]
,ν〉= 0, i = 1,2, on (0,∞)×∂Ω. (3.18)

For the full nonlocal interaction terms (3.3)-(3.4) we make the following assumptions:

Fβ

i [u1,u2, f ,c,b] (x) =
∫

Ω

Ni
(
x,y,u1 (y) ,u2 (y) , f (y) ,c(x) ,b(x)

)
dy, (3.19)

where Ni : Ω2×R5 7→ Rn, i = 1,2, is a continuous function, which satisfies

Ni (x,y,0,c,b) = 0, i = 1,2, for all (x,y) ∈Ω
2,c,b ∈ R, (3.20)

and

Ni (·,y,φ ,χ,ψ,c,b) ∈C1,ζ (
Ω̄ : Rn) , i = 1,2, for all y ∈Ω, (φ ,χ,ψ) ∈ R3. (3.21)

Since functions Sβ

i (c,b) ,S
β (c,b) ,Cβ

i (c,b) , i = 1,2, (given by (3.6)) are bounded, we

assume that there is a constant LN , which depends on the bound for Sβ

i ,S
β ,Cβ

i , i = 1,2,

such that for any φ1,φ2,χ1,χ2,ψ1,ψ2 ∈ R we have

|Ni (x,y,φ1,χ1,ψ1,c,b)−Ni (x,y,φ2,χ2,ψ2,c,b)|+ |∂xNi (x,y,φ1,χ1,ψ1,c,b)

−∂xNi (x,y,φ2,χ2,ψ2,c,b) | ≤ LN
(
|φ1−φ2|+ |χ1−χ2|+ |ψ1−ψ2|

)
, i = 1,2,

(3.22)

uniformly with respect to (x,y) ∈Ω2.

We assume that h′2,h
′
3 and h′4 exist, and that

h′2 : R×R×R 7→ R, h′3 : R×R 7→ R and h′4 : R 7→ R (3.23)

are locally Lipschitz functions.
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Based on relation (3.2) we can assume that there are constants Bi,Di > 0, i = 1,2, such

that for uε
1,u

ε
2,b

ε ≥ 0, i = 1,2, we have

Gi
(
uε

1,u
ε
2,b

ε
)
≤ Bi−Diuε

i , i = 1,2. (3.24)

Moreover, based on relation (3.15) we can assume that there are constants Λ j > 0, j =

1, . . . ,4, such that for uε
1,u

ε
2, f ε ,cε ,bε ≥ 0

f εh2
(
uε

1,u
ε
2,b

ε
)
− δ

fm
f ε2
≤ Λ1bε −Λ2 f ε (3.25)

and

cεh4
(
bε
)
≤ Λ3bε −Λ4cε . (3.26)

We now consider the sectorial operators

A1 =−Du∆+MI, A2 =−ε∆+ I and A3 =−Db∆+qbI, (3.27)

in the space X = Lp (Ω), with common domain of definition

D = D(A1) = D(A2) = D(A3) =

{
w ∈W 2,p :

∂w
∂ν

= 0 on ∂Ω

}
, (3.28)

and Re
(

σ
(
A j
))

> 0, j = 1,2,3. Then the fractional powers are well defined

X γ = D
(

Aγ

1

)
= D

(
Aγ

2

)
= D

(
Aγ

3

)
, 0 < γ < 1, (3.29)

with the graph norm

‖x‖Xγ = ‖Aγ

jx‖X , for x ∈ X γ , j = 1,2,3. (3.30)
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Then from Henry (1981) we have the following embeddings

X γ ⊂W 1,p (Ω) for γ >
1
2
, (3.31)

X γ ⊂C0,r (
Ω̄
)

for
r
2
+

n
2p

< γ <
1
2
+

n
2p

, 0 < r < 1, (3.32)

where C0,r (Ω̄) is the space of all Hölder continuous functions with exponent r in Ω.

Notice that for

γ ∈
(

1
2
,
1
2
+

1
2p

)
for p > n, (3.33)

(3.31) and (3.32) are satisfied.

Moreover, since A1,A2 and A3 are sectorial operators, then each of −A1,−A2 and

−A3 is the infinitesimal generator of an analytic semigroup
{

e−tA j
}

t≥0
, j = 1,2,3.

Therefore, there exists a positive constant Cγ such that the following inequality holds

(Henry, 1981)

‖Aγ

je
−A jtw‖X ≤Cγt−γe−ξ jt‖w‖X , for w ∈ X , (3.34)

where 0 < ξ j < Re
(

σ
(
A j
))

, j = 1,2,3, and

‖Aγ

je
−A jtw‖X ≤ kγ‖w‖Xγ , for w ∈ X γ , (3.35)

where kγ positive constant.

Theorem 3.3.1. Let uε
1 (0,x) ,u

ε
2 (0,x) ,b

ε (0,x)∈X γ and f ε (0,x) ,cε (0,x)∈W 1,p (Ω).

If assumptions (3.16)-(3.26) and (3.33) are satisfied, then for any T > 0 there exists a

unique global in time solution
(
uε

1,u
ε
2, f ε ,cε ,bε

)
∈C
(
[0,T ) ; [X γ ]2×

[
W 1,p (Ω)

]2
×X γ

)
to (3.14)-(3.18), which remains bounded and the bounds are ε-independent. Moreover,
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the solution satisfies

(
uε

1,u
ε
2,b

ε
)
∈C1

(
(0,T ) ;

[
X γ
]3)∩C

(
(0,T ) ;

[
W 2,p (Ω)

]3
)
, (3.36)

f ε ,cε ∈C1
(
(0,T ) ;W 1,p (Ω)

)
. (3.37)

Proof. We will prove the existence of a local-in-time solution using the Banach con-

traction theorem. We first focus on the ODEs (3.14c) and (3.14d). We notice that

relation (3.31) implies that uε
1,u

ε
2,b

ε ∈W 1,p (Ω), and since the functions h2 : R×R×

R 7→ R,h3 : R×R 7→ R and h4 : R 7→ R are locally Lipschitz, we have by the prop-

erty of superposition operator that the value of the functions h2,h3 and h4 is also in

W 1,p (Ω) (Runst and Sickel, 1996). The space W 1,p (Ω) for p > n is an algebra with

pointwise multiplication, and thus it follows that the functions
(
uε

1,u
ε
2, f ε ,bε

)
7→ P1 =

h2
(
uε

1,u
ε
2,b

ε
)

f ε − δ

fm
f ε2

and
(
uε

1,u
ε
2,c

ε ,bε
)
7→ P2 = h3

(
uε

1,u
ε
2
)
+ cεh4 (bε) are also

W 1,p-valued. Since the right-hand-side functions of equations (3.14c) and (3.14d) are

locally Lipschitz, it follows from assumption (3.23) and embeddings (3.31)-(3.32) that

the mapping P :
(

W 1,p (Ω)
)5
7→
(

W 1,p (Ω)
)2

,P= (P1,P2), is a locally Lipschitz func-

tion.

For a fixed T > 0 we note that functions

t 7→ f0 +
∫ t

0
P1
(
uε

1 (s) ,u
ε
2 (s) , f ε (s) ,bε (s)

)
ds, (3.38)

t 7→ c0 +
∫ t

0
P2
(
uε

1 (s) ,u
ε
2 (s) ,c

ε (s) ,bε (s)
)

ds, (3.39)

belong to the space C
(
[0,T ] ;W 1,p (Ω)

)
.

Then, the system of the PDEs (3.14a), (3.14b) and (3.14e) with (3.16) can be re-written
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as:
zt = Az+H (z) in ΩT

z(0,x) = z0 (x) in Ω,
(3.40)

with

z =


uε

1

uε
2

bε

 , A =


A1 0 0

0 A1 0

0 0 A3

 ,

and

H (z) =


−∇uε

1 ·F
β

1
[
uε

1,u
ε
2, f ε ,cε ,bε

]
−uε

1

(
∇ ·Fβ

1
[
uε

1,u
ε
2, f ε ,cε ,bε

])
+G1 (z)

−∇uε
2 ·F

β

2
[
uε

1,u
ε
2, f ε ,cε ,bε

]
−uε

2

(
∇ ·Fβ

2
[
uε

1,u
ε
2, f ε ,cε ,bε

])
+h1 (z)

h5
(
uε

1,u
ε
2
)

 ,

or, equivalently, we write that A = A1 × A2 × A3 is sectorial in X × X × X , where

(A1×A2×A3)
(
uε

1,u
ε
2,b

ε
)
=
(
A1uε

1,A2uε
2,A3bε

)
(Henry, 1981), and the mapping H :

(X γ)3 7→ (X)3 ,H = (H1,H2,H3) is defined as the mapping of the right-hand side of

equations (3.14a), (3.14b) and (3.14e). Using similar arguments as before for P, and

assumption (3.22) we deduce that H : (X γ)3 7→ (X)3 is locally Lipschitz continuous.

Let us now denote Y = X×X×W 1,p (Ω)×W 1,p (Ω)×X . For a fixed T > 0 we define

the space

Y γ

T =C
(
[0,T ] ;Y γ

)
, (3.41)

where Y γ = X γ × X γ ×W 1,p (Ω)×W 1,p (Ω)× X γ equipped with the norm ‖y‖Y γ =

max
{
‖y1‖Xγ ,‖y2‖Xγ ,‖y3‖W 1,p(Ω),‖y4‖W 1,p(Ω),‖y5‖Xγ

}
, for y=(y1,y2,y3,y4,y5)∈Y γ .

We define the mapping J : Y γ

T 7→ Y γ

T with J = (J1,J2,J3,J4,J5) given by the following
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relation

J =



J1 = e−A1tu10 +
∫ t

0 e−A1(t−s)H1
(
uε

1 (s) ,u
ε
2 (s) , f ε (s) ,cε (s) ,bε (s)

)
ds

J2 = e−A2tu20 +
∫ t

0 e−A2(t−s)H2
(
uε

1 (s) ,u
ε
2 (s) , f ε (s) ,cε (s) ,bε (s)

)
ds

J3 = f0 +
∫ t

0 P1
(
uε

1 (s) ,u
ε
2 (s) , f ε (s) ,bε (s)

)
ds

J4 = c0 +
∫ t

0 P2
(
uε

1 (s) ,u
ε
2 (s) ,c

ε (s) ,bε (s)
)

ds

J5 = e−A3tb0 +
∫ t

0 e−A3(t−s)H3
(
uε

1 (s) ,u
ε
2 (s)

)
ds.

(3.42)

Let R > 0 be such that max
{
‖u10‖Xγ ,‖u20‖Xγ ,‖b0‖Xγ

}
< R/(2kγ), where kγ satisfies

relation (3.35), and max
{
‖ f0‖W 1,p(Ω),‖c0‖W 1,p(Ω)

}
< R/2 for

(
u10,u20, f0,c0,b0

)
∈

Y γ . We define the ball

BR =
{

y ∈ Y γ

T : ‖y‖Y γ

T
≤ R

}
⊂ Y γ

T . (3.43)

Thus, there exists MR > 0 such that supy∈BR
‖(H1,H2,P1,P2,H3)(y)‖Y <MR. We show

that J maps BR into itself and that J is a strict contraction. By using relations (3.34)-

(3.35) and (3.42) we obtain, for T small enough,

‖J1
[
uε

1,u
ε
2, f ε ,cε ,bε

]
(t)‖Xγ ≤ kγ‖u10‖Xγ +MR

∫ T

0
Cγ (t− s)−γ e−ξ1(t−s)ds

≤ R
2
+MR

Cγ

1− γ
T 1−γ . (3.44)

Similarly we obtain

‖J2
[
uε

1,u
ε
2, f ε ,cε ,bε

]
(t)‖Xγ ≤ R

2
+MR

Cγ

1− γ
T 1−γ , (3.45)

and

‖J5
[
uε

1,u
ε
2
]
(t)‖Xγ ≤ R

2
+MR

Cγ

1− γ
T 1−γ . (3.46)
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Moreover, for J3 and J4 we have

‖Jl
[
uε

1,u
ε
2, f ε ,cε ,bε

]
(t)‖W 1,p(Ω) ≤

R
2
+MRT, l = 3,4. (3.47)

Hence, we can choose T sufficiently small such that
{

MR
Cγ

1− γ
T 1−γ ,MRT

}
<

R
2

, to

assert that J (BR)⊂ BR. We note also that J
[
uε

1,u
ε
2, f ε ,cε ,bε

]
is continuous from [0,T ]

to Eγ , as it can be easily proved using inequality (3.35). Thus J maps BR into itself.

If y1,y2 ∈ BR then for t ∈ [0,T ] we have

‖J1

[
y1
]
(t)− J1

[
y2
]
(t)‖Xγ ≤

∫ t

0
‖Aγ

1e−A1(t−s)‖X‖H1

(
y1 (s)

)
−H1

(
y2 (s)

)
‖X ds

≤CγLR

∫ T

0
(t− s)−γ e−ξ1(t−s)‖y1− y2‖Y γ

T
,

where LR is the Lipschitz constant of H. Similar estimates can be obtained for the

differences of the rest of the arguments. Therefore it follows that

‖J
[
y1
]
− J
[
y2
]
‖Y γ

T
≤ 1

2
‖y1− y2‖Y γ

T
for all y1,y2 ∈ BR. (3.48)

Hence for T small enough J is a contraction mapping. Therefore, by Banach fixed point

theorem, J has a unique fixed point in BR. Moreover, functions f ε ,cε : [0,T ] 7→C (Ω)

are locally Lipschitz, thus f ε ,cε ∈W 1,∞
(
[0,T ] ;W 1,p (Ω)

)
(see Theorem 4, Sec. 5.8.2,

in Evans (2010)). Therefore, it follows from Sec. 3.3 in Henry (1981) that there is a

maximal time of existence Tmax of regular solution
(
uε

1,u
ε
2,b

ε
)
∈C

(
[0,Tmax) ;(X γ)3

)
such that for t ∈ (0,Tmax) we have

(
uε

1,u
ε
2,b

ε
)
∈D(A). Then, from Henry (1981) (Sec.

3.3 and Theorem 3.5.2 in Sec. 3.5) we obtain that
(
uε

1,u
ε
2,b

ε
)
∈Cζ

(
(0,Tmax) ;

(
Xβ

)3
)

for some ζ ,β ∈ (0,1). Hence (3.14a), (3.14b) and (3.14e) are satisfied in a pointwise

manner on (0,Tmax)×Ω. It follows now from relations (3.21) and (3.32), and the reg-

ularity theory of parabolic systems, that uε
1,u

ε
2 and bε are classical solutions of (3.14a),

(3.14b) and (3.14e), respectively.
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Let us now prove the uniqueness of solution. Let y1 =
(

u1
1,u

1
2, f 1,c1,b1

)
and y2 =(

u2
1,u

2
2, f 2,c2,b2

)
be two solutions of system (3.14), with the same initial conditions.

By linearity y = y1− y2 is a solution of (3.14) with zero initial conditions. Then, since

all nonlinear terms are Lipschitz continuous and the components of the solution are

L∞-bounded functions on bounded time intervals, we have

d
dt
‖y‖2

L2(Ω) ≤ k0‖y‖2
L2(Ω), for t ∈ [0,Tmax) ,y(0) = 0, (3.49)

for a constant k0, and since ‖y(0)‖L2(Ω) = 0 , Gronwall’s inequality implies that

‖y(t)‖L2(Ω) = 0 for all t ≥ 0, so y = 0.

The equation for the ECM density given by (3.14c) does not involve any spatial deriva-

tives and x behaves as a parameter. Thus, it is an ordinary differential equation in which

the right-hand side is zero when f ε (t,x) = 0 and for which local Lipschitz conditions

hold. Therefore, from Picard-Lindelöf theorem we obtain a local unique solution for

the initial value problem (3.14c), with f ε (0,x) = 0. In the same way we obtain a

local unique solution for the initial value problem (3.14c), with f ε (0,x) ≥ 0. There-

fore, since f ε (0,x) ≥ 0, from uniqueness of solutions we have f ε (t,x) ≥ 0 for all

t > 0,x ∈ Ω. Then from maximum principle arguments it follows from system (3.40)

that uε
1,u

ε
2,b

ε ≥ 0 on [0,Tmax)×Ω.

Finally, the equation for the integrin density given by (3.14d) can be treated in a sim-

ilar manner as equation (3.14c) for the ECM density. Again we have an ordinary

differential equation in which the right-hand side is greater than or equal to zero when

cε (t,x) = 0, and for which local Lipschitz conditions hold. Therefore, cε (t,x)≥ 0 on

[0,Tmax)×Ω.

We proceed now with the proof of global in time solution. Let us first integrate equation

(3.14a) on Ω. Then, from the boundary conditions (3.17)-(3.18) and relation (3.24) we
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obtain
d
dt

∫
Ω

uε
1 (t,x)dx≤ B1|Ω|− (M+D1)

∫
Ω

uε
1 (t,x)dx. (3.50)

Thus Gronwall’s inequality yields the estimate

sup
t∈[0,Tmax)

‖uε
1 (t, ·)‖L1(Ω) ≤max

{
B1|Ω|

M+D1
,‖u10‖L1(Ω)

}
:= Mu1. (3.51)

Similarly we have

sup
t∈[0,Tmax)

‖uε
2 (t, ·)‖L1(Ω) ≤max

{
MMu1 +B2|Ω|

D2
,‖u20‖L1(Ω)

}
:= Mu2, (3.52)

and

sup
t∈[0,Tmax)

‖bε (t, ·)‖L1(Ω) ≤max
{

µ1Mu1 +µ2Mu2

qb
,‖b0‖L1(Ω)

}
:= Mb, (3.53)

hence from relations (3.25)-(3.26) and Gronwall’s inequality again we have

sup
t∈[0,Tmax)

‖ f ε (t, ·)‖L1(Ω) ≤max
{

Λ1Mb

Λ2
,‖ f0‖L1(Ω)

}
:= M f , (3.54)

and

sup
t∈[0,Tmax)

‖cε (t, ·)‖L1(Ω) ≤max
{

p1Mu1 + p2Mu2 +Λ3Mb

Λ4
,‖c0‖L1(Ω)

}
:= Mc. (3.55)
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Thus, from relations (3.19)-(3.22) we have for all t ∈ [0,Tmax)∥∥∥∥∥∥
 n

∑
j=1

∂x jF
β

i
[
uε

1,u
ε
2, f ε ,cε ,bε

]+Fβ

i
[
uε

1,u
ε
2, f ε ,cε ,bε

]∥∥∥∥∥∥
L∞(Ω)

≤ LN

(
‖uε

1 (t)‖L1(Ω)

+‖uε
2 (t)‖L1(Ω)+‖ f ε (t)‖L1(Ω)

)
≤ LN

(
Mu1 +Mu2 +M f

)
, i = 1,2.

(3.56)

From system (3.40), we rewrite the elliptic operators in the form:

−Du∆uε
1 +

n

∑
j=1

b j
1∂x ju

ε
1 +d1uε

1,

− ε∆uε
2 +

n

∑
j=1

b j
2∂x ju

ε
2 +d2uε

2,

−Db∆bε +qbbε ,

where we denote by b j
i =Fi j

[
uε

1,u
ε
2, f ε ,cε ,bε

]
and by di =∑

n
j=1 ∂x jF

β

i [uε
1,u

ε
2, f ε , cε ,bε ],

i = 1,2, j = 1, . . . ,n. From relation (3.56) it follows that b j
i and di, i = 1,2, are bounded

on (0,∞)×Ω. Hence, from the fact that the reaction terms are dissipative (see Cholewa

and Dlotko (2000)), it follows by Moser-Alikakos method (see Cholewa and Dlotko

(2000), Section 9.3) that the uniform in time L1 (Ω) estimate implies the uniform in

time L∞ (Ω) estimate for the solution
(
uε

1,u
ε
2,b

ε
)

of (3.40). Therefore, there is a con-

stant M∞ independent of ε (see Remark 3.3.1), such that

sup
t∈[0,Tmax)

(
‖uε

1 (t)‖L∞(Ω)+‖uε
2 (t)‖L∞(Ω)+‖bε (t)‖L∞(Ω)

)
< M∞. (3.57)

Moreover, from (3.25)-(3.26) and (3.57), and the comparison theorem it follows that

sup
t∈[0,Tmax)

‖ f ε (t)‖L∞(Ω) < max
{
‖ f0‖L∞(Ω),

Λ1M∞

Λ2

}
, (3.58)
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and

sup
t∈[0,Tmax)

‖cε (t)‖L∞(Ω) < max
{
‖c0‖L∞(Ω),(p1 + p2)M∞,

Λ3M∞

Λ4

}
. (3.59)

Relations (3.57)-(3.59) can be used to show that

‖Hi
(
uε

1 (s) ,u
ε
2 (s) , f ε (s) ,cε (s) ,bε (s)

)
‖X ≤Mγi

(
1+‖uε

i (t)‖Xγ

)
for t ∈ [0,Tmax)

(3.60)

and

‖H3
(
uε

1 (s) ,u
ε
2 (s)

)
‖X ≤Mγ3 for t ∈ [0,Tmax) , (3.61)

where Mγi,Mγ3 , i = 1,2, are constants depending on M∞.

We show now the global existence of solution by contradiction. Let us suppose that

for Tmax < ∞ we have

sup
t∈[0,Tmax)

(
‖uε

1 (t)‖Xγ +‖uε
2 (t)‖Xγ +‖ f ε (t)‖W 1,p(Ω)+‖cε (t)‖W 1,p(Ω)+

+‖bε (t)‖Xγ

)
→ ∞ as t→ Tmax. (3.62)

From relation (3.60) and Volterra type integral inequality (Cholewa and Dlotko, 2000)

it follows, as in Corollary 3.3.5 in Henry (1981), that

sup
t∈[0,Tmax)

‖uε
i (t)‖Xγ ≤

(
kγ

∥∥∥uε
i0

∥∥∥
Xγ

+CγMγi

∫ Tmax

0

e−ξi(t−s)

(t− s)γ

)
CTmax ,

where CTmax := CCγ Mγi ,γ,Tmax , i = 1,2, is a continuous function increasing with respect

to Tmax, while for the function bε we have from relation (3.61) that

sup
t∈[0,Tmax)

‖bε (t)‖Xγ ≤

(
kγ

∥∥bε
0
∥∥

Xγ +CγMγ3

∫ Tmax

0

e−ξ3(t−s)

(t− s)γ

)
.
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Note that kγ and Cγ are ε-independent constants since 0 < ε ≤ 1 (see Theorem 1.3.4 in

Henry (1981)). We conclude that

sup
t∈[0,Tmax)

(
‖uε

1 (t)‖Xγ +‖uε
2 (t)‖Xγ +‖bε (t)‖Xγ

)
< ∞. (3.63)

Whence, by (3.31) it follows now that

sup
t∈[0,Tmax)

(
‖uε

1 (t)‖W 1,p(Ω)+‖uε
2 (t)‖W 1,p(Ω)+‖bε (t)‖W 1,p(Ω)

)
< ∞. (3.64)

By equation (3.14c) and direct calculations, we obtain

∇ f ε
t =

(
−α∇uε

1−β∇uε
2 +θβ ∇bε

)
f ε +h6∇ f ε , (3.65)

where

h6 := h2−
2δ

fm
f ε =−αuε

1−βuε
2 +θβ bε +δ − 2δ

fm
f ε ≤ θβ bε +δ . (3.66)

For notational convenience, in what follows we denote various nonnegative constants,

which are independent of T or t, by c j, j = 1,2, . . . ,8.

Multiplying (3.65) by p∇ f ε |∇ f ε |p−2, using (3.66), Young’s inequality, and the esti-

mates (3.57), (3.58) and (3.64), and integrating over Ω, we deduce that

d
dt
‖∇ f ε‖p

Lp(Ω)
≤p

∫
Ω

(
−α∇uε

1−β∇uε
2 +θβ ∇bε

)
f ε

∇ f ε |∇ f ε |p−2dx

+ pθβ

∫
Ω

bε |∇ f ε |pdx+ pδ‖∇ f ε‖p
Lp(Ω)

≤pmax
{

α,β ,θβ

}
‖ f ε‖L∞(Ω)

(∫
Ω

|∇uε
1||∇ f ε |p−1dx

+
∫

Ω

|∇uε
2||∇ f ε |p−1dx+

∫
Ω

|∇bε ||∇ f ε |p−1dx

)
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+ p
(

θβ‖bε‖L∞(Ω)+δ

)
‖∇ f ε‖p

Lp(Ω)

≤c1

(
‖∇uε

1‖
p
Lp(Ω)

+‖∇uε
2‖

p
Lp(Ω)

+‖∇bε‖p
Lp(Ω)

)
+ c2‖∇ f ε‖p

Lp(Ω)
.

By Gronwall’s inequality and previous estimates we have

sup
t∈[0,Tmax)

‖ f ε (t)‖W 1,p(Ω) ≤ c3ec4t , for t ≥ 0. (3.67)

Similarly, by equation (3.14d) and direct calculations, we obtain

∇cε
t = p1∇uε

1 + p2∇uε
2 + p3∇bεcε + p3bε

∇cε −q∇cε . (3.68)

Multiplying now (3.68) by p∇cε |∇cε |p−2, using the estimates (3.57), (3.59) and (3.64),

as well as Young’s inequality, and integrating over Ω, we obtain

d
dt
‖∇cε‖p

Lp(Ω)
≤pp1

∫
Ω

∇uε
1∇cε |∇cε |p−2dx+ pp2

∫
Ω

∇uε
2∇cε |∇cε |p−2dx

+ pp3

∫
Ω

∇bεcε
∇cε |∇cε |p−2dx+ pp3

∫
Ω

bε |∇cε |pdx− pq
∫

Ω

|∇cε |pdx

≤pmax
{

p1, p2, p3‖cε‖L∞(Ω)

}(∫
Ω

|∇uε
1||∇cε |p−1dx

+
∫

Ω

|∇uε
2||∇cε |p−1dx+

∫
Ω

|∇bε ||∇cε |p−1dx

)
+ p

(
p3‖bε‖L∞(Ω)−q

)
‖∇cε‖p

Lp(Ω)

≤c5

(
‖∇uε

1‖
p
Lp(Ω)

+‖∇uε
2‖

p
Lp(Ω)

+‖∇bε‖p
Lp(Ω)

)
+ c6‖∇cε‖p

Lp(Ω)
.

This, together with Gronwall’s inequality and previous estimates, yields

sup
t∈[0,Tmax)

‖cε (t)‖W 1,p(Ω) ≤ c7ec8t , for t ≥ 0. (3.69)
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Bounds (3.63), (3.67) and (3.69) contradict (3.62), therefore the solution exists glob-

ally. �

Remark 3.3.1. It is easy to see how the proof of Moser-Alikakos method in Cholewa

and Dlotko (2000) can be used in our case to show the ε-independent L∞-estimates

given in relation (3.57). Following along the same lines with the proof of Lemma

9.3.1 in Cholewa and Dlotko (2000), we obtain a constant c′ (as described in relation

(9.3.11) of the proof in Cholewa and Dlotko (2000)) such that

c′ := max
{

const.a0,1,D|Ω|,K2
}
, (3.70)

where a0 will be each of the diffusion coefficients Du,ε and Db. Using the fact that

0 < Du,ε,Db ≤ 1 it follows that c′ is ε-independent.

By this result, it follows that the rest of the estimates given by relations (3.58)-(3.61),

(3.63)-(3.64), (3.67) and (3.69) are ε-independent.

3.3.2 Vanishing viscosity limit

Now we are ready to take the vanishing viscosity limit ε→ 0 and prove the existence of

solution for system (3.10). First we introduce the notion of a weak solution to problem

(3.10)-(3.11) with (3.12)-(3.13).

Definition 3.3.1. A function (u1,u2, f ,c,b)∈L∞
(
Ω̄T
)
∩L∞

(
0,T ;

[
L1 (Ω)

]5
)

is called

a weak solution of the problem (3.10)-(3.11) with (3.12)-(3.13) if
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(i) For all φ ∈C∞
0 (ΩT ) we have

−
∫

Ω̄T

u1φt−Du∇u1 ·∇φ +u1Fβ

1 [u, f ,c,b] ·∇φ

=
∫

Ω̄T

[
−Mu1 +G1 (u,b)

]
φ , (3.71)

−
∫

Ω̄T

u2φt +u2Fβ

2 [u, f ,c,b] ·∇φ =
∫

Ω̄T

[
Mu1 +G2 (u,b)

]
φ , (3.72)

−
∫

Ω̄T

f φt =
∫

Ω̄T

[
−αu1 f −βu2 f +θβ b f +δ f

(
1− f

fm

)]
φ , (3.73)

−
∫

Ω̄T

cφt =
∫

Ω̄T

[p1u1 + p2u2 + p3bc−qc]φ , (3.74)

−
∫

Ω̄T

bφt−Db∇b ·∇φ =
∫

Ω̄T

[µ1u1 +µ2u2−qbb]φ . (3.75)

(ii) The functions u1,u2, f ,c and b satisfy the initial conditions u10 (x), u20 (x), f0 (x),

c0 (x) and b0 (x), respectively, given by (3.11), in the weak sense, i.e., there exists

a set E ⊂ [0,T ] of Lebesgue measure zero such that u1 (t0, ·) ,u2 (t0, ·) , f (t0, ·),

c(t0, ·) and b(t0, ·) are defined almost everywhere in Ω for t0 ∈ [0,T ] \ E and

satisfy

lim
t0→0,t0∈[0,T ]\E

∫
Ω

|ui (t0,x)−ui0 (x)|dx = 0, i = 1,2, (3.76)

lim
t0→0,t0∈[0,T ]\E

∫
Ω

| f (t0,x)− f0 (x)|dx = 0, (3.77)

lim
t0→0,t0∈[0,T ]\E

∫
Ω

|c(t0,x)− c0 (x)|dx = 0, (3.78)

lim
t0→0,t0∈[0,T ]\E

∫
Ω

|b(t0,x)−b0 (x)|dx = 0. (3.79)

We show now the L1-estimates with respect to time, which will be used in the proof of

existence of solution to model (3.10).

Theorem 3.3.2. Let the assumptions of Theorem 3.3.1 hold. Then for each ρ > 0 there

exist nondecreasing functions ω
ui
ρ ,ω

f
ρ ,ω

c
ρ ,ω

b
ρ ∈ C

(
[0,∞)

)
with ω

ui
ρ (0) = ω

f
ρ (0) =
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ωc
ρ (0) = ωb

ρ (0) = 0, i = 1,2, such that for any ε ∈ (0,1] and for any t, t + ∆t ∈

[0,T ] ,∆t ≥ 0 we have for a ball Bρ =
{
|x| ≤ ρ

}
that

∫
Bρ

|uε
i (t +∆t,x)−uε

i (t,x)|dx≤ ω
ui
ρ (∆t) , i = 1,2, (3.80)∫

Bρ

| f ε (t +∆t,x)− f ε (t,x)|dx≤ ω
f

ρ (∆t) , (3.81)∫
Bρ

|cε (t +∆t,x)− cε (t,x)|dx≤ ω
c
ρ (∆t) , (3.82)∫

Bρ

|bε (t +∆t,x)−bε (t,x)|dx≤ ω
b
ρ (∆t) . (3.83)

Proof. Let us consider a function g ∈C2
0 (Ω) with supp(g) ⊂ Bρ . Then from the esti-

mates obtained by Theorem 3.3.1 we have

∣∣∣∣∫
Ω

(
uε

2 (t +∆t,x)−uε
2 (t,x)

)
g(x)dx

∣∣∣∣= ∣∣∣∣∫
Ω

g(x)
∫ t+∆t

t
uε

2t
(s,x)dsdx

∣∣∣∣
≤
∣∣∣∣∫ t+∆t

t

∫
Ω

εuε
2 (s,x)∆g(x)dxds

∣∣∣∣
+

∣∣∣∣∫ t+∆t

t

∫
Ω

uε
2 (s,x)Fβ

2
[
uε

1,u
ε
2, f ε ,cε ,bε

]
∇g(x)dxds

∣∣∣∣
+

∣∣∣∣∫ t+∆t

t

∫
Ω

[
Muε

1 (s,x)+G2
(
uε

1,u
ε
2,b

ε
)]

g(x)dxds
∣∣∣∣

≤C (ρ,M∞)∆t‖g‖C2(Ω) .

Similarly we can obtain estimates for u1, f ,c and b. Then, as in Hillen et al. (2001),

the L1-estimates of uε
1,u

ε
2, f ε ,cε and bε with respect to time t follow. �

Theorem 3.3.3. Let ui (0,x) ,b(0,x) ∈ X γ , i = 1,2, and f (0,x) ,c(0,x) ∈W 1,p (Ω). If

assumptions of Theorem 3.3.1 are satisfied, then there exists a weak solution (u1,u2, f ,c,b)

of model (3.10) with (3.11)-(3.13), such that for all T > 0 the weak solution satisfies
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for almost all (t,x) ∈ Ω̄T

0≤ u1 (t,x) ,u2 (t,x) , f (t,x) ,c(t,x) ,b(t,x)≤C (M∞) . (3.84)

Proof. By Theorem 3.3.1, we have that for all 0 < ε ≤ 1 and T > 0 there exists a clas-

sical solution
(
uε

1,u
ε
2, f ε ,cε ,bε

)
of problem (3.14)-(3.16), which is uniformly bounded

in L∞
(
Ω̄T
)
. From estimates (3.64), (3.67) and (3.69) it follows that

sup
t∈[0,T )

(
‖uε

1 (t)‖W 1,1(Ω)+‖uε
2 (t)‖W 1,1(Ω)+‖ f ε (t)‖W 1,1(Ω)+‖cε (t)‖W 1,1(Ω)

+‖bε (t)‖W 1,1(Ω)

)
<C. (3.85)

We consider for m ∈ N a sequence εm with εm → 0 for m→ ∞. Then by estimate

(3.85) and L1-estimates with respect to time, obtained from Theorem 3.3.2, it fol-

lows by Fréchet-Kolmogorov theorem that the sequences
{

uεm
1 ,uεm

2 , f εm,cεm ,bεm
}

are

precompact in L1
loc

(
Ω̄T
)
. Using a standard diagonal extraction argument we obtain

subsequences, denoted also as
{

uεm
1 ,uεm

2 , f εm ,cεm,bεm
}

, and functions u1, u2, f , c,

b∈ L1
loc

(
Ω̄T
)

with uεm
i → ui, i = 1,2, f εm→ f , cεm→ c and bεm→ b in L1

loc

(
Ω̄T
)
. This

implies that the convergence is even pointwise a.e. for a suitable subsequence. From

uniform L1-bounds of
{

uεm
1 (t, ·) ,uεm

2 (t, ·) , f εm (t, ·) ,cεm (t, ·) ,bεm (t, ·)
}

we have that

u1 (t, ·) ,u2 (t, ·) , f (t, ·) ,c(t, ·) ,b(t, ·) ∈ L1 (Ω). Multiplying now equations (3.10a)-

(3.10e) with a test function φ ∈ C∞
0 (ΩT ), taking the integral and integrating by parts
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over Ω̄T yields

−
∫

Ω̄T

uεm
1 φt +Duuεm

1 ·∆φ +uεm
1 Fβ

1
[
uεm, f εm,cεm ,bεm

]
·∇φ

=
∫

Ω̄T

[
−Muεm

1 +G1
(
uεm,bεm

)]
φ , (3.86)

−
∫

Ω̄T

uεm
2 φt +uεm

2 Fβ

2
[
uεm , f εm,cεm,bεm

]
·∇φ =

∫
Ω̄T

[
Muεm

1 +G2
(
uεm,bεm

)]
φ

+ ε

∫
Ω̄T

uεm
2 ∆φ , (3.87)

−
∫

Ω̄T

f εmφt =
∫

Ω̄T

[
−αuεm

1 f εm−βuεm
2 f εm +θβ bεm f εm +δ f εm

(
1− f εm/ fm

)]
φ ,

(3.88)

−
∫

Ω̄T

cεmφt =
∫

Ω̄T

[
p1uεm

1 + p2uεm
2 + p3bεmcεm−qcεm

]
φ , (3.89)

−
∫

Ω̄T

bεmφt +Dbbεm ·∆φ =
∫

Ω̄T

[
µ1uεm

1 +µ2uεm
2 −qbbεm

]
φ . (3.90)

The last term in (3.87) vanishes in the limit due to the uniform L∞-bound on
{

uεm
2
}

and from the pointwise convergence the Lebesgue’s dominated convergence theorem

ensures that the limit (u1,u2, f ,c,b) satisfies (3.71)-(3.75). Moreover, (u1,u2, f ,c,b)∈

L∞
(
Ω̄T
)
, and by relations (3.57)-(3.59) and Remark 3.3.1 we obtain the bounds (3.84).

It remains to show the initial conditions (3.76)-(3.79). Let us first define the set E ⊂

[0,T ] such that for all t0 ∈ [0,T ]\E we have for almost all x∈Ω that (t0,x) is Lebesgue

point of u1,u2, f ,c and b. The set E has Lebesgue measure zero. For any fixed t0 ∈

[0,T ]\E and ρ > 0 it follows from Theorem 3.3.2 that

∫
Bρ

|ui (t0,x)−ui0 (x)|dx≤
∫

Bρ

|ui (t0,x)−uεm
i (t0,x)|dx+ω

ui
ρ (t0) , i = 1,2.

The pointwise convergence of
{

uεm
i
}
, i = 1,2, yields

∫
Bρ

|ui (t0,x)−ui0 (x)|dx≤ ω
ui
ρ (t0) , i = 1,2.
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The properties of ω
ui
ρ (t0) , i = 1,2, give (3.76) since ui has compact support. Similarly

we obtain relations (3.77)-(3.79). �

Remark 3.3.2. Note that a similar approach can be applied also for the proof of ex-

istence of solutions to the model presented in Chapter 2 in Ω ⊂ Rn. A detailed proof

will be the subject of future work.

3.4 Numerical results

3.4.1 Non-dimensionalisation of the model

In this Section we investigate numerically the type of patterns exhibited by model

(3.10) in the one dimensional case. Let Rs > 0 be the cells sensing radius (i.e., the

maximum range over which cells can detect other surrounding cells). We consider

a bounded domain Ω = [0,Rs], and following the approach in Gerisch and Chaplain

(2008) we choose the nonlocal terms Fβ

i [u, f ,c,b] , i = 1,2, to be given by

Fβ

i [u, f ,c,b] (t,x) :=
1
Rs

∫ Rs

0

1

∑
k=0

η (k)K (r)gi

(
υ
(
t,x+ rη (k)

)
,c(t,x) ,b(t,x)

)
dr,

(3.91)

where η (k) = (−1)k ,k = 0,1 and gβ

i , i = 1,2, as described in Section 3.2 (see relation

(3.5)).

As in Chapter 2, let us define the kernel K, assuming that it is attractive at medium/long

ranges (i.e., at the edges of the cell) and repulsive at very short ranges (i.e., over cell

surface), and thus can be defined as

K (x) := qaKa (x)−qrKr (x) , (3.92)
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with qa and qr describing the magnitudes of attractive and repulsive interactions, re-

spectively, and Ka(x) and Kr(x) describe the spatial ranges over which these inter-

actions take place. Similar to Chapter 2 (equations (2.31)), we consider translated

Gaussian attraction and repulsion kernels (as in Eftimie et al. (2007)):

K (x) =
qa√
2πm2

a
e
− (x−sa)2

2m2a − qr√
2πm2

r
e
− (x−sr)2

2m2r , (3.93)

where sa and sr represent half of the length of attraction and repulsion ranges, respec-

tively, with sr < sa. Also, m j = s j/8, j = a,r, represent the width of the attractive and

the repulsive interaction ranges.

To perform numerical simulations we first non-dimensionalise system (3.10) by using

the following quantities:

t̃ =
t
τ
, x̃ =

x
L0

, ũi =
ui

ku
, f̃ =

f
fm
, c̃ =

c
cm

, b̃ =
b

bm
, R̃s =

Rs

L0
, r̃ =

r
L0

,

S̃
(

c̃, b̃
)
=

τku

L2
0

Sβ

(
cmc̃+bmb̃

)
, S̃i

(
c̃, b̃
)
=

τku

L2
0

Sβ

i

(
cmc̃+bmb̃

)
,

C̃i

(
c̃, b̃
)
=

τ fm

L2
0

Cβ

i

(
cmc̃+bmb̃

)
, i = 1,2. (3.94)

The length scale, L0, is in the range of 0.1-1cm, and is defined as the maximum invasion

distance of the cancer cells at the early stage of invasion (Anderson et al., 2000). The

time scale is defined as τ := L2
0/Dτ , where Dτ is the characteristic diffusion coefficient

(∼ 10−6cm2s−1). Furthermore, we rescale the cancer cells, the ECM, the integrins

and the TGF-β with ku, fm,cm and bm, respectively. Here ku is the carrying capacity

of the cancer cell populations and it is taken to be ∼ 6.7 · 107cell/volume, and fm is

the maximum ECM density at which the ECM fills up all available physical space

and it is taken to be equal to 4 mg/volume, as in Domschke et al. (2014). Finally, cm

is the maximum integrin density and it is taken to be 5 · 104 integrins per cell (as in

Benedetto et al. (2006)), while bm is the maximum TGF-β concentration taken to be
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equal to 141.59 ng/volume (as in Khan et al. (2012)).

We choose the dimensionless functions K̃ (r̃) :=L0K (L0r̃)=L0K (r) and
˜

gβ

i

(
ũ, f̃ , c̃, b̃

)
:=(

τ/L2
0

)
gβ

i (u, f ,c,b) , i= 1,2. Therefore, the nonlocal terms are given by
˜

Fβ

i

[
ũ, f̃ , c̃, b̃

]
:=(

τ/L0
)

Fβ

i [u, f ,c,b] , i = 1,2.

Finally, we obtain the dimensionless parameters:

D̃u =
Du

Dτ

, D̃b =
Db

Dτ

, M̃ = τM, α̃ = ταku, β̃ = τβku, θ̃β = τθβ bm, δ̃ = τδ ,

p̃3 = τ p3bm, q̃ = τq, q̃b = τqb, r̃i = τri, p̃i =
τ piku

cm
and µ̃i =

τµiku

bm
, i = 1,2.

(3.95)

After dropping the tildes for notational convenience, we obtain the following non-

dimensionalised system:

∂u1

∂ t
= Du

∂ 2u1

∂x2 −
∂

∂x

(
u1Fβ

1 [u, f ,c,b]
)
−Mu1 + r1u1 (1−u1−u2)(1− cbb) ,

(3.96a)

∂u2

∂ t
=− ∂

∂x

(
u2Fβ

2 [u, f ,c,b]
)
+Mu1 + r2u2 (1−u1−u2)(1+ cbb) , (3.96b)

∂ f
∂ t

=−αu1 f −βu2 f +θβ b f +δ f (1− f ) , (3.96c)

∂c
∂ t

= p1u1 + p2u2 + p3bc−qc, (3.96d)

∂b
∂ t

= Db
∂ 2b
∂x2 +µ1u1 +µ2u2−qbb. (3.96e)
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3.4.2 Pattern formation

As in Chapter 2, we discretise our model by using a time-splitting approach. We use a

Crank-Nicolson scheme to propagate the solution of the diffusion term. Then, we use

the Nessyahu-Tadmor scheme (Nessyahu and Tadmor, 1990) for the time-propagation

of the advection terms. Finally, for the time-propagation of the reaction terms we

use a fourth order Runge-Kutta algorithm, where the integrals are further discretized

using the Simpson’s rule. All simulations are performed on a domain of length L = 10

with periodic boundary conditions (introduced to approximate the dynamics on an

infinite domain). For this reason, the integrals are wrapped-up at the boundaries. The

simulations are ran for times up to t = 1000, but for clarity in Figures 3.2-3.5 we show

mainly the dynamics for t ≤ 400. If the patterns do not reach a steady state before

t = 400, we add inset figures showing the dynamics for t ≤ 1000.

The initial conditions for the cancer cell populations are small random perturbations

of rectangular-shaped aggregations located in the middle of the domain

ui(0,x) =

 uc
i + rand(0,10−4), x ∈ (L/2−1,L/2+1)

0, everywhere else
(3.97)

with uc
1 = 0 and uc

2 = 0.1. As in Chapter 2, for the ECM density, f , we assume that the

tumour has already degraded some of its surrounding tissues:

f (0,x) = 1−0.5u1 (0,x)−0.5u2 (0,x) . (3.98)

Finally, the integrin density and TGF-β concentration, c and b, respectively, are pro-

portional to the initial tumour cell density

c(0,x) = 0.5u1 (0,x)+0.5u2 (0,x) , (3.99)
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and

b(0,x) = 0.05u1 (0,x)+0.05u2 (0,x) . (3.100)

To investigate the effect of TGF-β signalling on cell proliferation, movement and ag-

gregation (the last two aspects being controlled by cell adhesion), we focus on three

possible cases for the magnitudes of cell-cell and cell-matrix adhesion. For each of

these three cases, we investigate the dynamics of u1 and u2 populations when TGF-β is

absent and does not influence cell proliferation or cell adhesion (i.e., for cb = abi = db =

ebi = θβ = p3 = µ1 = µ2 = 0, i = 1,2), and when TGF-β is present and influences both

cell proliferation and cell adhesion (i.e., for cb = 20 and abi,db,ebi,θβ , p3,µ1,µ2,,

0, i = 1,2).
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Figure 3.2: Patterns exhibited by model (3.96) showing the effect of TGF-β on cancer
cell density, for cell-matrix adhesion greater than cell-cell adhesion, i.e., s∗1 = 1.8,s∗2 =
0.6,s∗ = 1,c∗1 = 1.9 and c∗2 = 2.5. The rest of model parameters are given in Table 3.2.
(a), (b) Density of u1 and u2 populations in the absence of TGF-β ; (a’), (b’) Density
of u1 and u2 populations in the presence of TGF-β .

89



(a’)

ti
m

e

(t
,x

)

(t
,x

)
1

u

space

space

(b)(a)

ti
m

e

u

ti
m

e

2
2
(t

,x
)

u

1
(t

,x
)

u

ti
m

e

(b’)

βNo TGF−

Yes TGF−β
space

space

Figure 3.3: Patterns exhibited by model (3.96) showing the effect of TGF-β on cancer
cell density, for cell-cell adhesion greater than cell-matrix adhesion, i.e., s∗1 = 2.4,s∗ =
2.1,s∗2 = 2,c∗1 = 1.1 and c∗2 = 0.9. The rest of model parameters are given in Table 3.2.
(a), (b) Density of u1 and u2 populations in the absence of TGF-β . The inset in panel
(b) shows the long-term dynamics of u2(t,x) (for t ≤ 1000); (a’), (b’) Density of u1
and u2 populations in the presence of TGF-β .

(i) Cell-cell adhesion < cell-matrix adhesion. To investigate the effect of greater

cell-matrix adhesion, we choose s∗1 = 1.8,s∗2 = 0.6,s∗ = 1,c∗1 = 1.9 and c∗2 = 2.5

and the rest of model parameters as given in Table 3.2. We see in Figs. 3.2(a)-

(b) that in the absence of TGF-β , the population of early-stage cancer cells (u1)

decreases, while the population of late-stage cancer cells (u2) increases and dom-

inates the long-term dynamics. This behaviour is expected due to the mutation

term “−Mu1”, and due to large cell-matrix adhesion, which impedes cells to

move and thus leads to the formation of stationary pulses for t > 50. Consid-

ering now the effect of TGF-β , we see in Figs. 3.2(a’)-(b’) that population u1

vanishes faster, due to the presence of antiproliferative and proapoptotic signals
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from TGF-β (described by cb > 0 in equation (3.96a)). Population u2 persists

and increases significantly, due to the promoting effects of TGF-β on the late

stages of cancer, which also induces the movement of the cancer cells (via EMT)

thus leading to their spread over the domain until they reach the boundaries.
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Figure 3.4: Patterns exhibited by model (3.96) showing the effect of the TGF-β on the
cancer cell density for the same cell-cell and cell-matrix adhesion, i.e., s∗i = s∗ = c∗i =
0.8 and ai = d = ei = 0.5, i = 1,2. The rest of model parameters are given in Table
3.2. (a), (b) Density of u1 and u2 populations in the absence of TGF-β . The inset in
panel (b) shows the long-term dynamics of u2(t,x) (for t ≤ 1000); (a’), (b’) Density of
u1 and u2 populations in the presence of TGF-β .

(ii) Cell-cell adhesion > cell-matrix adhesion. To investigate the effect of greater

cell-cell adhesion, we choose s∗1 = 2.4,s∗= 2.1,s∗2 = 2,c∗1 = 1.1 and c∗2 = 0.9, and

the rest of model parameters as given in Table 3.2. We see in Fig. 3.3(a)-(b) that

due to the weak cell-matrix adhesive forces, u1 and u2 cells start to move through

the domain in a collective manner. Figs. 3.3(a)-(a’) show that u1 population
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vanishes in the absence and in the presence of TGF-β (due to the mutation term).

We also note that the spread of u1 cells is reduced in the presence of TGF-β ,

likely due to the positive effect of TGF-β on cell-matrix adhesion (see the term

“+ebib” in equations (3.6)). In Figs. 3.3(b)-(b’) we see that the u2 population

changes its movement from a chaotic-like dynamics (in the absence of TGF-β ;

panel (b)) to a spread over the whole domain (in the presence of TGF-β ; panel

(b’)), as a result of a decrease in the cell-cell adhesion induced by the tumour

growth factor.
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Figure 3.5: Patterns exhibited by model (3.96) showing the effect of the TGF-β on the
cancer cell density for the same cell-cell and cell-matrix adhesion, i.e., s∗i = s∗ = c∗i =
0.1 and ai = d = ei = 0.5, i = 1,2. The rest of model parameters are given in Table 3.2.
(a), (b) Density of u1 and u2 populations in the absence of TGF-β ; (a’), (b’) Density
of u1 and u2 populations in the presence of TGF-β .

(iii) Cell-cell adhesion = cell-matrix adhesion. To ensure the same values for the ad-

hesive strength functions (3.6) when there is no TGF-β in the system, we choose
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s∗i = s∗ = c∗i = 0.8 and ai = d = ei = 0.5, i = 1,2. In Figs. 3.4(a)-(b) we see that

some cells in the two cancer sub-populations move quickly to the left and the

right, reaching the boundaries, while other cells (both u1 and u2) stay in the mid-

dle of the domain and create a chaotic-like pattern (even if u1 is slowly eliminated

for t > 50). If we now add TGF-β to the system, we see in Figs. 3.4(a’)-(b’) that

both u1 and u2 populations move slower towards the edges of the domain. In

contrast to the u2 population in the absence of TGF-β , which exhibits a chaotic

clumping and splitting behaviour (panel (b)), the u2 population in the presence of

TGF-β exhibits travelling-wave dynamics (panel (b’)). This is different from the

dynamics observed in Fig.3.3(b’) where the u2 cells move in a travelling-wave

manner up to t = 200, after which they quickly move towards the boundaries.

Reducing now the magnitudes of cellular adhesion forces to s∗i = s∗ = c∗i =

0.1, i = 1,2, we see in Fig. 3.5 that irrespective of the absence/presence of TGF-

β , population u1 forms a stationary aggregation that eventually vanishes for large

times, while population u2 exhibits a travelling wave. This behaviour might be

explained by the combined effect of high mutation rate and clonal competition

(see the logistic growth terms in (3.2)), since adhesive forces are very small and

lead to the spread of population u2. In contrast to the dynamics in Figs. 3.3(b),(b’)

and 3.4(b),(b’) where the u2 cells seem to travel slower towards the boundaries in

the presence of TGF-β (compared to the absence of TGF-β ), in Fig. 3.5 the u2

cells travel faster to the boundaries in the presence of TGF-β . We deduce from

here that the spread of tumour cells depends both on the magnitude of adhesive

forces as well as on the presence of TGF-β molecules.

We note here that we also investigated numerically the case when TGF-β is present,

but does not influence cell proliferation or cell adhesion (i.e., for θβ , p3,µ1,µ2,, 0,

and cb = abi = db = ebi = 0, i = 1,2). The patterns (not shown here) that we obtained

were similar to those presented in Figs. 3.2(a)-(b), 3.3(a)-(b), 3.4(a)-(b) and 3.5(a)-(b).
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This suggests that the effect of TGF-β on the cancer cell density is greater than the

effect on the ECM and on the integrins density.

3.4.3 Summary of model variables and parameters

Here we present two tables with the model variables and parameters. In Table 3.1 we

list the model variables with their units. In Table 3.2 we list the parameters of our

model and their corresponding units and non-dimensional values used in the simula-

tions.

Table 3.1: A list of model variables with their units. Since we are in 1D, length and
volume coincide and we express the variables in terms of domain length.
Variable Description Dimensional Units
u1 Early stage cancer cell density cell/length
u2 Late stage cancer cell density cell/length
f ECM density mg/length
c Integrin density integrins/cell
b TGF-β concentration mg/length

Parameter estimation. Here we refer only to the parameter estimation related to

TGF-β . For a detailed discussion on the estimation of the rest parameters see Section

2.4.1.

• The parameters ai,d,ei,s∗i ,s
∗,c∗i , i = 1,2, were based on the range of the adhe-

sion strength parameters used in Armstrong et al. (2006).

• The remodelling rate was chosen to be greater than cell proliferation rate, as

considered also in Chaplain and Lolas (2006).

94



Table 3.2: A list of model parameters with their units

and their non-dimensional values, obtained from (3.94) and

(3.95), which we used during numerical simulations.

Param. Description Dimensional Units Non-dim.

value (p̃)

Reference

Du Diffusion coefficient of u1 length2/time 0.0001 Chaplain

and Lolas

(2006)

Rs Sensing radius length 0.99 Armstrong

et al.

(2006);

Gerisch

and

Chaplain

(2008)

qa Magnitude of attraction length2/cell 0.09 Estimated

qr Magnitude of repulsion length2/cell 0.01 Estimated

sa Attraction range length 0.99 Estimated

sr Repulsion range length 0.25 Estimated

ma Width of attraction kernel length 0.99/8 Estimated

mr Width of repulsion kernel length 0.25/8 Estimated

Continued on next page
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Table 3.2 – Continued from previous page

Param. Description Dimensional Units Non-dim.

value (p̃)

Reference

r1 Growth rate of u1 1/time 0.1 Cunningham

and You

(2015);

Morani

et al.

(2014)

r2 Growth rate of u2 1/time 0.2 Cunningham

and You

(2015);

Morani

et al.

(2014)

M Mutation rate 1/time 0.05 Cillo et al.

(1987);

Hill et al.

(1984);

Mareel

et al.

(1991)

cb Coeff. related to the effect

of TGF-β on cancer cell

proliferation

Non-dim. 20 Estimated

Continued on next page
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Table 3.2 – Continued from previous page

Param. Description Dimensional Units Non-dim.

value (p̃)

Reference

a1 Coeff. related to the num-

ber of integrins necessary

for max self-adhesion be-

tween u1

cell/integrins 0.7 Estimated

a2 Coeff. related to the num-

ber of integrins necessary

for max self-adhesion be-

tween u2

cell/integrins 0.3 Estimated

d Coeff. related to the num-

ber of integrins necessary

for max cell-cell cross-

adhesion

cell/integrins 0.5 Estimated

e1 Coeff. related to the num-

ber of integrins necessary

for max cell-ECM adhe-

sion for u1

cell/integrins 1.8 Estimated

e2 Coeff. related to the num-

ber of integrins necessary

for max cell-ECM adhe-

sion for u2

cell/integrins 2.5 Estimated

ab1 Coeff. related to the effect

of TGF-β on self-adhesion

between u1 cells

length/mg 0.5 Estimated

Continued on next page
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Table 3.2 – Continued from previous page

Param. Description Dimensional Units Non-dim.

value (p̃)

Reference

ab2 Coeff. related to the effect

of TGF-β on self-adhesion

between u2 cells

length/mg 0.3 Estimated

db Coeff. related to the ef-

fect of TGF-β on cell-cell

cross-adhesion

length/mg 0.4 Estimated

eb1 Coeff. related to the effect

of TGF-β on cell-ECM

adhesion for u1 cells

length/mg 0.8 Estimated

eb2 Coeff. related to the effect

of TGF-β on cell-ECM

adhesion for u2 cells

length/mg 0.9 Estimated

s∗1 Magnitude of self-

adhesion forces of u1

length/(time · cell) 0.1−2.4 Estimated

s∗2 Magnitude of self-

adhesion forces of u2

length/(time · cell) 0.1−2 Estimated

s∗ Magnitude of cross-

adhesion forces

length/(time · cell) 0.1−2.1 Estimated

c∗1 Magnitude of cell-ECM

forces of u1

length/(time · cell) 0.1−1.9 Estimated

c∗2 Magnitude of cell-ECM

forces of u2

length/(time · cell) 0.1−2.5 Estimated

Continued on next page
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Table 3.2 – Continued from previous page

Param. Description Dimensional Units Non-dim.

value (p̃)

Reference

α Rate of ECM degradation

by u1

length/(time · cell) 1 Sherratt

et al.

(2009)

β Rate of ECM degradation

by u2

length/(time · cell) 2 Sherratt

et al.

(2009)

θβ Binding rate of TGF-β to

ECM components

length/(time ·mg) 0.77 Estimated

δ ECM remodelling rate 1/time 0.25 Chaplain

and Lolas

(2006)

p1 Production rate of c by u1 integrins/(time · cell) 0.05 Estimated

p2 Production rate of c by u2 integrins/(time · cell) 0.1 Estimated

p3 Up-regulation rate of c by

b

length/(time ·mg) 0.2 Estimated

q Decay rate of c 1/time 0.3 Liu et al.

(2011)

Db Diffusion coefficient of

TGF-β

length2/time 0.007 Van Schep-

dael et al.

(2016)

Continued on next page
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Table 3.2 – Continued from previous page

Param. Description Dimensional Units Non-dim.

value (p̃)

Reference

µ1 Production rate of b by u1 mg/(time · cell) 0.05 Kim and

Othmer

(2013);

Wu et al.

(2007)

µ2 Production rate of b by u2 mg/(time · cell) 0.05 Kim and

Othmer

(2013);

Wu et al.

(2007)

qb Decay rate of b 1/time 0.05 Liu et al.

(2011)

3.5 Conclusion and discussion

In this chapter we introduced a model of integro-differential equations describing the

dynamics of early stage and late stage cancer cell populations, under the effect of TGF-

β signalling. The model was then used to investigate the role of TGF-β on cellular

adhesion and proliferation.

We first proved the global existence of bounded solutions to our nonlocal model by

taking a vanishing viscosity approach and approximating our model with a nonlocal

parabolic PDE. The proof used the Banach contraction mapping theorem, the Moser-

Alikakos method and the vanishing viscosity method.
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We then investigated numerically the solution of this nonlocal model, paying particular

attention to the effect of TGF-β on cell-cell and cell-matrix interactions. We showed

that: (i) In the absence of TGF-β , the magnitudes of cell-cell and cell-matrix interac-

tions influenced the formation of cancer cell aggregation at specific position in space

(see Figs. 3.2(b), 3.3(b), 3.4(b)); (ii) The consideration of TGF-β leads to the spread of

mutated (i.e., u2) cancer cells over the whole domain mainly in a travelling-wave man-

ner (with no cell aggregations; see Figs. 3.3(b’), 3.4(b’), 3.5(b’)). We also emphasise

that the speed at which cells spread depended on the presence/absence of TGF-β and

on the magnitudes of cell adhesion forces (see Figs. 3.4(b),(b’) vs. Figs. 3.5(b),(b’)).

While the numerical investigation of cancer spread uncovered an interesting combined

effect of cell adhesion and presence/absence of TGF-β , in the future we plan to in-

vestigate analytically the travelling waves and study the effect of parameters related to

TGF-β and cell adhesion on the speed of these waves.
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Chapter 4

An alternative model incorporating

alignment

4.1 Introduction

Collective cell movement (Friedl and Wolf, 2003; Rørth, 2009) can be observed in

many types of cells and plays an important role in many physiological processes, in-

cluding wound healing, embryonic development and metastasis of cancer cells. The

cancer cells’ movement and aggregations are influenced by external factors, e.g., con-

centration of food, as well as internal factors, which are social forces among cells, i.e.,

attraction, repulsion and polarisation. These internal factors lead to self-organised cell

aggregation and the formation of a wide variety of patterns. Apart from the attraction-

repulsion forces, that has been extensively studied in the previous chapters, alignment

seems to play a crucial role in cell movement. Experimental studies (Omelchenko

et al., 2003; Rørth, 2012) have shown that alignment (polarisation) has been reported

as the initial cellular response in wound healing and cancer invasion. By alignment we

mean the process where cells turn to adapt their orientation to that of their neighbours,
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which leads to a polarised group of cells having the same orientation in space and trav-

elling large distances together. In contrast, there are non-polarised groups in which all

cells move individually, while the group as a whole can remain stationary or drift only

slowly (Lutscher, 2002). Cells interact with their neighbours and change their shape

and direction of movement as a result of this collective movement and a process known

as contact inhibition of locomotion (CIL) (Vicente-Manzanares and Sánchez-Madrid,

2000), which plays a crucial role in cancer invasion and metastasis. During this pro-

cess cells alter their direction of movement when contact other cells in order to avoid

collision.

Although, the exact mechanism that makes the cells cooperate with each other and mi-

grate collectively in one direction is not fully clear, it has been observed that “leader”

cells at the tops of outgrowths (e.g., an epithelial cell at the edge of an epithelial sheet

that adopts a fibroblast-like morphology extending a wide lamellipodium) are accom-

panied by many “follower” cells along the sides, both migrating to distant sites (Haga

et al., 2005; Omelchenko et al., 2003). As cells move in a collective manner, only the

cells in the free edge will produce lamellipodia, while cells inside the group will form

smaller protrusions or no protrusion. Although, CIL process will lead to a change in

the direction of movement of the cells in the edges, the whole group of cells will follow

this movement as a result of cell-cell interactions, ending up in the re-alignment of the

cell populations (Mayor and Carmona-Fontaine, 2010). What also seems to play an

important role in the direction of cell migration is the front-back orientation of cells

(Reffay et al., 2011), thus it is very important to consider all the cells detected around

it that interact with each other.

In the mathematical literature there are various models that consider the effect of nonlo-

cal social interactions on the collective movement of cells and animals. A large number

of models for the collective movement of animals consider the interplay between all
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three social interactions: repulsion, attraction and alignment (Canizo et al., 2010; Cav-

agna et al., 2010; Gautrais et al., 2012; Huth and Wissel, 1992; Kunz and Hemelrijk,

2003; Lukeman et al., 2010). Some of these models consider nonlocal turning rates and

constant speeds (see, for example Buono and Eftimie (2015); Fetecau (2011)). Other

models investigate the effect of social interactions also on animals speed (Fetecau and

Eftimie, 2010; Topaz et al., 2006). In regard to the models for the collective movement

of cells, the majority of these models focus on attractive-repulsive interactions (Arm-

strong et al., 2006; Domschke et al., 2014; Painter et al., 2015; Sherratt et al., 2009).

Very few nonlocal models incorporate cell alignment (see for instance Mogilner and

Edelstein-Keshet (1995)). Therefore, it is very important to develop nonlocal models

that consider cell polarization and describe the way that all three social forces affect

the velocity and the turning behaviour of cells.

In this chapter 1, we introduce a new model describing better the interplay between

cell polarisation and cell repulsive-attractive interactions. In contrast to the models

mentioned in the previous paragraphs, here we consider both nonlocal speed and turn-

ing rates. To this end we derive a model of nonlinear nonlocal first order hyperbolic

equations describing the dynamics of polarised early and late stage cancer cell popu-

lations. In addition to cell movement and cell turning behaviours (which depend on

repulsive, attractive and polarising forces), we also consider mutation and prolifera-

tion. We investigate numerically the patterns generated by this hyperbolic model - by

focusing on the effect of the following parameters: (i) Social interactions (and mainly

alignment); (ii) Turning rates and (iii) Base-line speed. Since the majority of papers

describing collective movement of cells are of parabolic type, in this chapter we also

take a parabolic limit to investigate the preservation of patterns in this limit.

1A version of this chapter has been submitted for publication.

Bitsouni and Eftimie (2017), A nonlocal model for cell polarisation in heterogeneous cancer cell
populations
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We should emphasize here that we focus on the interactions between the cells and

the effect of the social forces (paying mainly attention to the alignment forces) on the

behaviour of the heterogeneous populations. For this reason we choose to ignore the

ECM and integrin density in this model.

This chapter is organized as follows. In Section 4.2 we present a model of nonlocal

nonlinear hyperbolic equations describing the dynamics of two sub-populations of po-

larised cancer cells, with different levels of mutation. In Section 4.3 we derive the

parabolic limit of this hyperbolic model. In Section 4.4 we perform linear stability

analysis of both hyperbolic and limiting parabolic model to investigate the ability of

these models to form cell aggregation. In Section 4.5 we investigate numerically the

spatiotemporal patterns obtained by the hyperbolic model and compare the results with

the patterns obtained by the limiting parabolic model. We conclude in Section 4.6 with

a discussion of the results.

4.2 A nonlocal hyperbolic model for cancer cell polari-

sation

In this section, we introduce a new nonlocal model that incorporates the tendency of

cancer cells to align with other cells that are within a range (alignment range). The

model describes the movement of two cancer cell populations, an early and a late

stage population. Here, we assume that the movement of cancer cells is governed by

directed motility in response explicitly to cell- cell adhesive forces, choosing to ignore

the cell-ECM interactions. For this situation speed depends on attractive and repulsive

interactions only between cancer cells.

Let Ω ⊂ R be a bounded spatial domain with smooth boundary ∂Ω. Let IT = [0,∞)
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be the time interval. We denote by u+1 (t,x) (u−1 (t,x)) the density of early stage cancer

cells at (t,x) that move to the right (left), and respectively by u+2 (t,x) (u−2 (t,x)) the

density of late stage cancer cells at (t,x) that move to the right (left). The total cancer

cell population density is given by the relation u1 = u+1 +u−1 for the early stage cancer

cell population, and respectively by u2 = u+2 + u−2 for the late stage cancer cell popu-

lation. For compact notation, we define the vector u(t,x) =
(
u1 (t,x) ,u2 (t,x)

)T . We

also define the cell population flows by υi = u+i −u−i , i = 1,2, for early (i = 1) and late

(i = 2) stage cancer cells. Thus, we derive the following hyperbolic system of con-

servation laws that describe the evolution of densities of left-moving and right-moving

early and late stage cancer cells:

∂u+1
∂ t

+
∂

∂x

(
u+1 Γ

+ [u1,u2]
)
=−λ

+
u1

[
u+1 ,u

−
1 ,u

+
2 ,u

−
2

]
u+1 +λ

−
u1

[
u+1 ,u

−
1 ,u

+
2 ,u

−
2

]
u−1

−Mu+1 + r1
u1

2
(1−u1−u2) , (4.1a)

∂u−1
∂ t
− ∂

∂x

(
u−1 Γ

− [u1,u2]
)
=λ

+
u1

[
u+1 ,u

−
1 ,u

+
2 ,u

−
2

]
u+1 −λ

−
u1

[
u+1 ,u

−
1 ,u

+
2 ,u

−
2

]
u−1

−Mu−1 + r1
u1

2
(1−u1−u2) , (4.1b)

∂u+2
∂ t

+
∂

∂x

(
u+2 Γ

+ [u1,u2]
)
=−λ

+
u2

[
u+1 ,u

−
1 ,u

+
2 ,u

−
2

]
u+2 +λ

−
u2

[
u+1 ,u

−
1 ,u

+
2 ,u

−
2

]
u−2

+M
u1

2
+ r2

u2

2
(1−u1−u2) , (4.1c)

∂u−2
∂ t
− ∂

∂x

(
u−2 Γ

− [u1,u2]
)
=λ

+
u2

[
u+1 ,u

−
1 ,u

+
2 ,u

−
2

]
u+2 −λ

−
u2

[
u+1 ,u

−
1 ,u

+
2 ,u

−
2

]
u−2

+M
u1

2
+ r2

u2

2
(1−u1−u2) , (4.1d)

u±i (0,x) = u±i0 (x)≥ 0, i = 1,2, in Ω, (4.1e)

where Γ± [u1,u2] are the density-dependent speeds, and λ+
ui

(λ−ui
) are the density de-

pendent turning rates for the cancer cells initially moving to the right (left) and then

turn to the left (right). As in the previous two chapters we denote by M the mutation
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rate of cancer cells and by ri, i = 1,2, the proliferation rate of population ui. Note that

we consider a non-dimensionalised model, where the cancer cell densities ui, i = 1,2,

are non-dimensionalised by the carrying capacity for the cells, ku (see Chapters 2 and

3), leading to logistic growth functions with unit-valued carrying capacity for the cells.

The turning rates are functions of the cell-cell interactions, y±
[
u+1 ,u

−
1 ,u

+
2 ,u

−
2
]
, de-

scribed as in Eftimie et al. (2007):

λ
±
ui

[
u+1 ,u

−
1 ,u

+
2 ,u

−
2

]
:= λ

r
i +λ

b
i p
(

y±
[
u+1 ,u

−
1 ,u

+
2 ,u

−
2

])
= λ

r
i +λ

b
i

(
0.5+0.5tanh

(
y±
[
u+1 ,u

−
1 ,u

+
2 ,u

−
2

]
−2
))

, (4.2)

where the constants λ r
i and λ b

i , i = 1,2, represent a base-line random turning rate and

a biased turning rate, respectively. The dimensionless functionals y±
[
u+1 ,u

−
1 ,u

+
2 ,u

−
2
]

of the densities of right moving, u+i , and left moving, u−i , cancer cells, incorporate

nonlocal interactions between the two sub-populations of polarised cancer cells, and

can be described by the following relation

y±
[
u+1 ,u

−
1 ,u

+
2 ,u

−
2

]
= y±a

[
u+1 ,u

−
1 ,u

+
2 ,u

−
2

]
−y±r

[
u+1 ,u

−
1 ,u

+
2 ,u

−
2

]
+y±al

[
u+1 ,u

−
1 ,u

+
2 ,u

−
2

]
,

(4.3)

where y±j
[
u+1 ,u

−
1 ,u

+
2 ,u

−
2
]
, j = a,r,al, denote the attraction, repulsion and alignment

functional, respectively, which influence the likehood of a cancer cell to turn to the

left (+) or to the right (-). We note here that stronger interaction forces lead to higher

turning rates. The attraction and repulsion interactions are described by the following

nonlocal terms (Buono and Eftimie, 2015):

y±a,r [u1,u2] =
qa,r

Rs

∫ Rs

0
Ka,r (s)

(
u1 (t,x± s)+u2 (t,x± s)−u1 (t,x∓ s)−u2 (t,x∓ s)

)
ds,

(4.4)
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with qa and qr describing the magnitudes of attractive and repulsive interactions, re-

spectively, and Ka (x) and Kr (x) describe the spatial ranges over which these interac-

tions take place. As in the previous two chapters, we denote by K (x) := qaKa (x)−

qrK (x) the attraction-repulsion kernel, assuming that it is attractive at medium/long

ranges (i.e., at the edges of the cell) and repulsive at very short ranges (i.e., over the

cell surface).

The nonlocal alignment term is given by the relation (Buono and Eftimie, 2015):

y±al

[
u+1 ,u

−
1 ,u

+
2 ,u

−
2

]
=

qal

Rs

∫ Rs

0
Kal (s)

(
u∓1 (t,x∓ s)+u∓1 (t,x± s)+u∓2 (t,x∓ s)

+u∓2 (t,x± s)−u±1 (t,x∓ s)−u±1 (t,x± s)−u±2 (t,x∓ s)

−u±2 (t,x± s)

)
ds, (4.5)

with qal describing the magnitude of alignment and Kal (x) describing the spatial range

over which alignment takes place.

Let us now focus on the density dependent speeds Γ± [u1,u2]. Here, we choose the

nonlocal speeds of the two-population cancer cells to be described by non-negative,

bounded and increasing functionals of cell-cell interactions, thus Γ± [u1,u2] are given

by the following relations

Γ
± [u1,u2] = γ

(
1+ tanh

(
y±a [u1,u2]− y±r [u1,u2]

))
, (4.6)

where γ is a constant base-line speed describing the behaviour of the cancer cell pop-

ulations in the absence of cell-cell interactions (see Fetecau and Eftimie (2010)).

For the nonlocal terms, we choose as in the previous chapters, translated Gaussian
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kernels

K j (x) =
1√

2πm2
j

e
−(

x−s j)
2

2m2
j , j = a,r,al, (4.7)

with s j representing half the length of the interaction ranges and m j = s j/8 representing

the widths of the interaction kernels. (The constants m j, j = a,r,al, are chosen such

that the support of more than 98% of the mass of the kernels is inside the interval [0,∞)

(Eftimie et al., 2007).)

We study the hyperbolic model (4.1) on a finite domain of length L, that is x ∈ [0,L].

To complete the model, we have to impose boundary conditions. Note that since the

system (4.1) is hyperbolic, we have to follow the characteristics of the system when

imposing these boundary conditions. For this reason, u+i , i = 1,2, are prescribed only

at x = 0, while u−i , i = 1,2 are prescribed only at x = L. For this model we choose pe-

riodic boundary conditions, where the cancer cells move on a circular domain, leaving

the domain at one end and entering it again at the other end. The boundary conditions

are described by:

u+i (t,0) = u+i (t,L) and u−i (t,L) = u−i (t,0) , i = 1,2. (4.8)

4.3 Parabolic limit for nonlocal interactions

In this section, we take a formal parabolic limit to investigate the connection be-

tween the hyperbolic model (4.1) and other nonlocal parabolic models with density-

dependent speed for collective cell dynamics in the literature (see for example Dom-

schke et al. (2014); Painter et al. (2015) and many references therein). To study the

parabolic limit of our hyperbolic model we assume that there is no alignment, i.e.,

qal = 0. The main reason for choosing to ignore alignment is that we aim to obtain
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parabolic equations for the total densities of the cancer cells, thus terms that incorpo-

rate left and right moving cancer cells (which would appear when qal , 0) are currently

being ignored. Note that the speed and the turning rates depend on attraction and re-

pulsion, which are defined in terms of the total densities ui = u+i +u−i , i = 1,2.

We denote by g [u] := tanh
(
y+ [u]

)
. Since the function tanh(·) is an odd function, we

have from relation (4.6) (and the fact that qal = 0):

Γ
± [u] = γ

(
1±g [u]

)
. (4.9)

Adding and subtracting equations (4.1a)-(4.1b) for population u1 and similarly equa-

tions (4.1c)-(4.1d) for population u2, yields the following system:

∂u1

∂ t
+ γ

∂υ1

∂x
+ γ

∂

∂x

(
u1g [u]

)
=−Mu1 +R1 (u) , (4.10)

∂υ1

∂ t
+ γ

∂u1

∂x
+ γ

∂

∂x

(
υ1g [u]

)
= f1 [u]u1−h1 [u]υ1−Mυ1, (4.11)

∂u2

∂ t
+ γ

∂υ2

∂x
+ γ

∂

∂x

(
u2g [u]

)
= Mu1 +R2 (u) , (4.12)

∂υ2

∂ t
+ γ

∂u2

∂x
+ γ

∂

∂x

(
υ2g [u]

)
= f2 [u]u2−h2 [u]υ2, (4.13)

where

Ri (u) = riui (1−u1−u2) , fi [u] = λ
−
ui

[
u+1 ,u

−
1 ,u

+
2 ,u

−
2

]
−λ

+
ui

[
u+1 ,u

−
1 ,u

+
2 ,u

−
2

]
,

hi [u] = λ
−
ui

[
u+1 ,u

−
1 ,u

+
2 ,u

−
2

]
+λ

+
ui

[
u+1 ,u

−
1 ,u

+
2 ,u

−
2

]
, i = 1,2. (4.14)

Next we differentiate equations (4.10) and (4.12) with respect to t, and equations (4.11)
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and (4.13) with respect to x, to obtain

∂ 2u1

∂ t2 + γ
∂ 2υ1

∂x∂ t
+ γ

∂ 2

∂x∂ t

(
u1g [u]

)
=−M

∂u1

∂ t
+

∂

∂ t
R1 (u) , (4.15)

∂ 2υ1

∂ t∂x
+ γ

∂ 2u1

∂x2 + γ
∂ 2

∂x2

(
υ1g [u]

)
=

∂

∂x

(
u1 f1 [u]

)
−υ1

∂

∂x
h1 [u]−

(
h1 [u]+M

) ∂υ1

∂x
,

(4.16)

∂ 2u2

∂ t2 + γ
∂ 2υ2

∂x∂ t
+ γ

∂ 2

∂x∂ t

(
u2g [u]

)
= M

∂u1

∂ t
+

∂

∂ t
R2 (u) , (4.17)

∂ 2υ2

∂ t∂x
+ γ

∂ 2u2

∂x2 + γ
∂ 2

∂x2

(
υ2g [u]

)
=

∂

∂x

(
u2 f2 [u]

)
−υ2

∂

∂x
h2 [u]−h2 [u]

∂υ2

∂x
. (4.18)

We eliminate the terms ∂ 2υ1
∂ t∂x and ∂ 2υ2

∂ t∂x from equations (4.15)-(4.16) and (4.17)-(4.18),

respectively. We assume that the flows υi, i = 1,2, are zero at the boundaries. Using

equations (4.10) and (4.12) we replace υi, i = 1,2, with

υi =
∫ x
(
−1

γ

∂ui

∂ t
− ∂

∂x

(
uig [u]

)
+(−1)i M

γ
u1 +

1
γ

Ri (u)
)

ds, (4.19)

and
∂υi

∂x
, i = 1,2, with

∂υi

∂x
=−1

γ

∂ui

∂ t
− ∂

∂x

(
uig [u]

)
+(−1)i M

γ
u1 +

1
γ

Ri (u) . (4.20)

Therefore, we obtain the following second-order equations

∂ 2u1

∂ t2 − γ
2 ∂ 2u1

∂x2 + γ
∂

∂x

(
u1 f1 [u]

)
+ γ

∂ 2

∂x∂ t

(
u1g [u]

)
+M

∂u1

∂ t
− ∂

∂ t

(
R1 (u)

)
+

(
−γ

∂ 2

∂x2 g [u]− ∂

∂x
h1 [u]

)(∫ x
(
−∂u1

∂ t
− γ

∂

∂x

(
u1g [u]

)
−Mu1 +R1 (u)

)
ds

)

+

(
−2γ

∂

∂x
g [u]−h1 [u]−M

)(
−∂u1

∂ t
− γ

∂

∂x

(
u1g [u]

)
−Mu1 +R1 (u)

)
− γg [u]

∂

∂x

(
−∂u1

∂ t
− γ

∂

∂x

(
u1g [u]

)
−Mu1 +R1 (u)

)
= 0, (4.21)
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∂ 2u2

∂ t2 − γ
2 ∂ 2u2

∂x2 + γ
∂

∂x

(
u2 f2 [u]

)
+ γ

∂ 2

∂x∂ t

(
u2g [u]

)
−M

∂u1

∂ t
− ∂

∂ t

(
R2 (u)

)
+

(
−γ

∂ 2

∂x2 g [u]− ∂

∂x
h2 [u]

)(∫ x
(
−∂u2

∂ t
− γ

∂

∂x

(
u2g [u]

)
+Mu1 +R2 (u)

)
ds

)

+

(
−2γ

∂

∂x
g [u]−h2 [u]

)(
−∂u2

∂ t
− γ

∂

∂x

(
u2g [u]

)
+Mu1 +R2 (u)

)
− γg [u]

∂

∂x

(
−∂u2

∂ t
− γ

∂

∂x

(
u2g [u]

)
+Mu1 +R2 (u)

)
= 0. (4.22)

To transform these equations into parabolic equations, we assume that cancer cells

move very fast and change direction even faster. This behaviour leads to a reduced

sensitivity to the environment. With these assumptions, we introduce a small parameter

ε > 0 and we make the following rescaling

(i) λ r
i =

λ̃ r
i

ε2 , λ b
i =

λ̃ b
i

ε2 , i = 1,2,

(ii) γ =
γ̃

ε
,

(iii) g [u] = ε g̃ [u],

(iv) p
(
y± [u]

)
= ε p̃

(
y± [u]

)
.

This reduction of the sensitivity in the environment leads to the following rescaling

• fi [u] =
λ̃ b

i f̃ [u]
ε

, with f̃ [u] = p̃
(

y− [u]
)
− p̃
(

y+ [u]
)
, i = 1,2, (4.23)

•hi [u] =
2λ̃ r

i +2λ̃ b
i ε h̃ [u]

ε2 , with h̃ [u] = p̃
(

y− [u]
)
+ p̃
(

y+ [u]
)
, i = 1,2. (4.24)

Substituting these terms into system (4.21)-(4.22) and multiplying with ε2, taking the

limit as ε→ 0 and dropping the tildes (for simplicity), leads to the following parabolic
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equations

∂u1

∂ t
= Du1

∂ 2u1

∂x2 −
γλ b

1
2λ r

1

∂

∂x

(
u1 f [u]

)
− γ

∂

∂x

(
u1g [u]

)
−Mu1 +R1 (u) , (4.25a)

∂u2

∂ t
= Du2

∂ 2u2

∂x2 −
γλ b

2
2λ r

2

∂

∂x

(
u2 f [u]

)
− γ

∂

∂x

(
u2g [u]

)
+Mu1 +R2 (u) , (4.25b)

where Dui =
(γ)2

2λ r
i
, i = 1,2, is the diffusion coefficients. Here the initial conditions are

given by the functions ui (0,x) = ui0 (x)≥ 0, i = 1,2.

To fully define the parabolic model (4.25), we need to impose boundary conditions.

To be consistent with the hyperbolic model (4.1), we impose again periodic boundary

conditions on a finite domain of length L:

u1 (t,0) = u1 (t,L) and u2 (t,0) = u2 (t,L) . (4.26)

We note here that the nonlocal terms f [u] and g [u] now depend only on the repulsive

and attractive interactions. The reason for this is that the alignment interactions are

defined in terms of u±i , i = 1,2.

4.4 Linear stability analysis

In this section, we investigate the possibility of pattern formation for models (4.1) and

(4.25) via linear stability analysis. As it was shown also in Chapter 2, what seems

to play an important role in the pattern formation is the social interactions (i.e., at-

traction, repulsion, alignment) between cancer cells (Mogilner and Edelstein-Keshet,

1996; Topaz et al., 2006).
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4.4.1 Linear stability analysis of the hyperbolic model

We start with the linear stability analysis of the hyperbolic model (4.1). First, we

look for the spatially homogeneous steady states u±,∗i , i = 1,2, assuming that cancer

cells are spread evenly over the domain. We denote the constant total density of the

populations by u∗i , i = 1,2. From the right-hand-side of equations (4.1a)-(4.1d) we

have the following system:

−Mu∗1 + r1u∗1
(
1−u∗1−u∗2

)
= 0, (4.27a)

Mu∗1 + r2u∗2
(
1−u∗1−u∗2

)
= 0, (4.27b)

which has the solutions
(
u∗1,u

∗
2
)
= (0,0) and

(
u∗1,u

∗
2
)
= (0,1). Note that we consider

only non-negative solutions for biological realism. If we consider the states where both

cell populations are evenly spread in both directions over the domain, then these states(
u+,∗

1 ,u−,∗1 ,u+,∗
2 ,u−,∗2

)
are given by

(0,0,0,0) and (0,0,0.5,0.5) . (4.28)

If we consider populations that are evenly spread over the domain and also have a

preference in directionality, then the steady states are the following

(0,0,0,0) and
(

0,0,u+,∗
2 ,1−u+,∗

2

)
, (4.29)

for 0≤ u+,∗
2 ≤ 1.

Now that we know the steady states, we proceed with the study of the local stability of

these solutions under small perturbations caused by spatially non-homogeneous terms.

We let u±1 = u±,∗1 +A±u1
eikx+λ t and u±2 = u±,∗2 +A±u2

eikx+λ t with |A±u1
|, |A±u2

| � 1, where

k and λ are the wave number and frequency, respectively. Let K̂±j , j = a,r,al, be the
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Fourier transform of the interaction kernel K j, given by the following relation

K̂±j (k) =
∫

∞

−∞

K j (s)e±iks jds, j = a,r,al. (4.30)

We denote by K̂s (k) = K̂+ (k)− K̂− (k) = qaK̂sa (k)−qrK̂sr (k) the Fourier sine trans-

form of kernel K, and respectively by K̂c
al (k) = K̂+

al (k)+ K̂−al (k) the Fourier cosine

transform of kernel Kal . Throughout this chapter we will consider translated Gaussian

kernels given by relation (4.7). Then the Fourier transform of these kernels is given by

K̂±j (k) = exp
(
±iks j− k2m2

j/2
)
, j = a,r,al, (4.31)

and the Fourier sine and cosine transforms are given by

K̂s
j (k) = exp

(
−k2m2

j/2
)

sin
(
ks j
)
, and K̂c

j (k) = exp
(
−k2m2

j/2
)

cos
(
ks j
)
. (4.32)

To simplify the results of this section, we set the following parameter values:

L±i = λ
r
i +0.5λ

b
i +0.5λ

b
i tanh

(
±Q∗−2

)
, i = 1,2,

Q∗ =
2qal

Rs

(
u−,∗1 +u−,∗2 −u+,∗

1 −u+,∗
2

)
,

f (u) = 0.5tanh(u) ,

f ′ (u) = 0.5−2 f 2 (u) ,

Bi = u+,∗
i f ′

(
Q∗−2

)
+u−,∗i f ′

(
−Q∗−2

)
,

Y (k) =−2kγ

Rs
K̂s (k) ,

W±i (k) =
Biλ

b
i

Rs

[
iK̂s (k)∓qalK̂c

al (k)
]
, i = 1,2.

(4.33)

Substituting now the expressions u±j = u±,∗j +A±u j
eikx+λ t , j = 1,2, into the system (4.1),

we obtain the following dispersion relations:
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(c) (d)

(a) (b)

Figure 4.1: Plot of the larger eigenvalues λl = −Dl +
√

D2
l −4El, l = 1, . . .4, ob-

tained by dispersion relations (4.34) and (4.39) for (a) D1, E1, for the steady state
(0,0,0,0); (b) D2, E2, for the steady state (0,0,0,0); (c) D3, E3, for the steady state
(0,0,0.5,0.5); (d) D4, E4, for the steady state (0,0,0.5,0.5). The continuous curves
represent the Re(λ (k)), while the dashed curves represent the Im(λ (k)). The model
parameters are given in Table 4.2. The diamonds on the x-axis represent the discrete
wave numbers k j = 2π j/L, j = 1,2, . . . .

• For the steady state (0,0,0,0) we have:

(
λ

2 +λD1 (k)+E1 (k)
)
·
(

λ
2 +λD2 (k)+E2 (k)

)
= 0 (4.34)
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with

D1 (k) = L+
1 +L−1 +2M− r1, (4.35)

E1 (k) = k2
γ

2−
(

L+
1 −L−1

)
ikγ +

(
L+

1 +L−1 +M− r1

)
M−

(
L+

1 +L−1
)

r1,

(4.36)

and

D2 (k) = L+
2 +L−2 − r2, (4.37)

E2 (k) = k2
γ

2−
(

L+
2 −L−2

)
ikγ−

(
L+

2 +L−2
)

r2. (4.38)

• For the steady state
(

0,0,u+,∗
2 ,1−u+,∗

2

)
we have:

(
λ

2 +λD3 (k)+E3 (k)
)
·
(

λ
2 +λD4 (k)+E4 (k)

)
= 0 (4.39)

with

D3 (k) = L+
1 +L−1 +2M, (4.40)

E3 (k) = k2
γ

2−
(

L+
1 −L−1

)
ikγ +

(
L+

1 +L−1 +M
)

M, (4.41)

and

D4 (k) = L+
2 +L−2 + r2 +W+

2 (k)−W−2 (k)+Y (k) , (4.42)

E4 (k) = k2
γ

2−
(

L+
2 −L−2 +W+

2 (k)+W−2 (k)+
(

2u+,∗
2 −1

)
Y (k)

)
ikγ

+
(

L+
2 +L−2 +W+

2 (k)−W−2 (k)
)(

Y (k)+ r2
)
. (4.43)

Equations (4.34) and (4.39) show that the steady states are unstable, i.e., Re
(
λ (k)

)
>

0, when Dl (k) < 0 or El (k) < 0, l = 1, . . . ,4. Examples of such dispersion relations

are shown in Fig. 4.1. There is a range of k-values for which Re
(
λ (k)

)
is positive, and

thus aggregation can arise from spatial perturbations of the steady states (0,0,0,0) (see
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Fig. 4.1(a), (b)) and (0,0,0.5,0.5) (see Fig. 4.1(c), (d)). Note that similar results (not

shown here) are obtained for any steady state
(

0,0,u+,∗
2 ,1−u+,∗

2

)
, with 0≤ u+,∗

2 ≤ 1.

4.4.2 Linear stability analysis of the parabolic model

Next, we investigate the conditions under which aggregations can arise for the limiting

parabolic model (4.25). We first calculate the spatially homogeneous steady states

of the parabolic model. We see from equations (4.25a)-(4.25b) that the ODE model

associated to system (4.25) is described by system (4.27), which has the solutions(
u∗1,u

∗
2
)
= (0,0) and (0,1) (considering again only non-negative solutions).

Proceeding with the linear stability analysis of the spatial system (4.25), we apply

small spatial perturbations to the homogeneous steady states: u1 = u∗1+Au1eikx+λ t and

u2 = u∗2+Au2eikx+λ t with |Au1|, |Au2 | � 1. Substituting these terms into system (4.25),

using the parameter values (4.33) and replacing u∗1 = 0, yields the following dispersion

relation:

[
−k2Du1−M+ r1

(
1−u∗2

)
−λ

]
·
[
−k2Du2 +Y (k)

(
λ b

2 f ′ (−2)
2λ r

2
−1

)
u∗2

+ r2
(
1−2u∗2

)
−λ

]
= 0. (4.44)

Therefore, for the steady state (0,0) we have the solutions:

λ1 =−k2Du1−M+ r1 and λ2 =−k2Du2 + r2, (4.45)

and for the steady state (0,1) the solutions:

λ1 =−k2Du1−M < 0 and λ2 =−k2Du2 +Y (k)

(
λ b

2 f ′ (−2)
2λ r

2
−1

)
− r2. (4.46)
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(a) (b)

(c) (d)

Figure 4.2: Plot of the eigenvalues obtained by dispersion relation (4.44). (a) λ =
−k2Du1 −M + r1, for the steady state (0,0); (b) λ = −k2Du2 + r2, for the steady
state (0,0); (c) λ = −k2Du1 −M, for the steady state (0,1); (d) λ = −k2Du2 +

Y (k)
(

λ b
2 f ′ (−2)/(2λ r

2)−1
)
− r2, for the steady state (0,1). The model parame-

ters are given in Table 4.2. The continuous curves represent the Re
(
λ (k)

)
, as the

imaginary part of the eigenvalues is zero in the case of the parabolic model (see rela-
tions (4.44)-(4.46)). The diamonds on the x-axis represent the discrete wave numbers
k j = 2π j/L, j = 1,2, . . . .

As in the case of the hyperbolic model, we see in Fig. 4.2 that there is a range of

k-values for which Re
(
λ (k)

)
> 0, and thus aggregation can arise from spatial pertur-

bations of the steady states (0,0) and (0,1) of the parabolic model.
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4.5 Numerical results

To understand the behaviour of systems (4.1) and (4.25), we investigate them numeri-

cally. The aim of this section is to study the effect of the cell-cell interactions, base-line

speed and turning rates on the pattern formation for both models.

As in the previous two chapters, we use a time-splitting approach to discretise our

model. We use a Crank-Nicolson scheme to propagate the solution of the diffusion

term for the parabolic equations (4.25), obtained with the formal parabolic limit of

equations (4.1). For the time-propagation of the advection terms in both models (4.1)

and (4.25) we use the Nessyahu-Tadmor scheme (Nessyahu and Tadmor, 1990). Fi-

nally, for the time-propagation of the reaction terms in (4.1) and (4.25) we use a fourth

order Runge-Kutta algorithm, where the integrals are further discretised using the

Simpson’s rule. All simulations are performed on a domain of length L = 10 with

periodic boundary conditions (introduced to approximate the dynamics on an infinite

domain).

4.5.1 Pattern formation for the nonlocal hyperbolic model

Let us focus first on the numerical simulations for the nonlocal hyperbolic model (4.1).

The initial conditions for the cancer cell populations are either small random perturba-

tions of spatially homogeneous steady states

u±i (0,x) = u±,∗i + rand(0,10−4), i = 1,2, (4.47)
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Figure 4.3: Short-term and long-term patterns exhibited by hyperbolic model (4.1).
The initial conditions for the two cancer cell populations are described by small ran-
dom perturbations of the steady state (0,0,0.5,0.5) (see (4.47)) . (a)-(a”) Total density
of u1 = u+1 + u−1 ; (b)-(b”) Total density of u2 = u+2 + u−2 , for qa = 1.2,qr = 0.1 and
qal = 0.5. The rest of model parameters are given in Table 4.2.

or small random perturbations of rectangular-shaped aggregations located in the mid-

dle of the domain

u±i (0,x) =

 0.1+ rand(0,10−4), x ∈ (L/2−1,L/2+1)

0, everywhere else
(4.48)
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(4.1), for qa = 1.2,qr = 0.1 and qal = 0.5. The rest of model parameters are given
in Table 4.2. The initial conditions for the two cancer cell populations are described
by small random perturbations of the steady state (0,0,0.5,0.5) (see (4.47)). (a) , (b)
Spatial distribution of cancer cells u±1 and u±2 for t ∈ [850,1000]; (a’), (b’) Spatial
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To begin we first run numerical simulations for small random perturbations of the

steady states (0,0,0.5,0.5) and (0,0,0,0). Fig. 4.3 shows the patterns displayed by

system (4.1) for the initial conditions given by (4.47) for
(

u+,∗
1 ,u−,∗1 ,u+,∗

2 ,u−,∗2

)
=

(0,0,0.5,0.5), and for qa = 1.2,qr = 0.1 and qal = 0.5. We see that for t < 1050

we obtain rotating waves, while for t ≥ 1050 cancer cell populations change their

movement to standing waves. This behaviour can be explained by the instability of the

rotating waves, which undergo a bifurcation to standing waves.
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In Fig. 4.4 we graph the spatial distribution of populations u±i , i= 1,2, for t ∈ [850,1000]

and for t ∈ [1050,1200]. We notice that for t ∈ [850,1000], where cancer cell popu-

lations u1 and u2 exhibit rotating waves, both u+i and u−i move in the same direction.

For t ∈ [1050,1200], u+i and u−i move in opposite directions thus describing standing

waves.

Attraction-repulsion interactions Let us now choose the initial conditions to be

given by relation (4.47) for (u+,∗
1 ,u−,∗1 , u+,∗

2 ,u−,∗2 ) = (0,0,0,0). To see the effect of

attraction and repulsion on the pattern formation, we focus on two different cases: (i)

qa > qr and (ii) qa < qr, while qal = 0 in both cases. We see in Fig. 4.5 that when

qa > qr (Fig. 4.5(a)-(b)) then cancer cell populations move in rotating wave manner,

while for qa < qr (Fig. 4.5(a’)-(b’)) they exhibit standing waves. Note that similar

patterns (not shown here) are obtained if we choose the initial conditions for the two

cancer cell populations consisting of a rectangular pulse (see relation (4.48)).

Clonal competition We have seen in Chapters 2 and 3, that for parabolic-hyperbolic

coupled systems it is usual to have persistence of u2 population, but not of u1. Here, we

investigate again this phenomenon of clonal competition for the case of a hyperbolic

system.

In Figs. 4.3 and 4.5 we notice that early stage cancer cells, u1, dominate the dynamics,

while late stage cancer cells, u2, start to reduce for t ≥ 1000. We should mention

here that this behaviour has been displayed also for the case that qal > 0 (patterns not

shown here). If we choose now smaller base-line random turning rate λ r
i = 0.1, i= 1,2,

then we see in Fig. 4.6 the inverse behaviour. The cancer cell populations exhibit

semi-zigzag pattern, with u1 population being reduced to low cell density for t > 600,

while u2 population persists. This can be possibly explained by the effect that the

reduction of turning frequency has on the sensitivity of cancer cells and eventually
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on their migration, and therefore in the dynamics of late stage cancer cells that are

considered as more metastatic cancer cells.

We see in Fig. 4.6 that for
(
u+i ,u

−
i
)

there is a periodic transition between two different

types of patterns: a stationary aggregation and a travelling aggregation, which seems to

be similar to a heteroclinic connection. Note that the standing waves (see Fig. 4.3(a”)-

(b”) and 4.5(a’)-(b’)) are generated by mode interactions that become unstable at the

same time. Due to the complexity of the theory behind these heteroclinic connections
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Figure 4.6: Patterns exhibited by the hyperbolic model (4.1) for qa = 1.2,qr =
0.1,qal = 0.5 and λ r

i = 0.1, i = 1,2. The rest of model parameters are given in Table
4.2. The initial conditions for the two cancer cell populations consist of a rectangu-
lar pulse (see (4.48)). Panels (a)-(d) show the density of right-moving cancer cells
u+1 (panels (a)-(b)) and u+2 (panels (c)-(d)). Panels (a’)-(d’) show the density of left-
moving cancer cells u−1 (panels (a’)-(b’)) and u−2 (panels (c’)-(d’)). Panels (a”)-(d”)
show the total density of cancer cells u1 (panels (a”)-(b”)) and u2 (panels (c”)-(d”)).

in infinite dimensional dynamical systems, it is beyond the purpose of this study to

investigate them further. This will be the subject of future research.

Similar competitive excluding behaviour is exhibited when we consider very small

speed, i.e., γ = 0.01, as it can be seen in Fig. 4.7. This behaviour is expected due to
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the mutation rate and the small speed, which leads to the formation of stationary ag-

gregations with highly mutated population u2 spreading throughout the whole domain.

The effect of alignment on cancer cell movement and aggregation An interesting

fact that we discuss in this paragraph is the effect of alignment on the cell movement

and aggregation. We see in Figs. 4.7(a),(b) and 4.7(c),(d) that when alignment is

absent (qal = 0) cells form stationary aggregations, while when it is present (qal > 0)

we see in Figs. 4.7(a’),(b’) and 4.7(c’),(d’) that some groups of cells have a directed

movement forming rotating waves. We notice that for qal > 0, the rotating waves for

the case qa > qr (see Figs. 4.7(a’),(b’)) are larger that those displayed for qa < qr (see

Figs. 4.7(c’),(d’)), due to the strong attractive forces making the cells stay aggregated.

To see more clearly that the patterns in Fig. 4.7(c)-(d’) show spatial oscillations, we

show in Fig. 4.8 a time snapshot of the spatial distribution of the densities of u1 and u2

cancer cells, for t = 300.
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Figure 4.7: Patterns exhibited by the hyperbolic model (4.1) showing the cancer cell
density for γ = 0.01. The initial conditions for the two cancer cell populations consist
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are given in Table 4.2.
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4.5.2 Pattern formation for the limiting parabolic model

In this section we run simulations for the limiting parabolic model given by (4.25).

As in the hyperbolic model (4.1), we choose the initial conditions for the cancer cell

populations to be small random perturbations of the spatially homogeneous steady

states (0,0) and (0,1) (see Section 4.4.2)

ui(0,x) = u∗i + rand(0,10−4), i = 1,2, (4.49)

or small random perturbations of rectangular-shaped aggregations located in the mid-

dle of the domain

ui(0,x) =

 0.2+ rand(0,10−4), x ∈ (L/2−1,L/2+1)

0, everywhere else
(4.50)

First we wish to investigate again the effect of attraction and repulsion on the collec-

tive movement of cancer cells and compare the patterns with those obtained by the

hyperbolic model (see Fig. 4.5). To this end, we see in Fig. 4.9 that for the very large

speed and large turning behaviour cells tend to move in a stationary manner, forming

stationary pulses. For qa > qr (Fig. 4.9(a)-(b)) cancer cell populations exhibits large

stationary pulses, with the cells being concentrated in the spatial region where the pulse

forms due to the strong attractive forces. In contrast, when repulsive forces are greater

than attractive forces, i.e., qa < qr (Fig. 4.9(a’)-(b’)), the cells form large number of

small stationary pulses. Similar results (not shown here) were obtained for the initial

conditions (4.49) with
(
u∗1,u

∗
2
)
= (0,1).

Reducing now the speed, as we did for the hyperbolic model, we notice that the pat-

terns displayed in Fig. 4.10 are similar to those obtained for the hyperbolic model

presented in Figs. 4.7(a),(b) and 4.7(c),(d), with the parabolic model forming again
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Figure 4.9: Patterns exhibited by the parabolic model (4.25). The initial conditions
for the two cancer cell populations are described by small random perturbations of the
steady state (0,0) (see (4.49)). (a), (b) Total density of u1 and u2 for qa = 1.2,qr = 0.1
and qal = 0; (a’), (b’) Total density of u1 and u2 for qa = 1.2,qr = 2.5 and qal = 0. The
rest of model parameters are given in Table 4.2.

small stationary pulses.

The other fact that is being confirmed by the numerical results of the parabolic model

is the clonal competition depending on the speed of cancer cells.

From the numerical simulations of both models, we deduce that the hyperbolic model

exhibits mainly standing or rotating waves, in contrast to the parabolic model that ex-

hibits a more stationary behaviour. We should mention also that the limiting parabolic

model was deduced after assuming large speed and turning rates, which leads to the
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reduced sensitivity to the environment and thus to the formation of stationary aggrega-

tions.
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Figure 4.10: Patterns exhibited by the parabolic model (4.25) showing the cancer cell
density for γ = 0.01. The initial conditions for the two cancer cell populations consist
of a rectangular pulse (see (4.50)). (a), (b) Total density of u1 and u2 for qa = 1.2,qr =
0.1 and qal = 0; (a’), (b’) Total density of u1 and u2 for qa = 1.2,qr = 2.5 and qal = 0.
The rest of model parameters are given in Table 4.2.

4.5.3 Summary of model variables and parameters

As in the previous chapters, we present here two tables with the model variables and

parameters. In Table 4.1 we list the model variables with their units. In Table 4.2 we

list the parameters of our model and their corresponding units and non-dimensional

values used in the simulations. For a detailed discussion on the estimation of the rest

parameters see Section 2.4.1.
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Table 4.1: A list of model variables with their units. Since we are in 1D, length and
volume coincide and we express the variables in terms of domain length.
Variable Description Dimensional Units
u+1 Right-moving early stage cancer cell density cell/length
u−1 Left-moving early stage cancer cell density cell/length
u1 Total early stage cancer cell density cell/length
u+2 Right-moving late stage cancer cell density cell/length
u−2 Left-moving late stage cancer cell density cell/length
u2 Total late stage cancer cell density cell/length

Table 4.2: A list of model parameters with their units and

their non-dimensional values, which we used during numer-

ical simulations.

Param. Description Dimensional

Units

Non-dim.

value (p̃)

Reference

Rs Sensing radius length 1 Armstrong

et al. (2006)

γ Constant base-line speed of

cancer cells

length/time 0.1 Estimated

qa Magnitude of attraction length2/cell 1.2 Estimated

qr Magnitude of repulsion length2/cell 0.1 Estimated

qal Magnitude of alignment length2/cell 0.5 Estimated

sa Attraction range length 1 Estimated

sr Repulsion range length 0.25 Estimated

sal Alignment range length 0.5 Estimated

ma Width of attraction kernel length 1/8 Estimated

mr Width of repulsion kernel length 0.25/8 Estimated

mal Width of alignment kernel length 0.5/8 Estimated

Continued on next page
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Table 4.2 – Continued from previous page

Param. Description Dimensional

Units

Non-dim.

value (p̃)

Reference

M Mutation rate 1/time 0.0001 Calabrese and

Shibata (2010);

Mareel et al.

(1991)

λ r
1 Base-line random turning

rate of cancer cell popula-

tion u1

1/time 0.2 Estimated

λ r
2 Base-line random turning

rate of cancer cell popula-

tion u2

1/time 0.4 Estimated

λ b
1 Biased turning rate of cancer

cell population u1

1/time 0.8 Estimated

λ b
2 Biased turning rate of cancer

cell population u2

1/time 1 Estimated

r1 Growth rate of u1 1/time 0.1 Morani et al.

(2014)

r2 Growth rate of u2 1/time 0.2 Morani et al.

(2014)
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4.6 Conclusion and discussion

In this chapter, we introduced a one-dimensional nonlocal hyperbolic model describ-

ing the interactions between heterogeneous cancer cells. In contrast to the models

presented in the previous chapters, here we developed a model where nonlocal turning

rates are included and incorporate all three social interactions: attraction, repulsion,

and alignment, that play a crucial role in cell movement and aggregation. We assumed

that a cell changes its movement direction only after weighing the information received

from left and right, speeding up and slowing down to catch up with the surrounding

cells, or to avoid collisions. The mutation terms and the proliferation terms are similar

with those proposed in the first model in Chapter 2, taking into account the movement

of cells in opposite directions. We should emphasize that the cancer cells can detect

cells that are in front and behind them.

Then we connected our nonlocal hyperbolic model with a nonlocal parabolic model to

study the aggregation formation, since parabolic models have been used mainly in the

study of the formation and movement of cell aggregations. This connection was made

by assuming that both the speed and the turning rates approach infinity.

Linear stability analysis of both the hyperbolic and the parabolic model was applied to

examine the possibility of aggregation to form. The results showed that aggregation

can arise from spatial perturbations of the steady states. We should mention here that

for the hyperbolic model the dispersion relation had non-zero imaginary part (hence

it is possible to have Hopf bifurcations, in addition to real bifurcations), while for the

parabolic model the dispersion relation had zero imaginary part (hence aggregation

could arise only via real bifurcations). Finally, we ran simulations for the hyperbolic

and the related parabolic model and compared the results. The models exhibited a

wide range of patterns with the hyperbolic model being more rich in patterns, showing

mainly a travelling behaviour, compared to the parabolic model that exhibits mainly
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stationary movement. These numerical results (for the nonlinear models) are consistent

with the linear results obtained via stability analysis, emphasizing the more complex

behaviour of the hyperbolic model.
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Chapter 5

Conclusion and future directions

We conclude this thesis with a brief summary of the major points and some possible

directions of future work. Of course, this is by no means exhaustive, and we refer the

reader to the appropriate chapters for a more detailed account.

5.1 Conclusion and discussion

The breaking and forming of adhesive bonds, a process critical in cancer invasion

and metastasis, can be influenced by the mutation of cancer cells and other crucial

molecules, with TGF-β being one of the most significant. Cells adhere to each other

and to the extracellular matrix (ECM) through protein molecules on the surface of the

cells, called cell receptors, e.g., integrins. In this thesis we derived three new nonlocal

models describing the interactions between heterogeneous cancer cells with different

levels of mutation.

The first model, introduced and studied in Chapter 2, focussed mainly on the effect of
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the mutation level on the cancer invasion. Precisely, we developed a nonlocal mathe-

matical model describing cancer cell invasion and movement as a result of integrin-

controlled cell-cell adhesion and cell-matrix adhesion, for two cancer cell popula-

tions with different levels of mutation. The model consists of a nonlinear parabolic-

hyperbolic coupled system describing the cell dynamics, as well as ordinary differen-

tial equations describing the extracellular matrix (ECM) degradation and the produc-

tion and decay of integrins. The rate at which cancer cells mutate seemed to play a

critical role in our model. We used this model to investigate the role of cancer mu-

tation on the possibility of cancer clonal competition with alternating dominance, or

even competitive exclusion. Moreover, to verify if the linear stability results for the

1D model (2.21) were valid also in 2D, we applied linear stability analysis also for

the two dimensional case. We showed that for similar kernels, we obtained similar

dispersion relations with no imaginary parts (and hence no Hopf bifurcations). There-

fore, we expect that the 2D model (2.39) would exhibit stationary pulses similar to the

ones exhibited by the 1D model (2.21). We discussed different possible cell aggrega-

tion patterns, as well as travelling wave patterns. In regard to the travelling waves, we

investigated the effect of cancer mutation rate on the speed of cancer invasion.

In Chapter 3 we developed a second nonlocal model describing cancer cell invasion

and movement as a result of integrin-controlled cell-cell adhesion and cell-matrix ad-

hesion, and transforming growth factor-beta (TGF-β ) effect on cell proliferation and

adhesion, for two cancer cell populations with different levels of mutation. The model

consists of partial integro-differential equations describing the dynamics of two can-

cer cell populations, coupled with ordinary differential equations describing the ECM

degradation and the production and decay of integrins, and with a parabolic PDE gov-

erning the evolution of TGF-β concentration. We proved the global existence of weak

solutions to the model. We then used our model to explore numerically the role of

TGF-β in cell aggregation and movement.
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In Chapter 4 we presented a new system of first order nonlinear hyperbolic partial dif-

ferential equations describing the dynamics of two polarised cancer cell populations.

The speed of the cancer cells depends on the attractive and repulsive forces between

the cells, while the turning rates depend also on the alignment interactions. We took a

formal parabolic limit to reduce this hyperbolic model to a nonlinear parabolic model

for cancer invasion. Then, we applied linear stability analysis to both the hyperbolic

and parabolic models to investigate the possibility of aggregation form. We discussed

different patterns and we compared the numerical results for the hyperbolic model with

those obtained for the parabolic model. The results for large speeds and large turning

rates showed an interesting behaviour, with cells forming stationary pulses (aggre-

gations), in contrast to the behaviour of the hyperbolic model where cells exhibited

mainly rotating and standing waves.

In conclusion, the work presented in this thesis has aimed to study analytically and nu-

merically the heterogeneous cancer cell movement and aggregation, under interactions

with several molecules, to obtain a better understanding of the dynamics exhibited by

this class of nonlocal models. The dynamics of cancer cells has been described mainly

by complex nonlocal nonlinear parabolic-hyperbolic coupled systems. The results ob-

tained by this thesis are significant, however there are many open related topics that

need to be studied in the future in order to fully validate the results, including biological

evidence to support these findings.

5.2 Future directions

The analytical and numerical investigation opened multiple new questions regarding

the existence of solution, the pattern formation and the further extension of the models

presented, which would be very interesting to study. In the following we present some
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of these topics.

• In Chapters 2 and 4 we focused on one-dimensional models. However, real life

cell dynamics occurs in two or three dimensions. In the future, we plan to extend

these models to higher spatial dimensions, studying the existence of solution and

extending also the numerical simulations to two and three spatial dimensions.

This is the first topic that it will be studied in the future, and it will provide

results that are more biologically realistic and comparable with experiments.

• The complexity of the second model incorporating TGF-β dynamics (3.10) leads

to the proof of existence of weak solutions. In future we will investigate also the

uniqueness and regularity of such solutions.

• Numerical simulations for models (2.21) and (3.10) revealed travelling-wave

patterns. In this thesis we have merely ‘scratched the surface’ of the travel-

ling waves theory. The major future plan is to provide the proof of the existence

of travelling wave solutions. Moreover, it will be interesting to study the effect

of adhesive forces, as well as the TGF-β effect, on the speed of travelling wave

propagation, as it was revealed numerically.

• In Section 4.3 we connected the nonlocal hyperbolic equations (4.1) to the non-

local parabolic equations (4.25) by scaling the speed and the turning rates. In

future, it would be interesting to consider also hydrodynamic scaling.

• The linear stability analysis revealed that it is possible to have unstable modes

with complex parts. Moreover, the numerical results for model (4.1) showed

that it is possible to have rotating waves (corresponding to moving cell aggrega-

tions). In the future, we plan to investigate analytically the existence of possible

Hopf bifurcations (from spatially homogeneous or heterogeneous steady states).

Moreover, it will be interesting also to investigate analytically the possibility of

139



heteroclinic connections between stationary and travelling aggregations exhib-

ited by model (4.1), as suggested by figure 4.6.

• The model presented in Chapter 4 focussed mainly on the interactions between

cells, excluding the important role of ECM and integrins on cellular adhesion,

movement and aggregation. A straightforward direction is to include ECM and

integrin density in this model that incorporates alignment.

• Finally, as the intra/extra-cellular activities are random, another modelling tech-

nique to consider in the future is to use an element of randomness for our mod-

els and thus by using stochastic processes to extend our deterministic models to

stochastic models.
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