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Abstract. This paper presents a heuristic Learning-based Non-Negativity Constrained
Variation (L-NNCV) aiming to search the coefficients of variational model automatically
and make the variation adapt different images and problems by supervised-learning
strategy. The model includes two terms: a problem-based term that is derived from the
prior knowledge, and an image-driven regularization which is learned by some training
samples. The model can be solved by classical ε-constraint method. Experimental results
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the corresponding theoretical proof; the proposed method outperforms other PDE-based
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1. Introduction

Variational methods have been widely applied to various areas of image restoration and
remain active in mathematical research of image processing. One of the most remarkable
work is total variation (TV) which was first introduced into image denoising in the seminal
work [36] by Rudin, Osher and Fatemi. The mostly used version of discrete TV [33,38] is
given by

‖u‖T V =
m−1
∑

i=1

n−1
∑

j=1

q

(ui+1, j − ui, j)2 + (ui, j+1 − ui, j)2, (1.1)

which is the discretization of
∫

Ω
|∇u|dx by pixel. The unconstrained version of TV-based

model reads

min
u

1
2
‖Ku− f ‖2 + β‖u‖T V , (1.2)

where f : Ω→ R is the degraded image, u : Ω→ R is the recovered image, K is the blurring
operator, and the coefficient β usually depends on the noise level. The first term of (1.2)
is the l2 norm of Ku− f which guarantees inheritance from the observed image f , and the
second term is total variation which helps to remove the noise. This TV-based deblurring
model solves different problems for different choices of K , for example, K = I for image
denoising. In this paper, we assume that K is derived from a point spread function (PSF),
namely, K is known. Owing to excellent effectiveness of total variation on reducing noise
and preserving edges, TV-based models have ignited plenty of research in dealing with
image denoising and deblurring [12, 19, 21, 41, 46, 47], image inpainting [6, 10, 14, 15],
image superresolution [13], image segmentation [11, 16, 26, 28, 32, 40] and other image
processing problems [8].

Adding the non-negativity constraint to these TV-based models helps to recover the
image when the constraint is physically meaningful. For example, images whose pixels
represent the number of photon pairs must be non-negative. In contrast to clipping the so-
lution to TV-based model, enforcing the constraint in the model can achieve better perfor-
mance [17,18]. Besides, the non-negative output images are the requirement of some ap-
plications such as the medical imaging [20,34], gamma ray spectral analysis [31,37] and so
on. Krishnan et al. [25,26] focused on the TV-based deblurring model with non-negativity
constraint, called NNCGM, and solved it with the primal-dual active-set strategy [9, 24].
The interested reader is referred to [3,22,44] for other constrained algorithms.

All the above TV-based models are manually designed with the insight of individual
problems, which sometimes restricts the strength of these TV-based models. Recently, a
learning-based PDEs (L-PDE) model was proposed by Liu et al. in their seminal work [29].
Based on the proficiency of diffusion, they combined the differential operators with some
image-driven coefficients to make PDEs adaptive to different problems. The model was
proven to be successful in image denoising, edge detection and image segmentation [29].

Inspired by L-PDE methods, we propose a learning-based non-negativity constrained
variation which extends the traditional TV-based models. The proposed variation contains
two terms: a problem-based term that is derived from the prior knowledge, and an image-
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driven regularization which is learned by some training samples so as to make the variation
adaptive to different images as well as problems. With the help of supervised-learning
strategy, the optimal coefficients of the variation are searched automatically.

The rest of the paper is organized as follows. In Section 2, we propose a heuristic
non-negativity constrained variation (NNCV) model, and then we give a learning-based
form of our proposed model (L-NNCV) and solve it with ε-constraint method. Section 3
presents experimental results and Section 4 concludes this paper. Appendices A-B give
supplementary materials containing extended proofs and mathematical derivations.

2. Learning non-negativity constrained variation

2.1. NNCV model

In this subsection, we propose a class of non-negativity constrained variation (NNCV)
model

min
u,u≥0

P( f , u) + V (β , u), (2.1)

where P( f , u) is a problem-based term derived from the prior knowledge, for example,
P( f , u) = 1

2‖Ku − f ‖2 for image deblurring while P( f , u) = 〈s, u〉 where s = ( f − c1)2 −
( f − c2)2 for image segmentation, and V (β , u) := β1v1(u) +

1
2β2v2(u) +

1
2β3v3(u) is an

image-driven regularization including three terms: v1(u) is the total variation that has
been successfully applied to various areas due to its mathematical tractability; v2(u) = ‖u‖2

makes the variation well conditioned; v3(u) = ‖∇u‖2 is the strong smoothing term [43]. As
controllers of the solution process, the coefficients of these three terms vary with iterations
to make the variation adaptive to different images under different conditions. Obviously,
TV-based deblurring model [36] and TV-based segmentation model [11] are special cases
of our unconstrained NNCV model with fixed coefficients.

The NNCV model for image denoising and deblurring reads

min
u,u≥0

1
2
‖Ku− f ‖2 + V (β , u). (2.2)

Essentially, the blurring operator K , the coefficient β2 in V (β , u) and the non-negativity
constraint can change the global energy of the image, whereas β1 and β3 in V (β , u), in-
terpreted as scale parameters, can influence the local diffusion. See Appendix A for the
proofs and analysis of these properties. The experimental effectiveness of these terms will
be discussed in Section 3.1.

2.2. L-NNCV: search coefficients automatically

Given the form of the non-negativity constrained variation (2.1), we search the optimal
coefficients based on supervised-learning. Namely, the coefficients are learned by some
prepared samples. We prepare some pairs of training samples ( fm, f ∗m)m=1,2,...,M where fm
is the degraded input image and f ∗m is the expected output image (ground truth), and the
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output of NNCV model should approximate to the ground truth. Hence, the updated image
and coefficients should minimize the following objective functional

J(u,β) =
1
2

M
∑

m=1

‖um − f ∗m‖
2 +

1
2

3
∑

i=1

αiβ
2
i , (2.3)

where αi (i = 1,2, 3) are positive weighting coefficients related to the number of training
samples and um (m = 1, ..., M) are the updated images computed from NNCV model. The
updated output images play an important role in objective functional and inherit most
features from the ground truth through the first term of objective functional (2.3), and the
second term ensures the convexity of objective functional [5]. The tendency of um = f ∗m
makes NNCV close to ground truth, but β = (0,0, 0) rarely appears because um which
minimizes NNCV model is also related to β . To further explain how the objective functional
works, we detail the learning process in iteration as follows: (1) images, updated by NNCV
model, are delivered to the objective functional (2.3) to be um (m = 1, ..., M); (2) the
coefficients, minimizing the objective functional (2.3), are returned to NNCV model to be
the coefficients in the next iteration. Then the coefficients are searched by some prepared
training samples, which make NNCV image-driven. We denote this learning-based NNCV
by L-NNCV as follows

min
um,β

1
2

∑M
m=1 ‖um − f ∗m‖

2 + 1
2

∑3
i=1αiβ

2
i ,

min
um,um≥0

P( fm, um) + V (β , um) m= 1, ..., M .
(2.4)

In this paper, we only focus on the image denoising and deblurring problems, so P( fm, um) =
1
2‖Kum − fm‖2.

2.3. Solving L-NNCV via ε-constraint method

The L-NNCV approach for image denoising and deblurring can be rewritten as

min
um,β

1
2

∑M
m=1 ‖um − f ∗m‖

2 + 1
2

∑3
i=1αiβ

2
i ,

min
um

1
2‖Kum − fm‖2 + V (β , um) m= 1, ..., M ,

s.t. um ≥ 0, m= 1, ..., M ,

(2.5)

which is a multiobjective optimization problem with non-negativity constraint. Non-negativity
constraint can improve the quality of the solutions but complicates the variational models,
so we use the classical ε-constraint technique, proposed by Haimes et al. [23], for generat-
ing Pareto optimal solution.

Then, we sketch the existing theory of ε-constraint method that we will borrow. Find
an efficient point for the following minimization problem

min
α,u

[J (x ,α, u),H (u)],

s.t. G (x ,α, u)≤ 0.
(2.6)
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Consider
min
α,u

J (x ,α, u),

s.t.

�

H (u)≤ ε,
G (x ,α, u)≤ 0.

(2.7)

For convenience, we denote these problems (2.6) (2.7) by Problem A and Problem B(ε)
and let V = (x ,α, u).

Theorem 2.1. (Equivalence Theorem [23]) Let ε ≥ minuH (u), let V∗ solve Problem B(ε),
and assume that, if V∗ is not unique, then V∗ is an optimal solution of Problem B(ε) with
minimalH (u) value. Then V∗ solves Problem A.

Obviously, ε-constraint method transforms the multiobjective problem into single-objective
problem with constraints. Based on the theory, the equivalent ε-constraint problem of L-
NNCV is

min
um,β

1
2

∑M
m=1 ‖um − f ∗m‖

2 + 1
2

∑3
i=1αiβ

2
i ,

s.t.

�

Hm(um,β)≤ εm,
um ≥ 0, m= 1, ..., M ,

(2.8)

where Hm(um,β) := 1
2‖Kum− fm‖2+V (β , um). The upper bound εm should vary to obtain

subset of the Pareto optimal set. For the sake of simplicity and time saving, we force εm to
reach almost the minimum of Hm(um,β), so we plug ∇um

Hm(um,β) = 0 into (2.8). The

term ∇um
|∇um|

in ∇um
Hm(um,β) can be replaced by the dual variable pm through the Fenchel

dual transform, so we add ∇u − |∇u|τp = 0 and the dual variable’s constraint to (2.8).
Now, we arrive at the problem

min
um,β

1
2

∑M
m=1 ‖um − f ∗m‖

2 + 1
2

∑3
i=1αiβ

2
i ,

s.t.











∇um
Hm(um,β) = 0,

∇um − |∇um|τpm = 0,
um ≥ 0, |pm|2 − 1≤ 0,
m= 1, ..., M ,

(2.9)

where ∇um
Hm(um,β) := Aum − K T fm − β1divpm. In order to solve the above constrained

problem (2.9), one operates on the following Lagrangian functional

F(u,β) =
1
2

M
∑

m=1

‖um − f ∗m‖
2 +

1
2

3
∑

i=1

αiβ
2
i +

M
∑

m=1

[



φ1m,∇um
Hm

�

+ 〈φ2m,∇um − |∇um|τpm〉 − 〈um,µ1m〉+



|pm|2 − 1,µ2m

�

], (2.10)

where φ·m and µ·m are the multipliers and 〈·, ·〉 is the inner product. The corresponding
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optimality conditions (KKT conditions [5]) for problem (2.10) are given by

um − f ∗m +∇um
(



φ1m,∇um
Hm

�

)−∇φ2m +∇(φ2mp2
m)−µ1m = 0,

Aum − K T fm − β1divpm = 0,

∇um − |∇um|τpm = 0, (2.11)

(|pm|2 − 1)�µ2m = 0,

um �µ1m = 0,

µ1m,µ2m ≥ 0.

Here, � is understood as component-wise multiplication. As for βi(i = 1,2, 3), we compute
the derivative of F(u,β) with respect to them. Instead of solving the optimality conditions
(2.11) derived from (2.9) directly, we simplify (2.9) further to reduce complexity. After
being computed by NNCV, um (m= 1, ..., M) satisfies the non-negativity constraint and the
Fenchel dual transform, so these constraints will vanish in (2.9) and∇um

Hm(um,β) should
be replaced by ∇um

Lm := Aum − K T fm − β1div(pm)−λm = 0 where λm is the multiplier of
non-negativity constraint. Therefore, we solve the following minimization problem

min
um,β

1
2

∑M
m=1 ‖um − f ∗m‖

2 + 1
2

∑3
i=1αiβ

2
i ,

s.t. ∇um
Lm(um,β) = 0, m= 1, ..., M .

(2.12)

Then the corresponding Lagrangian functional is given by

F̃(u,β) =
1
2

M
∑

m=1

‖um − f ∗m‖
2 +

1
2

3
∑

i=1

αiβ
2
i +

M
∑

m=1




φm,∇um
Lm

�

,

where φm is the corresponding Lagrange multiplier. To minimize F̃ , the derivative ∂ F̃
∂ um

is
computed by

∂ F̃
∂ um

= um − f ∗m + (K
T K + β2 I)φm − β3∆φm. (2.13)

Additionally,

∂ F̃
∂ β1

= α1β1 −
M
∑

m=1

∫

Ω

φm � divpmd x , (2.14)

∂ F̃
∂ β2

= α2β2 +
M
∑

m=1

∫

Ω

φm � umd x , (2.15)

∂ F̃
∂ β3

= α3β3 −
M
∑

m=1

∫

Ω

φm �∆umd x . (2.16)

In conclusion, the updates of L-NNCV are as follows: first, the image um is updated by
NNCV model with coefficients of the former iteration; then, the coefficients are updated by
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Objective
Functional

NNCV

Initialization

Training 
Samples

L-NNCV

Degraded
Image

Clear
Image

Figure 1: The proposed framework including NNCV model and L-NNCV approach.

solving

um − f ∗m + (K
T K + β2 I)φm − β3∆φm = 0, (2.17)

α1β1 −
M
∑

m=1

∫

Ω

φm � divpmd x = 0, (2.18)

α2β2 +
M
∑

m=1

∫

Ω

φm � umd x = 0, (2.19)

α3β3 −
M
∑

m=1

∫

Ω

φm �∆umd x = 0. (2.20)

Through the learning process, NNCV becomes J(u,β)-driven which can be considered as
image-driven.

2.4. The framework for image denoising and deblurring

The framework for image denoising and deblurring is summarized in Figure 1. At first,
some pairs of training samples, including degraded input images and the desired output
images, are prepared as ones in red circles. Then the coefficients are initialized by solving
(2.17)-(2.20). The initialized coefficients are delivered to L-NNCV to search the optimal
coefficients.

There are several methods to handle NNCV model such as proximal splitting [2,4] and
primal-dual active-set strategy [9, 24, 25]. For high convergence rate, we use primal-dual
active-set strategy to solve NNCV model. See Appendix B for all derivatives of primal-dual
active-set strategy for NNCV model. The algorithms of NNCV and L-NNCV are shown in
Algorithm 2.1 and 2.2, respectively.

Last but not the least, the framework can be applied to other image processing problems
by associating variational method and objective functional.
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Algorithm 2.1 Non-Negativity Constrained Variation (NNCV)
Input: Blurring image f .
Output: Recovered image u.

1: Initialize u0, p0,λ0. Set k = 0.
2: while not converge do
3: Find the inactive set I k and the active setA k.
4: Compute δλk

A (the search direction of λm on the active set).
5: Compute δpk (the search direction of pm).
6: Compute δuk

A (the search direction of um on the active set).
7: Update the components in I k andA k by (4.25).
8: end while

Algorithm 2.2 Learning-based Non-Negativity Constrained Variation (L-NNCV)

Input: Initialized coefficients β0 and some pairs of training image samples ( fm, f ∗m).
Output: The coefficients β .

1: Initialize u0
m, p0

m,λ0
m. Set k = 0.

2: while not converged do
3: Set m= 1.
4: while m≤ M do
5: Find the inactive set I k

m and the active setA k
m.

6: Compute δλk
mAm

(the search direction of λm on the active set).

7: Compute δpk
m (the search direction of pm).

8: Compute δuk
mAm

(the search direction of um on the active set).

9: Update the components in I k
m andA k

m by (4.25).
10: Compute φm, using (2.17).
11: end while
12: Update the coefficients in the next iteration β k+1, using (2.18)-(2.20).
13: end while

2.5. Differences between traditional TV models, L-PDE and our proposed model

Intrinsically, NNCV model is automatically driven by the real image information, how-
ever, traditional TV models are manually designed by the desired properties. The learned
coefficients dynamically vary to adapt special images under different conditions. Clearly,
some of traditional TV models, such as TV-based deblurring model, are special cases of
our proposed model. It is reasonable to apply learning-based idea to other traditional TV
models. In addition, the learning-based idea makes the variation more flexible to different
issues with the help of the prepared training images.

In contrast to L-PDE, NNCV model considers the non-negativity constraint. As stated
in Section 1, non-negativity constraint not only is the requirement of some problems but
also can achieve better performance, but it is difficult to handle, so we borrow the existing
ε-constraint technique to solve it. Moreover, NNCV model and L-PDE stand at different
points of the problem. Basically, L-PDE considers the diffusion process which needs profi-
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(a) - (b) 10.61dB (c) 10.79dB (d) 27.14dB (e) 18.12dB

Figure 2: The results of denoising images with brightness and Gaussian noise. (a) Original image. (b)
Noisy exposed image. (c)-(e) Recovered images for β2 of 0, 0.55 and 1, respectively. The corresponding
edges are detected by Canny algorithm [7] with threshold of [0, 0.1].

cient understanding of operators, while NNCV model contains energy functional which can
collect our desired properties together.

3. Experimental results

In this section, we show some experimental results in three aspects: effectiveness of
each term in the image-driven regularization, comparisons on image denoising and deblur-
ring. The peak signal-to-noise ratio (PSNR), defined by 10 log10(

2552

1
mn ‖original−reconst ructed‖2

),

measures image reconstruction error.

3.1. Effectiveness of each term in image-driven regularization

We analyze the effectiveness of each term in the image-driven regularization in NNCV
model (2.2) experimentally.

Figure 2 demonstrates the results of NNCV model for a fixed β1 and different β2. The
noisy image is deteriorated by brightness and Gaussian noise with a fixed SNR of 23 dB.
We can see that v2 in the image-driven regularization darkens the image, which means
that the coefficient β2 can affect the global energy of the image as stated in Section 2.1.
However, the edges of denoised images detected by Canny algorithm [7] are close to the
original image. Namely, v2 term can hardly influence the local diffusion while it penalizes
brightness of images without changing the local information such as gradient.

As is known to all, v1 term (also known as total variation) keeps good balance of smooth-
ness, so it can not only remove noise (especially Gaussian noise) but also preserve edges [1].
v3 term in the image-driven regularization usually smoothes the image too much due to the
mightiness of l2 norm. However, it will show better performance when the image is dete-
riorated by some strong noise such as salt & pepper noise. As a result, we examine the
performance of v1 and v3 in the image-driven regularization on suppressing these noise.
The PSNRs of PN [44], CGM [12], NNCGM [25] and proposed NNCV are shown in Table 1
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Table 1: Performance comparison of PN [44], CGM [12], NNCGM [25] and NNCV on denoising images
with Gaussian and Salt & Pepper noise when the optimal coefficients are chosen. ND means density of
the Salt & Pepper noise.

SNR ND PN CGM NNCGM NNCV

15
0.005 20.34 26.19 26.19 26.26
0.01 19.63 25.06 25.09 25.46

19
0.005 23.00 26.66 26.66 27.12
0.01 22.03 25.58 25.58 26.34

23
0.005 25.71 27.99 27.99 28.56
0.01 23.58 25.76 25.76 26.93

(a) – (b) 20.14dB (c) 21.02dB (d) 25.84dB (e) 25.97dB (f) 27.56dB

(g) 20.69dB (h) 11.58dB (i) 21.05dB (j) 26.68dB (k) 26.68dB (l) 27.58dB

Figure 3: The results of denoising images with Gaussian noise. (a) Original image. (g) Noisy image with
a fix SNR of 15dB. (b)-(f) (h)-(l) Denoised images using AM [25], PN [44], CGM [12], NNCGM [25]
and L-NNCV by column, respectively. The coefficients of TV norm are 9 (top) and 25 (bottom).

when Gaussian and salt & pepper noise are added to the image. Here, ND means density
of the salt & pepper noise. Obviously, NNCV reaches highest PSNRs.

In conclusion, the experimental effectiveness of each term in the image-driven regular-
ization accords with the theoretical properties in Section 2.1. Each term adapts different
images under different conditions, which makes the adaption of NNCV model possible.

3.2. Comparisons on image denoising

The qualitative performance of AM [25], PN [44], CGM [12], NNCGM [25] and L-NNCV
is presented in Figure 3 for different regulated coefficients (9 or 25) of TV norm with a fixed
SNR of 15dB. Comparatively speaking, L-NNCV can reach highest PSNRs no matter how
the coefficient of TV is initialized. Substantially, the assumption of image-driven and adap-
tive variation keeps good balance between under-regularization and over-regularization.
The AM and PN methods are available to solve the non-negativity constrained TV-based
problems theoretically, whereas they hardly produce a good result in a limited iterations
due to its slow speed of convergence in practice. The CGM, NNCGM and L-NNCV usually
converge in 20 iterations and have better performance.

Table 2 shows the quantitative results of AM, PN, CGM, NNCGM and L-NNCV when the
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Table 2: Performance comparison of AM [25], PN [44], CGM [12], NNCGM [25] and L-NNCV on
denoising images with Gaussian noise when the optimal coefficients are chosen. The subrows in each
row are Cameraman (C) and Satellite (S) data.

SNR Im AM PN CGM NNCGM L-NNCV

15
C 21.98 21.02 27.57 27.58 27.60
S 29.95 32.01 36.61 37.07 37.16

19
C 26.29 21.02 29.23 30.12 30.16
S 34.57 36.00 39.82 40.34 40.43

23
C 30.70 28.80 29.6 32.90 32.90
S 38.99 39.98 43.02 43.83 43.93

Table 3: Average PSNRs of noisy images and denoised images by L-PDE [29], L-NNCV, NNCGM [25]
and NNCV-F on BSDS500 [30], LIVE [39], CSIQ [27] and TID2013 [35].

Database Noise
Average PSNRs
Noisy Images L-PDE L-NNCV NNCGM NNCV-F

LIVE WGN 23.51 - 28.12 28.39 28.47
CSIQ WGN 31.63 34.12 32.23 34.71 34.71

BSDS500
GAU 20.46 25.60 27.31 27.48 27.49
MIX 12.12 21.63 21.61 21.82 21.90

TID2013

WGN 30.63 33.43 33.96 34.07 34.07
HFN 28.23 32.57 32.94 33.02 33.02
MGN 30.15 32.62 32.97 33.11 33.11
MN 30.33 31.85 32.32 32.49 32.60
SCN 30.63 31.43 31.93 32.12 32.12

optimal coefficients are chosen for varying SNRs and test images. The subrows in each row
are Cameraman (C) and Satellite (S) data. Obviously, L-NNCV slightly surpasses NNCGM
which is superior to other methods.

To further testify to the workable L-NNCV, we perform experiments on four databases:
BSDS500 [30], LIVE [39], CSIQ [27] and TID2013 [35] including training samples and
test images. On BSDS500 [30], the images are randomly separated into 6 teams and we
perform two experiments with synthetic noise including zero-mean white Gaussian noise
(σ = 25) and a mixture of zero-mean Gaussian white noise (σ = 50), Poisson noise and
salt & pepper noise (d = 0.1). On LIVE [39], CSIQ [27] and TID2013 [35], we perform ex-
periments with various types of noise with 5 levels including white Gaussian noise (WGN),
high frequency noise (HFN), multiplicative Gaussian noise (MGN), masked noise (MN) and
spatially correlated noise (SCN).

Table 3 shows the average PSNRs of noisy images and denoised images by L-PDE [29], L-
NNCV, NNCGM [25], NNCV-F† and Figures 4 and 5 give qualitative comparisons. Obviously,
NNCV-F achieves higher average PSNRs. Especially, NNCV-F have better performance when
dealing with strong noise due to the addition of l2 norm.

†The coefficients of NNCV is initialized optimally and fixed in each iteration. At this situation, NNCV is denoted
as NNCV-F briefly.
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Figure 4: The results of denoising images with Gaussian noise on database from BSDS500 [30]. (a)
Original images. (b) Noisy images with Gaussian noise. (c)-(f) Denoised images using L-PDE [29],
L-NNCV, NNCGM [25] and NNCV-F, respectively.

Table 4: Performance comparison of AM [25], PN [44], CGM [12], NNCGM [25] and L-NNCV on
deblurring when the optimal coefficients are chosen.

PSF SNR AM PN CGM NNCGM L-NNCV

3×3
15 – 19.76 24.80 24.85 24.89
19 24.30 22.44 25.95 25.98 26.03
23 26.96 24.57 27.05 27.10 27.13

9×9
15 20.28 18.23 21.59 21.60 21.70
19 22.11 20.05 22.35 22.36 22.40
23 22.70 21.12 23.04 23.04 23.09

Moreover, we analyze the relation between the searched coefficients of L-NNCV and
the optimal coefficients of NNCV-F. Figure 6 presents the coefficients with varying training
samples and initialized coefficients. It is obvious that L-NNCV can search for the optimal
coefficient of NNCV-F automatically, so we denote the searched coefficients of L-NNCV by
quasi-optimal coefficients. Besides, we can see that L-NNCV is independent with the choice
of training samples.

3.3. Comparisons on image deblurring

For image deblurring, we compare L-NNCV with AM [25], PN [44], CGM [12] and
NNCGM [25], on images with varying SNRs and sizes of PSF. Table 4 gives the quantitative
results on Cameraman image. It can be seen that L-NNCV can overcome NNCGM which
outperforms other methods. Besides, L-NNCV can search for the quasi-optimal coefficients
automatically in contrast with NNCGM.

The robustness of the L-NNCV is tested with respect to the smoothing parameter τ in
(4.15) and the constant c in (4.17). Figure 7 and 8 present PSNRs and KKT residuals of
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Figure 5: The results of denoising images with mixture noise on database from BSDS500 [30]. (a)
Original images. (b) Noisy images with mixture noise. (c)-(f) Denoised images using L-PDE [29],
L-NNCV, NNCGM [25] and NNCV-F, respectively.

L-NNCV for varying c and τ with a fixed SNR of 17dB and Cameraman image. Obviously, c
and τ do not influence PSNRs in every iteration. The constant c does not influence the KKT
residual after 15 iterations, and KKT residual is robust with the parameter τ below 0.001.

4. Discussion

In this paper, we propose a heuristic learning-based non-negativity constrained vari-
ation including a problem-based term and an image-driven regularization for image de-
noising and deblurring. The image-driven regularization is learned by prepared training
samples to adapt different images. The proposed learning-based variation is solved by ε-
constraint method when applied on image denoising and deblurring. The non-negativity
constrained variation model is solved by primal-dual active-set method where the tech-
niques inherit from Krishnan et al. [25]. The learning-based approach can be more edu-
cated than wild guess in choosing the coefficients for regularization terms. It works more
efficiently on images with similar degraded pattern. The choice of training samples influ-
ences the effectiveness of this approach. Experimental results show the effectiveness of our
methods compared with traditional TV-based models and L-PDE.

The future work will focus on the following aspects. First, L-NNCV can search for global
quasi-optimal coefficients, but the coefficients are not optimal for every image which some-
times results in weak trade-off in different image locations, so we look forward to eliminat-
ing the loss of effectiveness. Second, we would like to enrich the image-driven regulariza-
tion to make it more adaptive to different problems. Finally, we will extend the applications
of our framework to image segmentation, inpainting and other image processing problems.
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Figure 6: Optimal coefficients of NNCV-F and searched coefficients of L-NNCV with varying training
samples (a) and initialization (b).
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Figure 7: PSNRs (top) and KKT (bottom) residuals of L-NNCV for varying c on image denoising (left)
and deblurring (right).
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Appendices

A. Interpretation and properties of coefficients

In this section, we give some elementary interpretation of each term in the image-
driven regularization and the scale properties of the coefficients. Assuming that u(·,β)
is the minimizer of NNCV denoising and deblurring model (4.8) and u ∈ W1,2(Ω) where
W1,2(Ω) = {v : v ∈ L2(Ω),∇v ∈ L2(Ω)}, we give Theorem 4.1 and 4.2 for interpretation of
the coefficients.

Theorem 4.1. ‖Ku‖2 ≤ C where C is independent of β .

Proof. For arbitrary v ∈W1,2(Ω), we have

1
2
‖Ku− f ‖2 + V (u,β)≤

1
2
‖Kv − f ‖2 + V (v,β). (4.1)

By setting v = 0, then
‖Ku− f ‖2 ≤ ‖ f ‖2,

which results in
‖Ku‖2 ≤ 2‖ f ‖2.

We denote C = 2‖ f ‖2 so as to complete the proof.

Theorem 4.2. If K = I ,β2 = 0 and the non-negativity constraint is left out, u converges to a
constant: limβ1→∞ ‖u− f̄ ‖= 0, limβ3→∞ ‖u− f̄ ‖2 = 0 where f̄ = 1

|Ω|

∫

Ω
f (x )dx .

Proof. By setting v = 0 in (4.1), we obtain

0≤ β1‖u‖T V ≤
1
2
‖Ku− f ‖2 + V (u,β)≤

1
2
‖ f ‖2 (4.2)

from which we can deduce limβ1→∞ ‖∇u‖ = 0. When applying primal-dual active-set
strategy to NNCV, the following equation holds

(K T K + β2 I)u= K T f + div(B∇u) +λ, (4.3)

where B := β1
1
|∇u|+β3. By integrating on the region Ω, the divergence operator will vanish

by the Green formula as follows
∫

Ω

(K T K + β2 I)udx =

∫

Ω

div(B∇u)dx +

∫

Ω

K T f dx +λ|Ω|

=

∫

∂Ω

B
∂ u
∂ N

dx +

∫

Ω

K T f dx +λ|Ω|

=

∫

Ω

K T f dx +λ|Ω|. (4.4)
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Moreover,

‖u− f̄ ‖= ‖u−
1
|Ω|

∫

Ω

f (x )dx‖. (4.5)

When K = I , we can plug (4.4) into (4.5) to obtain

‖u− f̄ ‖=
∫

Ω

|u− (β2 + 1)ū+λ|dx . (4.6)

If β2 = 0 and the non-negativity constraint is left out, we can use the Poincaré inequality
to transform (4.6) into

‖u− f̄ ‖ ≤ C‖∇u‖. (4.7)

Therefore, limβ1→∞ ‖u− f̄ ‖= 0. Similarly, we can deduce that limβ3→∞ ‖u− f̄ ‖2 = 0.

Meanwhile, equation
∫

Ω
u(x )dx =

∫

Ω
f (x )dx can be derived from (4.4) if the con-

ditions of Theorem 4.2 are satisfied. Moreover, we can deduce (1 + β2)
∫

Ω
u(x )dx =

∫

Ω
f (x )dx from (4.4). From these properties and proofs, we can see that the blurring oper-

ator, β2 and the non-negativity constraint influence the global energy of an image, whereas
β1 and β3 influence the local diffusion. Coefficients β1 and β3 can be understood as scale
parameters which control the constructed family of images u(x ,βi) (i = 1,3) started from
the blurring image f [1,42,45].

B. Primal-dual active-set strategy for NNCV model

The non-negativity constrained variation (NNCV) denoising and deblurring model is

min
u,u≥0

1
2
‖Ku− f ‖2 + V (β , u), (4.8)

where V (β , u) := β1vi(u) +
1
2β2v2(u) +

1
2β3v3(u). It can be rewritten as

min
u

1
2
‖Ku− f ‖2 + V (β , u) + I(u≥ 0), (4.9)

where I(u ≥ 0) = 0 if u ≥ 0 for all components of u and I(u ≥ 0) = ∞ if any of the
components of u is < 0. The Lagrangian functional for problem (4.9) is given by

L(u,λ) := ‖Ku− f ‖2 + V (β , u)− 〈u,λ〉 ,

where λ is the Lagrange multiplier which handles u≥ 0. Then we have

∇u L = Au− K T f − β1div(
∇u
|∇u|

)−λ, (4.10)

where A := K T K + β2 I − β3∆. Owing to the presence of the term 1
|∇u| , |∇u| should be

slightly perturbed to make (4.10) well-defined. Another difficulty caused by (4.10) is the
linearization of the highly nonlinear term div( ∇u

|∇u|), which can be overcome with the help
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of an auxiliary variable p = ∇u
|∇u| proposed by Chan et al. [12]. So the Karush-Kuhn-Tucker

(KKT) conditions [5] for problem (4.8) are as follows

Au− K T f − β1divp −λ= 0, (4.11)

∇u− |∇u|τp = 0, (4.12)

u�λ= 0, (4.13)

λ, u≥ 0. (4.14)

Here, equation u � λ = 0 is understood as component-wise multiplication. In order to
express (4.13) and (4.14) as a single equality constraint, we replace them by λ−max{0,λ−
cu} = 0 where c is an arbitrary positive constant. Then we have the following equivalent
system of equations:

∇u− |∇u|τp = 0, (4.15)

Au− K T f − β1divp −λ= 0, (4.16)

λ−max{0,λ− cu}= 0. (4.17)

For convenience, the left hand sides of (4.15)-(4.17) are denoted by F1(p, u,λ), F2(p, u,λ)
and F3(p, u,λ) respectively. The semi-smooth Newton’s update for the system (4.15)-(4.17)
is given by





|∇u|τ −(I − p(∇u)T

|∇u|τ
)∇ 0

−β1div A −I
0 ∂ F3

∂ u
∂ F3
∂ λ









δp
δu
δλ



= −





F1
F2
F3



 . (4.18)

Instead of solving the above system directly, we use the active-set idea [24] to handle the
non-negativity constraint. After the k-th Newton step of (4.18), the predicted inactive
and active sets are defined by I k := {i : λk

i − cuk
i ≤ 0} and A k := {i : λk

i − cuk
i > 0}

respectively. The components of u in I andA are computed by the corresponding down-
sampling matrix DI and DA , for example, uI = DI u. Using the active and inactive set
gives











|∇u|τ Q∇DT
I Q∇DT

A 0 0
−β1DI div AI AIA −I 0
−β1DA div AAI AA 0 −I

0 0 0 I 0
0 0 cI 0 0











×











δp
δuI
δuA
δλI
δλA











=−











F1
DI F2
DA F2
DI F3
DA F3











, (4.19)

where Q = −(I − p(∇u)T

|∇u|τ
). Equation (4.19) implies λk+1

I = 0 and uk+1
A = 0 where the

subscripts mean components in the corresponding set. By setting δλI = −λk
I and δuA =

−uk
A , the semi-smooth Newton step is reduced to




|∇u|τ Q∇DT
I 0

−β1DI div AI 0
−β1DA div AAI −I









δp
δuI
δλA



= −





F1
DI F2
DA F2



+





Q∇DT
A uA

AIA uA −λI
AA uA



 , (4.20)
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which can be also expressed as

δλA = −β1DA divδp + AAIδuI + DA F2 − AA uA (4.21)

and

δp =
1
|∇u|τ

[−Q∇(DT
IδuI − DT

AδuA )− F1. (4.22)

After pluging (4.21) and (4.22) into the Newton’s update (4.20) and symmetrizing the
system, we update δuI by solving

DI [−β1div
1
|∇u|τ

(I −
p(∇u)T + (∇u)pT

2|∇u|τ
)∇+ A]× DT

IδuI = G, (4.23)

where

G := −DI F2 + AIA uA −λI − β1DI div
1
|∇u|τ

[(I −
p(∇u)T + (∇u)pT

2|∇u|τ
)∇DT

AδuA + F1].

(4.24)
Obviously, these derivations are highly similar to the solution process of non-negativity

constrained TV deblurring problem [25], while the matrix A is different. With the help of
primal-dual active-set strategy, the non-negativity constrained variation can be solved if the
coefficients in the image-driven regularization are given. The components in I k and A k

are updated by
uk+1
A = 0,
λk+1
I = 0,

pk+1 = pk + sδpk,
uk+1
I = uk

I +δuk
I ,

λk+1
A = λk

A +δλ
k
A ,

(4.25)

where δ(·) is the corresponding search direction computed by (4.21)-(4.23). The step size s
ensures the dual variable’s quadratic constraint |pi, j| ≤ 1 where pi, j denotes any component
of p.
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