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Abstract Thorough preclinical target validation is essential for the success of drug discovery

efforts. In this study, we combined chemical and genetic perturbants, including the development of

a novel selective maternal embryonic leucine zipper kinase (MELK) inhibitor HTH-01-091, CRISPR/

Cas9-mediated MELK knockout, a novel chemical-induced protein degradation strategy, RNA

interference and CRISPR interference to validate MELK as a therapeutic target in basal-like breast

cancers (BBC). In common culture conditions, we found that small molecule inhibition, genetic

deletion, or acute depletion of MELK did not significantly affect cellular growth. This discrepancy to

previous findings illuminated selectivity issues of the widely used MELK inhibitor OTSSP167, and

potential off-target effects of MELK-targeting short hairpins. The different genetic and chemical

tools developed here allow for the identification and validation of any causal roles MELK may play

in cancer biology, which will be required to guide future MELK drug discovery efforts. Furthermore,

our study provides a general framework for preclinical target validation.

DOI: https://doi.org/10.7554/eLife.26693.001

Introduction
Maternal embryonic leucine zipper kinase (MELK) is a serine/threonine kinase in the adenosine

monophosphate-activated protein kinase (AMPK)-related kinase family, and was first identified as a

maternal gene in mouse eggs and preimplantation embryos (Heyer et al., 1997). In the past

decade, multiple studies have reported overexpression of MELK in various cancers, including breast

(Lin et al., 2007), brain (Marie et al., 2008; Nakano et al., 2008), colorectal, lung and ovarian

(Gray et al., 2005). Moreover, overexpression of MELK is observed in cancer stem cells

(Ganguly et al., 2014; Hebbard et al., 2010; Liu et al., 2006), associated with undifferentiated phe-

notype (Rhodes et al., 2004), poor prognosis (Nakano et al., 2008; Pickard et al., 2009), and

chemo and radioresistance (Choi and Ku, 2011; Kim et al., 2015; Speers et al., 2016). Despite a

strong association with tumorigenesis, little is known about whether MELK plays a causal role in

orchestrating these aggressive cancer phenotypes. Nonetheless, studies have shown that MELK may

control cell cycle progression (Davezac et al., 2002; Gray et al., 2005) and suppress apoptotic
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signals (Lin et al., 2007). Out of all of these potential roles, MELK is best characterized as a mitotic

kinase, as its expression pattern highly correlates with other mitotic genes (Badouel et al., 2010;

Nakano et al., 2005). At the protein level, MELK is hyperphosphorylated (Badouel et al., 2010),

and reaches its maximal abundance (Gray et al., 2005) and kinase activity during M phase in both

Xenopus embryos and human cancer cell lines (Blot et al., 2002; Davezac et al., 2002). Upon

mitotic exit, MELK is actively degraded and dephosphorylated (Badouel et al., 2010).

Among MELK-associated cancers, breast cancer is one of particular interest. MELK-expressing

cells enriched from mammary tumors of MMTV-Wnt1/MELK-GFP mice have higher tumor-initiating

potential both in vitro and in vivo, which is reversed upon MELK-targeting shRNA knockdown

(Hebbard et al., 2010). Furthermore, correlative studies have repeatedly identified MELK expression

as a gene signature in breast cancer (Komatsu et al., 2013; Liu et al., 2015; Pickard et al., 2009).

However, while some groups claimed that MELK overexpression is found in all breast cancers (in

comparison to normal tissues), and demonstrated that MELK-targeting siRNA impaired growth in

the luminal lines T-47D and MCF7 (Lin et al., 2007; Pickard et al., 2009), others claimed that MELK

dependence is specific to basal-like breast cancer (BBC) (Touré et al., 2016; Wang et al., 2014).

The latter argument was postulated based on higher expression of MELK in BBC (in comparison with

other subtypes), and supported by subtype-specific toxicity using both shRNA depletion and phar-

macological inhibition of MELK. Regardless of the subtype specificity, BBC, which largely overlaps

with triple-negative breast cancer (TNBC), is in great need of a clinically tractable therapeutic target

(Foulkes et al., 2010; Rakha et al., 2008). As patients with BBC/TNBC face dismal outcome upon

chemoresistance, investigation of potential molecular targets, such as MELK, is worthy of attention.

Due to the potential oncogenic role of MELK, several groups have developed MELK inhibitors to

validate its potential as a drug target. Among these, OTSSP167 is the most potent, with subnanomo-

lar activity against MELK and broad-spectrum efficacy in in vitro and in vivo tumor models of various

tissue origins (Chung et al., 2012); these encouraging preclinical results spurred initiation of a clini-

cal trial of this compound for patients with solid tumors (Ganguly et al., 2014). However, OTSSP167

is a promiscuous kinase inhibitor, and it is unclear whether its antitumor activity stems from MELK

inhibition. Subsequently, two pharmaceutical groups reported the development of MELK inhibitors

with much improved selectivity. MELK-T1, the product of a fragment-based drug discovery cam-

paign, exhibits impressive selectivity owing to an atypical carbonyl hinge binder. Based on profiling

a panel of 235 kinases, only MELK (IC50 = 37 nM) and Flt3 (IC50 = 18 nM) were significantly inhibited

(Johnson et al., 2015). Another effort successfully developed several low nanomolar MELK inhibitors

based off of a 4-(pyrazol-4-yl)-pyridine scaffold. In particular, NVS-MELK8a (IC50 = 2 nM) exhibited

high selectivity with only 7 off-target kinases inhibited >85% when profiled against 456 kinases at 1

mM (Touré et al., 2016). Lastly, MRT199665, a pan-AMPK-related kinase inhibitor, showed reason-

able potency against MELK (IC50 = 29 nM) (Clark et al., 2012). All of these MELK inhibitors were

evaluated in our study.

Here, we report the discovery of HTH-01-091, a potent and selective MELK inhibitor. We utilized

HTH-01-091, published MELK inhibitors, as well as genetic knockout, genetic depletion, and chemi-

cal-genetic degradation strategies to study the consequences of loss of MELK function in BBC cell

lines. Surprisingly, our results indicate that neither chemical inhibition nor genetic manipulation of

MELK in breast cancer cell lines inhibited cell growth in vitro. The discrepancy between our study

and previous reports prompted us to uncover selectivity issues of OTSSP167 and potential off-target

effects from MELK-targeting short hairpins. The chemical and genetic tools presented in this study

will be useful to further elucidate cellular functions of MELK, and represent a general strategy for

thorough target validation.

Results

Discovery of lead scaffold and compound optimization for selective
MELK inhibition
Based on biochemical (KINOMEscan) and cellular (KiNativ) kinase profiling of our in-house library of

structurally diverse ATP-competitive kinase inhibitors, we identified several chemotypes that were

prioritized for further characterization and development. In particular, we focused on JW-7-25-1

(Figure 1A), a benzonaphthyridinone derivative that inhibited MELK pull-down by 100%
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(KINOMEscan) at 10 mM. Its affinity for MELK was confirmed using the Z’-LYTE enzymatic assay

([ATP]=25 mM near Km of MELK), with a measured IC50 value of 5.0 nM (Table 1).

Encouraged by the high potency of JW-7-25-1, we initiated a medicinal chemistry campaign

focused on improving its kinase selectivity while preserving potency. JW-7-25-1 exhibited a broad

kinase selectivity profile with an S(35) score of 0.54 when tested at 10 mM (Figure 1—figure supple-

ment 1). We confirmed potent inhibition of several off-targets and were keen on reducing the inhibi-

tion of FRAP1(mTOR), PIK3CA, and CDK7, as these kinases drive proliferation in breast cancer

(Liu et al., 2009; Wang et al., 2015; Yu et al., 2001), which would complicate the interpretation of

MELK-dependent pharmacology if inhibited. Thus, we monitored inhibition of these off-target kin-

ases throughout the optimization process. After several iterative rounds of compound synthesis and

Figure 1. Biochemical characterization of HTH-01-091 and other MELK inhibitors. (A) The chemical structures of all MELK inhibitors used in this study.

(B) Overlaid histograms comparing the percent remaining kinase activities of 140 kinases (ICKP panel) when treated with OTSSP167 (1 mM) versus HTH-

01-091 (1 mM). The kinases are ranked and therefore in different orders between the two compounds. See also Figure 1—figure supplement 1,

Figure 1—source data 1 and Table 2 for more inhibitor selectivity and potency data. (C) Crystal structure of MELK(2-333) in complex with HTH-01-091.

(PDB accession code: 5TWL). (D) Crystal structure of MELK(1-340) in complex with MRT199665. (PDB accession code: 5TX3).

DOI: https://doi.org/10.7554/eLife.26693.002

The following source data and figure supplement are available for figure 1:

Source data 1. Kinase profiling of OTSSP167 and HTH-01-091 by the International Center for Kinase Profiling (ICKP).

DOI: https://doi.org/10.7554/eLife.26693.004

Figure supplement 1. KINOMEscan TREEspot analysis of MELK inhibitors.

DOI: https://doi.org/10.7554/eLife.26693.003
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characterization, we arrived at HTH-01-091, which demonstrated significantly improved selectivity

(Figure 1A, Figure 1—figure supplement 1).

HTH-01-091 inhibits MELK with an IC50 value of 10.5 nM, which is comparable to MELK-T1 and

NVS-MELK8a in the same enzymatic assay (Figure 1A and Table 1). Furthermore, HTH-01-091 exhib-

ited reduced inhibition of the select off-target kinases by 20- to 140-fold when compared with JW-7-

25-1 (Table 1). Specifically, HTH-01-091 exhibited a greatly improved S(35) score of 0.16 at 1 mM

(Figure 1—figure supplement 1).

To further investigate the selectivity profile of HTH-01-091, we used the International Center for

Kinase Profiling (ICKP) panel, which measured the activity of 141 kinases using radiometric kinase

assays (Hastie et al., 2006). Consistent with our previous result, 1 mM of HTH-01-091 selectively

inhibits 4% of the kinases over 90%, whereas 1 mM of OTSSP167 inhibits 67% of the kinases over

90% (Figure 1B and Figure 1—source data 1). HTH-01-091 (1 mM) inhibited seven kinases more

strongly than MELK in the ICKP panel, which includes PIM1/2/3, RIPK2, DYRK3, smMLCK and CLK2.

Using the radioactive filter-binding assay provided by ICKP (Hastie et al., 2006), we found that

HTH-01-091 inhibited MELK activity with an IC50 value of 15.3 nM, in good agreement with the Z’-

LYTE assay, while those potential off-target kinases exhibited IC50 values in the range of 42–109 nM

(Table 2). In sum, HTH-01-091, a potent MELK inhibitor with a greatly improved selectivity profile

relative to the parent compound JW-7-25-1 as well as OTSSP167, is a valuable tool compound to

interrogate MELK-dependent pharmacology.

Table 1. Biochemical IC50 values of MELK inhibitors.

Biochemical IC50 (nM)

MELK* PIK3CA† mTOR* GSK3A* CDK7†

JW-7-25-1 5.0 5.5 12.3 63.4

HTH-01-091 10.5 962 632 1740 1230

OTSSP167 0.5 66.5 35.7 1.6 49.1

MRT199665 1.4–3.3

NVS-MELK8a 11.9

MELK-T1 13.5

*Kinase activity measured by Z’-LYTE assay at [ATP]=apparent Km, in accordance with Z’-LYTE Screening Protocol

and Assay Conditions provided by Life Technologies.
†Kinase activity measured by Adapta assay at [ATP]=apparent Km, in accordance with Adapta Screening Protocol

and Assay Conditions provided by Life Technologies.

DOI: https://doi.org/10.7554/eLife.26693.005

Table 2. Enzymatic IC50 values of the main targets of HTH-01-091 measured by the International

Center for Kinase Profiling (ICKP).

Kinase % activity remaining (1 mM) Enzymatic IC50* (nM)

PIM3 1

PIM1 1 60.6

PIM2 2

RIPK2 3 42.5

DYRK3 5 41.8

SmMLCK 8 108.6

CLK2 11

MELK 13 15.3

HIPK2 13

DAPK1 15

*Radioactive filter-binding assay provided by the ICKP.

DOI: https://doi.org/10.7554/eLife.26693.006
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Crystal structures of HTH-01-091 and MRT199665 with MELK kinase
domain
To better understand the mode of inhibitor binding, we determined crystal structures of MELK in

complex with HTH-01-091 and MRT199665. Crystal structures of MELK bound to other inhibitors

have been previously reported (Cho et al., 2014; Johnson et al., 2015; Touré et al., 2016). The 2.5

Å structure of MELK in complex with HTH-01-091 revealed a type I binding mode (Figure 1C). The

quinoline nitrogen in the tricylic core forms the only hinge interaction with the backbone NH of

Cys89. In the deep pocket, the 3,5-dichloro-4-hydroxyphenyl group engages with the catalytic

(Lys40) lysine and recruits Glu57 on the aC helix. Toward the solvent, the cyclic urea group forms a

hydrogen bond with Ile17 in the P-loop. In addition, the cyclohexyl group of HTH-01-091 is sand-

wiched between Val25 and Leu139 in a nearly orthogonal orientation with respect to the core, while

projecting the (dimethylamino)methyl tail into the negatively-charged catalytic pocket made-up by

Glu93, Asp150, and Glu136 (Figure 1C). Many of the corresponding interactions were previously

observed in the MELK-OTSSP167 co-crystal structure (Cho et al., 2014). However, in the OTSSP167

structure, the cyclohexyl group occupies the active site in a manner that makes greater van der

Waals interactions with the P-loop, causing the N-lobe to be in a slightly more closed conformation

reflected by the proximity of Phe22 to the carboxyl end of the aC helix. This could contribute to the

higher binding affinity of OTSSP167 to MELK.

The MRT199665 structure also revealed a type I binding mode (Figure 1D). The pyrimidine and

aniline nitrogen atoms from the core form dual hydrogen bonds with the backbone NH and carbonyl

group of Cys89 in the hinge. Toward the deep pocket, MRT199665 hydrogen bonds with Lys40,

while the dimethyl group abuts the gatekeeper L86, promoting a relatively open conformation of

the N-lobe. The hydroxy group of the hydroxydihydroindene group forms a hydrogen bond with

Glu93, restricting the plane of the indene orthogonoal to the rest of the molecule (Figure 1D). The

indene group is in van der Waals contact with Gly18 and Val25, but intervening residues in the

P-loop are largely disordered. These co-crystal structures provide insights on how to further optimize

the inhibitors.

HTH-01-091 is cell permeable and induces MELK degradation
After confirming HTH-01-091 as a potent MELK inhibitor in biochemical assays, we next investigated

whether HTH-01-091 engages MELK in cells. We performed a KiNativ assay to measure HTH-01-091

engagement with the ATP binding pocket of MELK, which would prevent active-site labeling from a

lysine-reactive ATP-biotin probe (Patricelli et al., 2007). HTH-01-091 dose-dependently decreased

MELK pull-down by streptavidin beads, demonstrating that the compound is cell permeable and

binds to MELK in an ATP-competitive fashion. As a control, ERK1/2 pull-down was not affected by

HTH-01-091 treatment, consistent with our profiling data showing no binding affinity of HTH-01-091

to ERK1/2 (Figure 2A, Figure 1—source data 1).

MELK-T1 was previously reported to induce cell-cycle independent degradation of MELK

(Beke et al., 2015). Interestingly, we found that all MELK inhibitors we tested also reduced MELK

protein levels in MDA-MB-468 cells, indicating that inhibitor-induced MELK degradation may be

general to ATP-competitive MELK inhibitors (Figure 2B). Inhibitor potency generally correlated with

the rate and extent of MELK downregulation. However, MRT199665 induced the most rapid degra-

dation of MELK protein despite being less potent than OTSSP167 based on biochemical IC50 values.

Consistent with the prior MELK-T1 report, inhibitor-induced MELK degradation requires the ubiqui-

tin-proteasome system, as pretreatment with the proteasome inhibitor carfilzomib prevented degra-

dation (Figure 2—figure supplement 1) (Beke et al., 2015). As the molecular mechanism involved

in MELK degradation has not been described, we tried to rescue MELK degradation with the neddy-

lation inhibitor MLN4924. However, this had minimal effect, indicating that the cullin-RING E3 ligase

family is not involved in MELK degradation (Figure 2—figure supplement 1).

Selective MELK inhibitors exhibit minor antiproliferative effects in
breast cancer cells
As shRNA-mediated knockdown of MELK was previously reported to inhibit the proliferation of BBC

cells, we next tested whether pharmacological inhibition of MELK would have similar effects. We

treated a panel of breast cancer cell lines, including MDA-MB-468 and ZR-75-1 cells, with HTH-01-
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091 and other MELK inhibitors; despite our focus on basal-like breast cancers, we included luminal

cell lines for comparison. In 3-day proliferation assays, OTSSP167 demonstrated exceptional antipro-

liferative effects, exhibiting half maximal killing below 100 nM for most cell lines tested (Figure 2C

and Table 3). In contrast, HTH-01-091 and the other selective MELK inhibitors exhibited antiprolifer-

ative IC50 values that were at least 300-fold less potent. MRT199665, which exhibited intermediate

potency as a biochemical MELK inhibitor, also exhibited intermediate growth inhibition in most cell

Figure 2. HTH-01-091 is cell permeable, causes MELK degradation, but demonstrates poor antiproliferative effects in basal-like breast cancer cell lines.

(A) Immunoblots analyzing the pull-down levels of MELK and ERK1/2 by ATP-biotin probes and streptavidin beads from MDA-MB-468 cells treated with

different doses of HTH-01-091 and 10 mM MG132 for 1 hour. (B) Immunoblots for MELK and a-tubulin after treatment of MDA-MB-468 cells with 1 mM

of OTSSP167, MRT199665 or 10 mM of HTH-01-091, MELK-T1 and NVS-MELK8a for specified amount of time. See also Figure 2—figure supplement 1

for rescue experiments using carfilzomib and MLN4924. (C) 3-day antiproliferation assays of HTH-01-091 and other MELK inhibitors tested in MDA-MB-

468 (basal) and ZR-75-1 (luminal) cells. Values represent two independent experimental mean ±SD. Error bars shorter than the height of the symbol are

not drawn. Potency (MELK): ***IC50 <1 nM, **IC50 <5 nM, *IC50 <20 nM, measured by Z’LYTE biochemical assay. See also Tables 3 and 4 for a summary

of antiproliferative IC50 values in a panel of breast cancer cell lines at 3 and 7 days post treatment, respectively.

DOI: https://doi.org/10.7554/eLife.26693.007

The following figure supplement is available for figure 2:

Figure supplement 1. MELK inhibitor-induced MELK degradation is dependent on the proteosome, but not the cullin-RING ubiquitin ligase family.

DOI: https://doi.org/10.7554/eLife.26693.008

Table 3. 3-day antiproliferative activities of MELK inhibitors in a panel of breast cancer cell lines*.

3-day antiproliferative IC50 (mM) Note

Subtype Basal-like Luminal

Cell line MDA-MB-468 BT-549 HCC70 ZR-75-1 MCF7 T-47D MELK IC50 (nM) Selectivity

HTH-01-091 4.00 6.16 8.80 >10 8.75 3.87 10.5 Good

OTSSP167 0.014 0.021 0.034 0.055 0.035 0.106 0.5 Poor

MRT199665 0.58 0.40 0.39 4.83 0.44 5.89 1.4–3.3 Poor

NVS-MELK8a 5.41 8.05 5.99 >10 6.06 >10 11.9 Good

MELK-T1 >10 >10 13.5 Good

*IC50 values were estimated based on ‘log(inhibitor) vs. normalized response – Variable slope’ using GraphPad Prism 7. Experiments were performed in

duplicates.

DOI: https://doi.org/10.7554/eLife.26693.009

Huang et al. eLife 2017;6:e26693. DOI: https://doi.org/10.7554/eLife.26693 6 of 29

Research article Cancer Biology Cell Biology

https://doi.org/10.7554/eLife.26693.007
https://doi.org/10.7554/eLife.26693.009
https://doi.org/10.7554/eLife.26693


lines (Figure 2C and Table 3). We evaluated the inhibitors in longer-term (7-day) proliferation assays

and still observed the same trend, and no clear difference between the breast cancer subtypes

(Table 4). We authenticated our MDA-MB-468 line by short tandem repeat analysis, and repeated

the proliferation assays using MDA-MB-468 cells from a second source to confirm the modest anti-

proliferative effects of the selective inhibitors (Table 4). In brief, the selective MELK inhibitors exhib-

ited weak antiproliferative activities against both basal-like and luminal breast cancer cell lines in

vitro, casting doubt on whether MELK inhibition affects viability. However, as the non-selective

OTSSP167 and MRT199665 are also more potent inhibitors of MELK, these data alone were not suf-

ficient to allow us to deduce whether their stronger antiproliferative potency stems from on- or off-

target effects.

MELK�/� MDA-MB-468 cells exhibit normal growth and are not less
sensitive to MELK inhibitors
The difference in antiproliferative effect between OTSSP167 and HTH-01-091 suggested that MELK

inhibition might not be the primary contributor to the cellular activity of OTSSP167. To address this

question, we used CRISPR/Cas9 to genetically delete MELK in MDA-MB-468 cells. We designed four

independent guide sequences targeting exon 4 or 5 of MELK, which are situated in the kinase

domain. We selected sgMELK-3 for further assessment due to high efficiency of indels generated

and effective loss of MELK protein levels (Figure 3—figure supplement 1A,B). Notably, sgMELK-3

presents desirable target specificity, as there are no sequences within the human genome with 3 or

less mismatches based on ZiFit Targeter (Sander et al., 2010). We proceeded with single cell clon-

ing, and out of the 10 clones isolated, 6 clones were completely deficient of MELK protein, as indi-

cated by the use of a rabbit monoclonal antibody raised against an amino-terminal epitope of MELK

(EPR3981, Abcam or GeneTex) (Figure 3—figure supplement 1C). Genotyping analysis around the

cut site aided by TIDE (Brinkman et al., 2014) further confirmed frame shifts or larger deletions on

both alleles (Figure 3—figure supplement 2, Figure 3—source data 1).

We compared a WT clone (clone E9) and a MELK�/� clone (clone C7) with the parental cell line,

and observed no significant difference in growth rate or cell cycle distribution (Figure 3A,B,C). We

also compared the sensitivity of the WT and the MELK�/� cells to OTSSP167 and the selective

MELK inhibitors in 3-day proliferation assays (Figure 3D). If the antiproliferative activity of OTSSP167

was primarily due to MELK inhibition, then we would expect MELK�/� cells to exhibit reduced sen-

sitivity to OTSSP167 treatment. However, we did not observe differences in cell viability after treat-

ment with OTSSP167 or any of the more selective MELK inhibitors, indicating that the activity of

MELK inhibitors in MDA-MB-468 cells was driven by inhibition of targets other than MELK.

dTAG-mediated loss of MELK does not impair growth of MDA-MB-468
cells
As the process for deriving and isolating clonal lines of MELK�/� MDA-MB-468 cells requires an

extended period of time, we were concerned that these clonal lines would be able to compensate

for loss of MELK during this process. Thus, to understand the immediate effect of MELK loss, we

Table 4. 7-day antiproliferative activities of MELK inhibitors in a panel of breast cancer cell lines*.

7-day antiproliferative IC50 (mM)

Basal-like Luminal

Cell line MDA-MB-468 MDA-MB-468
(second source)

BT-549 HCC70 MCF7 T-47D

HTH-01-091 2.71 10.7 2.82 2.43 4.13 0.78

OTSSP167 0.012 0.033 0.009 0.021 0.027 0.009

MRT199665 0.16 0.91 0.31 0.075 0.11 0.62

NVS-MELK8a 2.96 8.4 4.98 4.17 2.81 4.90

*IC50 values were estimated based on ‘log(inhibitor) vs. normalized response – Variable slope’ using GraphPad Prism 7. Experiments were performed in

duplicates.

DOI: https://doi.org/10.7554/eLife.26693.010
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employed a novel chemical genetic system (the dTAG system) whereby tagged proteins are tar-

geted for degradation by the E3 ubiquitin ligase cereblon (CRL4CRBN) (Erb et al., 2017). In this sys-

tem, mutant FKBP12 (FKBP12F36V) serves as a degradation tag (dTAG) and is fused to a protein of

interest. The F36V mutation introduces a ‘hole’ in the FKBP12 binding site that accommodates a

‘bump’ on the FKBP12F36V-binding ligand, which does not effectively bind to wild-type FKBP12

(Clackson et al., 1998). We synthesized heterobifunctional molecules (dTAG molecules) by conjugat-

ing FKBP12F36V binders to thalidomide, which is a potent ligand for CRL4CRBN. These molecules

bring the FKBP12F36V-fusion protein and CRL4CRBN into close proximity, thus inducing rapid ubiquiti-

nation and subsequent proteasomal degradation of the tagged protein while sparing endogenous

FKBP12 (Erb et al., 2017; Winter et al., 2015).

To maintain continuous expression of MELK, we first expressed N-terminally tagged MELK

(FKBP12F36V-MELK) in MDA-MB-468 cells, and then deleted endogenous MELK using CRISPR/Cas9.

A single point mutation in the protospacer adjacent motif targeted by sgMELK-3 (termed sg3R) pre-

vented CRISPR editing of the transgene encoding FKBP12F36V-MELK(sg3R). We isolated 24 clones

with varying levels of FKBP12F36V-MELK(sg3R) expression and varying endogenous MELK status

Figure 3. WT and MELK�/� MDA-MB-468 cells have similar growth rates, cell cycle distribution, and sensitivity to MELK inhibitors. (A) Immunoblots for

MELK and GAPDH in WT (clone E9) and MELK�/� (clone C7) clones isolated from MDA-MB-468 cells transfected with sgMELK-3 and Cas9. See also

Figure 3—figure supplements 1 and 2, and Figure 3—source data 1 for the details of the generation of MELK�/� clones. (B) 5-day proliferation

curves comparing the growth rates of parental, WT, and MELK�/� MDA-MB-468 cells. Values represent two independent experimental mean ±SD. (C)

Cell cycle analysis comparing WT and MELK�/� MDA-MB-468 cells. Values represent triplicate mean ±SD. (D) 3-day proliferation assays comparing the

sensitivity of WT and MELK�/� MDA-MB-468 cells to OTSSP167, HTH-01-091 and NVS-MELK8a. Values represent duplicate mean ±SD. Error bars

shorter than the height of the symbol are not drawn.

DOI: https://doi.org/10.7554/eLife.26693.011

The following source data and figure supplements are available for figure 3:

Source data 1. Genotype analysis of single cell clones selected from MDA-MB-468 cells transfected with Cas9/sgMELK-3.

DOI: https://doi.org/10.7554/eLife.26693.014

Figure supplement 1. CRISPR/Cas9-mediated knockout of MELK in MDA-MB-468 cells.

DOI: https://doi.org/10.7554/eLife.26693.012

Figure supplement 2. Genotype analysis of cell clones selected from MDA-MB-468 cells transfected with Cas9/sgMELK-3.

DOI: https://doi.org/10.7554/eLife.26693.013
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(Figure 4—figure supplement 1). Two validated MELK�/� clones expressing high levels of

FKBP12F36V-MELK(sg3R) were chosen for further studies. Importantly, the exogenous MELK fusion

protein was still sensitive to MRT199665-induced degradation, and was stabilized and hyperphos-

phorylated during mitosis, suggesting that FKBP12F36V-MELK(sg3R) is similarly regulated as endoge-

nous MELK (Figure 4—figure supplement 2).

Four dTAG molecules (7, 13, 36 and 47) that vary in linker length and chemical structure were

tested for their efficiency at depleting FKBP12F36V-MELK(sg3R) (Figure 4A, Figure 4—figure sup-

plement 3). All four degraders efficiently depleted FKBP12F36V-MELK(sg3R) within 4 hours

(Figure 4B); in particular, dTAG-13, 36, and 47 demonstrated sustained degradation of FKBP12F36V-

MELK(sg3R) for up to 72 hours (Figure 4C). A multiplexed quantitative mass spectrometry-based

proteomics experiment demonstrated that only FKBP12F36V-MELK was significantly degraded, con-

firming the selectivity of the system (Figure 4D) (McAlister et al., 2012). In a 9-day proliferation

assay, neither of the FKBP12F36V-MELK(sg3R) MELK�/� clones exhibited growth impairment when

treated by dTAG-47 (Figure 4E), confirming that MDA-MB-468 cells are not sensitive to acute and

sustained loss of MELK in vitro.

Potential off-target activities of MELK-targeting shRNAs may explain
the previous discovery of MELK dependency in BBC
The lack of antiproliferative response to selective MELK inhibition, genetic deletion, and chemical-

induced degradation contradicted previous findings, where MELK-targeting short hairpins impaired

BBC proliferation (Touré et al., 2016; Wang et al., 2014). To reconcile this discrepancy, we

repeated the proliferation assay, using the same doxycycline-inducible shRNAs from previous

reports to knockdown MELK in MDA-MB-468 cells. Indeed, shMELK-1 and shMELK-2 efficiently

downregulated MELK mRNA and protein levels and impaired the growth of MDA-MB-468 cells

(Figure 5A,B and Figure 5—figure supplement 1A).

Since off-target activity in RNAi technology is a known issue that is difficult to predict based on

target sequences (Jackson and Linsley, 2010), we decided to test 3 additional MELK-targeting

shRNAs selected from the RNAi Consortium (TRC) shRNA library—named shMELK-3, 4 and 5. Two

days after induction, shMELK-5 resulted in similar levels of MELK knockdown compared with

shMELK-1 and 2, while shMELK-3 and 4 induced only about 50% MELK knockdown (Figure 5—fig-

ure supplement 1A,B). Similar to previous studies using the same short-hairpin sequence

(Touré et al., 2016), shMELK-5 induced cell growth defects, even though the effect was milder than

shMELK-1 and 2 (Figure 5B). Interestingly, for the less efficient hairpins shMELK-3 and 4, shMELK-4

also impaired the growth of MDA-MB-468 cells while shMELK-3 did not, further demonstrating that

different shRNAs can lead to discrepant phenotypic outcomes (Figure 5—figure supplement 1C).

We observed sustained knockdown of MELK by shMELK-3 and 5 after an 8-day treatment, confirm-

ing that the growing cells maintained MELK knockdown (Figure 5—figure supplement 1D).

To test out whether off-targets contribute to the antiproliferative effects of shMELK-1, 2, and 5,

we studied how these hairpins would affect the growth of MELK�/� MDA-MB-468 cells. Indeed, the

MELK-targeting hairpins caused almost identical proliferation phenotypes in a MELK�/� back-

ground (Figure 5C,D, and Figure 5—figure supplement 1E), suggesting that off-target effects may

contribute to the observed growth defects.

Doxycycline-inducible MELK knockdown mediated by CRISPR
interference does not cause proliferative defects in MDA-MB-468 cells
Even though we demonstrated that off-targets may contribute to the antiproliferative effect of the

MELK-targeting shRNAs, we were surprised that three independent hairpins all impeded the growth

of MDA-MB-468 cells. To improve our understanding of the phenotypic outcomes of MELK knock-

down, we decided to apply CRISPR interference, an orthogonal and potentially more specific

method than RNA interference to downregulate gene expression (Gilbert et al., 2014).

We first transduced MDA-MB-468 cells, and via flow cytometry-based cell sorting obtained cells

expressing KRAB-dCas9, a CRISPR-mediated transcriptional repressor (Gilbert et al., 2014). We

tested 8 guide sequences that target the region around the transcriptional start site of the MELK

gene, and confirmed that 7 out of 8 guide sequences efficiently suppressed MELK transcript levels in

MDA-MB-468-KRAB-dCas9 cells (Figure 5E and Figure 5—figure supplement 2A). To understand
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Figure 4. MELK�/� MDA-MB-468-FKBP12F36V-MELK(sg3R) cells grow normally in response to pharmacologically induced FKBP12F36V-MELK

degradation. (A) Chemical structure of heterobifunctional dTAG molecule dTAG-47. See also Figure 4—figure supplement 3 for the chemical

structures of dTAG-7, dTAG-13 and dTAG-36. (B) Immunoblots for MELK and GAPDH after treatment of dTAG-7, 13, 36, and 47 at indicated

concentrations in MELK�/� MDA-MB-468-FKBP12F36V-MELK(sg3R) cells for 4 hours. See Figure 4—figure supplement 1 for details of the generation

of MELK�/� MDA-MB-468-FKBP12F36V-MELK(sg3R) clones. (C) Same as in 4B, but with treatment at 500 nM and extended treatment times for 14, 24,

48, and 72 hours. (D) Changes in abundance of 7270 proteins (peptide count �2) comparing MELK�/� MDA-MB-468-FKBP12F36V-MELK cells treated

with dTAG-7 (250 nM) or DMSO for 1 hour, versus p-value (dTAG-7: triplicate, DMSO: duplicate, limma moderated t-test). See also Figure 4—source

datas 1 and 2 for the original and the processed data. (E) Crystal violet staining image showing parental MDA-MB-468 cells and MELK�/� MDA-MB-

468-FKBP12F36V-MELK(sg3R) cells after treatment with DMSO or 500 nM of dTAG-47 for 9 days. Immunoblots showing MELK and GAPDH from a

duplicate plate on Day 9 confirmed sustained depletion of FKBP12F36V-MELK(sg3R). These are representative data from one of two independent

experiments.

DOI: https://doi.org/10.7554/eLife.26693.015

The following source data and figure supplements are available for figure 4:

Source data 1. Raw integrated ion intensities from quantitative multiplexed proteomics.

DOI: https://doi.org/10.7554/eLife.26693.019

Source data 2. Processed Data and Statistical Analysis by limma (topTable).

DOI: https://doi.org/10.7554/eLife.26693.020

Figure supplement 1. Single clones selected from MDA-MB-468-FKBP12F36V-MELK(sg3R) cells subject to CRISPR/Cas9-mediated knockout of

endogenous MELK.

DOI: https://doi.org/10.7554/eLife.26693.016

Figure supplement 2. FKBP12F36V-MELK(sg3R) recapitulates two phenotypes of endogenous MELK to suggest preserved functions.

DOI: https://doi.org/10.7554/eLife.26693.017

Figure supplement 3. Chemical structures of dTAG molecules.

DOI: https://doi.org/10.7554/eLife.26693.018
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Figure 5. MELK-targeting shRNAs may induce antiproliferation of MDA-MB-468 cells through off-target activities while CRISPRi-mediated MELK

knockdown does not affect proliferation. (A) Immunoblots for MELK and GAPDH after 2-day treatment with or without doxycycline (100 ng/mL) in MDA-

MB-468 cells transduced with doxycycline-inducible shRNA constructs. NT-1 represents a non-targeting control. Hairpins shMELK-1, 2, and 5 target

three different regions within MELK’s coding region and 3’-UTR. See also Figure 5—figure supplement 1. (B) A crystal violet staining image of MDA-

MB-468 cells transduced with doxycycline-inducible shRNA constructs after treatment with or without doxycycline (100 ng/mL) for 9 days with an initial

seeding of 10,000 cells in a 12-well plate. (C) A crystal violet staining image of MELK�/� MDA-MB-468 cells (clone C7) transduced with doxycycline-

inducible shRNA constructs after treatment with or without doxycycline (100 ng/mL) for 9 days with an initial seeding of 10,000 cells in a 12-well plate.

See also Figure 5—figure supplement 1E. (D) A bar graph quantifying the intensity of crystal violet staining of cells treated as described in B and C.

Values from the doxycycline treated groups are normalized to the untreated. Values represent mean ±SD from two independent experiments (*p�0.05;

**p�0.01; ***p�0.001, two-tailed Student’s t-Test). (E) A scheme that depicts the guide sequences that target the transcription start site of MELK and

were tested in our study. See also Figure 5—figure supplement 2A. (F) An H1-based doxycycline-inducible sgRNA construct was modified from tet-

pLKO-puro, which constitutively coexpresses tetR (tet repressor protein). TRE, tet response element. (G) Immunoblots for MELK and GAPDH after 2-day

treatment with or without doxycycline (100 ng/mL) in MDA-MB-468-KRAB-dCas9 cells transduced with doxycycline-inducible sgRNA constructs. See also

Figure 5—figure supplement 2B. (H) A crystal violet staining image of MDA-MB-468-KRAB-dCas9 cells transduced with doxycycline-inducible sgRNA

constructs after treatment with or without doxycycline (100 ng/mL) for 9 days with an initial seeding of 10,000 cells in a 12-well plate. See also

Figure 5—figure supplement 2C. (I) A bar graph quantifying the intensity of crystal violet staining of cells treated as described in H. Values from the

doxycycline treated groups are normalized to the untreated. Values represent mean ±SD from two independent experiments (for n.s., p>0.05, two-

tailed Student’s t-Test).

DOI: https://doi.org/10.7554/eLife.26693.021

The following figure supplements are available for figure 5:

Figure supplement 1. Validating MELK-targeting short hairpins.

DOI: https://doi.org/10.7554/eLife.26693.022

Figure supplement 2. Validating MELK knockdown mediated by CRISPR interference.

DOI: https://doi.org/10.7554/eLife.26693.023
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the immediate response of MELK knockdown and to design experiments comparable to our

shRNAs, we cloned the 5 most efficient guide sequences into a modified doxycycline-inducible

shRNA vector (tet-pLKO-puro) (Wiederschain et al., 2009) where the region encoding for shRNA is

replaced with an AjuI cloning site followed by the sgRNA scaffold (Figure 5F). Doxycycline treat-

ment of MDA-MB-468 cells that stably express KRAB-dCas9 and the doxycycline-inducible sgRNA

constructs caused efficient MELK knockdown, which was comparable to the MELK-targeting shRNAs

(Figure 5G and Figure 5—figure supplement 2B). In a 9-day proliferation assay, we did not observe

a significant difference between doxycycline-treated versus non-treated groups for all five sgRNAs,

suggesting that MELK expression is not required for the fitness of MDA-MB-468 cells (Figure 5H,I,

and Figure 5—figure supplement 2C).

Discussion
The dependence on MELK for survival in basal-like breast cancers was previously demonstrated by

MELK knockdown using shRNA in both in vitro and in vivo models (Touré et al., 2016; Wang et al.,

2014). As there is still no tractable target identified in BBC, the finding encouraged a medicinal

chemistry campaign to validate the therapeutic potential of MELK inhibition. However, the highly

discrepant antiproliferative effects observed between the selective MELK inhibitor HTH-01-091 and

the clinical candidate OTSSP167 led us to reexamine whether MELK is necessary for the survival of

BBC. To answer this question, we applied and integrated multiple chemical and genetic tools,

including selective MELK inhibitors, CRISPR gene editing, a chemical-induced degradation strategy

(the dTAG system), RNA interference and CRISPR interference, to understand how a BBC cell line

responds to loss of MELK function. Collectively, our efforts led to the conclusion that inhibition or

depletion of MELK alone does not impair the proliferation of BBC cell lines in common culture

conditions.

While numerous methods are available for assessing kinase inhibitor selectivity, the potential for

additional unexpected off-targets can never be excluded. In addition to HTH-01-091, which exhibits

substantially improved kinome selectivity in comparison with OTSSP167, we included MRT199665,

NVS-MELK8a and MELK-T1 when we surveyed the proliferative response of a panel of breast cancer

cell lines to MELK inhibition. Testing multiple inhibitors derived from diverse chemical scaffolds

decreases the chances of chemically perturbing a common off-target, bolstering the robustness of

the conclusion drawn. When we observed that three selective MELK inhibitors all showed much

poorer antiproliferative effects than OTSSP167, which we recognized as multi-targeted by kinome

profiling, we suspected OTSSP167 achieved its effect as a result of polypharmacology. Until recently,

little had been done to validate whether the anticancer activity of OTSSP167 originated from MELK

inhibition. A study investigating the abrogation of mitotic checkpoint by OTSSP167 illustrated a spe-

cific example where inhibition of several mitotic kinases other than MELK contributed to the pheno-

type (Ji et al., 2016). In addition, a CRISPR/Cas9-focused study that reached similar conclusions to

our study, demonstrated that off-target mechanisms contribute to the anticancer effects of

OTSSP167 because WT and MELK�/� cancer cell lines were similarly sensitive to OTSSP167 treat-

ment (Lin et al., 2017). Similarly, we found that off-targets also contribute to the weak antiprolifera-

tive activities of HTH-01-091 and NVS-MELK8a, underscoring the importance of using genetic

methods to examine the outcomes of chemical perturbations. The lack of strong antiproliferative

activities of NVS-MELK8a in MDA-MB-468 cells contradicted a previous report (Touré et al., 2016),

which remains to be understood; cell seeding density and compound renewals are potential reasons

for the discrepant antiproliferative responses. In addition, we cannot rule out the possibility that

MELK inhibition contributes to the efficacy of OTSSP167. While equivalent levels of cell killing by

OTSSP167 in a MELK wild-type and a MELK-null background confirmed the presence of off-target

effects, an OTSSP167-resistant MELK mutant would be necessary to fully dissect the role of MELK

inhibition, which is the gold standard for validating on-target drug action (Kaelin, 2017). While

OTSSP167 may achieve therapeutic effects through unknown mechanisms, in which MELK may or

may not be involved, our data highly discourage using OTSSP167 as a probe to elucidate MELK-

dependent pharmacological effects.

Our ability to isolate MELK-deficient MDA-MB-468 clones edited by the CRISPR/Cas9 system also

suggested that MELK might not be necessary for in vitro proliferation. It is possible that alternate

pathways readily compensate for the loss of MELK, or that resistance emerged. We inferred that the
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former case is more likely based on the probability of observing 6 out of 10 isolated clones with

MELK deletion. If MELK is a survival dependency that requires resistance events to overcome, we

would expect a disproportionate excess of WT MELK clones after the single-cell cloning process.

However, to truly understand the transient and adaptive response to loss of MELK, we adopted a

novel chemical-induced protein degradation strategy known as the dTAG system, which allows rapid

control of MELK protein levels. By introducing exogenous FKBP12F36V-MELK(sg3R) into MDA-MB-

468 cells before knockout of endogenous MELK, we ensured that the cells never fully lost MELK

expression. After treating these cells with the dTAG molecules to induce acute and sustained degra-

dation of FKBP12F36V-MELK(sg3R), we observed normal growth, which argued against an initial loss

of fitness that is rescued over time. One important aspect of this strategy is to ensure that the

FKBP12F36V-fusion protein behaves similarly to the endogenous counterpart. Although we were not

able to directly test the kinase function of FKBP12F36V-MELK(sg3R) due to a lack of well-validated

and specific MELK substrates, we confirmed that FKBP12F36V-MELK(sg3R) was sensitive to

MRT199665-induced degradation and was stabilized and hyperphosphorylated during mitosis, two

reliable phenotypes that we and others have observed for endogenous MELK.

Using the pair of WT and MELK�/� MDA-MB-468 cells, we found that off-target mechanisms

may also contribute to the antiproliferative effects of shMELK-1, 2 and 5. Since the previous study

was able to rescue the antiproliferative activity observed for shMELK-2 using an shRNA-resistant

MELK (Wang et al., 2014), we postulated that the potential off-target of shMELK-2 might only mani-

fest its effect in the presence of MELK knockdown, a so-called ‘synthetic lethal’ interaction. Based

on the data, we encourage cautious evaluation of the phenotypes caused by RNAi-mediated MELK

knockdown (Jackson and Linsley, 2010), and further validation of the outcomes using independent

experimental approaches such as CRISPR interference. Nevertheless, it is still surprising that three

independent MELK-targeting hairpins all led to loss of fitness due to off-target effects. In the future,

it may be worthwhile to understand the mechanism by which these hairpins mediate growth defects,

and whether it occurred by chance or in a MELK-dependent manner.

We discovered that drug-induced degradation of MELK is general to the MELK inhibitors tested.

While the rate and extent of degradation largely correlated with biochemical potency for MELK inhi-

bition, we noticed that different chemical scaffolds displayed different propensities for inducing deg-

radation. Specifically, the pyrrolopyrimidine MRT199665 induced MELK degradation most efficiently.

We postulate that the induced conformation upon binding of MRT199665 is more poised for the

degradation response. The inhibitor-induced MELK degradation is unlikely cell-cycle dependent

because the cells were not synchronized and we observed unchanging levels of cyclin B1 when

MELK level significantly decreased (data not shown). The previous study proposed two possible

models for inhibitor-induced MELK degradation: inhibitor-induced modulation of the interaction

between MELK and the Hsp90-Cdc37 chaperone system, and inhibitor stabilizing an active kinase

conformation that is associated with a shorter protein half-life (Beke et al., 2015). These two models

are not mutually exclusive and may also relate to how the inhibitor-induced conformation influences

auto-phosphorylation as well as phosphorylation of MELK by other kinases. The status of MELK

phosphorylation has been proposed as a mechanism that regulates its stability during mitosis

(Badouel et al., 2010).

MELK likely has complex functions in cells including embryonic development, maintenance of pro-

genitor cell fate, cell cycle regulation, and potentially cancer development. The results of this study

suggest that any potential dependence on MELK in cancer is not easily modeled using common cell

culture conditions. Another important conclusion is the recognition that none of the tools in our

study are perfectly specific, including the selective inhibitors and CRISPR-based technologies. Com-

bined use of genetic, pharmacological and chemical genetic perturbations is required to reach con-

clusions regarding target dependence. For example, initial excitement generated by OTSSP167 and

the effects of short hairpins on the proliferation of BBC cells were not recapitulated using selective

MELK inhibitors and CRISPR-based technologies. By confirming that OTSSP167 and the MELK-tar-

geting hairpins present off-target effects that cause growth defects, we deduced that MELK inhibi-

tion or depletion alone is not sufficient to impede the growth of BBC cell lines, or at a minimum, of

MDA-MB-468 cells. Notably, a missense mutation (heterozygous G20V) in MELK in MDA-MB-468

line has been reported (Forbes et al., 2017), which may complicate data interpretation. Therefore,

further studies need to be performed in other cancer cell lines. With the current data, we cannot

rule out the possibility that MELK may play a crucial role for cancer maintenance in vivo, which would
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only manifest in more context-dependent assays. Using clonogenic assays, an approach to measure

the capability of single cells to grow into colonies, we recently demonstrate that both RNAi and

CRISPR/Cas9-mediated gene editing impair the clonogenic growth of cancer cells, but cause mini-

mal effects on regular cell growth (Wang et al., submitted to eLife). Our results also hinted at poten-

tial synthetic lethal relationships between MELK and other targets that are waiting to be explored.

We expect that the novel chemical and chemical-genetic tools that we have generated will be useful

in search of MELK-dependent biology.

Materials and methods

Tissue culture
MDA-MB-468 (RRID: CVCL_0419, ATCC) and MELK�/� MDA-MB-468 cells were authenticated

using small tandem repeat (STR) profiling (DFCI Molecular Diagnostics Laboratory, Boston). The sec-

ond source of MDA-MB-468 cells was a kind gift from Prof. Kun Ping Lu. All cell lines used in this

study were routinely examined to be free of mycoplasma using the MycoAlert mycoplasma detection

kit (Lonza, LT07-318). Cell lines HEK293T (RRID: CVCL_0063; ATCC) and MCF7 (RRID: CVCL_0031;

ATCC) cells were maintained in DMEM (4.5 g/L D-glucose, L-glutamine, 110 mg/mL sodium pyru-

vate; Thermo Fisher Scientific) supplemented with 10% FBS (Thermo Fisher Scientific) and 100 U/mL

penicillin-streptomycin (Thermo Fisher Scientific). Other cell lines including (RRID: CVCL_0419,

ATCC), BT-549 (RRID: CVCL_1092; ATCC), HCC70 (RRID: CVCL_1270; ATCC), T-47D (RRID: CVCL_

0553; ATCC) and ZR-75-1 (RRID: CVCL_0588; ATCC), were cultured in RPMI medium 1640 (L-gluta-

mine; Thermo Fisher Scientific) supplemented with 10% FBS (Thermo Fisher Scientific) and 100 U/mL

penicillin-streptomycin (Thermo Fisher Scientific). All cell lines were cultured at 37˚C in a humidified

chamber in the presence of 5% CO2.

Plasmids
Tet-pLKO-puro was a gift from Dmitri Wiederschain (Addgene plasmid # 21915). pHR-SFFV-KRAB-

dCas9-P2A-mCherry (Addgene plasmid # 60954) and pU6-sgRNA EF1Alpha-puro-T2A-BFP (Addg-

ene plasmid # 60955) were gifts from Jonathan Weissman. All oligonucleotides were ordered from

IDT (Coralville, Iowa). To construct a Cas9/sgRNA expression system for MELK deletion, we

annealed oligonucleotides targeting exon 4 or 5 of the MELK gene and directly ligated them with a

linearized CRISPR nuclease vector (OFP reporter) from the GeneArt CRISPR nuclease vector kit

(A21174, Life Technologies, Carlsbad, CA). For the expression of FKBP12F36V-MELK(sg3R), we used

a modified pLEX_305 (Addgene #41390) construct that contains a FKBP12F36V-2xHA tag at the

N-terminus (Erb et al., 2017). Human MELK or MELK(sg3R) in a pDONR223 vector was cloned into

the modified pLEX_305 construct using Gateway cloning (Life Technologies). The mutation in MELK

(sg3R) that confers resistance to sgMELK-3 was generated via Q5 site-directed mutagenesis kit (New

England Biolabs). To generate doxycycline-inducible shRNA vectors targeting MELK, oligonucleoti-

des selected from the RNAi Consortium shRNA Library or previously reported were annealed, and

directly ligated with gel-purified tet-pLKO-puro backbone digested with AgeI and EcoRI. The H1

based doxycycline-inducible sgRNA vector (tet-pLKO-sgRNA-puro) that coexpresses the Tet repres-

sor (TetR) from the hPGK promoter was modified from tet-pLKO-puro (Addgene plasmid # 21915)

by replacing the sequences encoding for shRNA with sgRNA. Briefly, a pair of overlapping primers

that encodes for an AjuI cloning site and the same sgRNA constant region as in pU6-sgRNA EF1Al-

pha-puro-T2A-BFP (Addgene plasmid # 60955) was amplified by PCR and digested with AgeI and

EcoRI, followed by ligation with tet-pLKO-puro digested with AgeI and EcoRI. To construct doxycy-

cline-inducible sgRNA plasmids that target MELK, oligonucleotides targeting the transcriptional start

site of MELK were annealed and directly ligated with gel-purified tet-pLKO-sgRNA-puro backbone

digested with AjuI. To complement the cut sites generated by AjuI, the oligonucleotides should con-

tain overhangs as shown: 5’-CNNNN. . ...NNNNGTTTA-3’ (forward) and 5’-NNNN. . ..

NNNNGGTGTC-3’ (reverse). The sequence NNNN. . ..NNNN represents the guide sequence and

one base ‘G’ needs to be added at the 5’ end for efficient initiation of Pol III-mediated transcription

if it does not already exist. All inserts were verified by Sanger sequencing (Genewiz), and the

sequences of all oligonucleotides relevant for cloning are listed in Supplementary file 2. Plasmids

were amplified in NEB 10-beta or NEB Stable competent E. coli.
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Lentiviral transduction
Lentiviruses were generated by transfecting 1.2 million HEK293T cells seeded one day prior in a T25

flask, with 2 mg lentiviral transfer plasmid, 0.5 mg packaging plasmid (pMD2.G), and 1.5 mg packag-

ing plasmid (pCMV-dR8.91 or psPAX2). The plasmids were mixed in 400 ml of serum-free DMEM or

Opti-MEM, and added with 12 mL of polyethyleneimine (PEI). After 15 minutes of incubation at room

temperature, the DNA-PEI solution was added drop-wise to the HEK293T cells. Viral supernatant

was collected 48 hours and 72 hours after transfection, filtered through 0.45 mm membrane, and

added to target cells in the presence of 8 mg/ml polybrene (Millipore, Billerica, MA). Cells were

selected with antibiotics starting 72 hours after initial infection. MDA-MB-468 cells were selected

with 0.5 mg/mL of puromycin, and maintained under the same concentration for culture.

Cell line construction
MDA-MB-468 cells that express KRAB-dCas9-P2A-mCherry were generated by lentiviral transduction

and enriched by FACS sorting as a polyclonal population. MDA-MB-468 cells that express N-termi-

nally tagged FKBP12F36V-MELK(sg3R), doxycycline-inducible shRNA, or MDA-MB-468-KRAB-dCas9

cells that express constitutive or doxycycline-inducible sgRNA were generated by lentiviral transduc-

tion followed by puromycin selection (0.5 mg/mL). For generating MELK knockout cell clones, we

transfected MDA-MB-468 or MDA-MB-468-FKBP12F36V-MELK(sg3R) cells with a Cas9/sgMELK-3

plasmid using the Neon transfection system (1150V, 30 ms, 2 pulses) (Thermo Fisher Scientific). Cells

expressing Cas9/sgMELK-3 were isolated by FACS for OFP +cells, and seeded sparsely in 10 cm

plates. Single cell clones were selected and transferred to 96-well plates. Cell clones that survived

the transfer were further expanded for genotyping and immunoblotting analysis to confirm the sta-

tus of MELK.

Genotyping
Genomic DNA was extracted from the cells transfected with Cas9/sgMELK-3 or from the expanded

clonal cell lines using PureLink Genomic DNA Kits (Thermo Fisher Scientific). The genomic loci of

interest were amplified by PCR using the primers listed in Supplementary file 2. Amplified PCR

products were purified using QIAquick PCR Purification Kit, and sequenced using the same forward

primer that was used for PCR amplification (Genewiz). The genetic status was determined with help

of TIDE analysis (Brinkman et al., 2014) and direct interpretation of the ab1 files.

Antibodies
Primary antibodies used in this study include anti-MELK (EPR3981, Abcam or GeneTex), anti-a-tubu-

lin (RRID:AB_1904178; 3873S, Cell Signaling Technology), anti-GAPDH (RRID:AB_561053; 2118S,

Cell Signaling Technology), and anti-Vinculin (RRID:AB_10604160; SAB4200080, Sigma). Secondary

antibodies used were IRDye680-conjugated goat anti-rabbit IgG (RRID:AB_10956166; Cat# 926–

68071, LI-COR Biosciences) and IRDye800-conjugated goat anti-mouse IgG (RRID:AB_621842; Cat#

926–32210, LI-COR Biosciences).

Immunoblotting
Cells were lysed with RIPA buffer (50 mM Tris-HCl, 150 mM NaCl, 1% NP-40, 0.5% sodium deoxy-

cholate, and 0.1% sodium dodecyl sulfate, pH 7.4) supplemented with EDTA-free protease inhibitor

cocktails (cOmplete, Roche) and phosphatase inhibitor cocktails (PhosSTOP, Roche) at 4˚C for at

least 30 min. Clear lysates were collected after maximal speed centrifugation at 4˚C for 10 minutes,

and were analyzed for protein concentration using Pierce BCA protein assay (Thermo Fisher Scien-

tific). Lysate concentrations are normalized, mixed with 4X NuPAGE LDS sample buffer (10% 2-mer-

captoethanol added freshly; Thermo Fisher Scientific), and denatured at 95˚C for 10 min. Equal

amount of protein (20–40 mg) was resolved by Bolt 4–12% Bis-Tris Plus gels, and then transferred

onto a nitrocellulose membrane. The membrane was blocked with 5% non-fat milk in TBS-T (TBS

with 0.1% Tween-20), followed by incubation with primary antibodies at 4˚C overnight. Next day,

after washing with TBS-T, the membrane was incubated with fluorophore-conjugated secondary anti-

bodies for 1 hour at room temperature. The membrane was then washed and scanned with an Odys-

sey Infrared scanner (Li-Cor Biosciences, Lincoln, NE). Note that in commercial gradient SDS-PAGE

gels (majority of current study), MELK consistently appears as one band. While tested in 8%
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homemade SDS polyacrylamide gel (EC-890, 30% ProtoGel, National Diagnostics), MELK presents

as two sharp bands that are close to each other (e.g. Figure 2A).

Cellular kinase engagement assay (Kinativ)
MDA-MB-468 cells on 10 cm plates were treated with HTH-01-091 at indicated concentrations and

MG132 (10 mM) for an hour. After washing, each plate was lysed with 500 mL of Pierce IP lysis buffer

supplemented with EDTA-free protease inhibitor cocktails (cOmplete, Roche) and phosphatase

inhibitor cocktails (PhosSTOP, Roche). For each sample of 500 mL cleared lysate, 10 mL of 1 M MgCl2
was added. Reconstitute ATP-desthibiotin probe with water into 0.25 mM and add 10 mL to each

sample. After 10 min, quench the labeling reaction by adding 500 mL of 8 M Urea/IP lysis buffer. To

pulldown the labeled proteins, 50 mL of Pierce streptavidin agarose beads were used for each sam-

ple. The beads were boiled at 95˚C for 10 min and analyzed by immunoblotting.

Cell proliferation assay
For monitoring the growth rates of MDA-MB-468 cells (parental, a WT clone and a MELK�/� clone),

2000 cells/well were seeded in 96-well plates on Day 0. On Day 1, 3 and 5, the relative number of

cells was assessed using CellTiter-Glo (Promega cat# G7571) as described in product manual by

luminescence measurements on an Envision plate reader (PerkinElmer). Reagents were warmed up

to room temperature and the incubation time was fixed to minimize variations from day to day. For

testing the sensitivity of breast cancer cells to MELK inhibitors at different doses, cells were plated in

96-well plates at 2000 (3-day growth) or 1000 (7-day growth) cells/well in fresh media and treated

with OTSSP167, MRT199665, HTH-01-091, MELK-T1, NVS-MELK8a or DMSO at the indicated con-

centrations the next day. Antiproliferative effects of compounds were assessed using CellTiter-Glo

(Promega cat# G7571). IC50 values were determined using GraphPad Prism 6 nonlinear regression

curve fit. For assessing the effects of FKBP12F36V-MELK(sg3R) degradation or MELK knockdown by

doxycycline-inducible shRNA or sgRNA on proliferation, 10,000 cells/well were seeded in 6- or 12-

well plates. On the next day, we added dTAG-47 (500 nM) or doxycycline (100 ng/mL) to the treated

wells, which are refreshed every 3 or 2 days, respectively. After 9 days, cells were fixed with formal-

dehyde and stained with crystal violet (0.05% wt/vol). The plates were imaged using the Gel Doc

XR + Documentation System (Biorad) and quantified using ColonyArea, an ImageJ plugin that quan-

tifies cell staining areas and intensities (Guzmán et al., 2014).

Inhibitor-induced MELK degradation
MDA-MB-468 cells (0.25 � 106 cells/well) were seeded in 12-well plates the day before experiment.

After treatment with MELK inhibitors, cells were harvested and analyzed by immunoblotting. For the

rescue experiments, cells were pretreated with carfilzomib (0.4 mM) or MLN4924 (1 mM) for 4 hours

before treatment with MELK inhibitors.

Cell cycle analysis and mitotic arrest
For cell cycle analysis, cells were harvested, washed once in ice-cold phosphate buffered saline

(PBS), and fixed overnight at –20˚C with 80% ethanol in PBS. Cells were washed three times with

PBS, and suspended in PBS containing 0.1% Triton X-100, 25 mg/mL propidium iodide (PI, Molecular

Probes), and 0.2 mg/mL RNase A (Sigma). Samples were stained at 4˚C overnight and stored at the

same temperature until analysis by LSR Fortessa (BD Biosciences) flow cytometer. Results were ana-

lyzed using FlowJo (Treestar).

To arrest MDA-MB-468 cells in mitosis, cells underwent a single thymidine block (2 mM thymi-

dine, 16–24 hours), a 3-hour release, followed by treatment with 10 mM S-trityl-L-cysteine for 10

hours. Roughly 50% of MDA-MB-468 cells would float and arrest in mitosis using this method.

RT-qPCR analysis
Total RNA was extracted from cultured cells with RNeasy Plus Mini kit (Qiagen). 1 mg of the total

RNA was reversely transcribed using iScript Reverse Transcription Supermix (Bio-Rad). cDNA were

analyzed quantitatively using Power SYBR Green PCR Master Mix (Applied Biosystems) on an

ABI7300 Real-time PCR system. Primers used were listed in Supplementary file 2. Cycling condi-

tions were 95˚C for 15 minutes, followed by 40 cycles of 15 seconds at 94˚C, 30 seconds at 55˚C
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and 30 seconds at 72˚C. Ct values were generated using the default analysis settings. DCt was

defined as Ct gene of interest � Ct actin. DDCT was defined as DCt treated sample � DCt control sample. Rel-

ative quantification was calculated as 2�DDCT.

Synthesis of HTH-01-091

Chemical structure 1. Ethyl 6-chloro-4-((trans-4-((dimethylamino)methyl)cyclohexyl)amino)quinoline-3-carboxylate.

DOI: https://doi.org/10.7554/eLife.26693.024

Ethyl 6-chloro-4-((trans-4-((dimethylamino)methyl)cyclohexyl)amino)
quinoline-3-carboxylate
In a stirring 1,4-dioxane solution (8 ml) of ethyl 4,6-dichloroquinoline-3-carboxylate (1 equiv., 0.716

mmol), trans-4-((dimethylamino)methyl)cyclohexan-1-amine diacetic acid (1 equiv., 0.716 mmol) and

N,N-diisopropylethylamine (10 equiv., 7.16 mmol) were added and allowed to dissolve. The resulting

solution was heated up to 90˚C, and stirred for 12 hours before cooling to room temperature. The

solvent was removed under reduced pressure, and the resultant crude was purified by Flash Column

Chromatography on silica gel with 0–10% CH2Cl2/methanol (1.75N ammonia) gradient to give the

desired product.

MS(ESI) calculated for C21H29ClN3O2 [M + H]+, 390; found 390.

Chemical structure 2. Preparation of (6-chloro-4-((trans-4-((dimethylamino)methyl)cyclohexyl)amino)quinolin-3-yl)

methanol.

DOI: https://doi.org/10.7554/eLife.26693.025

Preparation of (6-chloro-4-((trans-4-((dimethylamino)methyl)cyclohexyl)
amino)quinolin-3-yl)methanol
To a THF (9 mL) solution of ethyl 6-chloro-4-((trans-4-((dimethylamino)methyl)cyclohexyl)amino)quin-

oline-3-carboxylate (1 equiv., 0.308 mmol) purged with argon and sitting in an ice bath, lithium alu-

minium hydride (70 mg, 6 equiv., 1.85 mmol) was slowly added in three portions. The reaction

mixture was allowed to warm up to room temperature and stirred overnight. The reaction was

quenched by an addition of 70 mL of water, followed by 70 mL of 15% NaOH(aq) and 210 mL of

water. Filter the crude through Celite. Purification was performed by Flash Column Chromatography

on silica gel with 0–20% CH2Cl2/methanol (1.75N ammonia) gradient to give the desired compound.

MS(ESI) calculated for C19H27ClN3O [M + H]+, 348; found 348.
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Chemical structure 3. 6-chloro-3-(((2,4-dimethoxybenzyl)amino)methyl)-N-(trans-4-((dimethylamino)methyl)

cyclohexyl)quinolin-4-amine.

DOI: https://doi.org/10.7554/eLife.26693.026

6-chloro-3-(((2,4-dimethoxybenzyl)amino)methyl)-N-(trans-4-((dimethylamino)
methyl)cyclohexyl)quinolin-4-amine
To a dichloromethane (2.5 mL) solution of (6-chloro-4-((trans-4-((dimethylamino)methyl)cyclohexyl)

amino)quinolin-3-yl)methanol (89 mg, 1 equiv., 0.256 mmol) was added manganese oxide (445 mg, 5

mass equiv.) and stirred for 3 hours at room temperature. The reaction mixture was filtered and con-

centrated to afford the crude product, 6-chloro-4-((trans-4-((dimethylamino)methyl)cyclohexyl)amino)

quinoline-3-carbaldehyde, which was used in the next step without further purification.

To a tetrahydrofuran (1 mL) solution containing 6-chloro-4-((trans-4-((dimethylamino)methyl)cyclo-

hexyl)amino)quinoline-3-carbaldehyde (1 equiv., 0.05 mmol), (2,4-dimethoxyphenyl)methanamine

(2.0 equiv., 0.10 mmol) and one drop of acetic acid was added sodium triacetoxyborohydride (5.0

equiv., 0.25 mmol). Stir at room temperature overnight. The reaction was worked up in water (10

mL) and dichloromethane (15 mL � 3). The organic layers were collected and washed with brine

solution (10 mL). Purification was performed by Flash Column Chromatography on silica gel with 0–

10% CH2Cl2/methanol (1.75N ammonia) gradient to afford the desired compound.

MS(ESI) calculated for C28H38ClN4O2 [M + H]+, 497; found 497.

Chemical structure 4. Preparation of 9-chloro-3-(2,4-dimethoxybenzyl)�1-(trans-4-((dimethylamino)methyl)

cyclohexyl)�3,4-dihydropyrimido[5,4 c]quinolin-2(1H)-one.

DOI: https://doi.org/10.7554/eLife.26693.027

Preparation of 9-chloro-3-(2,4-dimethoxybenzyl)�1-(trans-4-((dimethylamino)
methyl)cyclohexyl)�3,4-dihydropyrimido[5,4 c]quinolin-2(1H)-one
To a dichloromethane solution containing 6-chloro-3-(((2,4-dimethoxybenzyl)amino)methyl)-N-(trans-

4-((dimethylamino)methyl)cyclohexyl)quinolin-4-amine (1.0 equiv., 0.037 mmol) and diisopropylethyl-

amine (3.0 equiv., 0.111 mmol) in ice bath was added triphosgene (1.0 equiv., 0.037 mmol). Stir for 1

hour. Remove the solvent under reduced pressure. Purification was performed by Flash Column

Chromatography on silica gel with 0–10% CH2Cl2/methanol (1.75N ammonia) gradient to afford the

desired compound.

MS(ESI) calculated for C29H36ClN4O3 [M + H]+, 523; found 523.
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Chemical structure 5. Preparation of 9-(3,5-dichloro-4-hydroxyphenyl)�1-(trans-4-((dimethylamino)methyl)

cyclohexyl)�3,4-dihydropyrimido[5,4 c]quinolin-2(1H)-one (HTH-01-091).

DOI: https://doi.org/10.7554/eLife.26693.028

Preparation of 9-(3,5-dichloro-4-hydroxyphenyl)-1-(trans-4-((dimethylamino)
methyl)cyclohexyl)-3,4-dihydropyrimido[5,4 c]quinolin-2(1H)-one (HTH-01-
091)
In a 1,4-dioxane/sat. Na2CO3(aq)(3:1) solution (0.8 mL) containing 9-chloro-3-(2,4-

dimethoxybenzyl)�1-(trans-4-((dimethylamino)methyl)cyclohexyl)�3,4-dihydropyrimido[5,4 c]quino-

lin-2(1H)-one (1.0 equiv., 0.015 mmol) was added (3,5-dichloro-4-hydroxyphenyl)boronic acid (1.5

equiv., 0.023 mmol) and 2-di-tert-butylphosphino-2’,4’,6’-triisopropylbiphenyl (10% equiv., 0.0015

mmol). The reaction was purged thoroughly with argon, to which 10% equivalent of bis(tripheylphos-

phine)palladium(II) dichloride (0.0015 mmol) was added. The reaction was heated to 85˚C and con-

tinue stirring for 2 hours. The reaction was worked up in water (10 mL) and CHCl3:iPrOH(4:1) (15

mL �3). The organic layers were collected and washed with brine solution (10 mL). The solvent was

removed under reduced pressure to afford the crude product 9-(3,5-dichloro-4-hydroxyphenyl)�3-

(2,4-dimethoxybenzyl)�1-(trans-4-((dimethylamino)methyl)cyclohexyl)�3,4-dihydropyrimido[5,4 c]qui-

nolin-2(1H)-one, which was used in the next step without further purification.

MS(ESI) calculated for C35H39Cl2N4O4 [M + H]+, 649; found 649.

9-(3,5-Dichloro-4-hydroxyphenyl)�3-(2,4-dimethoxybenzyl)�1-(trans-4-((dimethylamino)methyl)

cyclohexyl)�3,4-dihydropyrimido[5,4 c]quinolin-2(1H)-one (1.0 equiv., 0.015 mmol) was stirred in a

trifluoroacetic acid/dichloromethane (1:1, 1 mL) solution overnight. The solvent was removed under

reduced pressure, and the crude was purified by reverse-phase prep-HPLC (C18) using water (0.05%

trifluoroacetic acid)/methanol (0.05% trifluoroacetic acid) gradient to afford the compound HTH-01-

091 as a trifluoroacetic salt.
1H NMR (400MHz, DMSO) d 10.63–10.49 (br, 1H), 9.14–9.04 (br, 1H), 8.78 (s, 1H), 8.19 (dd,

J = 8.6, 1.8 Hz, 1H), 8.10 (d, J = 8.6 Hz, 1H), 8.09 (d, J = 1.8 Hz, 1H), 7.84 (s, 2H), 7.63 (s, 1H), 4.40

(s, 2H), 3.85 (m, 1H), 2.89 (t, J = 6.3 Hz, 2H), 2.77 (s, 3H), 2.76 (s, 3H), 2.61 (m, 2H), 2.18 (m, 2H),

1.87 (m, 2H), 1.80 (m, 1H), 1.07 (m, 2H).

MS(ESI) calculated for C26H29Cl2N4O2 [M + H]+, 499; found 499.

Synthesis of dTAG-36

Chemical structure 6. tert-butyl (8-((2-(2,6-dioxopiperidin-3-yl)�1,3-dioxoisoindolin-4-yl)amino)octyl)carbamate.

DOI: https://doi.org/10.7554/eLife.26693.029
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tert-butyl (8-((2-(2,6-dioxopiperidin-3-yl)�1,3-dioxoisoindolin-4-yl)amino)
octyl)carbamate
2-(2,6-dioxopiperidin-3-yl)�4-fluoroisoindoline-1,3-dione (481.6 mg, 1.74 mmol, 1 eq) and tert-butyl

(8-aminooctyl)carbamate (467.7 mg, 1.91 mmol, 1.1 eq) were dissolved in NMP (8.7 mL, 0.2M).

DIPEA (606 mL, 3.48 mmol, 2 eq) was added and the mixture was heated to 90˚C. After 15 hours,

the mixture was diluted with ethyl acetate and washed with 10% citric acid (aq), saturated sodium

bicarbonate, water and three times with brine. The organic layer was dried over sodium sulfate, fil-

tered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 12

g column, 0–5% MeOH/DCM, 25 min gradient) gave the desired product as a yellow oil (0.55 g,

1.099 mmol, 63%).
1H NMR (500 MHz, chloroform-d) d 8.00 (s, 1H), 7.53–7.46 (m, 1H), 7.09 (d, J = 7.1 Hz, 1H), 6.88

(d, J = 8.5 Hz, 1H), 6.23 (s, 1H), 4.92 (dd, J = 12.1, 5.2 Hz, 1H), 4.51 (s, 1H), 3.26 (q, J = 6.6 Hz, 2H),

3.11 (d, J = 5.9 Hz, 2H), 2.90 (d, J = 15.8 Hz, 1H), 2.83–2.72 (m, 2H), 2.15–2.11 (m, 1H), 1.65 (q,

J = 7.1 Hz, 2H), 1.38 (d, J = 59.1 Hz, 19H).

LCMS 501.42 (M + H).

Chemical structure 7. 4-((8-aminooctyl)amino)�2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione.

DOI: https://doi.org/10.7554/eLife.26693.030

4-((8-aminooctyl)amino)�2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione
tert-butyl (8-((2-(2,6-dioxopiperidin-3-yl)�1,3-dioxoisoindolin-4-yl)amino)octyl)carbamate (0.55 g,

1.099 mmol, 1 eq) was dissolved in TFA (11 mL) and heated to 50˚C. After 40 min, the mixture was

cooled to room temperature, diluted with MeOH/DCM and concentrated under reduced pressure.

The crude material was triturated with diethyl ether and dried under vacuum to give a cream colored

solid (522.97 mg, 1.016 mmol, 93%).
1H NMR (500 MHz, Methanol-d4) d 7.59–7.51 (m, 1H), 7.04 (dd, J = 7.9, 1.7 Hz, 2H), 5.06 (dd,

J = 12.4, 5.5 Hz, 1H), 3.34 (d, J = 7.0 Hz, 2H), 2.95–2.81 (m, 3H), 2.79–2.66 (m, 2H), 2.15–2.08 (m,

1H), 1.67 (tt, J = 12.2, 7.2 Hz, 4H), 1.43 (d, J = 22.2 Hz, 8H).

LCMS 401.39 (M + H)

Chemical structure 8. (2S)-(1R)�3-(3,4-dimethoxyphenyl)�1-(2-(2-((8-((2-(2,6-dioxopiperidin-3-yl)�1,3-

dioxoisoindolin-4-yl)amino)octyl)amino)�2-oxoethoxy)phenyl)propyl 1-((S)�2-(3,4,5-trimethoxyphenyl)butanoyl)

piperidine-2-carboxylate (dTAG-36).

DOI: https://doi.org/10.7554/eLife.26693.031
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(2S)-(1R)�3-(3,4-dimethoxyphenyl)�1-(2-(2-((8-((2-(2,6-dioxopiperidin-3-yl)�
1,3-dioxoisoindolin-4-yl)amino)octyl)amino)�2-oxoethoxy)phenyl)propyl 1-
((S)�2-(3,4,5-trimethoxyphenyl)butanoyl)piperidine-2-carboxylate (dTAG-36)
4-((8-aminooctyl)amino)�2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione trifluoroacetate salt (10.3

mg, 0.020 mmol, 1 eq) was added to 2-(2-((R)�3-(3,4-dimethoxyphenyl)�1-(((S)�1-((S)�2-(3,4,5-tri-

methoxyphenyl)butanoyl)piperidine-2-carbonyl)oxy)propyl)phenoxy)acetic acid (13.9 mg, 0.020

mmol, 1 eq) as a 0.1 M solution in DMF (200 microliters) at room temperature. DIPEA (10.5 microli-

ters, 0.060 mmol, 3 eq) and HATU (7.6 mg, 0.020 mmol, 1 eq) were then added. After 30 hours, the

mixture was diluted with EtOAc, and washed with 10% citric acid (aq), brine, saturated sodium bicar-

bonate, water and brine. The organic layer was dried over sodium sulfate, filtered and condensed.

Purification by column chromatography (ISCO, 4 g silica column, 0–10% MeOH/DCM, 25 min gradi-

ent) gave the desired product as a yellow solid (16.5 mg, 0.0153 mmol, 77%).
1H NMR (500 MHz, Methanol-d4) d 7.54 (dd, J = 8.5, 7.2 Hz, 1H), 7.23 (td, J = 8.1, 1.6 Hz, 1H),

7.06–6.99 (m, 2H), 6.88 (q, J = 7.9, 7.3 Hz, 2H), 6.85–6.79 (m, 1H), 6.79–6.75 (m, 1H), 6.75–6.71 (m,

1H), 6.66–6.59 (m, 3H), 6.12 (dd, J = 8.1, 6.0 Hz, 1H), 5.41 (d, J = 4.3 Hz, 1H), 5.05 (dd, J = 12.6, 5.5

Hz, 1H), 4.60–4.39 (m, 3H), 4.11 (d, J = 13.4 Hz, 1H), 3.89–3.83 (m, 1H), 3.82–3.63 (m, 17H), 3.28 (d,

J = 6.9 Hz, 2H), 3.15 (tq, J = 13.2, 6.7 Hz, 2H), 2.89–2.82 (m, 1H), 2.72 (ddd, J = 14.4, 10.1, 3.7 Hz,

2H), 2.65–2.56 (m, 1H), 2.56–2.42 (m, 2H), 2.23 (t, J = 12.1 Hz, 1H), 2.13–2.06 (m, 1H), 2.03 (ddd,

J = 13.7, 9.9, 5.0 Hz, 2H), 1.93 (tt, J = 13.8, 6.4 Hz, 1H), 1.77–1.33 (m, 12H), 1.24–1.16 (m, 4H), 0.87

(t, J = 7.4 Hz, 3H).
13C NMR (126 MHz, MeOD) d 174.76, 174.65, 172.52, 171.60, 170.84, 170.48, 169.30, 155.39,

154.62, 150.37, 148.83, 148.29, 138.04, 137.25, 136.89, 134.92, 133.92, 130.53, 129.87, 128.39,

123.14, 121.80, 117.97, 113.57, 113.05, 112.72, 111.73, 110.98, 106.66, 106.57, 105.96, 70.69,

68.05, 61.06, 56.58, 56.51, 56.45, 53.41, 51.00, 50.20, 45.01, 43.34, 40.07, 37.45, 32.22, 32.18,

30.25, 30.16, 29.33, 27.87, 27.75, 27.57, 26.39, 23.82, 21.96, 12.58.

LCMS: 1077.32 (M + H)

Synthesis of dTAG-47

Chemical structure 9. tert-butyl (8-((2-(2,6-dioxopiperidin-3-yl)�1,3-dioxoisoindolin-5-yl)amino)octyl)carbamate.

DOI: https://doi.org/10.7554/eLife.26693.032

tert-butyl (8-((2-(2,6-dioxopiperidin-3-yl)�1,3-dioxoisoindolin-5-yl)amino)
octyl)carbamate
2-(2,6-dioxopiperidin-3-yl)�5-fluoroisoindoline-1,3-dione (294 mg, 1.06 mmol, 1 eq) and tert-butyl

(8-aminooctyl)carbamate (286 mg, 1.17 mmol, 1.1 eq) were dissolved in NMP (5.3 mL, 0.2M). DIPEA

(369 mL, 2.12 mmol, 2 eq) was added and the mixture was heated to 90˚C. After 19 hours, the mix-

ture was diluted with ethyl acetate and washed with water and three times with brine. The organic

layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification

by column chromatography (ISCO, 12 g column, 0–10% MeOH/DCM, 30 min gradient) gave the

desired product as a brown solid (0.28 g, 0.668 mmol, 63%).
1H NMR (500 MHz, Chloroform-d) d 8.12 (s, 1H), 7.62 (d, J = 8.3 Hz, 1H), 7.02 (s, 1H), 6.81 (d,

J = 7.2 Hz, 1H), 4.93 (dd, J = 12.3, 5.3 Hz, 1H), 4.51 (s, 1H), 3.21 (t, J = 7.2 Hz, 2H), 3.09 (d, J = 6.4

Hz, 2H), 2.90 (dd, J = 18.3, 15.3 Hz, 1H), 2.82–2.68 (m, 2H), 2.16–2.08 (m, 1H), 1.66 (p, J = 7.2 Hz,

2H), 1.37 (d, J = 62.3 Hz, 20H).

LCMS 501.41 (M + H)
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Chemical structure 10. 5-((8-aminooctyl)amino)�2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione trifluoroacetate.

DOI: https://doi.org/10.7554/eLife.26693.033

5-((8-aminooctyl)amino)�2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione
trifluoroacetate
tert-butyl (8-((2-(2,6-dioxopiperidin-3-yl)�1,3-dioxoisoindolin-5-yl)amino)octyl)carbamate (334.5 g,

0.668 mmol, 1 eq) was dissolved in TFA (6.7 mL) and heated to 50˚C. After 1 hour, the mixture was

cooled to room temperature, diluted with DCM and concentrated under reduced pressure. The

crude material was triturated with diethyl ether and dried under vacuum to give a dark yellow foam

(253.1 mg, 0.492 mmol, 74%).
1H NMR (500 MHz, Methanol-d4) d 7.56 (d, J = 8.4 Hz, 1H), 6.97 (d, J = 2.1 Hz, 1H), 6.83 (dd,

J = 8.4, 2.2 Hz, 1H), 5.04 (dd, J = 12.6, 5.5 Hz, 1H), 3.22 (t, J = 7.1 Hz, 2H), 2.94–2.88 (m, 2H), 2.85–

2.68 (m, 3H), 2.09 (ddd, J = 10.4, 5.4, 3.0 Hz, 1H), 1.70–1.61 (m, 4H), 1.43 (d, J = 19.0 Hz, 8H).

LCMS 401.36 (M + H)

Chemical structure 11. (2S)-(1R)�3-(3,4-dimethoxyphenyl)�1-(2-(2-((8-((2-(2,6-dioxopiperidin-3-yl)�1,3-

dioxoisoindolin-5-yl)amino)octyl)amino)�2-oxoethoxy)phenyl)propyl 1-((S)�2-(3,4,5-trimethoxyphenyl)butanoyl)

piperidine-2-carboxylate (dTAG-47).

DOI: https://doi.org/10.7554/eLife.26693.034

(2S)-(1R)�3-(3,4-dimethoxyphenyl)�1-(2-(2-((8-((2-(2,6-dioxopiperidin-3-yl)�
1,3-dioxoisoindolin-5-yl)amino)octyl)amino)�2-oxoethoxy)phenyl)propyl 1-
((S)�2-(3,4,5-trimethoxyphenyl)butanoyl)piperidine-2-carboxylate (dTAG-47)
5-((8-aminooctyl)amino)�2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione trifluoroacetate salt (10.3

mg, 0.020 mmol, 1 eq) was added to 2-(2-((R)�3-(3,4-dimethoxyphenyl)�1-(((S)�1-((S)�2-(3,4,5-tri-

methoxyphenyl)butanoyl)piperidine-2-carbonyl)oxy)propyl)phenoxy)acetic acid (13.9 mg, 0.020

mmol, 1 eq) as a 0.1 M solution in DMF (200 microliters) at room temperature. DIPEA (10.5 microli-

ters, 0.060 mmol, 3 eq) and HATU (7.6 mg, 0.020 mmol, 1 eq) were then added. After 29.5 hours,

the mixture was diluted with EtOAc, and washed with 10% citric acid (aq), brine, saturated sodium

bicarbonate, water and brine. The organic layer was dried over sodium sulfate, filtered and con-

densed. Purification by column chromatography (ISCO, 4 g silica column, 0–10% MeOH/DCM, 25

min gradient) gave the desired product as a yellow solid (14.1 mg, 0.0131 mmol, 65%).
1H NMR (500 MHz, Methanol-d4) d 7.55 (d, J = 8.4 Hz, 1H), 7.26–7.20 (m, 1H), 6.99–6.93 (m, 1H),

6.89 (t, J = 7.7 Hz, 2H), 6.82 (dd, J = 8.4, 2.3 Hz, 2H), 6.77 (d, J = 7.5 Hz, 1H), 6.74 (d, J = 1.9 Hz,

1H), 6.63 (d, J = 9.6 Hz, 2H), 6.12 (dd, J = 8.1, 6.0 Hz, 1H), 5.40 (d, J = 4.3 Hz, 1H), 5.03 (dd,
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J = 13.1, 5.5 Hz, 1H), 4.57 (d, J = 14.9 Hz, 1H), 4.46–4.39 (m, 1H), 4.11 (d, J = 13.6 Hz, 1H), 3.86 (t,

J = 7.3 Hz, 1H), 3.80–3.76 (m, 7H), 3.71–3.65 (m, 8H), 3.14 (ddt, J = 17.2, 13.3, 7.1 Hz, 4H), 2.90–

2.80 (m, 1H), 2.77–2.40 (m, 6H), 2.24 (d, J = 13.8 Hz, 1H), 2.12–1.97 (m, 3H), 1.92 (dq, J = 14.0, 7.8

Hz, 1H), 1.67 (ddt, J = 54.1, 14.7, 7.1 Hz, 5H), 1.50 (dd, J = 46.1, 14.1 Hz, 3H), 1.38 (dt, J = 14.5, 7.1

Hz, 4H), 1.28–1.17 (m, 6H), 0.87 (t, J = 7.3 Hz, 3H).
13C NMR (126 MHz, MeOD) d 174.78, 174.69, 172.53, 171.71, 170.50, 169.66, 169.31, 156.22,

155.41, 154.62, 150.36, 148.83, 138.05, 136.90, 136.00, 134.93, 130.54, 128.40, 126.21, 123.14,

121.82, 117.94, 116.62, 113.58, 113.05, 112.73, 106.59, 70.69, 68.05, 61.06, 56.59, 56.51, 56.45,

53.42, 50.99, 50.31, 45.01, 44.09, 40.07, 37.44, 32.22, 32.17, 30.38, 30.32, 30.18, 29.84, 29.32,

28.05, 27.80, 27.58, 26.38, 23.87, 21.95, 12.57.

LCMS: 1077.35 (M + H)

Crystal structure determination
To obtain the structure of MELK in complex with MRT199665, the MELK kinase domain (residues 1–

340) was expressed as a His6-GST-fusion using a baculovirus/insect cell expression system. After

purification and cleavage of the affinity tags, purified MELK protein was concentrated to 8 mg/ml in

buffer containing 20 mM Tris (pH 8.0), 300 mM NaCl, 5% glycerol and 4 mM DTT. Well-ordered apo

MELK crystals were obtained in hanging drops over a reservoir containing 100 mM Bis-Tris (pH 7.0),

10% (w/v) PEG3350, 200 mM NaCl, 10% glycerol and 10 mM DTT. The complex structure was made

by soaking apo MELK crystals for 84 hours in 100 mM MRT199665 in cryo-buffer (100 mM Bis-Tris

(pH 7.0), 10% (w/v) PEG3350, 200 mM NaCl, 25% glycerol, 10 mM DTT). Diffraction data were col-

lected at the Argonne National Laboratory ID24E beamline. The structure was solved by molecular

replacement with PHENIX (Adams et al., 2010) using the unliganded structure as a search model.

Coordinates for MRT199665 were generated using PRODRG (Schüttelkopf and van Aalten, 2004),

and were fit using PHENIX. Further refitting and refinement of the model were performed with Coot

(Emsley and Cowtan, 2004) and PHENIX.

To obtain the structure of MELK in complex with HTH-01-091, a construct of human MELK cover-

ing residues 2–333 in the pTRXHGST vector was overexpressed in E. coli BL21 (DE3) in LB medium

in the presence of 50 mg/ml of kanamycin. After purification and cleavage of the affinity tags, puri-

fied MELK protein was concentrated to 10 mg/ml in 20 mM HEPES (pH 7.5), 200 mM NaCl, 5% glyc-

erol, and 5 mM DTT. Two equivalences of HTH-01-091 (from a 10 mM in DMSO stock) was mixed

with 250 mM protein and crystallized by sitting-drop vapor diffusion at 20˚C in the following crystalli-

zation buffer: 25% (w/v) PEG3350, 0.2 M MgCl2, 0.1 M Bis-Tris (pH 5.5). Crystals were transferred

briefly into crystallization buffer containing 25% glycerol prior to flash-freezing in liquid nitrogen. Dif-

fraction data from complex crystals were collected at Argonne National Laboratory ID24E beamline.

Data sets were integrated and scaled using XDS (Kabsch, 2010). Structures were solved by molecu-

lar replacement using the program Phaser (McCoy et al., 2007) and the search model PDB entry

4BL1. The ligand was positioned and preliminarily refined using Buster and Rhofit (Smart et al.,

2012). Iterative manual model building and refinement using PHENIX and COOT led to a model

with excellent statistics (Supplementary file 1).

Accession codes
PDB codes 5TWL and 5TX3 represent MELK crystal structure in complex with HTH-01-091 and

MRT199665, respectively. The authors will release the atomic coordinates and experimental data

upon article publication.

Sample preparation for quantitative mass spectrometry analysis
MELK�/� MDA-MB-468-FKBP12F36V-MELK cells were treated in duplicates with DMSO for 30

minutes or 60 minutes, or in triplicates with dTAG-7 (250 nM) for 30 minutes or 60 minutes. Cells

were washed with ice-cold PBS once, collected by scraping and centrifugation, and lysed in 1 mL of

lysis buffer (8 M urea, 1% SDS, 50 mM Tris pH8.5 supplemented with protease and phosphatase

inhibitors). A micro-BCA assay (Pierce) was used to determine the protein concentration of each

sample. A total of 1200 mg of proteins from each sample was depleted of abundant proteins using

two Pierce Top 12 protein depletion spin columns. Eluted proteins were combined, and protein con-

centration was determined by micro-BCA. Proteins were precipitated on ice for 1 hour with 13%
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trichloroacetic acid (TCA), washed twice with acetone, and pellets were allowed to air dry. Proteins

were resuspended in 6 M urea, 50 mM Tris pH 8.5, reduced with 5 mM dithiothreitol (DTT) at room

temperature for 1 hour, and alkylated with 15 mM iodoacetamide in the dark at room temperature

for 1 hour. Alkylation was quenched with DTT. Urea concentration was reduced to 4 M and proteins

were digested with LysC (1:50; enzyme:protein) for 6 hours at 25˚C. The LysC digestion was diluted

to 1 M urea, 50 mM Tris pH 8.5 and then digested with trypsin (1:100; enzyme:protein) overnight at

37˚C. Peptides were desalted using a C18 solid phase extraction cartridges as previously described

(Weekes et al., 2014) and dried by SpeedVac. Dried peptides were resuspended in 200 mM EPPS

pH 8.0. Peptide quantification was performed using the micro-BCA assay (Pierce). The same amount

of peptide from each condition was labeled with tandem mass tag (TMT) reagent (1:4; peptide:TMT

label) (Pierce). The 10-plex labeling reactions were performed for 2 hour at 25˚C. Modification of

tyrosine residue with TMT was reversed by the addition of 5% hydroxyl amine for 15 min at 25˚C.
The reaction was quenched with 0.5% trifluoroactic acid (TFA) and samples were combined at a

1:1:1:1:1:1:1:1:1:1 ratio. Combined samples were desalted and offline fractionated into 24 fractions

as previously described (McAlister et al., 2014).

Liquid chromatography-MS3 spectrometry (LC-MS/MS)
12 of the 24 peptide fractions from the basic reverse phase fractionation (every other fraction) were

analyzed with an LC-MS3 data collection strategy (McAlister et al., 2014) on an Orbitrap Fusion

mass spectrometer (Thermo Fisher Scientific) equipped with a Proxeon Easy nLC 1000 for online

sample handling and peptide separations. Approximately, 5 mg of peptide resuspended in 5% formic

acid +5% acetonitrile was loaded onto a 100 mm inner diameter fused-silica micro capillary with a

needle tip pulled to an internal diameter less than 5 mm. The column was packed in-house to a

length of 35 cm with a C18 reverse phase resin (GP118 resin 1.8 mm, 120 Å, Sepax Technologies).

The peptides were separated using a 180 min linear gradient from 3% to 25% buffer B (100% aceto-

nitrile (ACN) +0.125% formic acid) equilibrated with buffer A (3% ACN +0.125% formic acid) at a

flow rate of 400 nL/min across the column. The scan sequence for the Fusion Orbitrap began with an

MS1 spectrum (Orbitrap analysis, resolution 120,000, 400–1400 m/z scan range, AGC target

2 � 105, maximum injection time 100 ms, dynamic exclusion of 90 s). The ‘Top10’ precursors was

selected for MS2 analysis, which consisted of CID (quadrupole isolation set at 0.5 Da and ion trap

analysis, AGC 8 � 103, NCE 35, maximum injection time 150 ms). The top ten precursors from each

MS2 scan were selected for MS3 analysis (synchronous precursor selection), in which precursors

were fragmented by HCD prior to Orbitrap analysis (NCE 55, max AGC 1 � 105, maximum injection

time 150 ms, resolution 60,000.

LC-MS3 data analysis
A suite of in-house software tools were used to for. RAW file processing and controlling peptide and

protein level false discovery rates, assembling proteins from peptides, and protein quantification

from peptides as previously described. MS/MS spectra were searched against a Uniprot human data-

base (February 2014) with both the forward and reverse sequences. Database search criteria are as

follows: tryptic with two missed cleavages, a precursor mass tolerance of 50 ppm, fragment ion

mass tolerance of 1.0 Da, static alkylation of cysteine (57.02146 Da), static TMT labeling of lysine res-

idues and N-termini of peptides (229.162932 Da), and variable oxidation of methionine (15.99491

Da). TMT reporter ion intensities were measured using a 0.003 Da window around the theoretical m/

z for each reporter ion in the MS3 scan. Peptide spectral matches with poor quality MS3 spectra

were excluded from quantitation (<200 summed signal-to-noise across 10 channels and <0.5 precur-

sor isolation specificity).

Differential protein abundance analysis
The entire set of data were disclosed in Figure 4—source data 1, but we only presented the results

from the 60-min time point in this report (Figure 4—source data 2), as the 30-min time point pro-

vided a similar conclusion with milder FKBP12F36V-MELK degradation. All data analysis was carried

out using the R statistical framework (Core Team, 2016). Reporter ion intensities were normalized

(normalization factors calculated by dividing the summed intensities of each channel by the maxi-

mum value of all channels, and subsequently applied to each reporter ion value) and scaled (scaling
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the sum of reporter ion intensities to 100 for each protein/peptide) using in-house scripts. Proteins

quantified with a minimum of 2 unique peptides were considered for downstream analysis. Log2

transformed, scaled and normalized reporter ion intensities were analyzed using a linear model

approach implemented in the limma package (RRID:SCR_010943), which is free and available online

under Bioconductor (https://www.bioconductor.org/help/search/index.html?q=limma/)

(Ritchie et al., 2015). Resulting data were subjected to a moderated t-test to assess statistical signif-

icance also implemented in the limma package. In the moderated t-test, the standard errors are

more robust calculated using an empirical Bayes method inferring information across all proteins.

The ‘topTable’ output from limma is provided as Figure 4—source data 2, and contains the values

LogFC (log2 transformed fold change of dTAG-7 to DMSO), AveExpr (not interpretable in the study

design), t (moderated t-statistic), P Value (associated P Value), and Adjusted P Value (the P Value

adjusted for multiple hypothesis testing). Data in Figure 4—source data 2 were used for plotting

Figure 4D.

Statistical analysis
Statistical tests and the associated error bars are identified in the corresponding figure legends. Typ-

ical replicate numbers describe the number of technical replicates analyzed in a single experiment.

‘Independent’ replicate numbers describe the number of biological replicates, which were experi-

ments performed on different days. Data met the assumptions for all tests used. Sample sizes were

not predetermined using any statistical analyses.
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