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ARTICLE

Regional variation in health is predominantly driven
by lifestyle rather than genetics
Carmen Amador 1, Charley Xia1, Réka Nagy1, Archie Campbell 2,3, David Porteous2,3, Blair H. Smith 3,4,

Nick Hastie1, Veronique Vitart1, Caroline Hayward 1, Pau Navarro 1 & Chris S. Haley1,5

Regional differences in health-related phenotypes have been detected between and

within countries. In Scotland, regions differ for a variety of health-related traits and display

differences in mean lifespan of up to 7.5 years. Both genetics and lifestyle differences are

potential causes of this variation. Using data on obesity-related traits of ~11,000 Scottish

individuals with genome-wide genetic information and records of lifestyle and socioeconomic

factors, we explored causes of regional variation by using models that incorporate genetic

and environmental information jointly. We found that variation between individuals within

regions showed substantial influence of both genetic variation and family environment.

Regional variation for most obesity traits was associated with lifestyle and socioeconomic

variables, such as smoking, diet and deprivation which are potentially modifiable.

There was limited evidence that regional differences were of genetic origin. This has

important implications for healthcare policies, suggesting that inequalities can be tackled with

appropriate social and economic interventions.
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Marked differences in health-related traits and
diseases exist between countries and between regions
within countries1–4. Regions in Scotland differ for

several health-related traits, and display differences in lifespan of
up to 7.5 years in men and 4.9 years in women5. Complex
traits related to obesity, such as body size, have a genetic basis
with heritabilities between 30 and 60%6, 7. On the other hand,
changes in body size and the so-called global obesity pandemic
are usually associated with environmental changes related to diet,
exercise levels and other socioeconomic changes8, 9. From
this perspective both genetics and lifestyle differences are
potential causal factors for the observed regional differences in
health-related traits10–15. Disentangling the underlying causes of
variation in health-related traits has direct implications for
the welfare of future generations; however, genetic and
environmental variation may be closely associated and therefore
difficult to separate.

In this study, we explored causes of regional variation in data
on obesity-related traits as indicators of the health status of
~11,000 Scottish individuals with genotypic records and a variety
of measurements of possible causal lifestyle and socioeconomic
factors. Our aim was to exploit these high-quality genomic
data and high fidelity and deep phenotypic, lifestyle and
socioeconomic data to identify the factors contributing to the
differences between regions in health-related traits. As expected,
obesity-related traits such as body mass index and weight
differ significantly between regions. By accounting for both the
genomic data and the environmental information in our analyses,
we showed that trait variation is substantially influenced by both
genetic variation and family environment. However, the regional
variation for most obesity traits was associated with lifestyle and
socioeconomic variables, such as deprivation, physical activity,
etc. rather than the regional genetic structure of the sample.
These results imply that although genes and family environment
are important determinants of health-related traits, regional
differences are attributable mostly to potentially modifiable
environmental factors.

Results
Overview of analyses. The objective of this work was to
disentangle genetic and environmental components of health-
related traits, linked to geographic variation. We explored a
Scottish population consisting of ~11,000 individuals with
different degrees of kinship, genotyped for ~500K markers,
phenotypes for 11 traits (8 anthropometric and 3 metabolic
traits), geographic covariates (principal components) reflecting
the regional genetic structure of the data (gPCs) and a large set of
environmental covariates (socioeconomic and lifestyle (SELS)).
We fitted jointly genetic and environmental information in a
range of statistical models, in an innovative approach to
disentangle the causes of regional variation. For more
information, see Supplementary Tables 1, 2 and 3 and
Supplementary Methods. An overview of analyses and models is
shown in Fig. 1.

Regional differences in traits within Scotland. In order to
illustrate the geographic differences existing in Scotland, in the
Basal Model (Fig. 1) we adjusted each trait for sex, age and
clinic and tested the traits for differences between the 32
regions (council areas, defined from the individual’s postcode of
residence; Supplementary Table 3). For 9 of the 11 traits studied,
differences between regions (i.e., council areas) were significant at
a 0.05 level (see Table 1, first column).

To test if the regional differences detected were due to the
genetic relatedness of the sample, we adjusted for kinship by
fitting a genomic relationship matrix (G) together with sex, age
and clinic in a mixed model analysis (Family Model). We tested
the residuals from this model for remaining regional differences.
When including the genomic relationship matrix in the model,
the differences between regions disappeared for two traits (height
and body fat measured by bioelectric impedance analysis (BIA
fat) (Table 1, second column), suggesting that the regional
variation detected in the Basal Model for these two traits was due
to the genetic relatedness of the sample. Nonetheless, for waist
circumference, hips circumference, waist-to-hips ratio (WHR),
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Fig. 1 Overview of the models and analyses performed. G, Genomic Relationship matrix; K, Kinship matrix; C, Couples matrix; S, Siblings matrix;
gPCs, Geographic Principal Components; SELS, Socioeconomic and lifestyle covariates
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body mass index (BMI), a body mass index (ABSI), creatinine
and high density lipoprotein (HDL) levels regional differences
still exist (α= 0.05) after adjusting for the genetic relatedness and
family structure in the sample.

We then explored if the regional differences could be explained
by the population genetic structure of the sample, i.e., the genetic
differences between the regions. To do that we adjusted for
ten geographic principal components (gPCs) that represent
geographical population genetic structure in the cohort.
The gPCs were calculated using a subset of unrelated individuals
and unlinked markers and then extrapolated to the rest of
the population. They reflect the genetic differences between
regions as shown in Amador et al.14 (for more information see
Methods). We adjusted for the gPCs (together with a genomic
relationship matrix, sex, age and clinic in the Structure Model)
and we used the residuals of the model to test whether the

regional differences remained significant (Table 1, third column).
For all six traits with significant regional differences
after the previous analyses, these differences remained significant
(α= 0.05) after adjusting for the gPCs, i.e., the genetic differences
between regions do not explain the regional differences in the
studied traits.

Next, we examined if the regional differences could be
explained by the environmental differences measured in the
cohort by adjusting for the SELS covariates. We fitted a model
adjusting for a genomic relationship matrix and SELS covariates,
representing this environmental information, together with sex,
age and clinic (Environment Model). When we tested the
significance of the region in the residuals of this model (Table 1,
fourth column), we observed that only ABSI and creatinine
showed significant differences (α= 0.05) between regions
and these differences had become non-significant for waist

Table 1 Significance of region on phenotypes in the benchmark framework

ModelTrait

Basal Family Structure Environment Structure and environment

Height 3.50E-06* 0.433 0.573 0.939 0.957
Weight 0.129 0.410 0.413 0.811 0.805
BIA fat 0.002* 0.100 0.141 0.466 0.464
Waist 1.10E-05* 0.009* 0.016* 0.185 0.195
Hips 0.070 0.293 0.302 0.593 0.588
WHR 4.52E-07* 0.001* 0.004* 0.157 0.196
BMI 9.46E-06* 0.006* 0.011* 0.387 0.406
ABSI 2.70E-04* 0.003* 0.005* 0.016* 0.015*
Creatinine 1.81E-11* 2.09E-06* 3.06E-06* 4.29E-06* 5.81E-06*
TC 0.250 0.374 0.372 0.464 0.461
HDL 1.98E-05* 0.008* 0.010* 0.184 0.188

The values show the significance (p-values) of region in four models: 1. differences in the traits (first column, Basal Model); 2. adjusting for kinship (second column, Family Model); 3. adjusting for kinship
and genetic structure (third column, Structure Model); 4. adjusting for kinship and environmental covariates (fourth column, Environment Model); 5. adjusting for kinship and genetic and environmental
covariates (fifth column, Structure and Environment Model). An asterisk marks the estimates that are significantly different from zero. All models adjusted for sex, age and clinic
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circumference, BMI, WHR and HDL, indicating that the regional
differences are explained by the measured SELS variables. We
fitted a final model including both the gPCs and the SELS
covariates (Table 1, Structure and Environment Model) to
corroborate the results. The results obtained for this model were
very similar to those from the Environment Model, reinforcing
the conclusion that the SELS covariates are responsible for the
regional differences observed.

A visualisation of the changes in the standardised residual
means for each trait per region before and after adjusting for the
SELS variables was created using latitude and longitude of
Scottish postcodes in R16. This is shown for BMI in Fig. 2 and for
all traits in Supplementary Fig. 1. The only remaining regional
differences were for creatinine and ABSI. Since our results suggest
that those were not due to the geographical population genetic
structure (Table 1, Structure Model), these remaining differences
are likely to be caused by other environmental variables not
measured in our data and not associated with family genetic
structure or family environment.

We repeated the whole set of analyses including a larger set of
genetic and environmental matrices (G: genomic relationship
matrix, K: kinship matrix, C: couples matrix, S: siblings matrix;
see Fig. 1: Full models F, S, E and S+E) combining the different
set of covariates and the results observed were similar to those of
the Benchmark models described above: most regional differences
were removed when fitting the SELS variables (Supplementary
Table 4).

Heritability estimates and covariate effects. We evaluated the
proportion of the variance explained by all the components fitted
in several mixed models to further explore genetic and environ-
mental variation in the 11 traits studied following Xia et al.17

Using mixed-model analysis18, 19 we partitioned the phenotypic
variance into components representing genetic or environmental
effects. We used two genetic relationship matrices (G and K) to
account simultaneously for the genetic sharing among distant and
closely related individuals7; and two environmental relationship

Table 2 Proportion of the phenotypic variance explained by genomic (G: genomic relationship matrix, K: kinship matrix) and
environmental matrices (C: couple matrix, S: sibling matrix)

Trait Model G K C S

Height Model F 0.481 (0.034)* 0.387 (0.043)* 0.125 (0.032)* 0.007 (0.018)
Model S+E 0.457 (0.034)* 0.415 (0.042)* 0.122 (0.032)* 0.006 (0.017)

Weight Model F 0.274 (0.034)* 0.349 (0.046)* 0.200 (0.035)* 0.030 (0.021)
Model S+E 0.280 (0.034)* 0.333 (0.046)* 0.191 (0.035)* 0.027 (0.021)

BIA fat Model F 0.274 (0.034)* 0.229 (0.047)* 0.207 (0.036)* 0.049 (0.023)*
Model S+E 0.248 (0.035)* 0.212 (0.048)* 0.179 (0.037)* 0.052 (0.023)*

Waist Model F 0.198 (0.033)* 0.341 (0.047)* 0.241 (0.034)* 0.029 (0.022)
Model S+E 0.182 (0.034)* 0.320 (0.047)* 0.220 (0.035)* 0.029 (0.023)

Hips Model F 0.192 (0.034)* 0.314 (0.047)* 0.211 (0.036)* 0.043 (0.023)
Model S+E 0.197 (0.034)* 0.297 (0.047)* 0.200 (0.036)* 0.039 (0.023)

WHR Model F 0.152 (0.033)* 0.205 (0.046)* 0.120 (0.038)* 0.022 (0.024)
Model S+E 0.099 (0.034)* 0.217 (0.047)* 0.089 (0.038)* 0.022 (0.025)

BMI Model F 0.276 (0.033)* 0.327 (0.046)* 0.255 (0.034)* 0.024 (0.021)
Model S+E 0.266 (0.034)* 0.294 (0.046)* 0.232 (0.035)* 0.026 (0.022)

ABSI Model F 0.101 (0.032)* 0.223(0.045)* 0.051(0.037) 0.025(0.024)
Model S+E 0.080(0.033)* 0.245 (0.046)* 0.049(0.037) 0.021(0.024)

Creatinine Model F 0.247(0.035)* 0.387 (0.046)* 0.141 (0.032)* 0.040 (0.022)
Model S+E 0.223 (0.035)* 0.393 (0.047)* 0.138 (0.032)* 0.050 (0.022)*

TC Model F 0.205 (0.035)* 0.143 (0.048)* 0.045 (0.035) 0.081 (0.024)*
Model S+E 0.208 (0.035)* 0.131 (0.048)* 0.038 (0.036) 0.086 (0.024)*

HDL Model F 0.311 (0.035)* 0.267 (0.046)* 0.093 (0.034)* 0.038 (0.022)
Model S+E 0.299 (0.035)* 0.238 (0.047)* 0.060 (0.035) 0.050 (0.022)*

Columns three to six show the variance captured by each matrix when fitted together (Full Model). The two models used were the Family Model (F): with sex, age and clinic included as covariates; and
the Structure and Environment Model (S+E): with gPCs, SELS, sex, age and clinic included as covariates. An asterisk marks the estimates that are significantly different from zero

G K C S

BMI

Matrix

P
ro

po
rt

io
n 

of
 th

e 
va

ria
nc

e Model F
Model S+E

G K C S

HDL

Matrix

Model F
Model S+E

0.1

0.2

0.3

0.4

0.0

P
ro

po
rt

io
n 

of
 th

e 
va

ria
nc

e

0.1

0.2

0.3

0.4

0.0
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matrices that represented shared environments between members
of a couple (C) and siblings (S)17 (Fig. 1, Full models).

The proportion of the phenotypic variance explained by the
components in a Full Model is shown in Table 2. The table
includes the results for two types of analyses: the Family Model
including only the matrices, sex, age and clinic, or the Structure
and Environment Model (S+E) including the matrices and gPCs
and SELS covariates together with sex, age and clinic.

The estimates of the genotyped-single-nucleotide
polymorphism (SNP) heritability (h2g, proportion of the
phenotypic variance captured by matrix G) and of the pedigree
heritability (h2kin, captured by matrix K) did not change
significantly when including the extended set of covariates in
the model, even for those traits where the environmental
covariates contributed to regional differences. Furthermore, for
most of the traits the estimates of variance due to the shared
environments of couples and siblings (C and S) were robust to the
inclusion of the extended set of SELS variables (Table 2). This is
illustrated for two traits in Fig. 3.

The proportion of the variance captured from the couple
environment (matrix C) was significant for eight traits although
for HDL the significance disappeared after including the full set of
environmental covariates. This would suggest that, for HDL,
some of the phenotypic similarities observed in couples can be
accounted for by the recorded lifestyle or socioeconomic
variables. In addition, the variance captured by the sibling
environment (matrix S) was detectable only for two traits (BIA fat
and TC). For creatinine and HDL, the variance captured by
sibling environment was not different from zero in the Family
Model, but became significant after including the whole set of
covariates. In all the cases the differences in proportion of the
variance captured between the Structure and Environment Model
(including the whole set of covariates) and the Family Model
explored were subtle.

Table 3 shows the variance explained by the SELS covariates
together with the gPCs in the models including a G matrix
(details of each individual covariate are shown in Supplementary
Table 5). The amount of variance explained by SELS covariates
ranged between 0.64 and 35.57% while the gPCs explained always
< 0.5% of the variance for all traits. Scottish index of multiple
deprivation (SIMD) was the covariate affecting most traits
(all except for creatinine) and years of education also explained
substantial variance for several traits, with effects on most of the
body measurements. Activity level explained a large amount of

variance (up to 18.9%) for traits like HDL, BMI, weight and
BIA fat. The dietary variables showed effects on many traits
but overall explained little variance. For all traits the SELS
covariates explained more variance than the geographical
population genetic structure, which is consistent with the results
showing that the regional differences in the obesity-related traits
are associated with environmental rather than genetic variation
between the regions.

Discussion
Geographic differences in health-related phenotypes and diseases
have been detected between countries and between regions within
countries, and both genetics and environment could potentially
account for these differences11–14. In this study, we disentangled
the underlying causes of phenotypic differences between regions
for 11 health-related traits in Scotland. To do so, we accounted
for genetic structure together with environmental differences
captured by environmental covariates and similarity matrices.
We included all of them together in different mixed linear models
in an innovative approach to the study of regional differences in
health-related phenotypes. We showed the impact of familiar
genetic structure, geographical population genetic structure and
lifestyle and socioeconomic variables in all the traits. We
found that for most of the obesity-related traits, existing regional
differences within Scotland cannot be explained by geographical
population genetic structure and they are predominantly driven
by lifestyle and socioeconomic causes.

We showed that for height and BIA fat, the regional differences
were explained by the genetic relatedness of the sample,
disappearing when we corrected using a genomic relationship
matrix. In the case of height, the geographical population genetic
structure (gPCs) still explains 0.5% of the variance in the trait
(Table 3 and Supplementary Table 5). In a previous study at
the pan-European level, Robinson et al.10 detected regional
differences in the genetics of height. Our results suggest that the
differences observed in our Scottish cohort are due to the genetic
similarity and the relatively high variance explained by the gPCs
concur with results reported in Robinson et al.10 particularly
considering the relatively small geographic range in our sample.

For most of the obesity traits, the regional differences
disappeared when adjusting for a large set of measured
environmental covariates, indicating that after accounting for
other factors, the residual regional discrepancies were caused by
environmental differences between the regions. An important
implication is that studies that explore the causes of regional
inequalities should account for both genetic and environmental
factors if they are to avoid reaching biased conclusions,
particularly in the presence of relatives. In the case of BIA fat, the
results show a different pattern from the rest of the obesity traits.
The gPCs explain a 0.18% of the variance, similar to BMI or waist
circumference, but fitting the genetic relatedness of the sample
explained regional differences. The phenotypic correlation
between BIA fat and BMI is 0.62, suggesting that only a
proportion of 0.38 of the variance was shared between traits.

The addition of the extended set of covariates did not change
substantially the heritability or the variances captured by
environmental matrices, suggesting that for this type of analysis,
fitting only the basal covariates should suffice to obtain accurate
heritability estimates for these health-related traits. Hence,
previous studies that have not included these effects are unlikely
to have produced significantly biased heritability estimates.

The deprivation index SIMD was the environmental variable
significantly affecting the largest number of traits, although the
variance accounted for by SIMD was relatively small for all traits
(Supplementary Table 5). SIMD combines several indicators of

Table 3 Proportion of the phenotypic variance explained
by the covariates in the Benchmark Structure + Environment
(S+E) Model

Trait Socioeconomic Lifestyle gPCs

Height 0.0045 0.0019 0.0048
Weight 0.0090 0.1244 0.0000
BIA fat 0.0069 0.1020 0.0018
Waist 0.0134 0.0061 0.0022
Hips 0.0094 0.0211 0.0000
WHR 0.0069 0.0181 0.0037
BMI 0.0184 0.1400 0.0015
ABSI 0.0031 0.3526 0.0023
Creatinine 0.0001 0.1906 0.0004
TC 0.0040 0.0279 0.0000
HDL 0.0049 0.2830 0.0012

Socioeconomic comprises the covariates SIMD, years of education, household size, vehicle ratio
and job status; lifestyle comprises the covariates alcohol units, smoking status, activity level and
consumption of fruit, vegetables, fish, meat, eggs and dairy; gPCs are the 10 principal
components of the genomic relationship matrix that describe the geographical population
genetic structure
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deprivation (such as level of income, education, employment,
crime, etc. ref. 20) in one index and the associations with SIMD
corroborate the described associations between socioeconomic
inequalities and health11, 12. The results showed that people living
in less deprived areas are taller, with higher levels of HDL, and
lower BMI and BIA fat levels. Other environmental variables also
explained part of the differences between regions such as years of
education, level of activity or alcohol intake. These more specific
variables could be also picking up effects of more complex
environmental variables such as socioeconomic status (e.g., if
there is stratification in levels of alcohol intake or diet
composition between different socioeconomic groups).

The increased prevalence of obesity is a worldwide health
concern. Reducing the incidence of obesity by effective
intervention policies in affected areas would provide substantial
benefits in health and quality of life of individuals concerned
and significantly reduce associated healthcare costs to the
community1, 4, 9. In this study, we have shown that for most of
the examined obesity traits, regional differences exist even
after accounting for genetics and they can be explained by
environmental differences between those regions. These
environmental factors are potentially modifiable and therefore
could be actionable from a health policy point of view, with the
potential for appropriate interventions reducing inequalities in
health between areas. In particular, our results show a large effect
of physical activity and dietary choices for the studied traits.
These two are recognised as critical behaviours affecting obesity
and are usually targeted by policy makers21. Designing the
interventions to improve these habits is important, but focusing
in the relevant geographical (deprived) areas and making an
impact on the relevant strata of the population will be crucial.

Methods
Data set. We used the data from the Generation Scotland: Scottish Family Health
Study (GS:SFHS)22. Ethical approval for the study was given by the NHS Tayside
committee on research ethics (ref: 05/s1401/89). Governance of the study,
including public engagement, protocol development and access arrangements,
was overseen by an independent advisory board, established by the Scottish
government. Research participants gave consent to allow both academic and
commercial research.

Individuals were genotyped with the Illumina HumanOmniExpressExome-8
v1.0 or v1.2. We used PLINK version 1.9b2c23 to exclude single-nucleotide
polymorphisms (SNPs) that had a missingness > 2% and a Hardy–Weinberg
Equilibrium test P< 10−6. Markers with a minor allele frequency smaller than 0.05
were discarded. Duplicate samples, individuals with gender discrepancies and those
with more than 5% missing genotypes were also removed. The resulting data set
was merged with the 1092 individuals of the 1000 Genomes population24 and a
principal component analysis (PCA) was performed using GCTA18. Individuals
more than ix standard deviations away from the mean of principal component 1
and principal component 2 were removed as potentially having African/Asian
ancestry as shown in Amador et al.14 After quality control individuals had
genotypes for 519,819 common SNP spread over the 22 autosomes. Of the ~24,000
individuals in GS:SFHS, the number of individuals without missing values for any
of the covariates used in our study was N= 11,118 (4646 males and 6472 females)
so we used this set of samples for all the analyses in order to allow comparisons
between the models.

Phenotypes. We used measured phenotypes for 11 complex traits classified
as anthropometric (height, weight, body fat measured by bioelectrical impedance
analysis (BIA fat), waist circumference, hips circumference, WHR(waist/hips); BMI
(weight/height2), ABSI25 (Waist/(BMI2/3×Height1/2))) and metabolic traits (levels
of creatinine, total cholesterol and HDL in serum. Natural logarithm transforma-
tions were performed for all traits except for height and BIA fat, to obtain
approximate normal distributions. Phenotypes with values greater or smaller than
the mean± 4 standard deviations (after transformation and adjusting for sex, age
and age2) were set to missing (Supplementary Table 1). Boxplots for each trait of
individuals living in each region (corresponding to different council areas) are
plotted in Supplementary Fig. 2.

Covariates. We explored a large set of covariates representing potential
environmental factors influencing differences between individuals in the study.
We fitted these factors as putative predictors of trait variation in statistical models

as discrete or continuous covariates depending on their nature. The covariates lay
in three categories: basic, socioeconomic and lifestyle. Basic covariates were
sex, age, and clinic where the phenotypes were measured; socioeconomic covariates
were SIMD (a deprivation ranking based on living area20), years of education,
household size, vehicle ratio and job status. Lifestyle covariates are alcohol units
consumption, smoking status, activity level, fruit units eaten per day and con-
sumption of different foods (fruit, vegetables, fish, meat, eggs and dairy). A detailed
description of these variables is shown in Supplementary Table 2 and additional
information on how the quality control was performed is given in Supplementary
Note 1.

Information on the postcode at which individuals were living at the time when
their data were recorded was also available. The individuals were allocated to their
corresponding council area based on these postcodes. A more detailed description
on the correspondence between postcodes and regions is shown in Supplementary
Table 3. The distribution or incidence of the covariates in the different council
areas is plotted in Supplementary Fig. 3.

We also calculated a set of variables that represent genomic geographic origin
through a PCA. To do so, we created a pruned subset of SNPs in approximate
linkage equilibrium with each other and we removed markers from chromosome 6
in the major histocompatibility complex region and markers in the 8p23.1 region14.
We kept only unrelated individuals (i.e., by removing one individual in each
pair with a genomic relationship coefficient larger than 0.025). We performed a
PCA in this subset (Nind= 7370, NSNP= 91,390), we calculated the loadings of the
SNPs contributing to each of the first 10 principal components, and we computed
the values for these principal components for the whole 11,118 individuals used in
subsequent analyses. The resulting set of variables represents well the regional
genetic structure of the sample as shown in Amador et al.14 We refer to these 10
PCs as gPCs or geographical population genetic structure.

Matrices. We used design matrices representing genomic or environmental
relationships as in Xia et al.17: G is a genomic relationship matrix (GRM)
containing relatedness between pairs of individuals based on identity-by-state at
the genotyped SNPs19, 26. K is a matrix representing pedigree relationships as in
Zaitlen et al.7 This is a modification of G obtained by setting all entries in G lower
than 0.025 to 0. C is a matrix representing common environmental effects shared
between couples. The matrix contains a value of 1 between pairs of individuals
identified as members of a couple as in ref. 17; S is a matrix representing common
environmental effects shared between siblings. The matrix contains a value of 1
between pairs of individuals identified as siblings as in ref. 17. G and K were
calculated using GCTA18; The environmental matrices (C and S) were created
using R version 3.1.116.

Analyses. A summary with names of models and analyses undertaken is
shown in Fig. 1.

Firstly, to illustrate which traits show variation between the different regions in
Scotland we explored in a simple linear regression if there were differences in the
traits between council areas (Basal Model, B). Using the statistical package R16, we
testing the significance of the variable “region where individuals live” (region) in a
linear model.

To explore if trait variation was due to genetic structure or to the environmental
differences, we used variance component analyses. This way the models take
appropriately into account the kinship in the sample. All the analyses were
implemented in GCTA18. The basic general mixed linear model explored is shown
in (1).

y ¼ Xβþ gg þ ε; ð1Þ

where y is an n × 1 vector of observed phenotypes with n being the number of
individuals, β is a vector of fixed effects and X is its design matrix, gg is an n × 1
vector of the total additive genetic effects of the individuals captured by genotyped
SNPs with gg~ N(0, Gσ2g). ε is an n × 1 vector for the residuals.

We fitted different sets of covariates in this general framework to explore four
different models:

The Family Model (F) included only sex, age and clinic as fixed effects.
The Structure Model (S) included the geographical principal components

(gPCs), together with sex, age and clinic as fixed effects.
The Environment Model (E) included the SELS covariates, together with sex,

age and clinic in the vector of fixed effects.
The Structure and Environment Model (S+E) included all gPCs and SELS,

together with sex, age and clinic in the vector of fixed effects.
For each model, we predicted by the BLUP (best linear unbiased prediction)

method the total genetic (and environmental if appropriate) effect of each
individual together with their residuals. We tested if the residuals were significantly
different between the regions to show if the differences between regions were
explained by the models or remained unexplained. We also estimated the variance
explained by matrix G (σ2g) in all these models and the variance explained by
covariates included was calculated as

Var Covariateð Þ � b2=Var Traitð Þ; ð2Þ

where b is the effect of the covariate estimated from the GREML analyses.
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Model (S) including a genetic matrix (G) and the gPCs allowed us to test if
adding the geographic structure to Model (F) (including only a genetic matrix)
would account for the differences between regions. Model (E) including G and the
SELS covariates compared with Model (F), allowed us to test if the differences were
due to the SELS variables. Model (S+E) included both gPCs and SELS together for
comparison with the two previous models.

We fitted again the models described above, including in addition another
genetic and two environmental matrices fitted in linear mixed models as in
Xia et al.17 to test if the observed regional differences were affected by the inclusion
or exclusion of the environmental matrices (C, S) and K as shown in (3)

y ¼ Xβþ gg þ gkin þ ec þ es þ ε; ð3Þ

where gkin is an n × 1 vector of the extra genetic effects associated with the pedigree
for relatives with gkin~ N(0, Kσ2k), ec and es are n × 1 vectors representing the
common environmental effects shared by couples or siblings, with ec~ N(0, Cσ2c)
and es~ N(0, Cσ2s).

Results for the four models (Model (F), Model (G), Model (E) and Model
(G+E)) were also explored in the context of Eq. (3).

Data availability. Data are available from the MRC IGMM Institutional
Data Access/Ethics Committee for researchers who meet the criteria for access to
confidential data. GS:SFHS data are available to researchers on application to the
Generation Scotland Access Committee (access@generationscotland.org). The
managed access process ensures that approval is granted only to research
which comes under the terms of participant consent which does not allow making
participant information publicly available.
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