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Global-Local Temporal Saliency Action Prediction
Shaofan Lai, Wei-Shi Zheng, Jian-Fang Hu, and Jianguo Zhang

Abstract—Action prediction on a partially observed action
sequence is a very challenging task. To address this challenge,
we first design a global-local distance model, where a global-
temporal distance compares subsequences as a whole and local-
temporal distance focuses on individual segment. Our distance
model introduces temporal saliency for each segment to adapt its
contribution. Finally, a global-local temporal action prediction
model is formulated in order to jointly learn and fuse these
two types of distances. Such a prediction model is capable
of recognizing action of 1) an on-going sequence and 2) a
sequence with arbitrarily frames missing between the beginning
and end (known as gap-filling). Our proposed model is tested and
compared to related action prediction models on BIT, UCF11 and
HMDB datasets. The results demonstrated the effectiveness of our
proposal. In particular, we showed the benefit of our proposed
model on predicting unseen action types and the advantage
on addressing the gapfilling problem as compared to recently
developed action prediction models.

Index Terms—Action prediction, Gapfilling

I. INTRODUCTION

Action prediction is a new dimension towards understanding
human activities. Different from action recognition, which
has been well studied in the recent decades [1], [2], [3],
[4], [5], [6], action prediction is to recognize actions without
observing the complete action execution. It is of high demand
on deploying action prediction in many real-world scenarios.
For example, the tasks like health care assistance, robotic
equipment control, and criminal activities surveillance, expect
predicting human action before it has been fully executed in
order to prevent damage and make prompt reaction. Unlike ac-
tion recognition, action prediction requires models to discover
the temporal-spatial relationship between early segments and
unobserved segments. Although existing action recognition
methods can be directly applied to action prediction, they
are non-optimal for action prediction [2], [3], [7], because
they rely on full observation of activity sequence, and are not
specifically designed for partially observed sequence.

The majority of the existing action prediction works fo-
cus on either developing classification models on partially
observed sequences[10], [11], [12], [8] or exploiting reliable
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Fig. 1: Illustration of three problems in identifying action from
a sequence; (1) action recognition (with fully observed se-
quence); (2) action prediction, where the unobserved segments
is after the observed ones; (3) gapfilling, where some segments
of an action sequence is arbitrarily unobservable.

features [13], [14], [9], [15]. However, they still have the
following limitations.

1) Most of them treat the observed action segments
equally [9], [8]. However many actions could be
well characterized by only a few segments. Taking
the “kicking” action in Figure 1 as an example, the
segments in the middle of the sequence are visually
more informative in identifying the action than the
rest. Thus, better performance could be achieved by
assigning rational weights on different segments.

2) Existing models for action prediction emphasize too
much on discriminative learning of local segments
[8], [9]. The global description of an on-going se-
quence is often overlooked for the prediction. How-
ever, the global temporal description is very useful in
recognizing some actions which are locally similar.
For example, in Fig. 2, the motion information of
“patting” and “pushing” is largely shared, and thus
it is difficult to discriminate the two actions by just
looking at local segment, but they could be well
distinguished on global (aggregated) information at
a larger scale.

3) Most of the existing action prediction methods re-
ly on template generation [8], [9], [14], or train-
ing action-specific SVM classifiers [10], [11]. They
cannot learn a metric, and they are not good for
potentially generalization to actions types that have
not been seen in training set. Actually different
human actions could share in certain aspects. For
example, patting can be decomposed into “raising

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other 
uses, in any current or future media, including reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of 
any copyrighted component of this work in other works.
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TABLE I: Difference between our method and the existing prediction models.

Methods
Local/Global
Information

Temporal Saliency Gapfilling
Observation Ratio

NOT Available
Generalization to
Unseen Classes

Learning Methodology

DBoW[8] X/ uniform Bayesian

IBoW[8] X/ uniform Bayesian

MSSC[9] X/ uniform X Sparse Coding

SC[9] X/ uniform X Sparse Coding

MTSSVM[10] X/X implicitly learned X Structured SVM

MMAPM[11] X/X implicitly learned X Structured SVM

Our Method X/X explicitly learned X X X Metric learning

Fig. 2: The first row shows part of action “patting”, and the second row is part of action “pushing”. They resemble each other
in most columns, which represent local segments. But by considering motion in longer time, namely the whole sequence, the
two actions would be potentially distinguished by accumulating subtle differences of consecutive segments in pushing and
patting.

arms” and “patting the shoulder”, while pushing can
be decomposed into “raising arms” and “pushing
away”. Intuitively, the pattern of “raising arms” is
shared among many actions related to hands, and
assigning certain weights to it can help us to dis-
tinguish them from others, like “kicking”, “running”
and “bowing”. Therefore, metric learned from one
set of action types could be generalized to recognize
unseen action types.

Another branch of partially observed action recognition task
is gapfilling1. In gapfilling, unobserved frames could appear
in arbitrary parts of an action sequence due to camera shaking
or occlusion. However, to the best of our knowledge, the
gapfilling problem was seldom addressed except the work
in [9]. One fundamental difference between gapfilling and
prediction is that the gaps separate the observed frames into
temporally disjointed segments. Most of existing prediction
models assume that the observed action execution must be
continuous and thus cannot be applied under this scenario.

To address the aforementioned problems on understanding
partially observed action sequence, we propose a global-local
temporal action prediction framework. Specifically, we learn
distance measures between subsequences, each of which is
the accumulated segments since the start of an action. This is
termed as global-temporal distance. We also learn a distance
measure between different segments at the same observation
level so as to compare the features from local segments, and

1For consistency, we follow the same terminology introduced in [9]. It
refers to the task of recognizing action sequence with a few frames having
content missing.

we name this as the local-temporal distance. Whilst modeling
global-temporal distance is helpful in characterizing one on-
going sequence as a whole, the local-temporal distance intends
to capture some local action cues for prediction and thus
can be used to tackle the gapfilling problem when continuity
of sequence cannot be guaranteed. The global- and local-
temporal distance measures are learned jointly to accomplish
prediction as well as gapfilling. Since the importance of
observed segments differs as time goes, we introduce temporal
saliency weights to fuse all local-temporal distance measures
in a selective way rather than combining them uniformly.
Moreover, our saliency weights are allowed to change over
time, which means that the importance of each individual local
observation can be different as more information about the ac-
tion is observed. Due to the nature of distance metric learning,
our global-local temporal action prediction framework can be
applied to help predict action types that are not seen in the
training stage.

In this paper, a set of experiments were carried out for action
prediction on BIT-Interaction dataset (BIT) [16], UCF11 [17]
and HMDB [18] to demonstrate the effectiveness of our
proposed model. It was shown that our proposal can 1)
conquer gapfilling better than [9]; 2) perform reliably upon
the observation ratio estimation; and 3) learn a set of metrics
with good generalization ability.

In summary, our contributions are several folds: 1) intro-
ducing a global-local distance model with temporal saliency;
2) a novel action prediction method with cost function driven
by push and pull strategies; 3) a model for addressing the
gappfiling problem; 4) extensive comparison with state-of-
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the-arts and comprehensive evaluation of model parameters;
5) demonstrating compatibility on improving the deep neural
network for action prediction.

II. RELATED WORK

Action Recognition. There exists a large body of work in
action recognition in last decades. Many of these approaches
are based on low-level features, for instance, appearance and
the spatio-temporal local features [19], [20], [21]. Beyond low-
level features, high-level semantic concepts [22], [3], pose-
based information[23], [24] and data-driven concepts[25] were
also explored to make the video representation more expres-
sive. Other approaches intended to discover some common
temporal patterns for human action recognition using sequen-
tial models, where action videos were treated as a composition
of consecutive segments [26], [27], [28]. Recently, an end-
to-end deep two-stream network that combines both RGB
and optical flow information[29], [4] achieved state-of-the-
art performance for action recognition on several datasets.
However, those action recognition models assume that the
action sequence is fully observed by the system.

Although action prediction at a given observation ratio2 can
be treated as a conventional action recognition problem, it is
naive and non-optimal to simply formulate action prediction
as an ensemble of action classification tasks without any
further modeling. This is mainly because conventional action
recognition holds the assumption that the temporal information
of an action is mostly complete, while only partial temporal
information of an action is observed in action prediction.
Action Prediction. Action prediction has become popular
recently. One representative approach is to formulate a tem-
plate based model for the prediction. For example, Ryoo [8]
generated templates for different actions by averaging features
of the same categories, and the likelihood between samples
and template is calculated and employed in a Bayesian model
to make prediction. However, these templates could be easily
affected by the outliers and would perform poorly when
actors present large pose variations. To fix this issue, a sparse
representation is built for each testing sample and the recon-
struction error was used for calculating the likelihood between
templates and testing samples in [9]. Lan et al. [14] also
exploited templates but at multiple levels of granularities in
a hierarchical representation, which can capture and compare
human movements at different context levels. In [15], the on-
going sequence is considered as a prefix, whose unobserved
parts as well as action type were auto-completed by the model
using extracted discriminative patches.

Another line of work focused on discovering temporal
characteristics of human actions. In [9], the templates were
employed for matching, and a dynamic programming scheme
was used to compute optimal likelihood of a sample. By lever-
aging the fact that the confidence of prediction should increase
with more frames gradually observed, a temporal evolving
margin was proposed in [10], [11]. Action representation was
derived from multiple segmentations and a kernel designed on
the best hierarchical structure was applied in [12]. Vondrick et

2The observation ratio will be formally defined in Sec. III-A

al. [30] developed a deep neural network approach which min-
imized the difference between the predicted features and the
ground truth features of the future frames. By mining temporal
sequence patterns and discovering causality, context-cue and
predictability of human activities, it was able to predict long-
duration complex actions [31]. The depth information was also
leveraged to predict action in a soft regression framework to
improve the prediction accuracy [32]. Recently, the task of on-
line action detection [33] has been reported, which is another
related but different challenging task requiring model to output
when to start and end, and what type it is for an action on
the fly. In comparison action prediction can be regarded as a
sub-procedure after the start of an action is marked.

Note that the holistic feature representation of the whole
on-going action sequence alone does not perform well in
action prediction, although it is widely used in the conven-
tional action recognition task [2], [7]. Nevertheless, the global
information is able to provide an overall description of the
observed sequence, albeit not the complete action sequence.
It could complement the use of local segment for predicting
an action type, especially when local segments of different
actions look similar.

Action Gapfilling. Both action prediction and action with
gapfilling problem can be generally considered as partial
action recognition. In action prediction, the unobserved parts
are those consecutive frames following the observed segments
of an action, while in gapfilling the unobserved parts (i.e.,
gaps) can appear anywhere in an action sequence. In general,
gaps can occur due to strong camera movement or temporarily
blocking of view. Clearly action gapfilling is more general
and challenging than prediction; however, it received less
attention than the prediction problem. Most of the existing
action prediction models [10], [11], [8] cannot be used to
address gapfilling because they assume that the observed video
must be consecutive.

To the best of our knowledge, gapfilling problem was only
addressed very recently by Cao et al [9], where the gapfilling
problem was studied by discarding information contained in
the unobserved segments. Different from this work, we form
a discriminative local-temporal distance metric measuring the
similarity between segments at the same observation level so
that our model is flexible enough to handle the gapfilling in a
more principled way without discarding any action segments.

Metric Learning. Our model also relates to metric learning.
Indeed, metric learning is a long-term research topic and
many distance metric models have been developed including
LMNN[34], NCA[35], MCML[36], and the kernel extension
[37]. They have been widely applied in computer vision, such
as face recognition[38], tracking[39], person re-identification
[40], image retrieval [41] and text retrieval [42].

However, these metric approaches are not particularly de-
signed for action prediction. While most of previous models
for action prediction are based on SVM or Bayesian model,
our work offers the first attempt of developing a distance
metric learning based model in this perspective. We introduced
a global-local temporal distance to compute the similarity
between the observed sequences, so that it provides both
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action distance
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β·

global distance

+

local distance
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Fig. 3: The similarity of two observations is defined by the sum of local-temporal distance weighted by temporal saliency and
global-temporal distance. Local-temporal distance metric is learned in each segmental space H(t) while the global-temporal
distance metric provides a global perspective.

local and global comparison of features from on-going action
sequence. Moreover, our learned metric could generalize to
unseen action classes, while existing work on action prediction
cannot. In one word, we are not focusing on exploring a
pure distance metric model, but investigating how distance
metric learning can be developed to solve the action prediction
problem in a principled way.

III. APPROACH

In this section, we first present some key notations used
in this work. We then introduce our global-local temporal
saliency distance model to measure the distance between two
partially observed video clips. Finally, the objective function
of the proposed prediction model is defined, followed by the
optimization algorithm.

A. Segments Extraction
Action prediction can be viewed as a task of recognizing

action with partial executions. Following the settings in [11],
each action video is uniformly split into G shorter segments.
An action video v containing M frames is denoted as v[1,M ],
and each segment has M

G frames. We use v(t,e) = v[MG · (t−
1) + 1, MG · e](1 ≤ t ≤ e ≤ G) to denote the partial action
video starting from the t-th segment and ending at the e-th
segment. Especially, when t = e, v(e,e) = v(e), denoting the
eth segment of video.

After splitting an action video into G segments, an observa-
tion level is defined, which is represented by the ratio between
the number of observed segments and the total number of
segments from that video, termed as observation ratio. For
instance, if the first i segments of a given video are observed
by the system, then its observation ratio is i

G . Thus, in total,
we could have G observation levels for an action video.

Video features are extracted from each observation v(t,e),
and denoted as x(t,e). Therefore x(1,g) is the feature represen-
tation of a subsequence of a video from the first segment to

the gth segment. Similarly, we have x(e) = x(t,e) when t = e.
We also use a feature space H(t) to indicate the space spanned
by {x(t)

i }Ni=1, where N is the total number of training samples
and x(t)

i is the feature extracted from the tth segment of the
ith sequence.

B. Global-Local Temporal Distance
In order to predict actions at different observation levels, a

metric Dg(·, ·) is introduced to measure the distance between
two observations at the gth level (i.e., the sequence observed
till the gth segment). If the action sequence is divided into G
segments, a total of G action metrics need to be learned.
The Local Temporal Distance. It is indeed that sometimes the
underlying action can be probably identified by just providing
a glimpse of the sequence [14]. For example, a segment of
“shaking fist” would probably signify that the action being
performed is “punching”. It is expected that the distance
between the corresponding segments from the same action
should be as small as possible and the one between segments
from different actions should be large, so as to mine some
discriminant local details for early action classification. For
this purpose, the distance between the tth segments of two
action sequences can be formulated as:

d(t)(x
(t)
i ,x

(t)
j ) = (x

(t)
i − x

(t)
j )TM (t)(x

(t)
i − x

(t)
j ), (1)

where M (t) is a positive semi-definite metric matrix.
The Global-Temporal Distance. Since local-temporal dis-
tance only measures the similarity between local segments,
it could struggle to differentiate the actions that look locally
similar, i.e., by just looking at a local segment. To address
this issue, a global-temporal distance d(1,g)(x

(1,g)
i ,x

(1,g)
j )

is employed as a complementary measure to compute the
distance between different observations in Eq. (1) as follows:

d(1,g)(x
(1,g)
i ,x

(1,g)
j ) = (x

(1,g)
i −x(1,g)

j )TAg(x
(1,g)
i −x(1,g)

j ),
(2)
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where Ag is positive semi-definite matrix. Different from the
local feature x(t)

i that captures local action details, the global
feature x(1,g)

i provides an overview description of the whole
observed sequence.
The Global-Local Temporal Saliency Distance. To in-
corporate both global and local temporal cues, we build
an ensemble of local-temporal distance functions d(t)(x

(t)
i ,

x
(t)
j ), (t = 1, · · · , g) and global-temporal distance function

d(1,g)(x
(1,g)
i ,x

(1,g)
j ) such that the distance of the samples of

the same action is minimized and the distance of samples
from different classes is maximized. As shown in Figure 3,
the distance between the first g segments of videos vi and vj
is defined as:

Dg(vi,vj) =

g∑
t=1

α(t)
g d(t)(x

(t)
i ,x

(t)
j )+βd(1,g)(x

(1,g)
i ,x

(1,g)
j ),

(3)
where d(t) is the local-temporal distance measuring the sim-
ilarity between the tth segments from videos vi and vj , and
d(1,g) measures the similarity of the observations from a global
temporal view. A parameter β is used to control the trade-off
between the local and global temporal distances.

In the above Eq. (3), we introduce an αg , called the tempo-
ral saliency, to measure the contribution of each local temporal
distance in classification task Tg(g ∈ {1, 2, ..., G}), where
only the first g segments are observed. We observe that some
segments are more important than the others for characterizing
an action. The importance of the observed segments could
change if more future segments are observed. Taking the action
“kicking” presented in Figure 8 as an example, information
from only a few segments (in the middle) of the whole action
video could be sufficient to tell the underlying action. Hence,
we are motivated to weight the local segments differently.
Note that, each αg is a g-dimensional vector, shared among
different actions. To ensure that the scale of αg will not affect
the ensemble distance modeling, we add the constraint that∑g

t=1α
(t)
g = 1 and α(t)

g ≥ 0.

C. Global-Local Temporal Action Prediction Model

Based on the above formulated Global-Local temporal
distance (i.e. Eq.(3)), we now describe how the distance
could be used for action prediction. The prediction model is
formed by taking use of the holistic feature extracted from
the entire observed sequence and the temporal local features
extracted from each segment. Two losses are introduced as
functions of distances defined on the two types of features,
respectively, namely the successive segments loss and the
individual segment loss.
Successive Segments Loss. In order to quantify the global-
local temporal distance measure on action prediction of the
whole observed sequence, we introduce a joint learning on the
global-temporal and the ensemble of local-temporal models
weighted by temporal saliency using the large margin idea
[34]. Specifically, the successive segments loss function is
defined as follows:

Lg(αg,Ag, {M (i)}gi=1) = µEpullg + (1− µ)Epushg
, (4)

where µ is the parameter to balance the effects of the “pull”
and “push” operations. Epullg is for “pull” strategy and defined
as:

Epullg (αg,Ag, {M (i)}gi=1) =
∑

(i,j)∈S

Dg(vi,vj), (5)

where S = {(i, j)|yi = yj}, yi, yj are the labels of video vi
and video vj . Video vj is one of the K nearest neighbors
of video vi in the feature space, where the effect of K will
be tested in Sec. IV-B. Note that the neighborhood will be
changed accordingly when Dg is updated during optimization.
Meanwhile, minimizing Epushg

achieves the “push” step in
order to ensure that the distance between videos vl and vi
from different classes is larger than the distance between vi
and vj from the same class with a margin in the feature space
as follows:

Epushg
(αg,Ag, {M (i)}gi=1) =∑
(i,j,l)∈R

[Dg(vi,vj)−Dg(vi,vl) + 1]+, (6)

where we denote all tuples for minimizing Epushg
as R =

{(i, j, l)|(i, j) ∈ S, yi 6= yl, yj = yi}.
Individual Segment Loss. In gapfilling, some segments might
be missing at arbitrary locations. Therefore the global-view
feature is not usable in this case. To compensate this, we
introduce the individual segment loss lt with respect to each
segment:

lt(M
(t)) = µεpullt(M

(t)) + (1− µ)εpusht
(M (t)). (7)

Similar to Lg , lt consists of two parts: the “pull” loss εpull
and the “push” loss εpush defined as below:

εpullt(M
(t)) =

∑
(i,j)∈S

d(t)(x
(t)
i ,x

(t)
j ), (8)

and

εpusht
(M (t)) =∑
(i,j,l)∈R

[d(t)(x
(t)
i ,x

(t)
j )− d(t)(x(t)

i ,x
(t)
l ) + 1]+. (9)

Successive Segment Loss vs. Individual Segment Loss. The
main difference is that in the successive segments loss (Eq.
(4)), the distance defined by Dg(vi,vj) is a joint distance
model formed by the global-temporal and ensemble of local-
temporal distances. Therefore the successive segments loss
(Eq. (4)) is a loss arising from the collective distance compar-
ing the observed on-going action sequence. In contrast, each
individual segmental loss (Eq. 7) is specifically defined as a
function of each local distance between two corresponding
local segments. Minimizing the individual segmental loss is
complementary to minimizing the successive segments loss,
since the segmental loss is defined based on the features com-
puted from the corresponding segments, and thus unaffected
by the the missing segments. Therefore, it is more suitable to
address the gapfilling problem.
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Algorithm 1 Optimization - Pseudo Code

1: procedure TRAIN(D = {(xi, yi)}Ni=1)
2: for each training epoch do
3: Calculate all losses lt(M

(t)) and
Lg(αg,Ag, {M (i)}gi=1)

4: Update learning rate by comparing the losses to
those in last epoch

5: for t = g ∈ {1, 2, ..., G} do
6: Calculate the gradient ∇M (t)

7: Calculate the gradient ∇αg

8: Calculate the gradient ∇Ag

9: M (t) ←M (t) − ηM(t)∇M (t)

10: αg ← αg − ηαg∇αg

11: Ag ← Ag − ηAg∇Ag

12: M (t) ← PS+(M (t)) . Project to S+
13: αg ← α+

g /
∑
α+

g . Ensure constraints
14: Ag ← PS+(Ag) . Project to S+

Objective Function. By considering the above two kinds of
losses, the final objective function can be written as:

L({αi,Ai,M
(i)}Gi=1) = γ ·

G∑
t=1

lt(M
(t))

+ (1− γ) ·
G∑

g=1

Lg(αg,Ag, {M (i)}gi=1), (10)

and the corresponding optimization problem is:

minL({αi,Ai,M
(i)}Gi=1) (11)

s.t. α∗i ≥ 0,
i∑

t=1

α
(t)
i = 1

A∗,M
(∗) ∈ S+

where γ is a parameter balancing the contribution of successive
segments loss and each individual segment loss, and S+ is the
semi-definite matrix space. Parameters are obtained based on
minimizing L.

It is worth noting that our distance model formulated in Eq. (3)
is quite flexible and can be combined with different types of
loss functions. In the experimental section Sec. IV-E1, we have
also reported the comparison results obtained by our distance
model and other loss functions.

D. Optimization and Inference

The objective function in formula (11) needs to be optimized
over a group of parameters including G weight vectors αg ,
G local metric matrices M (t), and G global metric matrices
A(t). To achieve this, we propose an optimization algorithm
based on the projected gradient descent approach [34].

1) Initialization of αg: Although αg can be learned a-
long with M (t), we use a rough estimation of αg as its
initialization. For the tth segment, we roughly estimate its
discriminativeness by calculating

P (t) =

N∑
i=1

∑
yi=yj

exp(−‖x(t)
i − x

(t)
j ‖2)∑

k 6=i exp(−‖x
(t)
i − x

(t)
k ‖2)

. (12)

which is inspired from the objective function in [35]. A low
P (t) indicates that this segment can hardly tell the difference
between actions, and thus less attention should be paid on it.
Then αg can be initialized as

α(i)
g =

P (i)∑g
j=1 P

(j)
. (13)

2) Optimization of M (t), Ag and αg: We use the gradient
decent approach to update M (t), Ag and αg so that the
loss defined by Eq. (10) would decrease. The gradients are
computed as follows:

∇M (t) =
∂

∂M (t)
L(M (t))

=µ[γ + (1− γ)
G∑

g=t

α(t)
g ]

∑
(i,j)∈S

C
(t)
i,j

+ (1− µ)[γ
∑

(i,j,l)∈R(t)
l

C
(t)
i,j,l

+ (1− γ)
G∑

g=t

α(t)
g

∑
(i,j,l)∈Rg

L

C
(t)
i,j,l], (14)

∇Ag =
∂

∂Ag
Lg = β[µ

∑
(i,j)∈S

C
(1,g)
i,j

+ (1− µ)
∑

(i,j,l)∈Rg
L

C
(1,g)
i,j,l ], (15)

∇α(t)
g =

∂

∂αg
Lg

=µ
∑

(i,j)∈S

d(t)(x
(t)
i ,x

(t)
j ) + (1− µ)

∑
(i,j,l)∈Rg

L

[d(t)(x
(t)
i ,x

(t)
j )− d(t)(x(t)

i ,x
(t)
k ) + 1]+,

(16)

where C(s,t)
i,j = (x

(s,t)
i − x(s,t)

j )(x
(s,t)
i − x(s,t)

j )T , C(s,t)
i,j,l =

C
(s,t)
i,j − C(s,t)

i,l , R(t)
l = {(i, j, l) ∈ R|d(t)(x(t)

i ,x
(t)
j ) −

d(t)(x
(t)
i ,x

(t)
l ) + 1 > 0}, and R(t)

L = {(i, j, l) ∈
R|Dg(vi,vj)−Dg(vi,vl) + 1 > 0}.

Since M (t) and Ag must be positive semi-definite, we need
to project the matrix M (t) obtained by a standard gradient
descent method onto the positive semi-definite matrix space
S+. Specially, we perform the eigen-decomposition of M̃ =
QΛQ−1 = QΛQT , where Λ is a diagonal matrix with all the
eigenvalues being the diagonal terms. Let Λ+ = max(Λ, 0)
be the diagonal matrix that truncates all negative eigenvalues.
Eventually, we have PS+(M (t)) = QΛ+QT . The projection



SUBMISSION TO IEEE TIP 7

will be performed after every step in order to ensure M (t) and
Ag are positive semi-definite. As for αg , we truncate negative
value and perform normalization by

∑
α+

g so that the sum will
be exactly 1.

3) Inference: In the testing stage, the videos of different
observation levels are assumed to be provided manually (or
estimated by certain algorithms; please see Section IV-E4 for
example.). Once the parameters M (t), Ag , and αg are deter-
mined, we then calculate the integrated global-local distance
(i.e. Eq. (3)) between training samples and testing samples.
Then a k-Nearest Neighbor (KNN) algorithm is used to predict
the label of a testing sample. The value of K is the number
of nearest neighbors, the same as used in Eq. (5) and Eq. (8)
during training. The effect of K is tested in Section IV-E3.

IV. EXPERIMENTS

Our method is tested on three datasets: UCF11 [17], BIT-
Interaction dataset (BIT) [16] and HMDB[18]. The first two
were widely used in the action prediction community [8], [9],
[11], and HDMB is a new set with a large number of videos.
A group of experiments were conducted extensively in the
following four settings.

1) The typical action prediction setting [8], where the ending
parts of given action sequences are supposed to be
unobserved. In this setting, the observation ratio of each
ongoing action video is also provided during testing.

2) The same setting as the typical action prediction setting
except that the observation ratio is not available when
conducting prediction.

3) The gapfilling setting [9], where the middle parts of a
sequence are missing.

4) The generalization task, where we directly apply the
metric learned from non-target actions to predict related
target actions.

A. Action representation

Our model was trained on fully observed videos, and tested
on partially observed ones. Therefore, the sequences used
for training were fully accessible, and partially observed test
sequences were made by varying its observation levels sys-
temically. For each video, we used the STIP (spatio-temporal
interest point) [43] and IDT (improved dense trajectory) [44]
to extract the spatiotemporal features.

STIP (with HOG/HOF) is a local descriptor capturing local
features around selected interest points, while IDT tries to
choose a set of salient trajectories to capture the movements
depicted in the action. These two features provide both short-
term and long-term information about an action and are widely
used in video preprocessing[10], [11].

We constructed a visual dictionary for feature type using
the K-means algorithm. Then, a bag of words histogram
x(t,e) was built to represent each sequence v(t,e). Since we
are using histogram features, the explicit kernel mapping for
approximating the χ2 kernel [45] was used to mapping the
features into a high dimensional space. Finally, we used PCA
to reduce the mapped dimensionality of the histogram to 200
on BIT, or to 800 on UCF11 and HMDB.

B. Conventional Action Prediction Scenario

In this section, we tested our method under the standard
action prediction setting and extensively compared our method
with the existing prediction models including DBoW[8],
IBoW[8], MSSC[9], SC[9], MTSSVM[10], and MMAPM[11].

BIT-Interaction dataset. The BIT-Interaction dataset contains
8 interactive actions: bow, box, handshake, high-five, hug,
kick, pat, and push, with 50 video clips per action class. In
each video, only one action instance was captured in a realistic
scenario, possibly accompanied with background cluttering or
other people as noise. What makes BIT more difficult is that
the main actors are often occluded by other people, or cluttered
by other irrelevant actions. We followed exactly the same
setting as in [11], where 272 videos were randomly picked for
training and the rest for testing. We set the parameters K = 5,
µ = 0.9, γ = 0.90 and β = 0.20 through all the experiments
on this dataset. Analysis of the effect of key parameters will
be presented in Sec. IV-E3. The number of visual words is
500.

Figure 4(a) shows the comparison results on BIT, and it can
be observed that in general, when the observation ratio gets
larger, the performances of most competitors increase. This
is as expected, because the higher the observation ratio is,
the more information we could use for prediction. It is worth
noting that our method outperformed the existing methods
when the observation ratio drops to as low as 0.5. Those are
very promising results. In particular, the prediction accuracy of
our method could reach 82.8% at the observation ratio of 0.6,
which is close to the accuracy of 85.3% when the sequences
are fully observed. When the observation ratio is lower than
0.5, our method performed the best in most cases (or second to
the best in a few cases), except at the beginning progress level.
An interesting observation is that, when the sequences were
fully observed, our method performed significantly better than
all other prediction models. This indicates that although our
method is specifically designed for action prediction, unlike
other models, it copes well with the action recognition of
fully observed sequences. It was noted that the methods of
DBoW[8], IBoW[8], MSSC[9], and SC[9] treated all segmen-
tal representations equally, while ours differs from them in
that we use temporal saliency to weight different segments,
which may attribute to our superior performance over them.
The large margin idea was also explored by MTSSVM[10] and
MMAPM[11], similar to our “push” strategy (Eq. 9 and Eq.
6). However, we have introduced “pull” strategy (Eq. 8 and
Eq. 5) in the objective function, which contributes in achieving
a better overall performance in most cases.

UCF11 dataset. The UCF11 dataset contains 1597 realistic
videos of 11 different actions, which were collected from
YouTube. All the actions are related to sports: basketball
shooting, biking, diving, golf swinging, horse back riding, soc-
cer juggling, swinging, tennis swinging, trampoline jumping,
volleyball spiking, and walking with a dog. Hence large degree
of camera motion and change of viewpoints, backgrounds and
illumination render the dataset challenging in recognition as
well as prediction. For each kind of action, there are 25 subsets
with more than 4 video clips per class. For a fair comparison,
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Fig. 4: Results for the conventional action prediction task: ours vs. existing action prediction methods. (Best viewed in color)
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Fig. 5: Results for the gapfilling task: ours vs. existing action prediction methods. (Best viewed in color)

we employed the same evaluation setting as in [11], where the
first 15 sets of each action class were used for training, and
the next 3 sets were for validation and parameter tuning, and
the rest 7 sets were used for testing. We set the key hyper-
parameters as K = 11, µ = 0.9, γ = 0.90 and β = 1.00,
which were determined by a cross-validation on the validation
set. The number of visual words is 500.

Figure 4(b) presents the comparison results on UCF11. As
shown, our method outperforms all existing action prediction
methods at all observation ratios. Furthermore, when more
segments are observed, the prediction accuracies of most of
approaches increase slower than that on the BIT set. This is
because that salient parts of actions in the BIT set mostly
appear in the middle of a video while some of salient parts of
actions in the UCF11 set appear at the beginning.

HMDB dataset. The HMDB dataset contains 6849 video clips
collected from various sources, mostly from movies, public
databases, YouTube and Google videos. There are 51 action
classes in this set, which comes from five categories: general
facial actions, facial actions with object manipulation, general
body movements, body movements with object interaction and
body movements for human interaction. Each of the action
class contains at least 101 clips. We used the stabilized video
to extract IDT features, and the STIP features were provided
by the authors of [18]. Also, we followed the splitting policy
published along with the videos, where a fraction of samples
were saved to adjust hyper-parameter. They were set to be
K = 20, µ = 0.9, γ = 0.90 and β = 0.20 on HMDB. The
size of dictionary is 2000 due to the complexity.

Our method was compared with existing competitive models
on HMDB, and the results are reported in Figure 4(c). It is
shown that our method outperformed others 3 at most of the
observation ratios. It was noted that both UCF11 and HMDB
were collected in real-world scenarios or from movies. Many
actions contain very strong contextual cues and thus their
labels can be reliably inferred by observing the context (e.g., a
tennis court divulge “playing tennis”). In contrast, most of the
actions in BIT were performed in the same background, and
thus the motion information is the main cue for prediction.

C. Comparison Under the Gapfilling Scenario

To show that our method can conquer gapfilling better, we
conducted our experiments by following the settings in [9],
where some segments of action were assumed to be missing.

More specifically, a non-observation interval [t, e] is marked,
i.e., the video between the tth and eth segments were unob-
served, where 2 ≤ t ≤ G − 1 and t ≤ e ≤ G − 1. The gap
ratio r of a partially observed video is defined as the portion
of unobserved parts, i.e.,

r =
e− t+ 1

G
. (17)

The gapfilling problem is simulated by by exhaustively se-
lecting one or a few consecutive segments of any video as the
missing segment, the same as in [9]. It is noted that few model
can handle gapfilling. Thus, for comparison, we implemented

3The results of DBoW and IBoW on HMBD dataset are not presented since
the codes of those two methods are not publicly available.
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Fig. 6: Results of generalization and their visualization. (Best viewed in color)

TABLE II: The effect (%) of temporal saliency policy against the observation ratio (0.1 ∼ 1) when using our proposed model.

Policy 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

learning-based 25.8 37.5 59.4 65.6 78.1 84.4 86.7 84.4 85.9 87.5
uniform 21.9 35.2 53.9 63.3 76.6 81.3 81.3 82.8 83.6 82.8
random 21.1 32.0 43.8 53.9 71.9 77.3 79.7 78.1 78.9 79.7

baselines: SC [9] and a native χ2 kernel SVM, which are used
in action prediction [10], [11]. The accuracy of each method
against gap ratio r is reported in Figure 5. It can be observed
that our method outperformed the compared methods over all
gap ratios on three datasets with a clear margin. Note that
we also show the results when only successive segment loss
was used by setting γ = 0 in Eq.11 (denoted by Our method
(γ = 0) in Figure 5). It could be seen that when adding the
individual segment loss (denoted by Our method), the action
prediction performance improved significantly for gapfilling,
which confirms the efficacy of the introduced individual seg-
ment loss in handling the gapfilling problem. It is worth noting
that the formulation of the gap-filling problem needs to know
the location of the missing segments. In this test, we followed
exactly the same assumption as in the existing work [9]. In
some practical cases when the missing frames or a set of
missing frames (i.e., only frame content is missing) are shown
as mosaic of colored patches (e.g., due to coding error), some
anomalous detectors [46], [47] would be employed to locate
those missing frames4.

D. Generalization to Unseen Related Actions

Our approach is formulated based on distance metric learn-
ing techniques. The metric learned on one set of action classes
can be transferable to another task of recognizing related
actions in the learning stage, i.e., the metric learned by our
model can generalize well to the related actions that have not
been seen in the training stage.

In contrast, existing prediction models do not have this prop-
erty. For example, the SVM-based action prediction models
[10], [11] cannot be directly applied to unseen class, because

4When the missing frames are completely dropped out of the sequence
(we would refer this as a frame-dropping problem rather than a gap-filling
problem), all of the existing approaches (including ours) are not applicable
unless the location of the missing frame information is known.

the learned hyperplanes are specific for action type in learning,
and there are no hyperplanes available for unseen action types
in the training stage.

To evaluate the generalization ability of the action prediction
model, we divided all action classes from the BIT dataset
into two subsets with no overlap of action types. Only the
first subset was used to learn the metric. For testing, one
third of samples from the second subset were used as gallery,
and the rest were treated as probe samples. In such a setting
(termed as open-setting in Figure 6(a)), the metric learned in
the first subset is applied directly on the second subset to
make prediction. When the metric is trained on gallery images
and tested on probe images, both from the second subset, we
denote it as close-setting and plot it with dot-line in Fig 6(a).
We compared our method with a LMNN model and KNN
under those two setting5. The value of K is 5, the same for
all cases.

Figure 6(a) shows the results. It was noted that, although
there is an expected performance drop of our method from
close-setting to the challenging open-setting (i.e., action types
unseen in training), the drop is not significant. More impor-
tantly, in the open-setting, our method performed much better
than the other two methods. All of these suggest our proposed
model has good generalization capability in the open-setting.

Using t-SNE[48] with the learned distance metric by our
method, we further visualized the distribution of samples used
for training (Figure6(b)) (action types are color coded). It is
observed that samples from different action types used for
training are well separated in the feature space. Figure 6(c)
shows the distribution of samples from unseen action types
when the learned distance model is applied; and it could be
seen that the action types could be distinguished at a good
level. This confirms that our learned metric is transferable and
thus our model has good generalization capability.

5KNN only operates in close-setting.
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TABLE III: Accuracy (%) w.r.t the observation ratio (0.1 ∼ 1) on BIT datasets; the method named with (u) means the
observation ratio is estimated using the algorithm in [11].

methods 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

MMAPM 32.8 36.7 53.9 59.4 68.0 63.3 68.8 75.0 75.8 79.7
(u)MMAPM 28.1 32.8 57.0 58.6 68.0 66.4 68.8 72.7 73.4 79.7

Ours 26.6 40.5 55.9 71.5 79.4 82.8 84.4 84.9 85.0 85.3
(u)Ours 27.6 44.7 54.9 63.5 70.9 78.5 83.2 82.2 83.0 85.0

TABLE IV: Performance (%) of our framework with different types of loss functions w.r.t observation ratio (0.1 ∼ 1).

methods 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Global-Local model with Eq. (11) 26.6 40.5 55.9 71.5 79.4 82.8 84.4 84.9 85.0 85.3
Global-Local model with KL Div 25.8 37.5 54.7 66.4 71.9 78.9 80.5 85.2 82.8 82.8

E. Effect of components

1) Global-Local Model with KL Div: Note that our main
idea is to jointly learn and fuse global-local temporal distances
in a discriminative model for action prediction. One advantage
is that our framework is quite flexible, and capable of embed-
ding other the loss functions.

To demonstrate this potential, we designed and tested a
variant of our model with a common loss using KL divergence
[36], which minimizes the difference between the estimated
distribution and the expected distribution of labels. In this
variant, our distance models (Eqs. (1),(2) and (3)) could
be optimized directly by minimizing the following objective
function:

KL[p∗(j|i)|p(j|i)], (18)

For each training sample, a conditional distribution over the
other samples is defined as

p(j|i) = e−dij∑
k 6=i e

−dik
(i 6= j), (19)

p∗(j|i) ∝
{
1 yi = yj

0 yi 6= yj ,
(20)

where dij is computed from Eq.(3). The closer two samples
are, the smaller dij is and the larger p(j|i) is. And p∗(j|i)
is the ground truth distribution from labels, which is approxi-
mated by optimizing the KL divergence in Eq. (18).

Table IV shows the results on BIT, when applying different
loss functions in our proposed action prediction framework.
The performance of our method is relatively reliable with
respect to different loss functions, although with slight d-
ifference. It is noticeable that the model with the designed
loss function in Eq. (11) performed better at most observation
ratios. Similar conclusions could be drawn from other two
datasets as presented in our supplementary document.

2) Effect of the Temporal Saliency: The effect of temporal
saliency was tested based on three policies: uniform, learning-
based, and random. The uniform refers to a policy that all
the temporal saliency weights are set as the same value.
The learning-based means that the saliency is learned by our
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Fig. 7: Visualization of the learned temporal saliency. (a) All
temporal saliency α learned on BIT: each row represents one
vector of temporal saliency weights αg . (b) The temporal
saliency α10 learned on BIT, UCF11 and HMDB, respectively
when action videos are completely observed. (Best viewed in
color)

proposed method. The random policy generates the saliency
weights randomly.

Results on BIT dataset are tabulated in Table II. It could
be seen that the random policy performed worse because of
assigning weight arbitrarily, while the learning-based policy
outstripped the other two policies mainly because the weight is
assigned based on temporal importance of a segment within an
action. Interestingly, when the learned saliency by our method
is applied to an existing model, SC [9], which originally
treated all segment equally, the SC model with our saliency
achieved an improvement of 3% on action prediction.
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Fig. 8: Four action samples. The first row is from BIT, the second and third rows are from UCF11, and the last is from HMDB.

TABLE V: The prediction (%) accuracy w.r.t observation ratio (0.1 ∼ 1) with different K

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
K=1 16.0 36.7 54.3 62.5 73.4 77.0 78.1 80.5 79.3 78.5
K=3 18.8 34.0 55.1 66.0 72.3 78.9 82.8 82.0 82.4 80.5
K=5 26.6 40.5 55.9 71.5 79.4 82.8 84.4 84.9 85.0 85.3
K=7 20.7 41.0 57.4 65.6 74.2 78.9 80.9 81.2 82.0 80.9
K=9 21.1 38.3 57.0 69.5 75.8 75.8 78.9 78.9 77.3 79.7
K=15 22.7 38.3 53.5 68.4 73.0 77.3 81.2 81.2 80.5 80.5

TABLE VI: The prediction (%) accuracy w.r.t observation ratio (0.1 ∼ 1) with different β

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
β=0.0 22.7 36.9 57.6 66.0 75.4 81.6 81.8 81.6 81.2 82.6
β=0.2 26.6 40.5 55.9 71.5 79.4 82.8 84.4 84.9 85.0 85.3
β=0.4 23.6 38.0 56.9 65.6 75.6 79.8 82.0 82.8 82.8 82.0
β=1.0 22.0 37.2 55.3 64.4 74.2 80.6 81.9 82.0 82.3 81.2
β=10.0 20.8 38.3 50.0 52.6 53.9 61.2 57.6 55.7 62.8 74.2
β=50.0 16.1 31.0 33.9 34.6 33.9 33.3 35.4 37.2 32.0 36.5

Furthermore, we took a deeper look into the temporal
saliency we learned. αg is a vector encoding the importance
of local temporal distance models in Eq. (3). If α(a)

g > α
(b)
g ,

it means that the ath segment is more important than the bth

segment at the gth observation level. We plotted the saliency α
learned by our proposed model on BIT in Figure 7(a), where
each row represents an αg . The maximum value in each αg

was colored with strong red, while weights close to 0 are
colored with light red. It is obvious that different segments
were weighed differently at different progress levels.

By investigating α10 in Figure 7(b), it can be seen that
the last and the first segments of BIT were almost useless.
We examined the videos in BIT dataset and found that the
most informative action details were always observed in the
middle, and it is hard to tell what the person was doing
only from frames at the beginning or at the end. Taking
the “kicking” in the first row of Figure 8 for example, the
most salient frames appear in the middle duration. Therefore,
on BIT, the temporal saliency weight curve has a peak as
shown in Figure 7(b), which means certain segments are
more informative for prediction. Our experimental results also
suggested that weighting all segments equally on BIT would
worsen the prediction performance, as shown in Figure 4(a).
In comparison, the temporal saliency weight curve seems
flatter on UCF11 in Figure 7(b). It is because every segment
of a video is informative to describe the action details. For

example, it can be clearly seen that the “jumping” appears in
each segment as shown in the second row of Figure 8. Similar
observation can be found on “walking”, “cycling” and etc.

3) Effect of K and β : We investigated the effect of hyper-
parameters: K (its value was set as the same in both the
training and testing stage of our model) and β (in Eq.(3)).
The results on BIT are reported and similar conclusion can be
drawn on the other two datasets (please see the supplementary
materials for detailed results on the other two datasets). When
one of hyper-parameters was tested, the others were fixed as
their default values.
K represents the number of nearest neighbors used in

training as well as testing. In Table V, we compared the
prediction accuracy of our model with different K. It could be
seen that increasing the value of K will generally increase the
accuracy. However, the performances will become saturated
when K is relatively large (e.g., K ≥ 5), which means that
increasing K further does not improve the performance but
with higher computational cost. It is worth noting that the
optimal choice of K is very reliable against the observation
ratios.
β describes how much the global temporal distance in

Eq. (1) contributes to the final distance in Eq. (3) between
two samples. When β >> 1, the global-temporal distance
dominates, which means that our model pays more attention to
global features than local details. From Table VI, it can be seen
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TABLE VII: Prediction accuracy (%) based on using LSTM against the observation ratio (0.1 ∼ 1.0) on UCF11 and HMDB

Dataset Loss Function 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

UCF11
Softmax 68.9 70.6 72.1 72.6 73.0 73.4 74.9 75.5 76.0 77.2
Softmax+Our Metric 68.5 70.2 73.0 74.5 74.3 76.6 77.9 77.9 78.3 79.1

HMDB
Softmax 20.5 29.6 33.5 36.7 38.8 40.4 41.7 42.3 42.8 43.4
Softmax+Our Metric 24.6 34.6 37.3 39.1 41.6 44.1 45.1 47.6 49.0 50.5

TABLE VIII: Prediction accuracy (%) based on using two-stream network against the observation ratio (0.1 ∼ 1.0) on UCF11
and HMDB

Dataset Loss Function 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

UCF11
Softmax 85.3 86.0 88.1 89.6 89.6 88.9 88.9 88.5 89.6 89.4
Softmax+Our Metric 87.5 89.3 90.2 90.2 90.5 90.9 90.5 91.0 90.9 91.1

HMDB
Softmax 36.4 41.9 45.3 49.0 51.1 52.7 54.6 55.1 55.4 55.9
Softmax+Our Metric 38.8 43.8 49.1 50.4 52.6 54.7 56.3 56.9 57.3 57.3

that the model with a very large β has poor performance since
global temporal features alone are not sufficient. However, by
comparing the performance at β = 0.0 versus β = 0.2 (or
β = 0.4), we can see that including appropriate proportion of
global-temporal feature is shown useful.

4) Observation ratio unavailable: In the previous exper-
iments, we have assumed that the observation ratio of each
action sequence is available during testing, which was also
adopted by most of the existing prediction models ([8], [9],
[11]). However, in real scenarios, it is not easy to obtain
the observation ratio. To address this problem, we followed
[11] to train an action progressing predictor for estimating the
observation ratio of ongoing sequences. The estimated ratio
was then used in our prediction model. The deviation of the
estimated ratio against the real one is within ±10% on BIT.
We report the performance of our model and MMAPM in
Table III, which is obtained using the estimated observation
ratio. It is shown that our method outperformed MMAPM [11]
in this case, and the estimated observation ratio does not
have a significant effect on the system performance. It is also
interesting to note that with the estimated observation ratio,
the model performed comparably to that using the pre-defined
ratio.

F. Compatibility with Deep Action Models

Deep neural networks have been empirically proved to be
good at extracting temporal features on sequences as com-
pared to conventional hand-crafted temporal features in action
recognition [49], [4], [50], [51], [52], [53], [54], [55], [54].
In this section, we show that our proposed metric is not only
compatible with deep models and but also leads to improved
performance. More specifically, we augment a typical neural
network (e.g. two-stream [29], [4] and LSTM [56]) with the
proposed loss function in Equ. (10), which acts as a part of the
loss of the neural network. In action recognition task, existing
deep neural networks were tested on the videos that contain
instances of the complete action. In order to employ those
networks under action prediction scenario, we have to limit
the sample range to the observed segments. And we combine
the prediction over multiple segments by averaging them as

Action Inputi Shared Feature Network

…

…

…

Softmax Loss

Loss based on our Metric

…

Softmax Loss

Action Inputi

Fig. 9: Illustration of the extended deep neural network using
our metric. When training a network (e.g. the two-stream
framework), apart from the traditional softmax loss, we sample
pairs and calculate the loss based on our metric used in Equ.
(10).

similarly done in [29]. All experiments in this section were
conducted on UCF11 and HMDB51. It was noted that the
size of BIT very small. Thus a deep neural network (e.g.,
LSTM) working on BIT will need to be carefully fine-tuned
based on a pre-trained model on extra data. Although this is
out of our focus, we include some evaluations of the effects
our metric on the performance of a LSTM on BIT pretrained
on extra data in the supplementary material, which shows that
our metric still works on a pretrained LSTM on BIT. Note
that we are not focusing on developing a state-of-the-art deep
structure but on exploring the extensibility of our proposed
metric when used as an auxiliary loss function to optimize a
deep neural network.

Recurrent neural network (RNN), especially LSTM [56], is
widely used to handle sequential tasks because its ability to
integrated temporally rated data non-linearly [49]. Therefore
we implemented a LSTM-Dense Network with 2 layers of
LSTM (3000 and 200 cells respectively) followed by a 500-
neurons dense layer to tackle the action prediction problem
based on the hand-crafted features. The dropout layer [57]
was introduced to alleviate overfitting and we used Adadelta
with learning rate of 10−3 [58] and a weight decaying rate of
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TABLE IX: Prediction Accuracy (%) under Gapfilling based on using two-stream network against the gap ratio (0.2 ∼ 0.8)
on UCF11 and HMDB

Dataset Loss Function 0.2 0.3 0.4 0.5 0.6 0.7 0.8

UCF11
Softmax 88.9 88.6 88.4 88.1 88.5 87.9 86.8
Softmax+Our Metric 90.9 90.7 90.8 90.5 90.0 89.8 89.4

HMDB
Softmax 55.0 54.0 52.5 51.2 49.1 46.5 43.5
Softmax+Our Metric 56.3 55.5 53.9 52.3 50.2 47.9 44.9

10−4. The dropping ratio was 0.8 for the decision layer and
0.5 for other layers. In Table VII, we used LSTM to achieve
a better performance when further incorporating our proposed
metric to quantify the deep neural network. On UCF11, the
improvement of performance when incorporating our metric
increases when the observation ratio becomes larger, and on
HMDB, further incorporating our metric will always yield an
improvement of at least 4% on all observation ratios. The
results show that our approach could improve the performance
of LSTM.

We also tested the performance of the-state-of-the-art two-
stream framework [29], [4] based on ResNet-50 [59] and
concatenate-fusion architecture. We also augmented a loss
function formed by our proposed metric with the two-stream
framework and evaluated its performance for comparison. Our
network was pre-trained on ImageNet [60] and we further
decreased the feature dimension to 800 with a fully connected
layer for applying our metric. The comparison results of
prediction on UCF11 and HMDB datasets are shown in
Table VIII. As shown our metric could further improve the
performance of the two-stream framework.

In Table IX, we also show that two-stream networks can be
easily applied to adapt the setting of gapfilling. LSTM is not
reported under gapfilling scenario since it requires a continu-
ous input. Indeed, the performance drop becomes smaller wrt
gap ratio using deep learning framework as compared to the
results in Figure 5. When further incorporating our metric,
the performance drop is alleviated, which is more obvious
on UCF11. This is possibly because our proposed individual
segment loss in Equ. (7) enables each individual segment to
be discriminative.

V. CONCLUSION

In this paper, we have developed an action prediction
method based on a global-local temporal distance model,
which introduces the temporal saliency for adapting the contri-
bution of each local-temporal distance. The formulated global-
local temporal action prediction model jointly learns and fuses
two types of distances: the local-temporal distance and the
global-temporal distance. Extensive experimental results show
that our method outperforms existing models in recognizing
actions of ongoing sequences. We further showed that the
proposed model tackles the gapfilling problem better than the
compared methods, and the learned metric could be transfered
to action types unseen in the training stage. Currently, most
existing action prediction efforts focus on a single type of
action in one sequence. In future, we will consider action

prediction when multiple actions present simultaneously in a
video sequence.
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[1] C. Schüldt, I. Laptev, and B. Caputo, “Recognizing human actions: a
local svm approach,” in ICPR, 2004.

[2] I. Laptev, M. Marszałek, C. Schmid, and B. Rozenfeld, “Learning
realistic human actions from movies,” in CVPR, 2008.

[3] Y. Kong, Y. Jia, and Y. Fu, “Interactive phrases: Semantic descriptionsfor
human interaction recognition,” TPAMI, vol. 36, no. 9, pp. 1775–1788,
2014.

[4] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Convolutional two-stream
network fusion for video action recognition,” in CVPR, 2016.

[5] C. Jia, Y. Kong, Z. Ding, and Y. Fu, “Rgb-d action recognition,” in
Human Activity Recognition and Prediction. Springer International
Publishing, 2016, pp. 87–106.

[6] B. Mahasseni and S. Todorovic, “Regularizing long short term memory
with 3d human-skeleton sequences for action recognition,” in CVPR,
2016.

[7] Z. Lan, M. Lin, X. Li, A. G. Hauptmann, and B. Raj, “Beyond gaussian
pyramid: Multi-skip feature stacking for action recognition,” in CVPR,
2015.

[8] M. Ryoo, “Human activity prediction: Early recognition of ongoing
activities from streaming videos,” in ICCV, 2011.

[9] Y. Cao, D. Barrett, A. Barbu, S. Narayanaswamy, H. Yu, A. Michaux,
Y. Lin, S. Dickinson, J. Siskind, and S. Wang, “Recognize human
activities from partially observed videos,” in CVPR, 2013.

[10] Y. Kong, D. Kit, and Y. Fu, “A discriminative model with multiple
temporal scales for action prediction,” in ECCV, 2014.

[11] Y. Kong and Y. Fu, “Max-margin action prediction machine,” TPAMI,
2015.

[12] M. Ryoo and L. Matthies, “First-person activity recognition: What are
they doing to me?” in CVPR, 2013.

[13] M. Ryoo, T. J. Fuchs, L. Xia, J. K. Aggarwal, and L. Matthies, “Robot-
centric activity prediction from first-person videos: What will they do
to me’,” in Proceedings of the Tenth Annual ACM/IEEE International
Conference on Human-Robot Interaction (2015).

[14] T. Lan, T.-C. Chen, and S. Savarese, “A hierarchical representation for
future action prediction,” in ECCV (2014).

[15] Z. Xu, L. Qing, and J. Miao, “Activity auto-completion: Predicting
human activities from partial videos,” in ICCV, 2015.

[16] Y. Kong, Y. Jia, and Y. Fu, “Learning human interaction by interactive
phrases,” in ECCV, 2012.

[17] J. Liu, J. Luo, and M. Shah, “Recognizing realistic actions from videos
in the wild,” in CVPR, 2009.

[18] J. H. Kuehne, H., E. Garrote, T. Poggio, and T. Serre, “Hmdb: a large
video database for human motion recognition,” in ICCV, 2011.

[19] B. Wu, C. Yuan, and W. Hu, “Human action recognition based on
context-dependent graph kernels,” in ICCV, 2014.

[20] M. S. Ryoo and J. K. Aggarwal, “Spatio-temporal relationship match:
Video structure comparison for recognition of complex human activi-
ties,” in ICCV, 2009.

[21] X. Wu, D. Xu, L. Duan, and J. Luo, “Action recognition using context
and appearance distribution features,” in CVPR, 2011.



SUBMISSION TO IEEE TIP 14

[22] J. Liu, B. Kuipers, and S. Savarese, “Recognizing human actions by
attributes,” in CVPR, 2011.

[23] G. Cheron, I. Laptev, and C. Schmid, “P-cnn: Pose-based cnn features
for action recognition,” in ICCV, 2015.

[24] J. F. Hu, W. S. Zheng, J. H. Lai, and J. Zhang, “Jointly learning het-
erogeneous features for rgb-d activity recognition,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. PP, no. 99, pp. 1–1,
2017.

[25] Y. Yang and M. Shah, “Complex events detection using data-driven
concepts,” in ECCV, 2012.

[26] J. C. Niebles, C.-W. Chen, and L. Fei-Fei, “Modeling temporal structure
of decomposable motion segments for activity classification,” in ECCV,
2010.

[27] A. Vahdat, K. Cannons, G. Mori, S. Oh, and I. Kim, “Compositional
models for video event detection: A multiple kernel learning latent
variable approach,” in ICCV, 2013.

[28] Q. Shi, L. Cheng, L. Wang, and A. Smola, “Human action segmenta-
tion and recognition using discriminative semi-markov models,” IJCV,
vol. 93, no. 1, pp. 22–32, 2011.

[29] K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” in NIPS, 2014.

[30] C. Vondrick, H. Pirsiavash, and A. Torralba, “Anticipating visual repre-
sentations from unlabeled video,” in CVPR, 2016.

[31] K. Li and Y. Fu, “Prediction of human activity by discovering temporal
sequence patterns,” TPAMI, vol. 36, no. 8, pp. 1644–1657, 2014.

[32] J.-F. Hu, W.-S. Zheng, L. Ma, G. Wang, and J. Lai, “Real-time rgb-d
activity prediction by soft regression,” in ECCV, 2016.

[33] R. De Geest, E. Gavves, A. Ghodrati, Z. Li, C. Snoek, and T. Tuytelaars,
“Online action detection,” in ECCV, 2016.

[34] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance metric learning
for large margin nearest neighbor classification,” in NIPS, 2015.

[35] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov, “Neighbour-
hood component analysis,” NIPS, 2004.

[36] A. Globerson and S. T. Roweis, “Metric learning by collapsing classes,”
in NIPS, 2005.

[37] P. Jain, B. Kulis, J. V. Davis, and I. S. Dhillon, “Metric and kernel
learning using a linear transformation,” JMLR, vol. 13, pp. 519–547,
2012.

[38] K. Etemad and R. Chellappa, “Discriminant analysis for recognition of
human face images,” JOSA A, vol. 14, no. 8, pp. 1724–1733, 1997.

[39] X. Li, C. Shen, Q. Shi, A. Dick, and A. Van den Hengel, “Non-sparse
linear representations for visual tracking with online reservoir metric
learning,” in CVPR, 2012.

[40] W.-S. Zheng, S. Gong, and T. Xiang, “Reidentification by relative
distance comparison,” TPAMI, vol. 35, no. 3, pp. 653–668, 2013.

[41] X. Gao, S. C. Hoi, Y. Zhang, J. Wan, and J. Li, “Soml: Sparse online
metric learning with application to image retrieval.” in AAAI, 2014.

[42] J. V. Davis and I. S. Dhillon, “Structured metric learning for high
dimensional problems,” in ACM SigKDD, 2008.

[43] I. Laptev, “On space-time interest points,” IJCV, vol. 64, no. 2-3, pp.
107–123, 2005.

[44] H. Wang and C. Schmid, “Action recognition with improved trajecto-
ries,” in ICCV, 2013.

[45] A. Vedaldi and A. Zisserman, “Efficient additive kernels via explicit
feature maps,” TPAMI, vol. 34, no. 3, pp. 480–492, 2012.

[46] A. C. Kokaram, R. D. Morris, W. J. Fitzgerald, and P. J. Rayner,
“Detection of missing data in image sequences,” TIP, vol. 4, no. 11,
pp. 1496–1508, 1995.

[47] A. C. Kokaram and S. J. Godsill, “Mcmc for joint noise reduction and
missing data treatment in degraded video,” TSP, vol. 50, no. 2, pp. 189–
205, 2002.

[48] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” JMLR,
vol. 9, no. Nov, pp. 2579–2605, 2008.

[49] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in NIPS, 2014.

[50] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks
for human action recognition,” TPAMI, 2013.

[51] G. Gkioxari, R. Girshick, and J. Malik, “Contextual action recognition
with r* cnn,” in ICCV, 2015.

[52] M. S. Ibrahim, S. Muralidharan, Z. Deng, A. Vahdat, and G. Mori,
“A hierarchical deep temporal model for group activity recognition,” in
CVPR, 2016.

[53] M. Ravanbakhsh, H. Mousavi, M. Rastegari, V. Murino, and L. S. Davis,
“Action recognition with image based cnn features,” arXiv preprint
arXiv:1512.03980, 2015.

[54] F. Turchini, L. Seidenari, and A. Del Bimbo, “Understanding and
localizing activities from correspondences of clustered trajectories,”
CVIU, 2016.

[55] L. Wang, Y. Qiao, and X. Tang, “Action recognition with trajectory-
pooled deep-convolutional descriptors,” in CVPR, 2015.

[56] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, 1997.

[57] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting.” JMLR, 2014.

[58] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv
preprint arXiv:1212.5701, 2012.

[59] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” arXiv preprint arXiv:1512.03385, 2015.

[60] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei, “ImageNet Large Scale Visual Recognition Challenge,” IJCV, 2015.

Shaofan Lai received his B.S. degree in computer
science from the School of Data and Computer
Science, Sun Yat-Sen University in 2017. He is
currently pursuing his M.S. degree in computer
science at the University of Southern California.
His research interests include visual surveillance,
personal re-identification and generative adversarial
models.

Wei-Shi Zheng is now a professor at Sun Yat-
sen University. He had been a postdoctoral re-
searcher on the EU FP7 SAMURAI Project at
Queen Mary University of London and an associate
professor at Sun Yat-sen University after that. He
has now published more than 90 papers, includ-
ing more than 60 publications in main journal-
s (TPAMI,TNN,TIP,TSMC-B,PR) and top confer-
ences (ICCV, CVPR,IJCAI,AAAI). He has joined
the organisation of four tutorial presentations in
ACCV 2012, ICPR 2012, ICCV 2013 and CVPR

2015 along with other colleagues. His research interests include person
association and activity understanding in visual surveillance. He has joined
Microsoft Research Asia Young Faculty Visiting Programme. He is a recipient
of excellent young scientists fund of the national natural science foundation
of China, and a recipient of Royal Society-Newton Advanced Fellowship.

Jian-Fang Hu received the PhD and B.S. degrees
from the School of Mathematics, Sun Yat-Sen U-
niversity, Guangzhou, China, in 2016 and 2010,
respectively. His research interests include human-
object interaction modeling, 3D face modeling, and
RGB-D action recognition. He has published several
scientific papers in the international conferences
and journals including ICCV, CVPR, ECCV, IEEE
TPAMI, IEEE TCSVT, and PR.

Jianguo Zhang is currently a Reader at Computing
in the School of Science and Engineering, University
of Dundee, UK. He received a PhD in National
Lab of Pattern Recognition, Institute of Automation,
Chinese Academy of Sciences, Beijing, China, 2002.
His research interests include visual surveillance,
object recognition, image processing, medical image
analysis and machine learning.


