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Abstract
Background: Cognitive ability is a heritable trait with a polygenic architecture,
for which several associated variants have been identified using
genotype-based and candidate gene approaches. Haplotype-based analyses
are a complementary technique that take phased genotype data into account,
and potentially provide greater statistical power to detect lower frequency
variants.
Methods: In the present analysis, three cohort studies (n  = 48,002) were
utilised: Generation Scotland: Scottish Family Health Study (GS:SFHS), the
English Longitudinal Study of Ageing (ELSA), and the UK Biobank. A
genome-wide haplotype-based meta-analysis of cognitive ability was
performed, as well as a targeted meta-analysis of several gene coding regions.
Results: None of the assessed haplotypes provided evidence of a statistically
significant association with cognitive ability in either the individual cohorts or the
meta-analysis. Within the meta-analysis, the haplotype with the lowest
observed  -value overlapped with the D-amino acid oxidase activator ( )P DAOA
gene coding region. This coding region has previously been associated with
bipolar disorder, schizophrenia and Alzheimer’s disease, which have all been
shown to impact upon cognitive ability. Another potentially interesting region
highlighted within the current genome-wide association analysis (GS:SFHS: P
= 4.09 x 10 ), was the butyrylcholinesterase ( ) gene coding region. TheBCHE
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protein encoded by   has been shown to influence the progression ofBCHE
Alzheimer’s disease and its role in cognitive ability merits further investigation.
Conclusions: Although no evidence was found for any haplotypes with a
statistically significant association with cognitive ability, our results did provide
further evidence that the genetic variants contributing to the variance of
cognitive ability are likely to be of small effect.
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Introduction
Cognitive ability facilitates the way in which we understand, inter-
pret and interact with the world around us, and encompasses a 
broad range of neuropsychological skills, such as reasoning, vari-
ous forms of memory, literacy, numeracy, logic, decision making, 
knowledge, and processing speed. There are positive correlations 
between each of these skills1, and an individual’s aptitude for each 
skill can be quantified by completing specifically designed, vali-
dated and standardised tests. The results obtained using these tests 
are commonly combined to form an overall general cognitive func-
tion (‘g’ or general intelligence) score. The heritability of g gener-
ally increases with age, with estimates ranging from 30 – 80%2,3. 
Several large, well-powered studies4–8 have reported a number of 
genome-wide significant associations for cognitive phenotypes 
using genotype data. Despite this, genotype-based analyses using 
single nucleotide polymorphism (SNP) data are unlikely to be able 
to fully capture the variation in the regions adjacent to the typed 
markers. This will be especially true for untyped or rare variants, 
or those variants that are in weak linkage disequilibrium (LD) with 
the SNPs found on common genotyping arrays. Haplotypes have 
the additional benefit of incorporating information from multiple 
variants where the DNA strand has been assigned.

Haplotype-based analyses of cognitive ability have focused on a 
number of specific gene coding regions: brain-derived neurotrophic 
factor (BDNF)9,10, D-amino acid oxidase activator (DAOA)11,12 and 
apolipoprotein E (APOE)13,14. In the present analysis, these three 
regions will be assessed using the three available cohort studies, 
along with a genome-wide haplotype-based association analysis of 
cognitive ability. The Generation Scotland: Scottish Family Health 
Study (GS:SFHS) will be used as the discovery cohort, with the 
English Longitudinal Study of Ageing (ELSA) and UK Biobank 
used as replication cohort studies along with a meta-analyses of all 
three cohorts.

Materials and methods
Discovery cohort
Generation Scotland: Scottish Family Health Study (GS:SFHS). 
GS:SFHS15,16 is a population and family-based cohort study of 
23,960 individuals, of whom 20,195 were genotyped using the  
Illumina OmniExpress BeadChip (706,786 SNPs). Within GS:
SFHS, there were 4,933 families containing at least two related 
individuals, including 1,799 families with two members, 1,216 
families with three members and 829 families with four members, 
with the largest family containing 31 individuals. There were 1,789 
individuals with no other family members in the cohort.

For quality control, individuals with a genotype call rate < 98% 
or who were identified as population outliers17 through principal 
component analysis were removed, leaving 19,904 individuals.  
Quality control was also applied to the genomic data, with SNPs 
with a call rate < 98%, minor allele frequency (MAF) < 0.01 or that 
deviating from Hardy-Weinberg equilibrium (P < 10-6) removed. 
This left a total of 561,125 autosomal SNPs.

Replication cohorts
English Longitudinal Study of Ageing (ELSA). ELSA18 is a 
population-based cohort study consisting of 11,391 individuals, of 

which 7,597 were genotyped using the Illumina Omni 2.5–8 array 
(≈ 2.5M SNPs). SNPs which overlapped with the discovery sample 
were extracted, and individuals that reported a non-Caucasian eth-
nicity were removed to maximise homogeneity within the sample. 
This left 7,452 individuals with variant calls for 554,079 SNPs for 
analysis. There was no evidence of overlapping individuals between 
ELSA and GS:SFHS using a checksum-based approach, whereby 
a total of 500 randomly selected genome-wide SNPs, present 
across both cohort studies, were assigned to 10 equal-sized batches.  
A checksum was calculated using the cksum unix command for each 
individual and for each batch. If an individual in one cohort study 
had the same checksum for a specific batch as an individual in the 
other cohort, then this provided evidence of overlap between those 
two individuals (personal communication with Stephan Ripke).

UK Biobank. UK Biobank19 is a population-based cohort study 
consisting of 152,249 genotyped individuals with imputed genomic 
data for 72,355,667 variants20. Individuals who reported a non-
white British ethnicity or were identified as overlapping with 
either GS:SFHS (n = 174) or ELSA (n = 85), using the check-
sum-based approach described previously, were removed, leaving  
119,832 individuals. Imputed variants with an infoscore ≥ 0.8, 
that were also genotyped in GS:SFHS, were extracted from the 
UK Biobank data, which identified 555,782 variants in common 
between the two cohorts.

Genotype phasing and haplotype formation
Phasing of the genotype data within each cohort study was con-
ducted using SHAPEIT v2.r83721. Genome-wide phasing was 
applied to the GS:SFHS discovery cohort. Within the replication 
cohort studies, phasing was conducted across a 50Mb window  
centred on haplotypes with P < 10-6 in the genome-wide analysis 
of the discovery cohort study, and the BDNF, DAOA and APOE 
gene coding regions. To improve phasing accuracy, the number 
of conditioning states per SNP was increased from the default of 
100 states to 200 states. The default effective population size for 
European populations of 15,000 was used across the three cohorts. 
A 5Mb window size was used to conduct the phasing within GS:
SFHS (rather than the default window size of 2Mb used for ELSA 
and UK Biobank), as this has been shown to be advantageous when 
larger amounts of identity by descent (IBD) sharing are present21. 
The extensive family structure within GS:SFHS also meant the 
duoHMM method could be applied to that cohort. The duoHMM 
method combined the results of a MCMC algorithm with pedigree 
information to improve phasing accuracy22. HapMap phase II b3723 
was used to calculate the recombination rates between SNPs during 
phasing, and for the subsequent partitioning of the phased data into 
haplotypes.

Window sizes of 1cM, 0.5cM and 0.25cM were used to determine 
the SNPs included within each haplotype24. A sliding window  
was used, sliding the window along a quarter of the respective 
window size. This produced a total of 97,333 windows with a 
mean number of SNPs per window of 157, 79 and 34 for the 1cM, 
0.5cM and 0.25cM windows, respectively. The haplotype posi-
tions reported subsequently are given in base pair (bp) position  
(using GRCh37) and correspond to the outermost SNPs located 
within each haplotype. Those haplotypes containing less than  
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5 SNPs, or with a frequency < 0.005 or that deviating from  
Hardy-Weinberg equilibrium (P < 10-6) were not assessed, but they 
were included as part of the alternative haplotype for the assess-
ment of the remaining haplotypes. Following quality control  
there were 2,618,094 haplotypes for further analysis.

To estimate the correction required for multiple testing, the clump 
command within Plink v1.9025 was used to determine the number 
of independently segregating haplotypes. An LD r2 threshold of 0.4 
was used to classify a haplotype as independent and at this thresh-
old there were 1,070,216 independently segregating haplotypes 
in the discovery cohort study. Therefore, a Bonferroni correction  
required that P < 5 × 10-8 for genome-wide significance. This was 
in alignment with the conventional level for significance used 
for sequence and SNP-based genome-wide association studies26.  
Therefore in the present analysis, and for future genome-wide  
haplotype-based analyses using cohorts similar to GS:SFHS, the 
conventional P-value for significance can be applied.

General cognitive ability
Within each cohort study, a principal component analysis was 
used to determine a general cognitive ability score (g). This was  
calculated using the first unrotated principal component from the 
series of cognitive tests conducted within each cohort. The load-
ings used within each cohort are provided in Supplementary  
Table S1. The study demographics of each cohort for individu-
als for which g could be calculated are provided in Table 1. The  
GCTA-GREML27 method was used to calculate SNP-based  
estimates for the heritability of g.

Generation Scotland: Scottish Family Health Study (GS:SFHS). 
The following tests were used within GS:SFHS to calculate g:  
logical memory, verbal fluency, digit symbol-coding, and vocabu-
lary. Logical memory was assessed using the Wechsler Memory 
Scale III28. Verbal fluency was measured using a phonemic fluency 
test, requiring the participant to name as many words as possible 
beginning with a particular letter (C, F, and L were used) within 
a given timeframe29. Digit symbol-coding was assessed using the 
Wechsler Adult Intelligence Scale III29. Vocabulary was assessed 
using the Mill Hill Vocabulary Scale senior and junior synonyms 

combined30. Additional information regarding the cognitive  
ability variables available within GS:SFHS has been published  
previously14,15,31. g explained 0.43 of the variance across the four 
tests and was available for 19,326 individuals.

English Longitudinal Study of Ageing (ELSA). The first wave of 
the cognitive tests conducted by ELSA were used to calculate g 
for this cohort: processing speed, verbal memory and verbal flu-
ency. Processing speed was calculated using a letter cancellation 
task with participants searching a large grid of letters for the let-
ters P and W and crossing those out. Verbal memory was assessed 
using a ten-word list-learning task. Verbal fluency was measured 
by the number of different animal species that could be named in 
one minute. Further information regarding these cognitive tests is 
provided elsewhere32,33. There were 5,876 individuals for which g 
could be calculated, with g explaining 0.49 of the total variance 
across the three cognitive tests.

UK Biobank. The touchscreen cognitive tests conducted as part of 
the online follow-up within UK Biobank were used to derive g. 
Some of these tests have yet to be reported elsewhere and are there-
fore covered in greater detail here. The following tests were used 
within this cohort study: fluid intelligence test (UK Biobank Field 
20191), trail making test (mean of UK Biobank Fields 20156 and 
20157), symbol digit substitution test (UK Biobank Field 20159) 
and numeric memory test (UK Biobank Field 20240). The fluid 
intelligence test consisted of 13 multiple-choice questions to be 
answered within two minutes, with a score based on the number of 
correct answers. For the trail making test participants were firstly 
presented with a screen containing a series of numbers from 1 to 25, 
each contained within a circle. Starting with the circle containing 
the number 1, the participants then had to use the computer mouse 
to click on the numbers in ascending order. Secondly, the partici-
pants were presented with circles containing the numbers 1 to 13 
and the letters A to L. For this test the participants had to click the 
circles in the order 1, A, 2, B, 3, C, 4, D, etc. For both the trail mak-
ing tests the time taken to complete each test was recorded, with the 
log of the mean time across the two tests taken as the final score for 
this test. The symbol digit coding test consisted of a series of eight 
symbols that corresponded to eight numbers. The participants were 
then repetitively presented with eight symbols in a specific order 
that required recoding to their numerical equivalents. The number 
of correctly recoded sequences within one minute was recorded. 
The numeric memory test began with a two-digit number being pre-
sented, after a short delay the participant was then required to enter 
the number presented. The length of the number presented was then 
incremented by one digit each time with the participant required to 
recall the full number correctly, up to a maximum of 12 digits. The 
maximum number of digits recalled successfully was recorded. The 
proportion of variance explained by g across the four tests was 0.51 
and was available for 22,800 individuals. The proportion of vari-
ance explained by g within the online follow-up was greater than 
that reported (≈ 0.4) by Lyall, Cullen34 for the original cognitive 
tests conducted within UK Biobank.

Table 1. Study demographics of Generation Scotland: 
Scottish Family Health Study (GS:SFHS), English 
Longitudinal Study of Ageing (ELSA) and UK Biobank for 
individuals with a general intelligence score.

GS:SFHS ELSA UK Biobank

N 19,326 5,876 22,800

Males/Females 7,929/11,397 2,679/3,197 10,665/12,135

Age Range 18 – 94 31 – 90 40 – 75

Mean Age (s.dev.) 47.2 (14.9) 63.3 (9.4) 56.4 (7.7)
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Statistical analysis
Discovery cohort. A genome-wide haplotype-based association 
analysis was conducted within GS:SFHS using a mixed linear 
model within GCTA v1.25.035:

                                y = Xβ + Z
1
u + Z

2
v + ε

where y was the vector of observations for g. β was the matrix 
of fixed effects, including haplotype, sex and age. A SNP-based 
genomic relationship matrix27 (G) using the ‘leave one chromo-
some out’ methodology35, which excluded the chromosome of the 
assessed haplotype, was fitted as a random effect, u, taking into 
account the genomic relationships as MVN (0, 2

uGσ ). v was a ran-
dom effect fitting a second genomic relationship matrix Gt as MVN 
(0, 2

t vG σ ), which modelled only the more closely related indi-
viduals36. Gt was identical to G, except that off-diagonal elements  
< 0.05 were set to 0. X, Z

1
 and Z

2
 were the corresponding incidence 

matrices. ε was the vector of residual effects and was assumed to  
be normally distributed as MVN (0, 2I εσ ).

GS:SFHS is a family-based cohort and therefore LD score  
regression37 was used to test for the existence of population strati-
fication by examining the summary statistics obtained from the 
above mixed model. The fitting of a single genomic relationship 
matrix, G, provided evidence of significant population stratifica-
tion (intercept = 1.051 ± 0.004). Whilst the simultaneous fitting  
of the matrices G and to Gt together produced no evidence of  
population stratification (intercept = 0.998 ± 0.003), hence the  
fitting of two matrices for GS:SFHS.

Replication cohorts. A mixed linear model was used to assess the 
haplotypes in ELSA and UK Biobank which were identified in the 
GS:SFHS discovery cohort study with P < 10-6 and those haplotypes 
in GS:SFHS that overlapped with the BDNF, DAOA and APOE 
gene coding regions. This was conducted using GCTA v1.25.035:

                                         y = Xβ + Z
1
u + ε

where y was the vector of binary observations for g. β was the 
matrix of fixed effects, including haplotype, sex and age, and for 
UK Biobank, genotyping batch and recruitment centre were also 
fitted. u was fitted as a random effect taking into account the  
SNP-based genomic relationships as MVN (0, 2

uGσ ) and also imple-
mented the ‘leave one chromosome out’ methodology35. X and Z1 
were the corresponding incidence matrices and ε was the vector 
of residual effects and was assumed to be normally distributed as 
MVN (0, 2I εσ ). Replication success was judged on the statistical 
significance of each haplotype using an inverse variance-weighted 
meta-analysis across all three cohorts conducted with Metal38.

Results
A genome-wide haplotype-based association analysis for general 
cognitive ability, using a principal component derived meas-
ure of g, was conducted using 2,618,094 haplotypes within the  
GS:SFHS discovery cohort study. A genome-wide Manhattan plot 
of –log

10 
P-values is provided in Figure 1, with a q-q plot pro-

vided in Supplementary Figure S1. No haplotypes exceeded the  
genome-wide significance threshold (P < 5 × 10-8) for an associa-
tion with g. Within the discovery cohort study, 12 haplotypes had 

Figure 1. Manhattan plot representing the –log10 P-values for an association between each assessed haplotype and cognitive score 
in the Generation Scotland: Scottish Family Health Study cohort study.
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P < 10-6, and replication was sought for these 12 haplotypes within 
ELSA and UK Biobank. Summary statistics regarding each cohort 
study and the meta-analysis of these haplotypes (after applying 
an LD r2 threshold of 0.4 to identify those that are independently 
segregating) are provided in Table 2. The frequencies of the hap-
lotypes within each cohort, for the seven independently segregat-
ing haplotypes with P < 10-6 in the discovery cohort, along with  
the protein coding genes that these haplotypes overlapped, are  
provided in Supplementary Table S2.

Of the 12 haplotypes with P < 10-6 in GS:SFHS, none were nomi-
nally significant (P ≥ 0.05) in ELSA. Within UK Biobank the only 
haplotype to be nominally significantly (P < 0.05) associated with g 
was located on chromosome 11 and this was in the opposite direc-
tion to that observed for GS:SFHS. The smallest P-value (1.46 × 
10-3) observed within the genome-wide meta-analysis was located 
on chromosome 18 and although neither of the replication cohort 
studies were nominally significant, their effects were in the same 
direction as that observed within GS:SFHS. The genetic variance 
explained by each of the haplotypes within GS:SFHS was small, 
ranging from 3.93 × 10-3 – 4.63 × 10-3. A power analysis revealed 
that the sample sizes for the replication cohorts were large enough 
to provide statistical power in excess of 0.99, assuming an effect 
size equivalent to that observed in the discovery cohort study.

The SNP-based heritability of g was calculated using  
GCTA-GREML27 and was 0.41 (s.e = 0.05) for GS:SFHS, 0.17 (s.e. 
= 0.06) for ELSA, and 0.21 (s.e. = 0.02) for UK Biobank. The her-
itability of g within GS:SFHS was calculated using an unrelated 
subsample of 7 388 individuals, whereby one of a pair of individuals 
was removed if they shared a genotype-based relatedness of > 0.025.

BDNF, DAOA and APOE gene coding regions
None of the haplotypes overlapping the BDNF, DAOA and APOE 
gene coding regions were statistically significant at the genome-
wide level (P ≥ 5 × 10-8) in the meta-analysis or in the single 
cohort analyses. The top five independently segregating haplotypes  

(following the application of an LD r2 threshold of 0.4) in terms 
of statistical significance achieved in the meta-analysis for each 
of the gene coding regions are shown in Table 3. There were 214  
haplotypes that overlapped the BDNF gene coding region and 
the lowest P-value obtained in the meta-analysis was 1.35 × 10-3  
for a haplotype with a positive effect (beta = 0.31 ± 0.10) on g. 
The DAOA gene coding region overlapped with 410 assessed  
haplotypes, with the lowest P-value = 1.53 × 10-5 within the  
meta-analysis for a haplotype with a positive effect (beta = 0.20 
± 0.05) on g. Overlapping the APOE gene coding region there 
were 325 assessed haplotypes, of which the lowest observed  
P-value in the meta-analysis was 7.50 × 10-4 for a haplotype with a 
positive effect (beta = 0.18 ± 0.05).

Discussion
Twelve haplotypes were identified in the GS:SFHS discovery  
cohort study with a P-value < 10-6 for an association with g,  
although none of these reached genome-wide significance  
(P > 5 × 10-8). Replication of these twelve haplotypes was sought 
and not found within the ELSA and UK Biobank cohort studies. 
Both of these cohorts were sufficiently powered cohorts to detect 
effects of the sizes observed within GS:SFHS, assuming that the 
haplotypes were in linkage equilibrium with the causal variant. 
Therefore, despite SNP-based heritability estimates ranging from 0.17 
to 0.41 for g across the three cohort studies, there was no evidence for 
any haplotypes significantly associated with cognitive ability.

The haplotypes with P < 10-6 within the discovery cohort study 
overlapped with a number of gene coding regions. In terms of bio-
logical viability the most notable of these haplotypes was located 
on chromosome 3 that overlapped with the coding region for 
the butyrylcholinesterase (BCHE) gene. BCHE has been shown 
to have a role in cognitive ability within humans39,40 as well as  
rodents41,42. SNP variants close to this coding region, which over-
lapped with the haplotype on chromosome 3, have also been shown 
to be significantly associated (P = 2.69 × 10−8) with the cortical 
deposition of amyloid-β peptide43. This deposition is thought to 

Table 2. Independently segregating (linkage disequilibrium r2 threshold of 0.4) haplotypes sorted by P-value obtained in the 
meta-analysis and with a P-value < 10-6 for an association with cognitive ability within the discovery cohort study, Generation 
Scotland: Scottish Family Health Study (GS:SFHS).

Haplotype GS:SFHS ELSA UK Biobank Meta-analysis

Chr Position (bp) Beta (s.e.) P-value Beta (s.e.) P-value Beta (s.e.) P-value Direction P-value

18 64252341 - 64568113 0.23 (0.05) 5.21 × 10-7 0.08 (0.06) 0.17 0.01 (0.02) 0.54 +++ 0.001

3 165337109 - 166522847 0.60 (0.12) 4.09 × 10-7 -0.02 (0.15) 0.9 0.06 (0.06) 0.36 +-+ 0.003

20 9288522 - 9726640 0.55 (0.11) 2.13 × 10-7 -0.003 (0.06) 0.96 0.04 (0.05) 0.38 +-+ 0.008

1 150165849 - 151140732 0.51 (0.10) 9.20 × 10-7 0.12 (0.14) 0.37 0.002 (0.06) 0.97 +++ 0.01

4 11448182 - 11547967 0.32 (0.06) 7.36 × 10-7 0.11 (0.07) 0.96 0.01 (0.03) 0.83 +++ 0.04

11 20184958 - 20297638 -0.56 (0.11) 4.31 × 10-7 -0.03 (0.13) 0.84 0.12 (0.06) 0.04 --+ 0.6

15 94701431 - 94729657 -0.27 (0.05) 6.33 × 10-7 -0.10 (0.07) 0.14 0.02 (0.01) 0.16 --+ 0.85

Beta values, standard errors and P-values are given for GS:SFHS, English Longitudinal Study of Ageing (ELSA), UK Biobank and a meta-analysis of all 
three cohort studies. Genomic location is determined by position on the GRCh37 assembly.
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Table 3. Independently segregating (linkage disequilibrium r2 threshold of 0.4) haplotypes overlapping the brain-derived 
neurotrophic factor (BDNF), D-amino acid oxidase activator (DAOA) and apolipoprotein E (APOE) gene coding regions.

Haplotype GS:SFHS ELSA UK Biobank Meta-analysis

Gene Chr:Position (bp) Beta (s.e.) P-value Beta (s.e.) P-value Beta (s.e.) P-value Direction P-value

BDNF 

11:27337843-27778592 0.34 (0.12) 0.007 0.27 (0.15) 0.08 na na ++? 0.001

11:27444517-27787783 0.31 (0.12) 0.01 0.24 (0.15) 0.11 na na ++? 0.003

11:27337843-27778592 0.22 (0.09) 0.01 0.10 (0.09) 0.27 na na ++? 0.009

11:27662826-27990119 0.25 (0.09) 0.006 0.07 (0.10) 0.47 na na ++? 0.01

11:27020461-27749725 -0.28 (0.11) 0.01 -0.10 (0.10) 0.31 na na --? 0.02

DAOA 

13:106140780-106393146 0.25 (0.11) 0.03 0.16 (0.14) 0.23 0.20 (0.06) 3.54 × 10-4 +++ 1.53 × 10-5

13:106098389-106240125 0.28 (0.11) 0.009 0.08 (0.11) 0.47 0.13 (0.05) 0.005 +++ 2.63 × 10-4

13:106140780-106240125 0.22 (0.10) 0.02 0.08 (0.10) 0.42 0.12 (0.04) 0.005 +++ 4.03 × 10-4

13:106066286-106154577 -0.22 (0.12) 0.07 -0.06 (0.14) 0.67 -0.22 (0.07) 0.002 --- 5.91 × 10-4

13:106065361-106133365 -0.18 (0.11) 0.12 -0.04 (0.13) 0.75 -0.20 (0.06) 0.001 --- 6.50 × 10-4

APOE 

19:45290685-45422561 0.28 (0.11) 0.009 0.18 (0.13) 0.16 0.14 (0.07) 0.05 +++ 7.50 × 10-4

19:45318153-45422561 0.27 (0.09) 0.003 0.20 (0.10) 0.05 0.06 (0.05) 0.28 +++ 0.002

19:45389224-45548502 0.14 (0.08) 0.07 0.11 (0.09) 0.21 0.08 (0.04) 0.04 +++ 0.004

19:45390685-45422561 0.09 (0.13) 0.45 -0.15 (0.13) 0.26 -0.17 (0.06) 0.004 +-- 0.01

19:45351746-45422561 0.39 (0.10) 1.24 × 10-4 -0.09 (0.11) 0.4 0.08 (0.05) 0.14 +-+ 0.01

Beta values, standard errors and P-values are given for Generation Scotland: Scottish Family Health Study (GS:SFHS), English Longitudinal Study of Ageing 
(ELSA), UK Biobank and a meta-analysis of all three cohort studies. There were no UK Biobank individuals that carried the shown BDNF overlapping haplotypes. 
Haplotypes are sorted by P-value obtained in the meta-analysis within each gene coding region. Genomic location is determined by position on the GRCh37 
assembly.

be an initiating factor in the pathology of Alzheimer’s disease44,45, 
which has a known impact on cognitive ability. Furthermore, the 
BCHE-K variant (rs1803274) has been shown to have an effect 
on the progression of Alzheimer’s disease46,47 and an interac-
tion with the APOE ε4 allele among those with late-onset of the  
disease48. The BCHE-K variant was not genotyped within  
GS:SFHS but it is located within the bounds of the haplotype on 
chromosome 3. This haplotype was analysed and not found to be 
associated with Alzheimer’s disease (P ≥ 0.05) within GS:SFHS, 
using the same mixed linear model described previously and  
self-declared Alzheimer’s disease as the phenotype. However, the 
prevalence of the disease in this cohort (0.14%) is likely to have 
limited the power to detect an effect.

The targeted meta-analyses of the BDNF, DAOA and APOE gene 
coding regions did not provide evidence of genome-wide signifi-
cant haplotypes (P ≥ 5 × 10−8) associated with cognitive ability. 
The BDNF region yielded several haplotypes which were more 
statistically significant than those found by Wilkosc, Szalkowska9 
or Warburton, Miyajima10. BDNF is involved in the development 
of synaptic connectivity in the central nervous system49 and there-
fore represents a potential source of cognitive score variance. 
The most significant haplotype (P = 1.53 × 10-5) identified across 
all meta-analyses was in the DAOA coding region. SNP variants 
located within the DAOA gene have also been associated with dis-
eases related to the brain: bipolar disorder50, Alzheimer’s disease51 
and, potentially, schizophrenia52. These diseases are known to be  

associated with decrements in cognitive ability. Haplotypes within 
the APOE gene coding region have been studied previously 
within GS:SFHS14, although the haplotypes examined previously 
were considerably shorter, formed of two variants and used the  
cognitive tests individually rather than forming an overall g score. 
The P-value of the most significant haplotype in the APOE region 
in the present analysis was stronger than the haplotypes assessed 
by Marioni, Campbell14, but was not genome-wide significant  
(P ≥ 5 × 10−8).

The cohort studies selected for analysis should be relatively homog-
enous, as they are a subset of the British population, this can be 
observed by the consistency of the haplotype frequencies shown 
in Supplementary Table S2. However, there were some differences 
in the cognitive tests applied between the studies. The size of the 
present analysis is comparable number to that of the genotyped-
based genome-wide association study of cognitive ability conducted 
by the CHARGE consortium4. Their paper drew the conclusion that 
there were likely to be many genes of small effect contributing 
to the genetic variance underlying cognitive ability. Based on the 
observed heritability of the trait, but a lack of genome-wide signifi-
cant haplotypes in the present analyses, this conclusion continues 
to hold true.

Conclusions
None of the haplotypes analysed in this study achieved genome-
wide significance (P ≥ 5 × 10−8) for an association with cognitive 
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ability within any of the cohort studies, or in the meta-analysis. The 
genome-wide analysis identified a haplotype within the BCHE gene 
coding region which may play a role in cognitive ability and this 
warrants further analysis. Although haplotypes should allow the 
detection of signals from rarer causal variants compared to a typi-
cal genotype-based analysis, there was no evidence for genome-
wide significant haplotypes for the window sizes tested. Potentially 
shorter and therefore more common haplotypes could be assessed, 
however to detect rarer genetic contributions to highly polygenic 
traits such as cognitive ability, there remains a requirement for 
larger sample sizes.
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