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ABSTRACT: O-GlcNAcylation is one of the most abundant metazoan
nuclear-cytoplasmic post-translational modifications. Proteins modified by O-
GlcNAc play key cellular roles in signaling, transcription, metabolism, and cell
division. Mechanistic studies on protein O-GlcNAcylation are hampered by
the lack of methods that can simultaneously quantify O-GlcNAcylation,
determine its stoichiometry, and monitor O-GlcNAcylation kinetics. Here, we
demonstrate that high-resolution native mass spectrometry can be employed
to monitor the small mass shifts induced by modification by O-GlcNAc on two
known protein substrates, CK2α and TAB1, without the need for radioactive
labeling or chemoenzymatic tagging using large mass tags. Limited proteolysis
enabled further localization of the O-GlcNAc sites. In peptide-centric MS
analysis, the O-GlcNAc moiety is known to be easily lost. In contrast, we
demonstrate that the O-GlcNAc is retained under native MS conditions, enabling precise quantitative analysis of stoichiometry
and O-GlcNAcylation kinetics. Together, the data highlight that high resolution native MS may provide an alternative tool to
monitor kinetics on one of the most labile of protein post-translational modifications, in an efficient, reliable, and quantitative
manner.

Post-translational modifications are vital cell communication
signals that can transfer messages between proteins

enabling signaling pathways to be turned on or off. Protein
O-GlcNAcylation is a dynamic modification, whereby N-acetyl-
D-glucosamine cycles on and off serine or threonine residues on
proteins and is of prominent interest due to its role in diabetes,
cardiovascular disease, neurodegenerative diseases, and can-
cer.1−3 Two enzymes act synergistically to regulate protein O-
GlcNAcylation in cells; the O-GlcNAc transferase (OGT)
installs an O-GlcNAc moiety onto proteins using UDP-GlcNAc
as a donor substrate, and a glycoside hydrolase termed O-
GlcNAcase catalyzes O-GlcNAc removal.4,5

Despite its discovery over 30 years ago, relatively few novel
O-GlcNAcylated proteins were identified immediately there-
after. This was primarily due to the lack of sensitive and
quantitative methods for monitoring protein O-GlcNAcylation.
Initial biochemical methods to monitor O-GlcNAcylation
involved enzymatic tagging of the protein O-GlcNAc site
with radiolabeled galactose.6 The pure radiolabeled protein was
then subjected to proteolysis, the peptides purified, and these
peptides sequenced by Edman degradation.7 This method,
albeit successful at identifying O-GlcNAcylated proteins, is very
time-consuming and thus of low-throughput. More recently, O-
GlcNAc antibodies have been introduced, which have aided
rapid visualization of protein O-GlcNAcylation using Western
blotting.8,9 However, stoichiometric determination and precise
O-GlcNAc quantitation by Western blotting is not trivial, given

that the binding affinity of antibodies to O-GlcNAc is low,
preventing the use of stringent washing procedures that are
required for the reduction of nonspecific interactions. In
addition, due to the limited availability of site-specific O-
GlcNAc antibodies,10 mapping the sites of O-GlcNAcylation of
proteins by these methods and determining stoichiometry is
notoriously difficult.
Over the past decade, peptide-centric mass spectrometry has

been used extensively for the detection and site-mapping of
post-translational modifications.11−14 In these peptide-centric
approaches, all proteins present are first digested into peptides,
often followed by an enrichment step for the modified peptides,
and subsequently analyzed by LC MS/MS. Especially for
protein phosphorylation, such methods have proven to be very
powerful.15 However, these methodologies were initially not
easily transferable for the detection of O-GlcNAc moieties, due
to the very facile loss of the O-GlcNAc during CID/HCD
fragmentation. To circumvent this, methods have been
developed whereby the O-GlcNAc moiety is deliberately
released by β-elimination and the site then marked by Michael
Addition (BEMAD).16,17 These modified peptides can then be
enriched and the sites mapped using LC-MS/MS. This
breakthrough enabled numerous O-GlcNAcylated proteins to
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be identified even in mitochondria.18 However, care needs to
be taken since O-GalNAc and O-phosphate can also be released
by β-elimination, making the BEMAD method prone to the
identification of false positive O-GlcNAcylation sites. Thus, the
direct monitoring of O-GlcNAcylation sites on proteins is still
preferential. This has been made possible at the peptide level
through advancements in MS/MS fragmentation techniques,
notably the introduction of ECD/ETD fragmentation.19,20

Combined with metabolic labeling, carbohydrate-based enrich-
ment methods,21 or chemoenzymatic tagging of O-GlcNAc-
based enrichment strategies,22 over 200 O-GlcNAcylation sites
can now be identified in a single experiment.23 Although rich in
information in terms of the number of O-GlcNAcylated
proteins that can be monitored, these peptide-centric LC
MS/MS studies lack information on the overall O-GlcNAc
stoichiometry. Moreover, even when different O-GlcNAcylated
peptides reveal that multiple sites can be occupied on a single
protein, it remains unresolved whether these are present
simultaneously on the intact protein. Recent advancements in
chemoenzymatic labeling whereby relatively large mass tags
(2−5 kDa) are conjugated to the O-GlcNAc moiety on
proteins has enabled the determination of the O-GlcNAc
stoichiometry on intact proteins.24 In this work, mono-, di-, tri-,
and tetraglycosylated forms of the purified cAMP-response
element binding protein (CREB) were resolved by SDS-PAGE
and their relative abundances determined by Western blotting
using an anti-CREB antibody. This quantitative analysis by
enzymatic labeling has some caveats as it is based on the
assumption that the chemo-enzymatic labeling of the O-

GlcNAc moiety is 100% complete and that the addition of a 2−
5 kDa mass tag does not interfere with antibody binding during
Western blotting.
Native MS, a technique in which proteins and protein

complexes are mass analyzed directly from a nondenaturing
solution,25 offers the potential to monitor O-GlcNAcylation at
the intact protein level, providing information at both the
structural and kinetic level. Monitoring O-GlcNAcylation by
native MS requires first of all good mass accuracy. In addition,
since the mass shift (+203 Da) characteristic of O-
GlcNAcylation is relatively small compared with large proteins
and protein complexes, high mass resolving power is needed, to
differentiate and quantify different co-occurring O-GlcNAcy-
lated proteoforms. Recent instrumental advances in Orbitrap
mass analyzers with an extended mass range have enabled for
large proteins and protein complexes higher mass resolving
power to be achieved compared with conventional Q-Tof
instrumentation.26 This has proven advantageous when
monitoring post-translational modifications, for instance N-
glycosylation on antibodies27 and phosphorylation on kinases
and noncovalent protein complexes.28 Here, we show that with
high-resolution native mass spectrometry, baseline resolution of
differential O-GlcNAcylated proteoforms can be achieved on
intact proteins. To demonstrate the potential of our method,
we chose two well-known protein substrates of the O-GlcNAc
transferase enzyme: TAB1 and CK2α.29,30 TAB-1 binds to the
transforming growth factor (TGF)-β-activated kinase 1, TAK1,
a key regulator of inflammatory and immunity signaling
pathways.31 Indeed, O-GlcNAcylation at Ser395 on TAB1 has

Figure 1. Temporal profiling of protein O-GlcNAcylation by native MS. Native ESI-MS spectra of CK2α (A) and upon incubation with the O-
GlcNAc transferase after 0 and 90 min (B). Native ESI-MS spectra of TAB1 (C) and upon incubation with the O-GlcNAc transferase after 5, 90, and
1440 min (D). Peaks corresponding to the unmodified and the emerging peaks of one and two O-GlcNAc moieties on the intact proteins upon
incubation are labeled 0, 1, and 2, respectively. Peaks corresponding to C-terminal degradation of TAB1 are highlighted for TAB1 Δ395−402 and
Δ385−402 in green and orange, respectively.
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been shown to increase TAK1 activation, enhancing cytokine
release.29 Casein kinase II (CK2) is a ubiquitously expressed
kinase that phosphorylates hundreds to thousands of protein
substrates.32 CK2 is a tetramer comprising two CK2α and two
CK2β subunits whereby CK2α, the catalytic subunit, is active in
both its monomeric form and when bound to CK2β.33 It has
been hypothesized that O-GlcNAcylation of CK2α at Ser347,
adjacent to particular phosphorylation sites on CK2α, may play
a role in regulating CK2 activity.30 Together, we show the
advantages of native MS in monitoring O-GlcNAcylation,
highlighting its ability to determine O-GlcNAcylation stoi-
chiometry on proteins while simultaneously being able to
quantify O-GlcNAcylation kinetics.

■ RESULTS AND DISCUSSION
Native MS Reveals O-GlcNAcylation Stoichiometry.

We overexpressed and purified CK2α from E. coli, leading to a
very clean native MS spectrum displaying a narrow charge state
distribution (12+ and 13+ charge state ions) corresponding to a
molecular weight of 43202.3 Da, which is within 0.002% of the
calculated mass based on the sequence (43203.2 Da; Figure 1A,
Supporting Information Figure 1). Next, to monitor O-
GlcNAcylation, CK2α was incubated with O-GlcNAc trans-
ferase in the presence of UDP-GlcNAc for 90 min. The
resulting O-GlcNAcylated CK2α protein (Figure 1B) could be
clearly mass-separated from the free CK2α and revealed that O-
GlcNAcylation of CK2α occurs readily, resulting in a 1:1
stoichiometry. Although this hints at the presence of just one
kinetically favorable O-GlcNAcylation site on CK2α, this single
modification could theoretically be distributed over multiple O-
GlcNAcylation acceptor sites. Thus, complementary tryptic
digestion of CK2α followed by LC-MS/MS analysis of the
resulting peptides was carried out to localize the exact sites of
O-GlcNAcylation on CK2α. A single O-GlcNAc site on the C-
terminal region of CK2α (residues 334−365; Supporting
Information Figure 2) was observed, consistent with previous
studies confining O-GlcNAcylation to Ser347.30 The observa-
tion of only a single O-GlcNAcylation site on CK2α is striking
considering that CK2α contains 38 Ser/Thr residues, all of
which could potentially be O-GlcNAcylated. To determine
whether the CK2α tertiary structure alone prevents O-
GlcNAcylation of Ser/Thr residues, we next digested the
CK2α protein into a series of peptides through digestion with
LysC. The resulting mixtures of peptides were incubated with
the O-GlcNAc transferase in the presence of UDP-GlcNAc.
Crucially, out of all 50 detected peptides originating from the
CK2α digest, only one (covering residues 334−365) was found
to become O-GlcNAcylated (Supporting Information Figure
3). Thus, consistent with recent findings using peptide
libraries,34 O-GlcNAc transferase must impart not only
structural but also quite specific sequence constraints on its
substrates. To put this finding in a context, we note that in in
vitro kinase assays, more promiscuity is often observed, whereby
next to some preferred sites, many more Ser/Thr become
phosphorylated.35

Also, TAB1 (residues 7−402) was expressed and highly
purified. The resulting native mass spectrum of TAB1 again
shows a narrow charge state distribution (11+ to 14+ charge
state ions) corresponding to a molecular weight of 43510.2 Da,
which is within 0.004% of the calculated mass based on the
sequence (43511.9 Da; Figure 1C). In these spectra, small
satellite peaks were also observed corresponding to TAB1
residues 7−384 (orange) and residues 7−394 (green), hereafter

referred to as TAB1Δ385−402 and TAB1Δ395−402,
respectively. These peaks were attributed to C-terminal
degradation during the recombinant TAB1 expression and
purification process. Upon incubation of TAB1 with O-GlcNAc
transferase, mass shifts appeared with time corresponding to
TAB17−402 with a single O-GlcNAc site (blue; Figure 1D,
Supporting Information Figure 4). Minor peaks were also
observed corresponding to the addition of two O-GlcNAc sites
on TAB17−402 (pale blue). The peaks corresponding to
doubly O-GlcNAcylated TAB17−402 correspond to less than
5% of the overall signal intensity, indicating the gross O-
GlcNAcylation stoichiometry for TAB1 is 1:1. Interestingly, the
C-terminal truncated protein TAB1Δ385−402 did not undergo
O-GlcNAcylation at all, in contrast to TAB1Δ395−402, where
only one O-GlcNAc moiety became attached (Figure 1D).
Thus, from the native mass spectra, we concluded that both O-
GlcNAcylation sites are at the C-terminal 385−402 residues of
TAB1: one site between residues 385 and 394 (i.e., Ser391)
and the other site on residues 395−402.

Limited Proteolysis Enables Rapid Localization of O-
GlcNAc Sites. Since O-GlcNAcylation typically occurs on
unstructured regions of proteins,36 we hypothesized that
limited proteolysis in combination with native MS could be a
fruitful tool for rapid identification of O-GlcNAcylation regions
on proteins. Limited proteolysis is widely used to identify
flexible, intrinsically disordered regions of proteins.37 To
determine the specific regions/domains on TAB1 and CK2α
where O-GlcNAcylation occurs, limited trypsin proteolysis was
performed whereby TAB1 and CK2α were incubated for 15
min on ice in a 1:200 trypsin/protein ratio, and the resulting
precursor and cleaved TAB1/CK2α products were analyzed by
native MS (Supporting Information Figure 5). For both TAB1
and CK2α, the first cleavage site corresponding presumably to
the most flexible, intrinsically disordered region of the protein
was identified to be on the C-terminus. Indeed, this is in
support of crystallographic studies whereby the C-terminal
residues of CK2α and TAB1 could not be structurally resolved,
possibly due to conformational diversity.38,39 To show the
applicability of limited proteolysis for rapid identification of the
O-GlcNAcylation regions on proteins, limited proteolysis was
performed on a 50/50 mixture of unmodified and O-GlcNAc
modified TAB1 and the cleavage products analyzed by high
resolution MS (Figure 2A). Upon analysis of the intact
proteins, two peaks were clearly visible in a 50:50 ratio
corresponding to the full length (black) and singly O-
GlcNAcylated (blue) TAB17−402 protein. In contrast, only
one peak was observed for the C-terminally cleaved
TAB1Δ387−402 protein (purple) showing that the O-GlcNAc
moiety is located on the C-terminal 15 residues of TAB17−
402. Consistent with this, two major peaks were observed at
low m/z in a 1:1 ratio corresponding to the free (purple) and
O-GlcNAcylated (blue) C-terminal TAB1 peptide (residues
387−402). Thus, from a single limited proteolysis mass
spectrum, we can not only measure O-GlcNAcylation
stoichiometry but also rapidly locate the O-GlcNAcylation
site on TAB1 to the unstructured C-terminus.

Labile O-GlcNAc Moiety Maintained at Protein Level.
To extract quantitative information on O-GlcNAcylation
kinetics from native MS data, it is imperative that the O-
GlcNAc moiety is not eliminated prior to mass analysis. This is
not trivial, as it has been shown that with MS/MS
fragmentation methods such as CID and HCD, the O-GlcNAc
moiety, due to its labile nature, is readily lost from peptides.40
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Moreover, on shorter O-GlcNAcylated peptides, the O-GlcNAc
moiety can be lost even prior to precursor ion selection. To
exemplify this, the percentage of O-GlcNAcylation on TAB1
was compared between native MS and LC-MS measurements
whereby O-GlcNAcylated TAB1 had been digested into
peptides using trypsin (Supporting Information Figure 6).
Less than 1% O-GlcNAcylation was observed on the tryptic
peptide TAB1 res387−394 compared with the 20% O-
GlcNAcylation that was detected by native MS on the intact
TAB1Δ395−402 protein.

To investigate further the potential instability of the O-
GlcNAc moiety during native MS analysis, the stoichiometry of
O-GlcNAcylated TAB1 protein was measured as a function of
HCD energy (Figure 2B, C). Interestingly, the ratio of O-
GlcNAcylated versus unmodified TAB1 protein remained
constant upon increasing the collision energy from 0 V (Figure
2A) to 175 V (Figure 2B and Supporting Information Figure
7). This is striking as already at 30 V collision energy over 40%
of the O-GlcNAc moieties were released from the correspond-
ing O-GlcNAcylated C-terminal peptide (Figure 2 and Figure
S7). These differences in the gas phase stabilities of the O-
GlcNAcylated proteins and peptides can be largely attributed to
the relative energy distribution across the peptide/protein
backbone during slow heating MS/MS methods such as
HCD.41 Generally speaking, if the same energy is applied, the
O-GlcNAc moiety on a small peptide will attain more internal
energy (and thus will be more prone to dissociation) than an
O-GlcNAc moiety on a protein. As such, native MS can
monitor quantitatively O-GlcNAcylation, a modification that
has been proven to be highly challenging to monitor
quantitatively at the peptide level.40

O-GlcNAcylation Kinetics Monitored by Native MS. To
further illustrate the ability of native MS in quantitatively
monitoring O-GlcNAcylation kinetics, the percentage O-
GlcNAcylation of TAB17−402 (blue), TAB1Δ385−402
(orange), and TAB1Δ395−402 (green) incubated in a single
vial with the O-GlcNAc transferase was determined and plotted
as a function of the reaction time (Figure 3A). Interestingly, the
rate of O-GlcNAcylation of these three constructs differed: no
O-GlcNAcylation was detected at all on TAB1Δ385−402; 20%
of TAB1Δ395−402 was O-GlcNAcylated only after 24 h of
incubation with O-GlcNAc transferase, and the O-GlcNAcyla-
tion reaction with TAB17−402 reached completion within 8 h
of incubation with O-GlcNAc transferase. As previously stated,
due to the difference in primary sequence between
TAB1Δ385−402 and TAB1Δ395−402, O-GlcNAcylation on
TAB1Δ395−402 can be mapped to Ser391. Since two O-
GlcNAcylation sites were observed on TAB17−402¬ (Figure
1D), we attributed one site to Ser391 and the other to one of
the four Ser/Thr residues located between residues 395−402
on TAB1. Upon trypsin digestion of TAB1 followed by LC-
MS/MS in combination with ETD, the second O-GlcNAcyla-
tion site on TAB1 could be mapped to residue Ser395
(Supporting Information Figure 8). Furthermore, this is
consistent with our previous work,29 whereby a single O-
GlcNAcylation site on TAB1 was mapped to Ser395.
Interestingly, lower abundant fragment ions were also observed
corresponding to Ser391 O-GlcNAcylation (Supporting
Information Figure 8), supporting our argument that the two
O-GlcNAcylation sites observed by native MS on TAB1 are
located on Ser391 and Ser395. Since the O-GlcNAcylation
reaction of TAB17−402¬ (i.e., Ser391 and Ser395 O-
GlcNAcylation) reaches completion on a shorter time scale
than TAB1Δ395−402 (i.e., Ser391 O-GlcNAcylation), we
consider Ser395 and Ser391 to be the primary (fast kinetics)
and secondary (slower kinetics) O-GlcNAcylation sites,
respectively.
An alternative, albeit less direct, method to monitor the

kinetics of O-GlcNAcylation for TAB1 would be to digest the
O-GlcNAcylated protein of interest at various time points
during the O-GlcNAcylation reaction and analyze the extent of
O-GlcNAcylation at the peptide level using LC-MS. Thus, for
comparison, the O-GlcNAcylated TAB1 native MS samples at

Figure 2. Simultaneous profiling of protein O-GlcNAcylation at the
protein and peptide level revealing instability of the modification at the
peptide level. Native MS spectra of TAB1, following limited
proteolysis of TAB1, after 50 min incubation with the O-GlcNAc
transferase. Mass spectra were acquired at a HCD voltage of 0 V (A)
and 30 V (B). The ions corresponding to peptides and proteins are
clearly separated in m/z; highlighted by a yellow/blue box background.
Peaks corresponding to the main TAB1 trypsin cleavage products are
shown in purple. Blue peaks correspond to the O-GlcNAc modified
peptide (res387−402) and the TAB1 protein (res7−402). *, **, and
*** represent the minor peptide cleavage products: res1−33, Δ365−
402, and O-GlcNAc-Δ365−402, respectively. (C) Percentage of O-
GlcNAc modified TAB1 detected on the intact protein and peptide
level at 0 and 30 V, revealing the specific loss of the O-GlcNAc moiety
at the peptide level.
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various time points were digested with trypsin and analyzed by
LC-MS. Two TAB1 peptides were observed corresponding to
the O-GlcNAcylated TAB1 peptides res387−402 and res387−
394 (Supporting Information Figure 6A, C). Upon plotting the
% O-GlcNAcylation of the TAB1 peptide res387−402 over
time, very similar kinetics were observed compared with those
when measured on the intact TAB17−402 protein by native
MS (Figure 3, Supporting Information Figure 6B). In sharp
contrast to the native MS on TAB1 Δ395−402 whereby 15%
O-GlcNAcylation was observed after 10 h, no O-GlcNAcylation
was observed on the TAB1 peptide res387−394 at the same
time point. This difference is attributed to the difference in
stability of the O-GlcNAc moiety in the gas phase at the
protein/peptide level (Figure 2). Thus, native MS is advanta-
geous over traditional peptide-centric approaches in not only
quantifying O-GlcNAcylation but also in monitoring O-
GlcNAcylation kinetics.
The difference in O-GlcNAcylation kinetics between residues

Ser395 and Ser391 (Figure 3A) is somewhat surprising
considering the high sequence similarity: −Y−P−V−S− versus
−V−P−Y−S− for the O-GlcNAc sites at Ser391 and Ser395,
respectively (Table S1). Since Pro is conserved at the P-2
position, we attribute the differing rates of O-GlcNAcylation to
the differences at the P-3 and P-1 positions. Overlaying the
valine at the P-3 position (when Ser395 O-GlcNAcylated) with
tyrosine (residue present when Ser391 O-GlcNAcylated) in the
crystal structure of the TAB1 glycopeptide bound in the active
site of O-GlcNAc transferase (Figure 3B) shows the steric
clashes that would occur with UDP when a bulky side chain
such as that on tyrosine is introduced in this position. Thus, the
nature of the amino acid at the P-3 is imperative for fast O-
GlcNAcylation kinetics. It is possible that the truncation of the
C-terminal residues of TAB1 prevent the interactions needed
for Ser391 to fit into the O-GlcNAc transferase active site.
However, evidence suggests this is not the case considering the
O-GlcNAc residue predominantly resides on Ser395 in the
TAB17−402 protein (Supporting Information Figure 8), and
the signal contributing to the O-GlcNAcylated protein with two
O-GlcNAcylation sites is less than 5% of the total signal
intensity after 24 h (Supporting Information Figure 4).
Conclusions. In summary, we demonstrate that high

resolution native MS is a promising addition to the toolbox

for monitoring O-GlcNAcylation of protein substrates uniquely
providing information on O-GlcNAc stoichiometry and O-
GlcNAcylation kinetics. In comparison with established QTof
instrumentation (Supporting Information Figure 9), baseline
resolution was obtained using the Orbitrap EMR mass analyzer
enabling O-GlcNAc proteoforms to be identified and quantified
on larger intact proteins. Although, the in vitro approach
requires protein (over)expression and proteins of high purity,
with current instrumentation, the obtained mass resolving
power would enable analysis of O-GlcNAc proteoforms on
proteins and protein complexes of up to 200 kDa to be
measurable using the Orbitrap EMR.
Beneficially, native MS preserves the labile O-GlcNAc on

proteins allowing it to be quantified precisely. Finally, since no
label has been incorporated that specifically targets O-
GlcNAcylation, we believe that the methodology presented
here is widely applicable to monitoring multiple post-
translational modifications that may occur independently or
simultaneously to O-GlcNAcylation on proteins and protein
complexes, thus enabling investigations into cross-talk between
different post translational modifications.42

■ EXPERIMENTAL DETAILS
TAB1, CK2, and OGT were purified as described previously.29,30,34 In
vitro O-GlcNAcylation assays were performed at 37 °C at physiological
pH in the presence of 50-fold molar excess of UDP-GlcNAc using a
1:1 and 1:5 enzyme/substrate ratio for the reactions with TAB1 and
CK2α, respectively. Reactions were quenched on ice and rapidly buffer
exchanged into ammonium acetate at pH 8.0 for analysis on an
Orbitrap EMR mass spectrometer. To create the library of peptides
from CK2α for the peptide O-GlcNAcylation reactions, CK2α (in 100
mM ammonium acetate at pH 8.0) was digested with LysC overnight
in a 1:50 LysC/CK2α ratio. LysC was then deactivated through
heating to 95 °C for 5 min, the solution cooled, and the O-
GlcNAcylation reaction then carried out as previously described. The
peptides were analyzed by direct infusion using a nanoESI source
coupled to an Orbitrap EMR mass spectrometer.

For limited proteolysis experiments, the O-GlcNAcylation reaction
was quenched when the ratio of free/O-GlcNAcylated proteins
reached 1:1 (i.e., 50 min after addition of O-GlcNAc transferase for
TAB1). Trypsin was then added in a 1:200 trypsin/protein ratio. After
15 min of incubation on ice, native mass spectra were immediately
acquired. To monitor the relative stability of the O-GlcNAcylated
peptides and proteins, the MS settings were optimized for efficient

Figure 3. Sequence context has a profound effect on the kinetics of O-GlcNAcylation. (A) O-GlcNAcylation kinetics of TAB1 for res7−402 (blue)
and the C-terminally truncated TAB1 proteins Δ395−402 (green) and Δ385−402 (orange). (B) O-GlcNAc transferase active site (gray) showing
the glycopeptide from TAB1 bound (blue) on top of UDP (black) (PDB 4AY5). The positions of the amino acids relative to the Ser395 O-
GlcNAcylation site are labeled P, P-1, P-2, and P-3. The P-1 and P-3 positions were substituted from Tyr and Val to Val (at P-1) and Tyr (at P-3),
respectively, (green) to mimic the situation whereby Ser391 is O-GlcNAcylated.
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transmission of low and high m/z ions, and the HCD voltage increased
systematically from 0 to 175 V without precursor ion selection. For
identification of the O-GlcNAcylation sites, TAB1 and CK2α were
digested with trypsin and the reaction quenched by the addition of
10% formic acid prior to LC-MS/MS analysis. The samples were
analyzed on a LTQ-Orbitrap Elite coupled to an EASY-nLC 1000.
More detailed experimental details are available in the Supporting
Information.
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