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TNF superfamily member APRIL enhances midbrain dopaminergic axon
growth and contributes to the nigrostriatal projection in vivo

Thomas G. McWilliams1,2, Laura Howard2, Sean Wyatt, Alun M. Davies⁎

Division of Molecular Biosciences, School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, United Kingdom
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A B S T R A C T

We have studied the role of the tumor necrosis factor superfamily member APRIL in the development of em-
bryonic mouse midbrain dopaminergic neurons in vitro and in vivo. In culture, soluble APRIL enhanced axon
growth during a window of development between E12 and E14 when nigrostriatal axons are growing to their
targets in the striatum in vivo. April transcripts were detected in both the striatum and midbrain during this
period and at later stages. The axon growth–enhancing effect of APRIL was similar to that of glial cell-derived
neurotrophic factor (GDNF), but in contrast to GDNF, APRIL did not promote the survival of midbrain dopa-
minergic neurons. The effect of APRIL on axon growth was prevented by function-blocking antibodies to one of
its receptors, BCMA (TNFRSF13A), but not by function-blocking antibodies to the other APRIL receptor, TACI
(TNFRSF13B), suggesting that the effects of APRIL on axon growth are mediated by BCMA. In vivo, there was a
significant reduction in the density of midbrain dopaminergic projections to the striatum in April−/− embryos
compared with wild type littermates at E14. These findings demonstrate that APRIL is a physiologically relevant
factor for the nigrostriatal projection. Given the importance of the degeneration of dopaminergic nigrostriatal
connections in the pathogenesis and progression of Parkinson's disease, our findings contribute to our under-
standing of the factors that establish nigrostriatal integrity.

1. Introduction

Parkinson's disease is a neurodegenerative disease that affects about
1% of the population over the age of 60. It is characterized by pro-
gressive and disabling motor symptoms that are due to the degenera-
tion and loss of the dopaminergic neurons of the substantia nigra pars
compacta that project to the striatum (Lindholm et al., 2016). While
defective trophic support appears to play no role in the pathogenesis or
progression of the disease, several neurotrophic factors that sustain the
survival of cultured midbrain dopaminergic neurons and enhance
neurite outgrowth have been shown to be efficacious in animal models
of Parkinson's disease. The most extensively studied neurotrophic factor
for midbrain dopaminergic neurons is glia cell-derived neurotrophic
factor (GDNF) (de Tassigny et al., 2015). GDNF was originally identi-
fied as a factor that promotes the survival of cultured midbrain dopa-
minergic neurons (Lin et al., 1993) and reduces the loss and degen-
eration of these neurons in multiple rodent and primate models of
Parkinson's disease (Kordower and Bjorklund, 2013). However, mice
lacking GDNF, which die shortly after birth because of renal agenesis,

have an intact nigrostriatal system (Airaksinen and Saarma, 2002).
Although a reduction in the number of midbrain dopaminergic neurons
was initially reported in adult mice that possess a conditional null
mutation of the Gdnf gene in the striatum (Pascual et al., 2008), a more
recent and comprehensive study of multiple striatal Gdnf conditional
deletion mouse lines has failed to find any abnormal phenotype af-
fecting the midbrain dopaminergic neurons (Kopra et al., 2015). There
have been multiple clinical trials of GDNF in Parkinson's disease with
variable outcomes. While some open-label trials have reported modest
symptomatic improvement, no efficacy has been reported in any ex-
tensive double-blind trial (Olanow et al., 2015). This large body of work
on GDNF and limited studies of other factors that exert trophic actions
on dopaminergic neurons highlight the need to identify additional
factors that act on these neurons, especially those that exert physiolo-
gical relevant trophic actions in vivo.

Here we examined the potential actions of APRIL (A Proliferation-
Inducing Ligand, TNFSF13) on developing midbrain dopaminergic
neurons. APRIL is a member of the TNF superfamily that was initially
identified by its ability to promote tumor growth (Hahne et al., 1998),
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but is best characterized for its role in regulating lymphocyte survival
and activation (Schneider, 2005). Recently, APRIL has been reported to
enhance axon elongation, but not dendrite growth, from developing
hippocampal pyramidal cells in vitro (Osorio et al., 2014). For this
reason, we studied the potential effects of APRIL on the clinically im-
portant dopaminergic neurons of the midbrain. We show that re-
combinant APRIL enhances axon growth from cultured embryonic
mouse midbrain dopaminergic neurons and that the projection of these
neurons to the striatum is significantly impaired in APRIL-deficient
embryos. Our findings reveal that APRIL is a physiologically relevant
factor for the establishment of the dopaminergic nigrostriatal projection
in vivo.

2. Materials and methods

2.1. Animals

This study was conducted on tissues obtained from CD1 mice (Mus
musculus) and mice with a null mutation in either the April gene
(Castigli et al., 2004) (gift from Raif Geha, Boston Children's Hospital,
Harvard Medical School, Cambridge, MA, USA) or the Bax gene
(Knudson et al., 1995) (gift from the late Stanley Korsmeyer), both
backcrossed into a CD1 background. Breeding and housing was ap-
proved by the Cardiff University Ethical Review Board and was per-
formed within the guidelines of the Home Office Animals (Scientific
Procedures) Act, 1986.

2.2. Neuron culture

The ventral midbrains were dissected from litters of CD1 embryos
from E10 to E14, using electrolytically sharpened tungsten needles in
chilled L-15 medium (Gibco). To aid dissociation, isolated tissue pieces
were digested with 0.05% trypsin (Worthington Biochemical Corp.,
New Jersey, USA) in Ca2+/Mg2+–free Hanks Balanced Salt Solution
(Life Technologies, Paisley, UK) for 15 min at 37 °C. To inactivate the
trypsin, the tissue was washed twice in Ham's F-12 medium (Life
Technologies) containing 10% heat-inactivated horse serum (Life
Technologies) and centrifuged at 2000 rpm. The tissue was resuspended
in 1 ml culture medium comprised of 1:1 DMEM/Ham's F-12, 1×
serum-free N-2 supplement, 2% B27 minus AO (Life Technologies),
2 mM L-Glutamine (Life Technologies), 1 U/0.1 mg/ml Penicillin/
Streptomycin (Sigma-Aldrich, Poole, UK). The tissue was gently tritu-
rated with P1000 and P200 pipettes to generate a dissociated single cell
suspension. The cells were plated on a poly-ornithine/laminin sub-
stratum at a density of 50,000 cells per well in four-well dishes (Greiner
Bio-One, Stonehouse, UK), and allowed to adhere for 30 min to 1 h at
37 °C, 5% CO2 prior to the addition of factors. The cultures were sup-
plemented with the following factors as indicated: recombinant human
GDNF (Merck-Millipore, Durham, UK), recombinant human
megaAPRIL, (initial experiments were performed with ALX-522-035-
3010 from Alexis Biochemicals, Enzo Life Sciences, Exeter, UK and
subsequently with multimeric recombinant human APRIL AG-40B-
0017-3010 from Adipogen Life Sciences, Caltag MedSystems,
Buckingham, UK). Function-blocking antibodies were rat monoclonal
anti-BCMA and goat polyclonal anti-TACI (MAB5931 and AF1041 re-
spectively, R & D Systems, Abingdon, UK). Cultures were pre-incubated
with these function-blocking antibodies for 1 h prior to the addition of
recombinant APRIL.

2.3. Immunocytochemistry

The culture medium was gently aspirated and the cultures were
washed with PBS at 37 °C. Cells were fixed with either ice-cold me-
thanol (MeOH) for 5 min or freshly-made 4% paraformaldehyde
(Sigma-Aldrich) in 0.12 M Phosphate buffer, pH 7.2 for 12 min. The
fixative was removed and after washing with PBS, the cultures were

blocked for ~1 h at room temperature in 5% BSA containing 0.2%
Triton X-100 (Sigma-Aldrich). The cultures were incubated overnight at
4 °C with primary antibody in PBS containing 1% BSA (Sigma-Aldrich)
and were gently agitated on an orbital shaker. After extensive washing
in PBS, the cultures were incubated with fluorophore-conjugated sec-
ondary antibody (Alexa Fluor or Dylight 488/594) in 1% BSA for 1 h in
the dark at RT. Following serial washes in PBS, the nuclei were coun-
terstained with DAPI (1:10,000 dilution; Life Technologies) for 3 min.
The cultures were imaged with either a Zeiss Axiovert 200 Inverted
Fluorescence microscope using Simple PCI software, or with a Zeiss
LSM 510 Confocal laser Scanning Microscope. The following primary
antibodies were used: rabbit polyclonal anti-tyrosine hydroxylase
(1:650 - AB152, Millipore), sheep polyclonal anti-tyrosine hydroxylase
(1:500 - AB1542, Millipore), mouse monoclonal anti-tyrosine hydro-
xylase (1:500 - MAB318, Millipore), rabbit polyclonal anti-APRIL
(1:200 - ab64967, Abcam, Cambridge, UK), rabbit polyclonal anti-
BCMA (1:200 - ab5972, Abcam, Cambridge, UK), rabbit polyclonal anti-
β-III Tubulin (1:500 - ab18207 “neuron-specific clone Tu20”, Abcam,
Cambridge, UK).

2.4. Analysis of axon length and neuronal survival

Immunocytochemistry was used to visualize TH-positive neurons or
all neurons using anti-β-III tubulin antibodies. Axons were traced using
NIH Image-J software and mean axon length was determined. Survival
analysis of mDA neurons was conducted using a micro-island assay, as
described (Planken et al., 2010). Statistical analyses of two or more
conditions were conducted via one-way ANOVA followed by post-hoc
analysis with Bonferroni correction. Pair-wise comparisons were made
using Student's t-test.

2.5. Quantitative PCR

The levels of April, Bcma and Th mRNAs were quantified by RT-
QPCR in dissected ventral midbrain, striatum, ventral midbrain and
SCG, respectively, relative to a geometric mean of mRNAs for the house
keeping enzymes glyceraldehyde phosphate dehydrogenase (GAPDH)
and succinate dehydrogenase (SDHA). Total RNA was extracted from
dissected tissues with the RNeasy Mini Lipid extraction kit (Qiagen,
Crawely, UK), and 5 μl was reverse transcribed for 1 h at 45 °C using the
AffinityScript kit (Agilent, Berkshire, UK) in a 25 μl reaction according
to the manufacturer's instructions. 2 μl of cDNA was amplified in a 20 μl
reaction volume using Brilliant III ultrafast QPCR master mix reagents
(Agilent, Berkshire, UK). QPCR products were detected using dual-la-
belled (FAM/BHQ1) hybridization probes specific to each of the cDNAs
(MWG/Eurofins, Ebersberg, Germany). The PCR primers were: April
forward, 5′-CTG TCC TTC CTA GAT AAT G-3′ and reverse, 5′-CTA GTG
ACA CTC TGA CAC-3′; Bcma forward, 5′-TGA CCA GTT CAG TGA AAG
G-3′ and reverse, 5′-GGG TTC ATC TTC CTC AGC-3′; Th forward, 5′-
CAG AGT TGG ATA AGT GTC A-3′ and reverse, 5′-CTC ACC CTG CTT
GTA TTG -3′; Gapdh forward, 5′-GAG AAA CCT GCC AAG TAT G-3′ and
reverse, 5′-GGA GTT GCT GTT GAA GTC-3′; Sdha forward, 5′-GGA ACA
CTC CAA AAA CAG-3′ and reverse, 5′-CCA CAG CAT CAA ATT CAT-3′.
Dual-labelled probes were: April, 5′-FAM-CAC CAA ATT CTC CTG AGG
CT-BHQ1–3′; Bcma, 5′-FAM-CGT ACA CGG TGC TCT GGA TCT TCT T-
BHQ1–3′; Th, 5′-FAM-CAC CAA GTT TGA CCC TGA CCT G-BHQ1–3′;
Gapdh, 5′-FAM-AGA CAA CCT GGT CCT CAG TGT-BHQ1–3′; Sdha, 5′-
FAM-CCT GCG GCT TTC ACT TCT CT-BHQ1–3′. Forward and reverse
primers were used at a concentration of 150 nM each and dual-labelled
probes were used at a concentration of 300 nM. PCR was performed
using the Mx3000P platform (Agilent, Berkshire, UK) using the fol-
lowing conditions: 45 cycles of 95 °C for 12 s and 60 °C for 35 s.
Standard curves were generated in every 96-well plate, for each cDNA
for every real time PCR run, by using serial three-fold dilutions of either
reverse transcribed adult mouse spleen RNA, or, in the case of Th cDNA,
adult mouse brain total RNA (AMS Biotechnology, Abingdon, UK).
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Three to six separate dissections were performed for each age.

2.6. Analysis of the dopaminergic nigrostratal projection in vivo

The midbrain dopaminergic projection to the striatum was analysed
using immunolabeling-enabled three-dimensional imaging of solvent-
cleared organs (iDISCO) (Renier et al., 2014). Briefly, E14 April+/+
and April−/− embryos were fixed in 4% paraformaldehyde for 24 h
and serially dehydrated in methanol/phosphate buffered saline (PBS).
The samples were then bleached overnight in chilled 5% H2O2 to re-
duce tissue auto-fluorescence before being serially rehydrated in me-
thanol/PBS containing 0.2% Triton X-100. The embryos were incubated

in blocking solution (6% donkey serum, 20% DMSO, 0.2% Triton X-
100, 0.3 M Glycine in PBS) for 72 h at 37 °C. After washing with PBS
containing 0.2% Tween-20 and 10 μg/ml heparin (PTwH), the embryos
were incubated with rabbit polyclonal anti-tyrosine hydroxylase anti-
body (1:300, Millipore, Dundee, UK AB152) in PTwH containing 5%
DMSO and 3% donkey serum for 72 h at 37 °C. Following extensive
washing in PTwH, the samples were incubated with donkey anti-rabbit
647 Alexa Fluor secondary antibody (1:300, Life Technologies, Paisley,
UK, A-31573) in PTwH plus 3% donkey serum 72 h at 37 °C. After
further washing in PTwH, samples were cleared by overnight incuba-
tion in tetrahydrofuran, followed by dichloromethane treatment for
15 min. The samples were placed in dibenzyl ether (DBE) until clear

A B C

D E F

Fig. 1. APRIL enhances axon growth from midbrain dopaminergic neurons but does not affect their survival. (A) Photomicrographs of representative E12 midbrain dopaminergic (mDA)
neurons labelled with anti-TH after 48 h incubation under control conditions and in cultures supplemented with either 1 μg/ml APRIL or 20 ng/ml GDNF. (B) Axon lengths of E12 mDA
neurons after 48 h incubation in cultures supplemented with 25 μM Boc-D-FMK. (C) Axon lengths of mDA neurons established from Bax−/− mice after 48 h in culture. (D) Axon lengths
of mDA neurons cultured for 48 h in Boc-D-FMK-supplemented medium containing different concentrations of APRIL. (E) Axon lengths of midbrain neurons labelled with anti-βIII-tubulin
after 48 h. (F) Survival of mDA neurons after 48 h under control conditions and with either GDNF or APRIL. All data are expressed as a percentage of the mean control value.
Mean ± S.E.M. data of> 150 neurons per condition combined from 3 to 5 experiments of each type, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, not significant, ANOVA with
Bonferroni correction, statistical comparison with controls.
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and imaged while submerged in DBE in 3D-printed slide chambers
using a Zeiss LSM710 confocal microscope.

Quantification was performed using Fiji-Image J. Images were
converted to greyscale and the Feature Extraction (FeatureJ Hessian)
tool was employed using the smallest eigenvalue of Hessian tensor with
the smoothing scale set to 0.5. To ensure consistent analysis across all
conditions, multiple images from all mice were initially analysed to
generate a uniform threshold value that was applied to every image
analysed. A user-defined macro was used to provide a quantitative
measurement of TH immunoreactivity within the midbrain dopami-
nergic projections. The data are expressed as a percentage of the mean
of the wild type data. All imaging and quantification was performed
blind with genotypes determined after TH quantification.

3. Results

3.1. APRIL enhances axon growth from midbrain dopaminergic neurons but
does not affect survival

The dopaminergic neurons of the substantia nigra pars compacta
(SNc) comprise the majority of dopaminergic neurons of the midbrain.
They are the first dopaminergic neurons born, with a peak of neuro-
genesis at E11.5 in the mouse embryo. Axons initially embark upon a
dorso-caudal trajectory before deflecting rostrally towards the striatum,
reaching and beginning to ramify within this target field by E15.5
(Prestoz et al., 2012). To determine whether APRIL affects neuronal
survival and/or axon extension we established dissociated cultures from
ventral midbrain tissue at stages during the period axons are growing
towards their striatal targets in vivo. To identify dopaminergic neurons
in these cultures, we used immunocytochemical localisation of tyrosine
hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis. For
experiments to assess the potential effects of APRIL on axon growth, it
was necessary to prevent apoptosis under all experimental conditions in
order to exclude the possibility that any differences in neuronal survival
could confound the results. This was done in two ways, either the ir-
reversible pan-caspase inhibitor Boc-D-FMK was added to the culture
medium or the cultures were set up from mice that are homozygous for

a null mutation in the Bax gene (Deckwerth et al., 1996). In addition to
setting up cultures with and without APRIL, we also set up cultures
supplemented with GDNF as a positive control because GDNF has been
shown to enhance axon growth from cultured midbrain dopaminergic
neurons and to enhance the survival of these neurons in vitro.

After 48 h,< 1% of the neurons in E12 cultures were stained by
anti-TH and these labelled neurons displayed the characteristic uni-
polar morphology of early midbrain dopaminergic neurons (Fig. 1A). In
cultures treated with Boc-D-FMK and in cultures of BAX-deficient
neurons, APRIL caused a highly significant two-fold increase in axon
length of dopaminergic neurons compared with control cultures
(Fig. 1A, B and C). This was very similar to the axon-growth promoting
effect of GDNF on these dopaminergic neurons, and there was no fur-
ther axon growth in cultures treated with both APRIL and GDNF in
combination (Fig. 1C), suggesting that APRIL and GDNF act on the
same subset of dopaminergic neurons. Dose response analysis showed
that APRIL significantly increased dopaminergic neuron axon length at
the lowest concentration of APRIL used (30 ng/ml), and reached sa-
turation at a concentration of 500 ng/ml (Fig. 1D). In addition to en-
hancing axon growth from dopaminergic neurons, we investigated
whether APRIL affects axon growth from other kinds of midbrain
neurons. Using anti-βIII-tubulin to label all neurons, we found no sig-
nificant difference in axon length between control and APRIL-supple-
mented cultures (Fig. 1E), suggesting that APRIL does not affect axon
growth from the great majority of midbrain neurons.

In marked contrast to the similar axon growth-promoting effects of
APRIL and GDNF on dopaminergic neurons, these factors had quite
different effects on survival. Whereas GDNF significantly increased the
survival of dopaminergic neurons compared with controls, there was no
significant difference in the numbers of dopaminergic neurons sur-
viving in cultures containing APRIL and control cultures (Fig. 1F).
Taken together, these findings suggest that APRIL enhances axon
elongation from developing midbrain dopaminergic neurons without
affecting survival.

A B C

Fig. 2. Developmental time-course of effect of APRIL axon growth and its mediation by BCMA. (A) Graph of axon lengths of mDA neurons after 48 h incubation in cultures supplemented
with either 1 μg/ml APRIL or 20 ng/ml GDNF plotted as a percentage of axon length in control cultures at each age. (B) Bar chart of axon lengths of E12 mDA neurons after 48 h
incubation in control cultures and cultures supplemented with either 1 μg/ml APRIL or 1 μg/ml APRIL plus 1 μg/ml function-blocking anti-BCMA antibody. (C) Bar chart of axon lengths
of E12 mDA neurons after 48 h incubation with either 1 μg/ml APRIL or 1 μg/ml APRIL plus 1 μg/ml function-blocking anti-TACI antibody. All cultures received 25 μM Boc-D-FMK.
Mean ± s.e.m. data of> 150 neurons per condition combined from 3 to 5 experiment of each kind, **p < 0.01, ***p < 0.001, ****p < 0.0001, ANOVA with Bonferroni correction,
statistical comparison with controls. The increases in axon length were highly significant (p < 0.0001 in GDNF-treated cultures at E12 and greater and in APRIL-treated cultures at E12
and E13).
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3.2. APRIL enhances neurite growth over a restricted period of embryonic
development

To ascertain whether APRIL enhances axon growth from midbrain
dopaminergic neurons during a particular period of their development,
we studied the effect of APRIL on axon growth in cultures established
over a range of ages. As positive control, GDNF was included in these
studies, as this factor enhances axon growth over an extended period of
development. Neither APRIL nor GDNF promoted significant increases
in axon length in E11 cultures. In E12 and E13 cultures, both APRIL and
GDNF promoted significant increases in axon length compared with
control cultures. However, by E14 whereas GDNF continued to enhance
axon growth, APRIL had no effect on axon growth (Fig. 2A). These
studies clearly show that APRIL enhances axon growth from midbrain
dopaminergic neurons over a restricted period of development when
these axons are growing towards their striatal targets.

3.3. APRIL enhances axonal growth from midbrain dopaminergic neurons
via BCMA

APRIL exerts its effects in the immune system via two members of
the TNF receptor superfamily, BCMA (TNFRSF13A) and TACI
(TNFRSF13B) (Bossen and Schneider, 2006). To ascertain which re-
ceptor mediates the axon growth-promoting effect of APRIL, we in-
vestigated the influence of function-blocking antibodies to BCMA and
TACI on APRIL-promoted axon growth. In these experiments, anti-
BCMA completely inhibited the axon growth-enhancing effect of APRIL
(Fig. 2B). Although anti-TACI caused a small reduction in APRIL-pro-
moted axon growth (Fig. 2C), this reduction was not statistically sig-
nificant. These results suggest that the axon growth-promoting effect of
exogenous APRIL is mediated either exclusively or predominantly by
BCMA.

3.4. APRIL and BCMA expression

To ascertain the developmental time-course of APRIL and BCMA
expression, we used qPCR to measure the relative levels of transcripts
encoding these proteins over a range of ages. April mRNA was detected
in both the ventral midbrain and striatum. In the ventral midbrain, April
mRNA was detected from the earliest age this region could be con-
fidently dissected, E10, and its level relative to reference transcripts
encoding housekeeping proteins remained similar throughout devel-
opment (Fig. 3A). In the striatum, April mRNA was detected at the
earliest age this could be confidently dissected, E14, and there was an
overall three-fold increase to postnatal stages (Fig. 3B). In contrast to
April mRNA, Bcma mRNA was undetectable in the ventral midbrain at
E10. It was first detected at E11 and displayed a gradual increase
throughout development (Fig. 3C). These results are consistent with the
ability of ventral midbrain dopaminergic neurons to respond to APRIL
in a BCMA-dependent manner and raise the possibility that these neu-
rons obtain APRIL in vivo both locally and as a target-derived factor.

Unfortunately, we were unable to study the cellular origin of APRIL
synthesis in vivo because a highly specific antibody to APRIL for im-
munohistochemistry whose staining is eliminated in April−/− mice
was unavailable.

3.5. Decreased density of midbrain dopaminergic neuron projection to the
striatum in April−/− mice

To assess the physiological relevance of our in vitro findings, we
compared the developing dopaminergic projection from the ventral
midbrain to the striatum in April−/− embryos and April+/+ litter-
mates. We studied TH-labelled dopaminergic striatal projections in
iDISCO preparations at E14, by which stage axon outgrowth from the
midbrain to the striatum is well established. These projections appeared
more prominent in wild type embryos compared with April−/−

A B C

Fig. 3. Developmental changes in the expression of April and Bcma mRNA in the midbrain and striatum. (A) April mRNA in the midbrain, (B) April mRNA in the striatum and (C) Bcma
mRNA in the midbrain relative to the geometric mean of reference mRNAs. The mean S.E.M. of data from between three and six separate sets of tissues at each age are plotted.

A

B C

Fig. 4. Decreased density of midbrain dopaminergic neuron projections to the striatum in
April−/− mice. (A) Representative iDISCO images of the nigrostriatal projection and
SCG stained with anti-TH antibodies in E14 April+/+ and April−/− mice. Large ver-
tical arrows, nigrostriatal projection; Small horizontal arrows, SCG. Scale bar = 200 μm.
(B) Quantification the density of TH-positive striatal projections in April+/+ (n = 20
embryos) and April−/− (n = 23 embryos) mice. (C) Levels of Th mRNA in the SCG of P5
April+/+ and April−/− mice. The mean S.E.M. of data from ten separate sets of tissues
of each genotype.
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embryos, whereas TH-positive superior cervical ganglia (SCG) and the
fibre bundles that emerged from these ganglia were similar in both
genotypes (Fig. 4A). To ascertain whether this impression was valid, we
quantified the density of the striatal dopaminergic projection in
April−/− embryos and in April+/+ littermates. Because the growth
cones of individual dopaminergic axons could not be discerned with
confidence, the length of developing striatal projection was not esti-
mated. All quantification was done blind.

Quantification carried out on a very large number of embryos (April
+/+ embryos, n = 20, April−/− embryos, n = 23) revealed a highly
significant 29% reduction in the density of the midbrain dopaminergic
projection in April−/− embryos compared with April+/+ embryos
(p < 0.001) (Fig. 4B). To determine if this decrease in TH immuno-
fluorescence was merely due to decreased neuronal expression of TH in
the absence of APRIL, we measured the levels of Th mRNA in TH-ex-
pressing neurons in April+/+ and April−/− mice. Because the ven-
tral midbrain lacks clearly defined anatomical borders, we did not use
this structure for these studies because the size of dissected tissue is
variable. Rather we measured Th mRNA levels in the superior cervical
ganglion (SCG) which contains TH-expressing neurons and has clear
anatomical boundaries that permit clean dissection from surrounding
tissues. We found no significant difference in the levels of Th mRNA in
the SCG of P5 April+/+ and April−/− mice (Fig. 4C), suggesting that
APRIL does not regulate TH expression in developing neurons. Taken
together, these findings suggest that APRIL plays a significant role in
establishing the midbrain dopaminergic projection to the striatum
during embryonic development.

4. Discussion

We have demonstrated that APRIL is a physiologically relevant
trophic factor for developing nigrostriatal neurons. In culture, APRIL
enhanced axon growth from midbrain dopaminergic neurons just as
effectively as the established midbrain dopaminergic neuron trophic
factor GDNF. Saturating concentrations of APRIL and GDNF in combi-
nation did not have an additive effect on axon growth, suggesting that
they affect the same population of dopaminergic neurons. However, the
action of APRIL and GDNF in culture differed in two respects. First, in
marked contrast to GDNF, which enhanced axon growth and promoted
the survival of midbrain dopaminergic neurons, APRIL enhanced axon
growth without affecting neuron survival. Second, whereas APRIL en-
hanced axon growth over a restricted period of development, in cul-
tures established at E12 and E13, GDNF enhanced axon growth in
cultures set up at E12, E13 and E14. GDNF has also been reported to
exert trophic effects on midbrain dopaminergic neurons at postnatal
stages (Burke et al., 1998). These differences between GDNF and APRIL
are similar to those observed in the developing peripheral nervous
system (PNS) between classic neurotrophic factors and TNFSF mem-
bers. Whereas neurotrophins and members of GDNF family promote
both neuron survival and axon growth over extended periods of de-
velopment (Davies, 2003), members of the TNFSF that affect the growth
of PNS axons without affecting survival and do so during brief devel-
opmental windows (Gavalda et al., 2009; Kisiswa et al., 2013;
McWilliams et al., 2015; O'Keeffe et al., 2008), with the exception of
RANKL, which acts over an extended period of postnatal development
(Gutierrez et al., 2013). While APRIL has been shown to enhance axon,
but not dendrite growth, from cultured embryonic hippocampal pyr-
amidal neurons (Osorio et al., 2014), it was not investigated whether
the effects of APRIL on these neurons is restricted to a particular period
of development and whether APRIL enhances the survival of hippo-
campal pyramidal neurons. Also, it is not known whether APRIL is
physiologically relevant for the development of these neurons.

In vitro experiments using function-blocking antibodies against
APRIL receptors suggest that BCMA, rather than TACI, mediates the
effect of APRIL on axon growth from developing midbrain dopami-
nergic neurons. This is similar to the enhancement of axon growth by

APRIL from cultured hippocampal pyramidal neurons, which is also
blocked by anti-BCMA (Osorio et al., 2014). APRIL is unusual among
the TNFSF in not being expressed at the cell surface as a membrane-
anchored protein, but is processed in the Golgi apparatus by a furin-
convertase enzyme to generate a biologically active, secreted protein
(Lopez-Fraga et al., 2001). Because secreted APRIL can diffuse away
from the cells that synthesize it, our demonstration that APRIL is ex-
pressed in both the midbrain and the striatum at the stage when mid-
brain dopaminergic neurons respond to the axon growth-promoting
effects of APRIL in vitro suggests that these neurons may obtain APRIL in
vivo both locally and from their targets.

In addition to GDNF, a large variety of neurotrophic factors have
been reported to promote the survival of cultured midbrain dopami-
nergic neurons and promote neurite outgrowth from these neurons.
These include the other members of the GDNF family, neurturin
(Horger et al., 1998), artemin (Baloh et al., 1998) and persephin
(Milbrandt et al., 1998), VEGF proteins (Piltonen et al., 2011), PDGF
(Pietz et al., 1996), PACAP (Takei et al., 1998), members of TGFβ su-
perfamily, including TGFβ 1, 2 and 3 (Krieglstein et al., 1995a), GDF5
(Krieglstein et al., 1995b) and GDF15 (Strelau et al., 2000), FGF20
(Ohmachi et al., 2003) and two more recently identified related factors
CDNF and MANF (Lindholm et al., 2007; Petrova et al., 2003). Many of
these factors have been reported to be protective for nigrostriatal
neurons in animal models of Parkinson's Disease, including GDNF,
neurturin, CDNF, MANF, PDGF, FGF20 and PACAP (Lindholm et al.,
2016; Voutilainen et al., 2017). However, no obvious abnormal mid-
brain dopaminergic neuron phenotype has been reported in mice that
lack any of these factors (Lindahl et al., 2017), and where an abnormal
phenotype was initially reported in mice with a conditional deletion of
Gdnf in the striatum (Pascual et al., 2008), comprehensive analysis of
multiple mouse lines failed to find any abnormal dopaminergic phe-
notype (Kopra et al., 2015).

In contrast to the above studies, we show that APRIL-deficient mice
display a defect in the developing nigrostriatal projection in vivo. The
density of the dopaminergic nigrostratal projection, as visualized by TH
staining in multiple iDISCO preparations, was significantly reduced in
April−/− mice compared with April+/+ mice. This significant de-
crease was not due to a general decrease in TH expression in neurons
that express this enzyme because there was no significant difference in
Th mRNA levels in the SCG of April−/− and April+/+ mice. This
decrease in the density of the dopaminergic nigrostriatal projection was
quantified at E14, shortly after dopaminergic axons start growing to
their targets in the striatum, which accords with the stage at which
APRIL enhances the growth of axons from midbrain dopaminergic
neurons in vitro. The shape and disposition of the nigrostriatal projec-
tion was similar in April−/− and April+/+ mice, suggesting that the
guidance of these fibres is unaffected. In future work it will be inter-
esting to ascertain whether this phenotypic change is sustained in older
mice and how it might develop with age. It will also be important to
ascertain whether there are secondary consequences for the main-
tenance of midbrain dopaminergic neurons and whether April−/−
mice develop any motor defects with age. Finally, because degeneration
of the dopaminergic nigrostriatal projection is a feature of Parkinson's
disease, it will be informative to ascertain whether APRIL is efficacious
in animal models of Parkinson's disease.
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