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Abstract

In many observational cohort studies, a pair of correlated event times are usu-

ally observed for each individual. This paper develops a new approach for the

semiparametric linear transformation model to handle the bivariate survival

data under both truncation and censoring. By incorporating truncation, the

potential referral bias in practice is taken into account. A class of generalised

estimating equations are proposed to obtain unbiased estimates of the regression

parameters. Large sample properties of the proposed estimator are provided.

Simulation studies under different scenarios and analyses of real-world datasets

are conducted to assess the performance of the proposed estimator.

Keywords: Linear transformation model, bivariate survival function,

truncation, censoring, survival analysis

1. Introduction

Bivariate survival data which contains pairs of correlated event times are

often observed in many observational cohort studies. Incomplete information of

the paired event times due to censoring and truncation leads to the challenge

of analysing such bivariate survival data. Consider the following examples.5
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Example 1.1. In a hepatitis C cohort study (Fu et al., 2007) the epidemio-

logical interest is to study progression to liver cirrhosis in patients with chronic

hepatitis C. The paired event times (R, T ) observed for each patient are the

time from infection with hepatitis C virus (HCV) to recruitment to liver clinics

and the time from HCV infection to development of cirrhosis, respectively. The10

cirrhosis time T is subject to right censoring by a random variable C, i.e. the

last-follow up time. As only the data before the end of year 1999 are accessible,

there is a random time L, from the time point of HCV infection to the end

of year 1999, such that only patients who were referred to liver clinics before

that (R ≤ L) can be included in the study cohort, i.e. R is right-truncated by15

L. This is an example of bivariate survival data where one component is right

truncated and the other one is right censored. Table 1 summarises the two pairs

of event times.

Table 1: Notations and descriptions of event times. (Only the patients with R ≤ L can be

observed. For the observed patients, T is subject to right censoring by C.)

Notation Description

R Time from HCV infection to referral to liver clinic

L Time from HCV infection to the end of study recruitment

T Time from HCV infection to development of cirrhosis

C Time from HCV infection to end of follow-up

Example 1.2. In a business failure data which includes 420 small and medium

size Italian firms from Amadeus Database provided by Bureau van Dijk, a pair20

of event times (R, T ) are collected for each firm, where R is the time period from

establishment to the first financial statement available and T is the subsequent

time period to bankruptcy (Figure 1). The database entry started from year

Figure 1: Structure of the business failure data in Example 1.2.
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2004, therefore only firms who were recruited in the database after year 2004

could be observed. This introduces the left truncation for R, that is only the25

firms with R ≥ L can be observed, where L is the time period from establish-

ment to database entry, which here is year 2004. The time T is subject to right

censoring by the random variable C (e.g. the time from the first financial state-

ment available to the last follow-up). This is an example of bivariate survival

data under left truncation and right censoring.30

In survival analysis, two widely used models to study the effect of covariates

on the event time of interest are the proportional hazards (PH) model (Cox,

1972) and the accelerated failure time (AFT) model (Cox & Oakes, 1984). The

AFT model has been well studied when the event time is subject to only right

censoring. Its nonparametric version, log T = Wβ + ε with ε following an

unknown distribution with mean 0, has also been studied in Wang et al. (2013)

to handle bivariate survival data under both truncation and censoring. The

PH model is even more widely used than the AFT model when assessing the

effect of covariates. It can be generalised to the following semiparametric linear

transformation model

h(T ) = −Wβ + ε, (1.1)

where W is the vector of covariates, β is the regression parameter to be esti-

mated, and h(·) is a strictly increasing function which is completely unspecified.

If the distribution function of ε is taken to be Fε(t) = 1− exp{− exp(t)}, (1.1)

gives the famous PH model, while if Fε is the standard logistic distribution

function, (1.1) is the proportional odds model (Bennett, 1983; Dabrowska &35

Doksum, 1988; Pettitt, 1984; Murphy et al., 1997).

Under model (1.1), when T is subject to only right censoring, Cheng et al.

(1995) proposed and justified a simple estimating equation for β. Their estima-

tor was further developed in Cheng et al. (1997); Fine et al. (1998); Cai et al.

(2000). A key step in these approaches is estimating the survival function of40

the censoring variable by the Kaplan-Meier estimator. However, these univari-

ate methods are not readily available when truncation is also incorporated, as
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the bivariate survival function of the truncation variable L and the censoring

variable C needs to be estimated.

For bivariate survival function, Gürler (1996, 1997) proposed a nonpara-45

metric estimator when only a single component of the paired event times is

subject to truncation. The case for doubly truncated data was discussed in

van der Laan (1996) and Huang et al. (2001). Gijbels & Gürler (1998) consid-

ered the case where a single component of the paired event times is subject to

both censoring and truncation but the other one can be fully observed. When50

both event times are under truncation and censoring, Shen (2006) proposed an

inverse-probability-weighted (IPW) approach to estimate the bivariate survival

function. Using similar idea, Shen & Yan (2008) generalised the approaches in

Campbell & Földes (1982) and Dabrowska (1988, 1989) to estimate the bivari-

ate survival function for left-truncated and right-censored data. However, their55

iteration algorithm is computationally heavy and relies on an assumption which

may not be reasonable in practice. Dai & Fu (2012) proposed an nonparametric

estimator for the bivariate survival function when both even times are subject to

random truncation and censoring. Their method is based on a polar coordinate

transformation which can transform the bivariate survival function to a uni-60

variate form without losing data information. The univariate survival function

can be easily estimated by the product-limit estimator and can be transformed

back to the bivariate form. Recently, their method was further extended to a

class of bivariate survival function estimators based on different forms of data

transformation (Dai et al., 2016).65

In this paper, we develop a new approach for the semiparametric linear

transformation model (1.1) to handle the bivariate survival data under both

truncation and censoring. The bivariate survival function of (L,C) is estimated

using the idea in Dai & Fu (2012). An unbiased estimating equation for β in

model (1.1) is proposed. Our method is a new, flexible and important candidate70

for handling bivariate survival data with random truncation and censoring. It

can also be extended to handle a general class of bivariate regression models

with different types of censoring and truncation.
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This paper is organised as follows. Section 2 describes the statistical mod-

els and introduces the estimating procedures. The large sample properties of75

the proposed estimator are established in Section 3. Simulation studies and

analyses of real-world datasets are presented in Section 4 and 5 respectively to

demonstrate the performance of the proposed estimator. Section 6 provides a

brief discussion.

2. Statistical models and estimating procedure80

2.1. Preliminaries

Denote (R, T ) as the pair of event times, and W as the vector of covariates.

For simplicity, here we focus on the case with right truncation and right censor-

ing, i.e. R is right-truncated by L, and T is right-censored by C. For the case

with left truncation we can simply replace R and L by −R and −L in practice,85

and our methodology still applies. In the presence of right truncation, since

only individuals such that R ≤ L can be observed (opposite if under left trun-

cation), we denote the observed data for the ith subject as (Ri, Li, Xi, δi,Wi),

i = 1, . . . , n, where Xi = min(Ti, Ci) and δi = I[Ti ≤ Ci].

Throughout this paper, we assume that (L,C) are independent of the co-90

variates vector W and are independent of the paired event times (R, T ), similar

to Wang et al. (2013). These assumptions are reasonable since in most ret-

rospective studies the truncation time L (time to the end of recruitment) is

determined independently before data collection, and also the censoring time

C (last follow-up time) is usually a certain period of time after recruitment.95

Therefore (L,C) are not related to the individuals’ information W and (R, T ).

Let G(t1, t2) = P(L > t1, C > t2) be the continuous bivariate survival

function for (L,C) and F̄ (t1, t2) = P(R ≤ t1, T ≤ t2) be the continuous joint

distribution function for (R, T ) with continuous support. We also assume the

following conditions hold throughout this paper.100

Condition 2.1. The lower boundaries of support for F̄ are coordinate axes of

the first quadrant.
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Condition 2.2. For t = (t1, t2), the function G(t1, t2) = P(L > t1, C > t2) >

0 almost surely with respect to F̄ (dt1, dt2) in A, where A is the common support

area of F̄ and G.105

The two conditions are reasonable in practice. Condition 2.1 is a simple as-

sumption which means R ≥ 0 and T ≥ 0, as we focus on event times with

non-negative values. The explanations of Condition 2.2 for the hepatitis C data

with right truncation (Example 1.1) can be found in Wang et al. (2013) or Dai

& Wang (2016). Here we explain why Condition 2.2 is realistic for the case with110

left truncation (the business failure data described in Example 1.2).

Under left truncation, we have that the bivariate survival functionG(t1, t2) =

P(L < t1, C > t2). Condition 2.2 requires that: (i) the minimum and maximum

values that R can take are greater than those of L, respectively. In the business

failure data, it guarantees that the firms which are newly established (with very115

small R) or have been established for a long time (with very large L) can be

collected. Condition 2.2 also requires that: (ii) the minimum and maximum

values that T can take are smaller than those of C, respectively. This means

that, in the business failure data, for a very short period of follow-up (very small

C), it is always possible to have a firm which is bankrupt soon after submitting120

its first financial statement (i.e. observe even smaller T ≤ C). In addition, for

a firm with large value of T , it is possible to follow it long enough to observe

its bankruptcy. In summary, Condition 2.2 guarantees that F̄ and G can be

identified in their common support region.

2.2. Estimating equation for β125

Denote β∗ as the true value of β. When the indicators
{
I[Ti ≥ Tj ], i, j =

1, . . . , n, i 6= j
}

can be fully observed (i.e. no truncation or censoring), we have

that

E
{
I[Ti ≥ Tj ]

∣∣Wi,Wj

}
= P

{
h(Ti) ≥ h(Tj)]

∣∣Wi,Wj

}
:= θ(Wijβ

∗),

where Wij = Wi −Wj , i, j = 1, . . . , n, i 6= j, and

θ(t) =

∫ ∞
−∞

[1− Fε(t+ s)]Fε(ds).
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However in practice, the indicators
{
I[Ti ≥ Tj ], i, j = 1, . . . , n, i 6= j

}
may

not be fully observed due to truncation and censoring. Let γ = P(R ≤ L) be

the truncation probability. Then we have that

E

{
δjI[Xi ≥ Xj ]

G(Ri−, Xj−)G(Rj−, Xj−)
− θ(Wijβ

∗)

G(Ri−, 0)G(Rj−, 0)

∣∣∣Wi,Wj

}
= γ−2E

{
I[Ti ≥ Tj ]− θ(Wijβ

∗)
∣∣Wi,Wj

}
= 0.

If the bivariate survival function G is known, an unbiased estimating equation

for β is given by

U(β;G) = n−2
n∑

i=1

n∑
j=1

Wij

{
δjI[Xi ≥ Xj ]

G(Ri−, Xj−)G(Rj−, Xj−)
− θ(Wijβ)

G(Ri−, 0)G(Rj−, 0)

}
= 0.

If G is unknown, it can be replaced by a consistent estimator Ĝ. Hence the

estimating equation for β is

U(β; Ĝ) = n−2
n∑
i=1

n∑
j=1

eij(β; Ĝ) = 0, (2.1)

where

eij(β; Ĝ) =Wij

{
δjI[Xi ≥ Xj ] · I[Ĝ(Ri−, Xj−) > 0] · I[Ĝ(Rj−, Xj−) > 0]

Ĝ(Ri−, Xj−)Ĝ(Rj−, Xj−)

− θ(Wijβ) · I[Ĝ(Ri−, 0) > 0] · I[Ĝ(Rj−, 0) > 0]

Ĝ(Ri−, 0)Ĝ(Rj−, 0)

}
. (2.2)

Solving the estimating equation (2.1) gives an unbiased estimator β̂.

2.3. Estimating equation for h(t)

Using a similar idea as above, we provide an unbiased estimating equation for

h(t) in this section. Denote h∗(t) as the true value of h(t). Without censoring

and truncation, considering the indicators
{
I[Ti ≥ t], i = 1, · · · , n

}
, we have

that

E
{
I[Ti ≥ t]

∣∣Wi

}
= P

{
h(Ti) ≥ h∗(t)]

∣∣Wi

}
:= g−1

(
h∗(t) +Wiβ

∗),
7



where g−1(·) = 1−Fε(·) and Fε is the specified distribution function of ε in the

model (1.1).

In the presence of truncation and censoring, the indicators
{
I[Ti ≥ t], i =

1, · · · , n
}

are not always observable. We can only observe
{
I[Xi ≥ t], i =

1, · · · , n
}

in practice. Therefore we have that

E

{
I[Xi ≥ t]
G(Ri−, t−)

−
g−1

(
h∗(t) +Wiβ

∗)
G(Ri−, 0)

∣∣∣Wi

}
= γ−1E

{
I[Ti ≥ t]− g−1

(
h∗(t) +Wiβ

∗)∣∣Wi

}
= 0.

Hence a reasonable and unbiased estimating equation for h(t) is given by

n−1
n∑
i=1

{
I[Xi ≥ t, Ĝ(Ri−, t−) > 0]

Ĝ(Ri−, t−)
−
g−1

(
h(t) +Wiβ̂

)
I[Ĝ(Ri−, 0) > 0]

Ĝ(Ri−, 0)

}
= 0,

(2.3)

where Ĝ is a consistent estimator of G and β̂ is the root of (2.1).130

2.4. Estimation of G

The challenge of solving the estimating equations for β and h(t) is getting a

consistent estimate for the bivariate survival function G. Here in this paper, we

use the idea in Dai & Fu (2012) and consider the polar coordinate transformation

from (t1, t2) to (z;α) where α = t2/t1, z =
√
t21 + t22. For fixed α, G(t1, t2) can

be transformed to a univariate function, G(z;α), by the following formula

G(t1, t2) = P(L > t1, C > t2) = P(Z(α) > z) := G(z;α),

where Z(α) = min{L
√

1 + α2, C
√

1 + α−2}.

In practice, due to truncation and censoring, the values of (L,C) may not

be observed so that Z(α) may not be available. Denote the observed data

as (Ri, Li, Xi, δi,Wi), i = 1, . . . , n and define L̃i = Li
√

1 + α2 and X̃i =

Xi

√
1 + α−2. We have the transformed observed data

Z̃i(α) = min{L̃i, X̃i},

∆i(α) = I[L̃i ≤ X̃i] + (1− δi)I[L̃i > X̃i],

Vi(α) = Ri
√

1 + α2.
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Such a transformation introduces artificial censoring and truncation. Specifi-

cally, ∆i(α) = 1 implies that Z̃i(α) is the observed value of Zi(α), ∆i(α) = 0

implies censoring, and truncation information is given by Vi(α). Then based135

on the transformed observations
{
Z̃i(α),∆i(α), Vi(α)

}
, i = 1, . . . , n, we can

estimate the univariate function G(z;α) using the following lemma.

Lemma 2.1. For fixed α, the hazard function of Z(α) is denoted by Λ(dz;α) =

−G(dz;α)/G(z−;α). Then we have that

Λ(dz;α) =
P
(
Z̃i(α) ∈ dz, z > Vi(α),∆i(α) = 1

)
P
(
Z̃i(α) ≥ z > Vi(α)

) ,

where · ∈ dz denotes · ∈ [z, z + dz). �

Define

N(ds;α) = n−1
n∑
i=1

Ni(ds;α) = n−1
n∑
i=1

I[Z̃i(α) ∈ ds, s > Vi(α),∆i(α) = 1],

H(n)(s;α) = n−1
n∑
i=1

Hi(s;α) = n−1
n∑
i=1

I[Z̃i(α) > s ≥ Vi(α)],

H(n)(t1, t2) = n−1
n∑
i=1

Hi(t1, t2) = n−1
n∑
i=1

I[Li > t1 ≥ Ri, Xi > t2].

Note that H(n)(t1, t2) = H(n)(z;α) and Hi(t1, t2) = Hi(z;α). Hence Lemma

2.1 implies that an estimator for Λ(dz;α) is Λ̂(dz;α) = N(dz;α)/H(n)(z−;α).

Then the product-limit estimator for G(z;α) is

Ĝ(z;α) =
∏
s≤z

{
1− N(s;α)−N(s−;α)

H(n)(s−;α)

}
.

Since G(z;α) = G(t1, t2), Ĝ(z;α) is also an estimator for G(t1, t2).

3. Large sample properties of β̂140

3.1. Consistency of β̂

Denote Φ as the distribution function of the covariates vector W . We can

show that with probability one, U(β;G)(β∗ − β) converges to∫
w1,w2

w12β
∗ −w12β

G(Ri−, 0)G(Rj−, 0)

[
θ(w12β

∗)− θ(w12β)
]
dΦ(w1)dΦ(w2),

9



where w12 = w1 −w2 and β∗ is the true value of β. Since θ(·) is a decreasing

function, the above limit is non-negative and is zero only if β = β∗. Following

the idea in Cheng et al. (1995), together with U(β;G) = 0 at β = β̂, we have

that β̂ → β∗ in probability when n → ∞. This implies that β̂ is a consistent145

estimator.

3.2. Asymptotic normality of β̂

The following theorem provides the results of asymptotic normality of β̂. A

heuristic proof of the theorem can be found in the Appendix.

Theorem 3.1. Let U
′
(β;G) = ∂U(β;G)/∂β. Then we have that n1/2(β̂ −

β)→ N(0,Σβ) as n→∞, where

Σβ =
[
U

′
(β;G)

]−1
ΣU

{[
U

′
(β;G)

]−1}tr
, (3.1)

ΣU = Var
{
n−5/2

n∑
i,j,k=1

[
eij(β;G) + ςijk(β, G,Mk)

]}
. (3.2)

The term ςijk(β, G,Mk) is given by

ςijk(β, G,Mk) =
WijδjI[Xi ≥ Xj ]

G(Ri−, Xj−)G(Rj−, Xj)

[
Mk(Zij ;αij) +Mk(Zjj ;αjj)

]
− Wijθ(Wijβ)

G(Ri−, 0)G(Rj−, 0)

[
Mk(Ri, 0) +Mk(Rj , 0)

]
, (3.3)

where Zij =
√
R2
i +X2

j , Zjj =
√
R2
j +X2

j , αij = Xj/Ri, αjj = Xj/Rj.150

The term Mk(z;α) is defined as Mk(z;α) =
n∑
k=1

∫
s≤z

1
H(s−;α)Mk(ds;α), where

Mk(ds;α) = Nk(ds;α)−Hk(s−;α)Λ(ds;α) and H(s;α) = E[Hi(s;α)].

Proof 3.1. See Appendix A.

Replacing β, G and Mk by their estimates, then Σβ and Uβ given in (3.1)

and (3.2) can be estimated by

Σ̂β =
[
U

′
(β̂; Ĝ)

]−1
Σ̂U

{[
U

′
(β̂; Ĝ)

]−1}tr
,

Σ̂U = n−5
n∑

i,j,k=1

{[
eij(β̂; Ĝ) + ςijk(β̂, Ĝ, M̂k)

]⊗2}
,

where the notation ‘tr’ denotes the transpose of a matrix, and ‘⊗2’ denotes the

product of a matrix and its transpose.155
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4. Simulation studies

4.1. Estimation of β

In this subsection, simulation studies are conducted to show the properties of

our proposed estimator for β. We consider a three-dimensional covariates vector

W , where W1 ∼ U [20, 30], W2 ∼ Bernoulli(0.5) and W3 ∼ Bernoulli(0.5), to

mimic datasets in the real world which usually contain both continuous and

discrete covariates (0/1 indicators). The event time of main interest, T , follows

h(T ) = −Wβ∗ + ε, where the strictly increasing function h(T ) = 4
√
T − 5 + 8,

and the true value of β is β∗ = (−0.2,−1.2,−1.5)tr. The distribution function

of the error term ε is taken to be a standard extreme value distribution with

Fε(t) = 1 − exp{− exp(t)}. This makes the linear transformation model be

its special case of PH model and allows us to compare the performance of our

method with the conventional PH model that handles univariate survival data

with only censoring. The event time R is generated by R = T ×U [0.6, 0.8]. The

correlated truncation and censoring variables L and C are simulated via

L = a1ν1 + a2ν2 + U [3, 4] and C = b1ν1 + b2ν2 + U [4, 5], (4.1)

where ν1, ν2 ∼ Exp(5). Our scenario guarantees that the generated data satisfies

the Conditions 2.1 and 2.2 mentioned in Section 2.

The values of a1, a2, b1 and b2 in Equation (4.1) are adjusted to achieve160

different truncation probabilities and censoring percentages. In this study the

censoring percentage for T is considered to be around 10%, 30% and 50%,

respectively. The truncation probability γ = P(R ≤ L) is considered to be

around 0.9, 0.7, 0.5, 0.3 and 0.1, respectively. Note that only observations with

R ≤ L can be observed. We consider different observed sample size, n = 200165

and n = 500. Number of simulations is taken to be 200 and 2000. The results

are presented in Table 2 and 3, respectively.

The biases and standard errors of the estimates obtained from different num-

ber of simulations (200 or 2000) are similar. However, the difference between

the empirical standard error (ŝβ̂) and the mean of standard deviation estimates170

(σ̂β̂) becomes smaller when the iteration times increases from 200 to 2000.
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For the same number of iterations and the same observed sample size, higher

truncation probabilities and lower censoring percentages give better estimates

with smaller biases and standard errors. Under the same truncation probability

and censoring percentage, the biases are similar for different observed sample175

sizes. However the estimated standard errors are much smaller for large sample,

which makes a difference when the observed sample is more biased from the

population (lower truncation probability & heavier censoring). For example,

when the observed sample size is relatively small (n = 200), the estimates are

non-significant for all the three cases with truncation probability γ = 0.1, and180

for the case with γ = 0.3 and 50% censoring percentage. While for a larger

observed sample (n = 500), the issue of non-significance only occurs when the

observed data is severely biased (only 10% of the population can be observed

and around half of the observations are censored).

4.2. Comparison with PH model185

In this subsection, we compare our proposed method with the conventional

PH model via 500 simulations. The data are generated using the same strategy

as that in section 4.1, while the referral bias due to truncation is not considered

in the PH model. The results are presented in Table 4 and 5.

Under 10% and 30% censoring, our method gives less biased estimates for190

all different truncation probabilities. However, in the presence of higher cen-

soring percentage (50%), our proposal is not expected to be as efficient as the

Cox procedure. This is due to the inverse probability weighted estimator of

the bivariate survival function G used in our method does struggle for heavier

censoring, as pointed out in Dai & Bao (2009); Dai & Fu (2012). Therefore the195

insignificance of improvement when using our method to analyse severely biased

survival data (with censoring percentage around 50% or greater) is reasonable.

12



Table 2: Simulation results for 200 simulations. γ: truncation probability; ŝβ̂: empirical

standard errors for β̂ based on 200 simulations; σ̂β̂: means of standard deviation estimates

obtained from a perturbation method (Wang & Zhu, 2006).

Cens.% = 10% Cens.% = 30% Cens.% = 50%

β∗ β̂ (bias) ŝβ̂ σ̂β̂ β̂ (bias) ŝβ̂ σ̂β̂ β̂ (bias) ŝβ̂ σ̂β̂

n = 500

γ = 0.9 -0.2 -0.197 (0.003) 0.023 0.023 -0.190 (0.010) 0.026 0.024 -0.180 (0.020) 0.037 0.034

-1.2 -1.183 (0.017) 0.116 0.125 -1.123 (0.077) 0.159 0.160 -1.066 (0.134) 0.199 0.184

-1.5 -1.506 (0.006) 0.144 0.139 -1.423 (0.077) 0.201 0.164 -1.352 (0.148) 0.233 0.249

γ = 0.7 -0.2 -0.192 (0.008) 0.026 0.022 -0.178 (0.022) 0.028 0.031 -0.172 (0.028) 0.033 0.035

-1.2 -1.125 (0.075) 0.180 0.159 -1.077 (0.123) 0.220 0.194 -1.028 (0.172) 0.153 0.179

-1.5 -1.458 (0.042) 0.176 0.163 -1.405 (0.095) 0.197 0.190 -1.290 (0.210) 0.214 0.201

γ = 0.5 -0.2 -0.174 (0.026) 0.031 0.030 -0.168 (0.032) 0.030 0.032 -0.157 (0.043) 0.041 0.042

-1.2 -1.021 (0.179) 0.163 0.169 -0.979 (0.221) 0.207 0.239 -0.971 (0.229) 0.259 0.254

-1.5 -1.365 (0.135) 0.176 0.185 -1.271 (0.229) 0.243 0.264 -1.251 (0.249) 0.269 0.272

γ = 0.3 -0.2 -0.155 (0.045) 0.035 0.033 -0.147 (0.053) 0.041 0.037 -0.139 (0.061) 0.052 0.047

-1.2 -0.930 (0.270) 0.200 0.196 -0.835 (0.365) 0.270 0.289 -0.835 (0.365) 0.333 0.267

-1.5 -1.164 (0.336) 0.203 0.173 -1.165 (0.335) 0.272 0.274 -1.125 (0.375) 0.397 0.301

γ = 0.1 -0.2 -0.136 (0.064) 0.050 0.042 -0.122 (0.078) 0.052 0.061 -0.098 (0.102) 0.050 0.050

-1.2 -0.852 (0.348) 0.351 0.277 -0.693 (0.507) 0.318 0.381 -0.603 (0.597) 0.338 0.431

-1.5 -1.119 (0.381) 0.391 0.309 -0.963 (0.537) 0.429 0.395 -0.815 (0.685) 0.413 0.378

n = 200

γ = 0.9 -0.2 -0.198 (0.002) 0.039 0.040 -0.183 (0.017) 0.049 0.048 -0.176 (0.024) 0.056 0.056

-1.2 -1.184 (0.016) 0.241 0.243 -1.119 (0.081) 0.326 0.329 -1.049 (0.151) 0.339 0.371

-1.5 -1.491 (0.009) 0.256 0.257 -1.410 (0.090) 0.337 0.336 -1.296 (0.204) 0.387 0.409

γ = 0.7 -0.2 -0.189 (0.011) 0.045 0.045 -0.175 (0.025) 0.048 0.053 -0.162 (0.038) 0.064 0.065

-1.2 -1.125 (0.075) 0.321 0.316 -1.035 (0.165) 0.289 0.308 -0.960 (0.240) 0.400 0.447

-1.5 -1.417 (0.083) 0.305 0.296 -1.354 (0.146) 0.325 0.328 -1.241 (0.259) 0.411 0.451

γ = 0.5 -0.2 -0.172 (0.028) 0.049 0.052 -0.163 (0.037) 0.056 0.049 -0.151 (0.049) 0.078 0.078

-1.2 -1.026 (0.174) 0.335 0.428 -0.964 (0.236) 0.448 0.359 -0.906 (0.294) 0.440 0.442

-1.5 -1.302 (0.198) 0.304 0.383 -1.295 (0.205) 0.437 0.402 -1.184 (0.316) 0.486 0.487

γ = 0.3 -0.2 -0.150 (0.050) 0.058 0.061 -0.148 (0.052) 0.078 0.071 -0.133 (0.067) 0.075 0.088

-1.2 -0.941 (0.259) 0.367 0.376 -0.851 (0.349) 0.413 0.394 -0.824 (0.376) 0.501 0.593

-1.5 -1.198 (0.302) 0.347 0.358 -1.115 (0.385) 0.487 0.487 -1.095 (0.405) 0.621 0.780

γ = 0.1 -0.2 -0.139 (0.061) 0.094 0.096 -0.124 (0.076) 0..092 0.099 -0.101 (0.099) 0.096 0.103

-1.2 -0.804 (0.396) 0.629 0.486 -0.696 (0.504) 0.716 0.780 -0.610 (0.590) 0.721 0.670

-1.5 -1.167 (0.333) 0.740 0.591 -0.975 (0.525) 0.650 0.718 -0.840 (0.660) 0.837 0.686
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Table 3: Simulation results for 2000 simulations. γ: truncation probability; ŝβ̂: empirical

standard errors for β̂ based on 2000 simulations; σ̂β̂: means of standard deviation estimates

obtained from a perturbation method (Wang & Zhu, 2006).

Cens.% = 10% Cens.% = 30% Cens.% = 50%

β∗ β̂ (bias) ŝβ̂ σ̂β̂ β̂ (bias) ŝβ̂ σ̂β̂ β̂ (bias) ŝβ̂ σ̂β̂

n = 500

γ = 0.9 -0.2 -0.199 (0.001) 0.020 0.020 -0.190 (0.010) 0.025 0.025 -0.178 (0.022) 0.030 0.030

-1.2 -1.194 (0.006) 0.114 0.116 -1.136 (0.064) 0.146 0.153 -1.072 (0.128) 0.186 0.194

-1.5 -1.490 (0.010) 0.123 0.124 -1.424 (0.076) 0.163 0.168 -1.338 (0.162) 0.209 0.209

γ = 0.7 -0.2 -0.189 (0.011) 0.022 0.022 -0.178 (0.022) 0.026 0.027 -0.169 (0.031) 0.032 0.032

-1.2 -1.143 (0.057) 0.133 0.135 -1.072 (0.128) 0.156 0.162 -1.027 (0.173) 0.205 0.204

-1.5 -1.439 (0.061) 0.138 0.140 -1.356 (0.144) 0.175 0.181 -1.304 (0.196) 0.226 0.223

γ = 0.5 -0.2 -0.174 (0.026) 0.027 0.027 -0.165 (0.035) 0.030 0.031 -0.154 (0.046) 0.034 0.035

-1.2 -1.055 (0.145) 0.171 0.173 -0.993 (0.207) 0.190 0.201 -0.934 (0.266) 0.233 0.236

-1.5 -1.358 (0.142) 0.163 0.166 -1.280 (0.220) 0.206 0.203 -1.188 (0.312) 0.250 0.261

γ = 0.3 -0.2 -0.151 (0.049) 0.028 0.028 -0.149 (0.051) 0.036 0.036 -0.139 (0.061) 0.043 0.041

-1.2 -0.904 (0.296) 0.169 0.170 -0.888 (0.312) 0.227 0.234 -0.844 (0.356) 0.275 0.312

-1.5 -1.179 (0.321) 0.180 0.183 -1.158 (0.342) 0.251 0.255 -1.074 (0.426) 0.290 0.297

γ = 0.1 -0.2 -0.140 (0.060) 0.044 0.046 -0.114 (0.086) 0.048 0.046 -0.100 (0.100) 0.050 0.050

-1.2 -0.861 (0.339) 0.311 0.318 -0.732 (0.468) 0.338 0.324 -0.605 (0.595) 0.338 0.324

-1.5 -1.139 (0.361) 0.349 0.348 -0.958 (0.542) 0.375 0.366 -0.820 (0.680) -0.377 0.358

n = 200

γ = 0.9 -0.2 -0.196 (0.004) 0.040 0.040 -0.188 (0.012) 0.048 0.050 -0.176 (0.024) 0.064 0.066

-1.2 -1.170 (0.030) 0.237 0.239 -1.121 (0.079) 0.306 0.312 -1.060 (0.140) 0.390 0.396

-1.5 -1.472 (0.028) 0.244 0.245 -1.412 (0.088) 0.348 0.352 -1.323 (0.177) 0.452 0.446

γ = 0.7 -0.2 -0.188 (0.012) 0.048 0.047 -0.177 (0.023) 0.054 0.054 -0.161 (0.039) 0.061 0.062

-1.2 -1.141 (0.059) 0.298 0.299 -1.065 (0.135) 0.334 0.338 -0.984 (0.216) 0.397 0.382

-1.5 -1.437 (0.063) 0.299 0.296 -1.356 (0.144) 0.360 0.361 -1.253 (0.247) 0.448 0.434

γ = 0.5 -0.2 -0.171 (0.029) 0.058 0.058 -0.163 (0.037) 0.062 0.064 -0.152 (0.048) 0.070 0.071

-1.2 -1.036 (0.164) 0.343 0.341 -0.973 (0.227) 0.364 0.375 -0.893 (0.307) 0.439 0.445

-1.5 -1.350 (0.150) 0.352 0.361 -1.265 (0.235) 0.392 0.405 -1.176 (0.324) 0.497 0.505

γ = 0.3 -0.2 -0.149 (0.051) 0.057 0.057 -0.143 (0.057) 0.070 0.070 -0.134 (0.066) 0.079 0.081

-1.2 -0.908 (0.292) 0.345 0.347 -0.890 (0.310) 0.457 0.468 -0.842 (0.358) 0.536 0.564

-1.5 -1.169 (0.331) 0.355 0.367 -1.133 (0.367) 0.509 0.496 -1.074 (0.426) 0.625 0.642

γ = 0.1 -0.2 -0.142 (0.058) 0.090 0.087 -0.113 (0.087) 0.093 0.095 -0.101 (0.099) 0.100 0.096

-1.2 -0.864 (0.336) 0.562 0.557 -0.738 (0.462) 0.655 0.629 -0.620 (0.580) 0.672 0.686

-1.5 -1.141 (0.359) 0.647 0.653 -0.943 (0.557) 0.663 0.649 -0.839 (0.661) 0.750 0.731
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Table 4: Simulation results for 500 simulations. γ: truncation probability; ŝβ̂: empirical

standard errors for β̂ based on 500 simulations; σ̂β̂: means of standard deviation estimates

obtained from a perturbation method (Wang & Zhu, 2006).

Cens.% = 10% Cens.% = 30% Cens.% = 50%

β∗ β̂ (bias) ŝβ̂ σ̂β̂ β̂ (bias) ŝβ̂ σ̂β̂ β̂ (bias) ŝβ̂ σ̂β̂

n = 500

γ = 0.9 -0.2 -0.199 (0.001) 0.021 0.019 -0.190 (0.010) 0.028 0.028 -0.178 (0.022) 0.032 0.033

-1.2 -1.192 (0.008) 0.123 0.139 -1.150 (0.050) 0.180 0.177 -1.079 (0.121) 0.206 0.210

-1.5 -1.492 (0.008) 0.125 0.134 -1.410 (0.090) 0.181 0.187 -1.351 (0.149) 0.237 0.241

γ = 0.7 -0.2 -0.187 (0.013) 0.023 0.024 -0.181 (0.019) 0.029 0.031 -0.173 (0.027) 0.039 0.033

-1.2 -1.139 (0.061) 0.137 0.149 -1.064 (0.136) 0.177 0.190 -1.024 (0.176) 0.215 0.227

-1.5 -1.440 (0.060) 0.155 0.152 -1.336 (0.164) 0.182 0.198 -1.293 (0.207) 0.255 0.250

γ = 0.5 -0.2 -0.173 (0.027) 0.026 0.027 -0.163 (0.037) 0.033 0.033 -0.157 (0.043) 0.041 0.039

-1.2 -1.027 (0.173) 0.174 0.206 -0.979 (0.221) 0.221 0.193 -0.931 (0.269) 0.245 0.265

-1.5 -1.351 (0.149) 0.168 0.198 -1.286 (0.214) 0.224 0.241 -1.168 (0.332) 0.259 0.280

γ = 0.3 -0.2 -0.150 (0.050) 0.030 0.032 -0.146 (0.054) 0.036 0.038 -0.135 (0.065) 0.045 0.042

-1.2 -0.933 (0.267) 0.229 0.243 -0.888 (0.312) 0.241 0.258 -0.812 (0.388) 0.280 0.292

-1.5 -1.185 (0.315) 0.199 0.203 -1.139 (0.361) 0.290 0.262 -1.102 (0.398) 0.341 0.351

γ = 0.1 -0.2 -0.138 (0.062) 0.046 0.041 -0.118 (0.082) 0.057 0.056 -0.093 (0.107) 0.051 0.057

-1.2 -0.882 (0.318) 0.296 0.310 -0.747 (0.453) 0.335 0.364 -0.675 (0.525) 0.404 0.366

-1.5 -1.177 (0.323) 0.478 0.319 -0.986 (0.514) 0.405 0.369 -0.824 (0.676) 0.399 0.374

n = 200

γ = 0.9 -0.2 -0.198 (0.002) 0.041 0.041 -0.189 (0.011) 0.053 0.053 -0.177 (0.023) 0.066 0.066

-1.2 -1.188 (0.012) 0.228 0.231 -1.125 (0.075) 0.308 0.304 -1.055 (0.145) 0.428 0.434

-1.5 -1.489 (0.011) 0.254 0.256 -1.398 (0.102) 0.336 0.330 -1.327 (0.173) 0.471 0.484

γ = 0.7 -0.2 -0.186 (0.014) 0.046 0.047 -0.175 (0.025) 0.053 0.057 -0.164 (0.036) 0.062 0.064

-1.2 -1.140 (0.060) 0.286 0.312 -1.066 (0.134) 0.318 0.328 -0.957 (0.243) 0.374 0.430

-1.5 -1.434 (0.066) 0.290 0.301 -1.352 (0.148) 0.374 0.392 -1.259 (0.241) 0.405 0.457

γ = 0.5 -0.2 -0.171 (0.029) 0.056 0.056 -0.162 (0.038) 0.062 0.065 -0.152 (0.048) 0.072 0.071

-1.2 -1.018 (0.182) 0.317 0.328 -0.988 (0.212) 0.437 0.377 -0.901 (0.299) 0.446 0.459

-1.5 -1.350 (0.150) 0.326 0.329 -1.278 (0.222) 0.464 0.428 -1.193 (0.307) 0.517 0.540

γ = 0.3 -0.2 -0.152 (0.048) 0.056 0.055 -0.143 (0.057) 0.068 0.071 -0.133 (0.067) 0.079 0.080

-1.2 -0.927 (0.273) 0.351 0.346 -0.871 (0.329) 0.417 0.435 -0.846 (0.354) 0.527 0.560

-1.5 -1.181 (0.319) 0.386 0.381 -1.104 (0.396) 0.423 0.466 -1.070 (0.430) 0.546 0.593

γ = 0.1 -0.2 -0.143 (0.057) 0.091 0.088 -0.123 (0.077) 0.097 0.103 -0.094 (0.106) 0.083 0.082

-1.2 -0.845 (0.355) 0.556 0.608 -0.762 (0.438) 0.696 0.783 -0.575 (0.625) 0.636 0.676

-1.5 -1.098 (0.402) 0.641 0.723 -0.978 (0.522) 0.831 0.791 -0.801 (0.699) 0.709 0.729
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Table 5: Simulation results from PH model for 500 simulations (univariate censoring only).

γ: truncation probability; ŝβ̂: empirical standard errors for β̂ based on 500 simulations.

Cens.% = 10% Cens.% = 30% Cens.% = 50%

β∗ β̂ (bias) ŝβ̂ β̂ (bias) ŝβ̂ β̂ (bias) ŝβ̂

n = 500

γ = 0.9 -0.2 -0.190 (0.010) 0.018 -0.191 (0.009) 0.020 -0.192 (0.008) 0.023

-1.2 -1.135 (0.065) 0.105 -1.129 (0.071) 0.117 -1.135 (0.065) 0.136

-1.5 -1.428 (0.072) 0.110 -1.431 (0.069) 0.123 -1.430 (0.070) 0.143

γ = 0.7 -0.2 -0.165 (0.035) 0.018 -0.170 (0.030) 0.020 -0.172 (0.028) 0.023

-1.2 -0.988 (0.212) 0.103 -1.018 (0.182) 0.116 -1.029 (0.171) 0.136

-1.5 -1.267 (0.233) 0.108 -1.282 (0.218) 0.121 -1.293 (0.207) 0.141

γ = 0.5 -0.2 -0.152 (0.048) 0.018 -0.157 (0.044) 0.020 -0.158 (0.042) 0.024

-1.2 -0.921 (0.279) 0.102 -0.914 (0.286) 0.114 -0.946 (0.254) 0.134

-1.5 -1.141 (0.359) 0.106 -1.164 (0.336) 0.119 -1.188 (0.312) 0.140

γ = 0.3 -0.2 -0.135 (0.065) 0.017 -0.137 (0.063) 0.020 -0.142 (0.058) 0.023

-1.2 -0.811 (0.389) 0.100 -0.803 (0.397) 0.114 -0.839 (0.361) 0.131

-1.5 -1.019 (0.481) 0.103 -1.022 (0.478) 0.117 -1.063 (0.437) 0.134

γ = 0.1 -0.2 -0.123 (0.077) 0.018 -0.121 (0.079) 0.019 -0.126 (0.074) 0.038

-1.2 -0.756 (0.444) 0.099 -0.746 (0.454) 0.112 -0.762 (0.438) 0.209

-1.5 -0.950 (0.550) 0.102 -0.939 (0.561) 0.114 -0.986 (0.514) 0.212

n = 200

γ = 0.9 -0.2 -0.189 (0.011) 0.029 -0.190 (0.010) 0.034 -0.190 (0.010) 0.037

-1.2 -1.134 (0.066) 0.168 -1.138 (0.062) 0.186 -1.136 (0.064) 0.218

-1.5 -1.421 (0.079) 0.176 -1.433 (0.067) 0.197 -1.415 (0.085) 0.229

γ = 0.7 -0.2 -0.167 (0.033) 0.029 -0.167 (0.033) 0.032 -0.170 (0.030) 0.039

-1.2 -1.001 (0.199) 0.166 -1.002 (0.198) 0.187 -1.022 (0.178) 0.219

-1.5 -1.270 (0.230) 0.173 -1.295 (0.205) 0.193 -1.298 (0.202) 0.224

γ = 0.5 -0.2 -0.155 (0.045) 0.027 -0.157 (0.043) 0.032 -0.153 (0.047) 0.040

-1.2 -0.926 (0.274) 0.168 -0.920 (0.280) 0.183 -0.945 (0.255) 0.217

-1.5 -1.150 (0.350) 0.173 -1.185 (0.315) 0.191 -1.144 (0.356) 0.229

γ = 0.3 -0.2 -0.136 (0.064) 0.027 -0.135 (0.065) 0.032 -0.142 (0.058) 0.039

-1.2 -0.811 (0.389) 0.163 -0.839 (0.361) 0.181 -0.861 (0.339) 0.213

-1.5 -1.063 (0.437) 0.166 -1.073 (0.427) 0.187 -1.055 (0.445) 0.217

γ = 0.1 -0.2 -0.125 (0.075) 0.030 -0.130 (0.070) 0.034 -0.127 (0.073) 0.037

-1.2 -0.767 (0.433) 0.163 -0.778 (0.422) 0.177 -0.797 (0.403) 0.208

-1.5 -0.953 (0.547) 0.169 -0.993 (0.507) 0.185 -0.993 (0.507) 0.213
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4.3. Estimation of h(t)

In practice, the function h(·) in the semiparametric linear transformation

model (1.1) is unknown. Therefore, unlike the AFT model studied in Wang200

et al. (2013), the model (1.1) discussed in this paper cannot be directly used to

predict the event time of interest at individual level. Although the estimation

of h is of lower interest, it can still be estimated using the estimating equation

(2.3). For i = 1, . . . , n, the estimated h(t), evaluated at t = Xi, should be

able to recover the rank of Ti, since h is a strictly increasing function. Here we205

introduce a simple method to assess the performance of the estimates for h(t).

Given Fε(t) = 1 − exp{− exp(t)}, for an observed sample size n = 500 and

500 simulations, we have that β̂ = (−0.181,−1.064,−1.336)tr under around 0.7

truncation probability and 30% censoring percentage (Table 4). Then h(Ti)

can be estimated by substituting β̂ into the estimating equation (2.3). Since210

g−1(·) = 1− Fε(·), the distribution of
{(
ĥ(Xi) +Wiβ̂, δi

)
, i = 1, . . . , n} should

be very close to the distribution of ε. As shown in Figure 2, the estimates

are slightly biased at the tails because the bivariate survival function estimates

are not very good when points are too sparse. But overall the distribution of{(
ĥ(Xi) +Wiβ̂, δi

)
} are very close to the theoretical distribution of ε.

Figure 2: Q-Q plot for
{(
ĥ(Xi) +Wiβ̂, δi

)
, i = 1, . . . , n}.

215
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5. Data analyses

In this section we apply our proposed method on the two real-world datasets

in Example 1.1 and 1.2 to illustrate its practicability in different research areas.

5.1. Hepatitis C data from Edinburgh Royal Infirmary Hospital

The dataset consists of 387 patients with chronic hepatitis C who had been220

recruited to the liver clinic in Edinburgh Royal Infirmary hospital by the end of

year 1999. Patients were included to the study cohort with a referral bias (Dore

et al., 2002). This is because the disease progression of chronic hepatitis C is

often asymptomatic after initial infection. Most people with HCV infection do

not seek medical advice until severe symptoms exhibit. Therefore, the patients225

with more rapid disease progression are preferentially referred to liver clinics or

that referral is increasingly likely the closer a patient is to developing cirrhosis

(Fu et al., 2007). To take such referral bias into account, we incorporate right

truncation of the referral time R, that is, only the patients with R ≤ L can be

recruited to the study cohort.230

Among the 387 patients, no cirrhotic event occurred prior to referral and

63 (16%) developed cirrhosis during their follow-up time. The mean age at

HCV infection is around 22 years old. The median duration from infection to

referral is 17.1 years and the median follow-up time from referral to cirrhosis or

censoring is 2.4 years. Our aim is to determine how the progression to cirrhosis235

is affected by the three covariates: age at infection, HIV co-infection (yes: 1 or

no: 0), and alcohol excess (yes:1 or no: 0). An individual with excess alcohol

intake is defined as one consuming more than 50 units per week for at least 5

years.

Given Fε(t) = 1 − exp{− exp(t)}, the linear transformation model (1.1)240

gives the standard Cox model. Under this model we analyse the hepatitis C

data using: 1) our proposed method (for bivariate data with both truncation

and censoring); 2) the method proposed by Cheng et al. (1995) (for univariate

data with only right censoring). Table 6 presents the estimates of regression

parameters.245
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Table 6: Estimation results for hepatitis C data (standard errors in parenthesis).

1) Truncation & censoring 2) Censoring only

β̂ (SE) β̂ (SE)

Age at HCV infection 0.008 (0.002) 0.050 (0.005)

HIV co-infection 0.135 (0.051) 0.857 (0.202)

Alcohol excess 0.117 (0.029) -0.344 (0.101)

By incorporating truncation, the potential referral bias is considered in our

proposed method. The results show that all the three covariates are identified as

significant risk factors associated with more rapid progression to cirrhosis. The

results from the standard Cox model under right censoring only (Cheng et al.,

1995) show that ignorance of the potential referral bias leads to a nonsensical250

estimate of the impact of alcohol excess, i.e. heavy alcohol intake can slow down

the progression to cirrhosis. In medical literatures, all these three covariates have

been recognised as risk factors associated with more rapid disease progression

of hepatitis C (Sharma & Sherker, 2010).

5.2. Business failure data255

The dataset described in Example 1.2 consists of 420 small and medium size

Italian firms having available information in Amadeus Database provided by

Bureau van Dijk. As illustrated in Figure 1, we observe a paired event times

(R, T ) for each firm, where R is subject to left truncation by L and T is subject

to right censoring by C. The potential referral bias exists due to the fact that260

newly established firms are more likely to be included in the study cohort. In

the mean time they are more likely to be bankrupt (e.g. during a financial crisis)

than those have been established for longer period of time.

Denote C
′

as the time period from establishment to the last follow-up. Then

in theory, the time R may also be right censored by C
′
, if the lost of follow-265

up happens in the very short time window between database entry and first

financial statement available. However, we ignored this censoring here because
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it did not happen in our data. In the whole database, the right censoring of R

is very rare.

We analyse this data to see how the progression to bankruptcy is affected by270

the three covariates: return on assets, medium size (yes:1 or no:0) and limited

liability form (yes:1 or no:0). These covariates were identified in some exist-

ing literatures as risk factors associated with higher risk of bankruptcy (see for

example Altman (1968); Bhattacharjee et al. (2009); Situm (2014)). Among

the 420 firms, 381 (90 %) have medium size and 367 (87%) have limited liabil-275

ity form. The median duration of follow-up since the first financial statement

available is 8.5 years with interquartile range of 6.1 to 9.5 years. Only 82 firms

(around 19%) were still active after the last follow-up. Table 7 summarizes the

estimates obtained from: 1) our proposed method; 2) the standard Cox model

under right censoring only (Cheng et al., 1995).

Table 7: Estimation results for business failure data (standard errors in parenthesis).

1) Truncation & censoring 2) Censoring only

β̂ (SE) β̂ (SE)

Return on assets -0.186 (0.064) 0.009 (0.015)

Medium size -2.572 (0.968) -1.896 (0.420)

Limited liability -1.534 (0.756) -2.288 (0.471)

280

With truncation being considered, the results from our method show that

lower values of return on assets, smaller firm size and non-limited liability form

are associated with more rapid progression to bankruptcy. However, ignorance

of truncation leads to a nonsensical result that higher return on assets gives

higher risk of bankruptcy (Altman et al., 1977; Laitinen & Suvas, 2013).285

5.3. Estimation of truncation probability

In practice, we can also estimate the truncation probability of a real-world

data via the method in Shen (2006) or the one in Dai & Fu (2012). Specifically,

if both of the bivariate event times are subject to left truncation by L1 and L2,
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the truncation probability γ can be estimated by

γ̂ =

[
n−1

n∑
i=1

1

Ŝ(L1i−, L2i−)

]−1
, (5.1)

where S(t1, t2) = P(R > t1, T > t2) is the bivariate survival function of (R, T ),

and S(t1−, t2−) is its left-continuous version. The bivariate survival function

S(t1, t2) can be estimated by the methods in Dai & Fu (2012); Dai et al. (2016).

In the case that only R is right-truncated by L, we let R
′

= const − R which290

is left-truncated at (const − L), where ‘const’ is a constant term such that

const − R ≥ 0 and const − L may be negative. Then our method can be

applied. Here the estimated truncation probability for the hepatitis C data and

the business failure data is 0.08 and 0.21, respectively.

6. Conclusions295

In this paper, we developed a new approach for a class of semiparametric

linear transformation models h(T ) = −Wβ + ε to handle bivariate survival

data under both censoring and truncation. The well-known Cox proportional

hazards model can be seen as one special case of the linear transformation

model, given the error term ε following a standard extreme value distribution.300

A new class of estimating equations for the parameter β were proposed to

allow a flexible bivariate distribution structure between the two correlated event

times R and T . By incorporating truncation, the potential referral bias in

practice could be taken into account when estimating the regression parameters

in the semiparametric linear transformation models. Simulation studies under305

different scenarios indicated that our method could effectively reduce the bias

due to truncation and provide more precise estimates under moderate censoring

percentages (around 30% or less). However in the presence of heavier censoring

(around 50% or greater), our method might not perform as well as the Cox

procedure. Analyses of two real-world dataset demonstrated the importance310

of applying our method on bivariate survival data with truncation, since our

method provided more reliable estimates for the effects of covariates.
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In summary, our proposed method is an important candidate of handling

bivariate survival data with truncation and can be applied on many research

areas. For future work, we may extend the method proposed in this paper to315

handle time-varying coefficients.

Appendix A. Proof of Theorem 3.1

First we show the asymptotic normality of n1/2U(β∗; Ĝ). For simplicity,

let G(1) = G(Ri−, Xj−), G(2) = G(Rj−, Xj−), G(3) = G(Ri−, 0) and G(4) =320

G(Rj−, 0).

For β = β∗, we have

n1/2U(β∗; Ĝ) = n1/2
[
U(β∗; Ĝ)−U(β∗;G)

]
+ n1/2U(β∗;G)

= n−3/2
n∑
i=1

n∑
j=1

[
eij(β

∗;G) + νij(β
∗)
]

+ op(1),

where

eij(β
∗;G) = Wij

{
δjI[Xi ≥ Xj ]I[G(1)G(2) > 0]

G(1)G(2)
− θ(Wijβ

∗)I[G(3)G(4) > 0]

G(3)G(4)

}
,

νij(β
∗) =

WijδjI[Xi ≥ Xj ]

G(1)G(2)

[
G(1) − Ĝ(1)

G(1)
+
G(2) − Ĝ(2)

G(2)

]
− Wijθ(Wijβ

∗)

G(3)G(4)

[
G(3) − Ĝ(3)

G(3)
+
G(4) − Ĝ(4)

G(4)

]
.

Following the results in Wang et al. (2013), we have

G(t1, t2)− Ĝ(t1, t2)

G(t1, t2)
= n−1

n∑
k=1

Mk(z;α) + op(1),

where α = t2/t1, z =
√
t21 + t22 and Mk(z;α), given α, is a zero-mean martingale.

Then we have

n1/2U(β∗; Ĝ) = n−5/2
n∑

i,j,k=1

[
eij(β

∗;G) + ςijk(β∗, G,Mk)
]

+ op(1),
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where

ςijk(β∗, G,Mk) =
WijδjI[Xi ≥ Xj ]

G(1)G(2)

[
Mk(Zij ;αij) +Mk(Zjj ;αjj)

]
− Wijθ(Wijβ

∗)

G(3)G(4)

[
Mk(Ri; 0) +Mk(Rj ; 0)

]
.

Thus n1/2U(β∗; Ĝ) is a U-statistic and when n→∞, n1/2U(β∗; Ĝ)→ N(0,ΣU ),

where

ΣU = Var
{
n−5/2

n∑
i,j,k=1

[
eij(β

∗;G) + ςijk(β∗, G,Mk)
]}
.

Then the theorem follows from the first-order Taylor expansion for a vector field

U(β∗; Ĝ) ≈ U(β̂; Ĝ) +U
′
(β̂; Ĝ)(β∗ − β̂).
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