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Pairing-based Ensemble Classifier Learning using
Convolutional Brain Multiplexes & Multi-view
Brain Networks for Early Dementia Diagnosis

Anna Lisowska, Islem Rekik?, and The Alzheimers Disease Neuroimaging
Initiative

BASIRA lab, CVIP group, School of Science and Engineering, Computing, University
of Dundee, UK

Abstract. The majority of works using brain connectomics for demen-
tia diagnosis heavily relied on using structural (diffusion MRI) and func-
tional brain connectivity (functional MRI). However, how early dementia
affects the morphology of the cortical surface remains poorly understood.
In this paper, we first introduce multi-view morphological brain network
architecture which stacks multiple networks, each quantifying a corti-
cal attribute (e.g., thickness). Second, to model the relationship between
brain views, we propose a subject-specific convolutional brain multiplex
composed of intra-layers (brain views) and inter-layers between them
by convolving two consecutive views. By reordering the intra-layers, we
generate different multiplexes for each subject. Third, to distinguish de-
mented brains from healthy ones, we propose a pairing-based ensemble
classifier learning strategy, which projects each pair of brain multiplex
sets onto a low-dimensional space where they are fused, then classified.
Our framework achieved the best classification results for the right hemi-
sphere 90.8% and the left hemisphere 89.5%.

1 Introduction

Early diagnosis of brain dementia, specifically mild cognitive impairment (MCI)
which may convert to Alzheimer’s disease (AD), is critical for the early inter-
vention, to prevent the onset of AD. Machine learning approaches have been
successfully employed in diagnosing AD based on images obtained from MRI
[1], which provide an efficient and non-invasive way for investigating neurological
disorders at a whole-brain level. On a brain connectional level, network analysis
of functional and structural brain connectivity (obtained from functional MRI
(fMRI) and diffusion-weighted MRI (dMRI)) helped identify dementia biomark-
ers and brain connections affected by this neurodegenerative disorder [2]. Re-
cently, more research has focused on accurate detection of early mild cognitive
impairment (eMCI), which is essential for slowing down potential conversion to
AD. For instance, [3] investigated the predictive power of various combinations
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of connectomic features, such as pairwise connectivity and maximum flow be-
tween two brain regions, extracted from dMRI images for eMCI and normal
control (NC) classification problem. On the other hand, [4] computed sparse
temporal networks using sliding-window approach over a time series of resting-
state functional MRI. [5] extended this work by additionally considering the
high-order correlation between different pairs of brain regions. By combining
low-order with high-order correlations, they further improved the classification
accuracy of eMCI/NC.

Although dementia has been shown to affect neuronal connections in the brain
as well as the cortical surface causing cortical thinning [6], research exploring
morphological connectivity of the cortex is almost absent [1]. More specifically,
how the shape of a cortical brain region gets affected in relation to the shape of
another cortical brain region using various shape measurements (e.g., curvature,
sulcal depth) remains somewhat unexplored. To address these limitations, we
propose to use morphological cortical networks for dementia onset identification.
Additionally to using one-layer network (considering only one morphological
view, such as cortical thickness), we construct a multi-layer network (multiplex),
consisting of multiple morphological views. Previous research showed that using
multi-layer networks (i.e., stacking different networks) improved the prediction
accuracy for disease identification when compared to using single view networks.
Some of these works included classification of NC/MCI/AD using combination
of features from MRI, PET, and CSF [7], structural inter- and intra-subject
brain similarities in MRI [8], both confirming that multiplex network features
yield better classification results in comparison to using low-level features. Other
works, not concerned with MCI/AD, used multiplexes for simultaneous analysis
of anatomical and functional brain networks [9] and varied frequency in fMRI
to find important functional brain regions affected by schizophrenia [10].

However, none of these multiplex-based methods explored the relationship
between two consecutive layers in the multiplex or cortical morphology. Specifi-
cally, to the best of our knowledge, no previous methods explored the similarity
between layers in a typical multi-layer network for modeling brain connectivity
[1]. We note that simple concatenation of multiple networks hinders the inves-
tigation of potentially complex changes in cortical regions, which might vary
jointly or independently across different brain views as they become affected
by dementia onset. Hence, we introduce inter-layers into a multiplex structure
to capture the relationship between different brain views. Basically, each brain
multiplex consists of different morphological views (intra-layers) and inter-layers
splipped between two consecutive intra-layers, thereby quantifying the relation-
ship between two consecutive brain views.

Since each multiplex is not invariant to the ordering of the intra-layers, we
generate multiple multiplexes for each subject while considering all possible com-
binations of intra-layers, thereby capturing all relationship between different
brain views in a more holistic manner. Fusing information from different brain
multiplexes is crucial for more accurate identification of the demented brain state
since each brain multiplex captures a unique relationship between brain views,



Table 1: Major mathematical notations used in this paper.
Mathematical notation Definition

V brain network (single view) in Rn×n

M brain multiplex composed of intra-layers and convolutional inter-layers
Ci,j convolutional intra-layer between consecutive brain network views Vi and Vj in M

M = {M1, . . . ,MN} subject-specific brain multiplexes with different orderings of intra-layers

Mk matrix in Rd×Ns containing the d multiplex features
for all Ns training samples from multiplex Mk ∈ M

Mk,l = [Mk,Ml] paired multiplex feature matrices derived from two training multiplexes in M
[Bk,Bl] CCA basis matrices spanning the canonical space where Mk and Ml are projected

Σk,l covariance matrix of paired training multiplex matrices Mk and Ml

Wk transformation matrix from the original multiplex space to the low-dimensional canonical multiplex space
Λ2 diagonal matrix of eigenvalues (i.e., canonical correlations squared)

M̂k canonical representation of multiplex Mk projected onto CCA space

M̂k,l fused CCA-mapped multiplex feature matrices of original multiplexes Mk and Ml

I identity matrix in Rd×d

which can help unravel the complex nature of brain disorders for more accurate
diagnosis. However, most existing network fusion methods often extract features
independently from each network, and then simply concatenate them into a long
feature vector for classification [1], while overlooking the correlation between
them. To address this issue, we propose to use canonical correlation analysis
(CCA) to map two sets of features into a shared space where they become more
comparable [12,11]. CCA was shown to yield more discriminative features than
any of the input feature vectors alone or their simple concatenation [11]. Since
we are not restricted to only two sets of features as in [11], we propose a novel
pairing-based CCA mapping of multiple sets of brain multiplexes, where each
pair of multiplex sets is mapped onto a CCA space then fused. Ultimately, in
the spirit of ensemble classifier learning, we input the fused multiplex features
to train a linear classifier in each spanned CCA space.

Overall, we propose three fundamental contributions to the state-of-the-art
of brain network analysis in order to identify dementia in its early stage: (1)
brain multiplex structure based on cortical morphology, (2) pairing-based en-
semble classifier learning strategy using CCA-mapped sets of brain connectomic
features, and (3) giving new insights into how the early stage of MCI affects
morphological brain connectivity in left and right cortical hemispheres.

2 Ensemble Classifier using Paired CCA-mapped
Convolutional Brain Mutliplexes for eMCI/NC
Classification

In this section, we introduce the concept of a convolutional brain multiplex and
present our novel canonical ensemble classifier learning technique using paired
sets of brain multiplexes. Matrices are denoted by boldface capital letters, e.g.,
X, and scalars are denoted by lowercase letters, e.g., x. We denote the transpose
operator and the trace operator as XT and tr(X), respectively. For easy reference
and enhancing the readability, we have summarized the major mathematical
notations in Table
• Step 1: Convolutional brain multiplex construction and feature

extraction. In a generic way, we define a brain multiplex M using a set of M



Fig. 1: Pipeline of the proposed pairing-based ensemble classifier learning using
fused convolutional brain multiplexes. (A) Morphological brain network construc-
tion using different cortical attributes. (B) Brain multiplex construction. (C) We
use canonical correlation analysis (CCA) to first project a pair of multiplex sets
onto a common space where they become more comparable, then fuse them
together to train a linear SVM classifier.

intra-layers {V1, . . . ,VM}, each representing a single view of the brain morphol-
ogy, (i.e., cortical attribute), where between two consecutive intra-layers Vi and
Vj we slide an inter-layer Ci,j . This yields to the following multiplex architec-
ture: M = {V1, C1,2,V2, . . . ,Vj ,Ci,j ,Vj , . . . ,VM}. Each inter-layer is defined
by convolving two consecutive intra-layers. Each element in row a and column
b within the convolutional inter-layer matrix Ci,j between views Vi and Vj is
defined as: Ci,j(a, b) =

∑
p

∑
q Vi(p, q)Vj(a−p+1, b−q+1). We note that for a

specific multiplex, we are only allowed to explore similarities between consecutive
layers. Hence, to explore the inter-relationship between all possible combinations
of intra-layers, we generate for each subject N multiplexes through simply re-
ordering the intra-layer networks, thereby generating an ensemble multiplexes
M = {M1, . . . ,MN} (Fig.

Since the morphological brain connectivity matrices are symmetric (Fig.
• Step 2: Pairing-based ensemble classifier learning using canonical

mapping of brain multiplex sets. Since each multiplex Mk ∈ M captures
a unique and complex relationship between different brain network views, one
needs to examine all morphological brain multiplexes in the ensemble M. This
will provide us with a more holistic understanding of how explicit morpholog-
ical brain connections can be altered by dementia onset as well as how their
implicit high-order (a connection of connections) relationship can be affected.
However, due to complex nature of the multiplex structure, feature reduction
method is required to reduce the redundancy of the data by extracting the most
representative features. Instead of extracting features from different multiplexes
independently, and motivated by the fact that canonical correlation analysis is
efficient in analyzing and fusing associations between two sets of variables [11,12],



we propose a pairing-based CCA mapping strategy of sets of multiplexes of our
training samples for brain multiplex feature fusion.

Suppose that Mk ∈ Rd×Ns and Ml ∈ Rd×Ns are two training multiplex fea-
ture matrices derived from two different multiplexes in M, where Ns denotes
the number of training samples. For each pair of multiplexes Mk,l = [Mk,Ml],

we define their covariance matrix Σk,l =

(
cov(Mk) cov(Mk,Ml)

cov(Ml,Mk) cov(Ml)

)
, where

cov(Mk) = MkMT
k denotes the within-set covariance matrix of Mk, and cov(Mk,Ml) =

MkMT
l denotes the between-set covariance matrix of Mk and Ml. To map both

training multiplex matrices onto a space where the respective distributions of
their features are more ‘aligned’ and easily comparable, we aim to maximize
the pair-wise correlation across the two matrices Mk and Ml: corr(M̂k, M̂l) =

cov(M̂k,M̂l)

var(M̂k)·var(M̂l)
, where M̂k denotes the linear CCA mapping of the multiplex

feature matrix Mk to the canonical shared space using the estimated transfor-
mation matrix WT

k such that M̂k = WT
k Mk. Similarly, the second set of train-

ing multiplex features Ml is mapped using the estimated transformation matrix
WT

l . More precisely, cov(M̂k, M̂l) is defined as WT
k cov(Mk,Ml)Wl, var(M̂k)

as WT
k cov(Mk)Wk, and var(M̂l) as WT

l cov(Ml)Wl.
Both canonical transformation matrices are estimated through maximizing

the covariance between the mapped multiplex feature matrices M̂k and M̂l,
constrained to var(M̂l) = var(M̂k) = I, using Lagrange multipliers. This is
achieved through solving the following eigenvector equations:{

cov(Mk)−1cov(Mk,Ml)cov(Ml)
−1cov(Ml,Mk)Ŵk = Λ2Ŵk

cov(Ml)
−1cov(Ml,Mk)cov(Mk)−1cov(Mk,Ml)Ŵl = Λ2Ŵl

,

where Ŵk and Ŵl denote the eigenvectors and Λ2 represent the diagonal
matrix of eigenvalues (i.e., canonical correlations squared). The dimension of
the canonical shared space is defined as the rank of covariance matrix between
both multiplex feature matrices. Ultimately, each transformation matrix Wk is
generated through sorting the eigenvectors in Ŵk with non-zero eigenvalues.
To perform paired multiplex feature fusion in the canonical space, we simply
concatenate the transformed multiplex features as follows:

M̂k,l =

(
M̂k

M̂l

)
=

(
WT

k Mk

WT
l Ml

)
=

(
Wk 0

0 Wl

)T (
Mk

Ml

)
Next, we use each fused pair of training multiplex feature matrices M̂k,l to

train a linear support vector machine (SVM) classifier (Fig.

3 Results and Discussion

Evaluation dataset. We used leave-one-out cross validation to evaluate the
proposed classification framework on 76 subjects (35 eMCI and 41 NC) from
ADNI GO public dataset1, each with structural T1-w MR image [13]. We note
that the 35 eMCI samples comprise the first and last acquisition timepoints
for 18 different eMCI subjects, which are largely spaced out in time. Hence,

1 http://adni.loni.usc.edu
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we assume that these two distant timepoints can simulate two different eMCI
subjects. We used FREESURFER to reconstruct both right and left cortical
hemispheres for each subject from T1-w MRI [?]. Then we parcellated each cor-
tical hemisphere into 35 cortical regions using Desikan-Killiany Atlas. We defined
N = 6 multiplexes, each using M = 4 cortical network views. For each cortical
attribute (signal on the cortical surface), we compute the strength of the mor-
phological network connection linking ith ROI to the jth ROI as the absolute
difference between the averaged attribute values in both ROIs. MultiplexM1 in-
cludes cortical attribute views {V1,V2,V3,V4},M2 includes {V1,V2,V4,V3},
M3 includes {V1,V3,V4,V2}, M4 includes {V1,V3,V2,V4}, M5 includes
{V1,V4,V2,V3}, and M6 includes {V1,V4,V3,V2}. For each cortical region,
V1 denotes the maximum principal curvature brain view, V2 denotes the mean
cortical thickness brain view, V3 denotes the mean sulcal depth brain view, and
V4 denotes the mean of average curvature.

Table 2. eMCI/NC classification accuracy using our method and different
comparison methods.

Comparison methods and evaluation. For our eMCI/NC classification
task, we benchmarked our pairing-based ensemble classifier strategy against: (1)
using single SVM trained on each brain view, and on the concatenated views,
(2) ensemble SVM classifiers (without the pairing or CCA mapping strategies),
and (3) ensemble paired SVM classifiers (without CCA mapping). For each of
these methods, we generate three classification results using: (1) features from
brain views, (2) features from correlational multiplexes (inter-layer computed us-
ing Pearson correlation), and (3) features from convolutional multiplexes (inter-
layer computed using 2D convolution). For evaluation, we report in Table 2 the
prediction accuracy, the area under the receiver operating characteristic (ROC)
curve, the sensitivity and specificity of the eMCI/NC classification task. In Fig.

4 Conclusion

We propose a novel pairing-based ensemble classifier strategy that fuses morpho-
logical multi-view brain networks as well as convolutional brain multiplexes for
distinguishing between eMCI patients and healthy controls. The performance of
our method gave us insights into how dementia might affect the right and the left



Fig. 2: Classification accuracies for our proposed pairing-based ensemble classi-
fier learning of CCA-mapped brain features and comparison ensemble classifier
methods. Views: concatenated brain views. Correlation: correlational brain mul-
tiplexes. Convolution: Convolutional brain multiplexes. Ensemble classifiers: one
SVM trained for each view (or multiplex) without any pairing strategy or CCA
mapping. Ensemble paired classifiers: pairing different views (or multiplexes)
without CCA mapping. Ensemble CCA paired classifiers: pairing different views
(or multiplexes) with CCA mapping.

hemispheres in its early stage: complex connectional alterations in cortical mor-
phology spanning multiple cortical attributes of the left hemisphere (captured
by the multiplex), and simple alterations across different brain views in the right
hemisphere (captured by the morphological multi-view network). In our future
work, we will integrate functional and diffusion networks in our multiplex struc-
ture to explore how the relationship between multimodal connectomic views is
altered with dementia onset.
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