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Abstract 

mRNA is modified co-transcriptionally at the 5' end by the addition of an inverted guanosine 

cap structure which can be methylated at several positions.  The mRNA cap recruits proteins 

involved in gene expression and identifies the transcript as being cellular or "self" in the 

innate immune response.  Methylation of the first transcribed nucleotide on the ribose 2'-O 

position is a prevalent cap modification which has roles in splicing, translation and provides 

protection against the innate immune response.  In this review we discuss the regulation and 

function of CMTR1, the first transcribed nucleotide ribose 2'-O methyltransferase, and the 

molecular interactions which mediate methylated 2'-O ribose function. 
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Introduction 

The mRNA cap is a critical structure in gene expression and in innate immunity.  It protects 

pre-mRNA from exonucleases during transcription, recruits factors involved in RNA 

processing, nuclear export and translation, and identifies transcripts as "self" to protect 

against the innate immune response.  Formation of the mRNA cap initiates as nascent pre-

mRNA emerges from the RNA pol II complex.  The rate and extent of mRNA cap formation 

is regulated by cellular signalling pathways resulting in changes in cell physiology and fate.  

 

mRNA cap formation 

The mRNA cap structure was first characterized in the 1970s as a 5’ blocked, methylated 

structure in viral mRNAs and was recognised shortly after to be a feature of eukaryotic 

mRNA 1,2.  Nascent pre-mRNA is transcribed with a terminal triphosphate (ppp(5')N, N is the 

first transcribed nucleotide).  The terminal phosphate is removed and GMP (guanosine 

monophosphate) is added to create the guanosine cap intermediate (G(5')ppp(5')N).  This 

structure has a 5' to 5' triphosphate linkage thought to be unique to RNA pol II transcripts.  

Subsequently the guanosine cap is methylated on the 7'-N position and the first and second 

transcribed nucleotides can be methylated on the ribose 2'-O positions.  More rare 

modifications are found in the cap structure including 6'-N methylation if the first transcribed 

nucleotide is adenosine 3,4. 6'-N methylation of the 1st nucleotide adenosine is reversible and 

increases transcript stability by conferring resistance to decapping enzymes.  Furthermore, 

any other RNA modification, including 1'-N adenosine methylation, may be found on the first 

transcribed nucleotides, thus becoming part of a cap structure5.  Recently novel nicotinamide 

adenine dinucleotide (NAD+) caps have also been isolated on mRNA, which target the 

transcripts for degradation 6. 

 

The first step in mRNA cap formation is addition of the guanosine cap intermediate, 

(G(5')ppp(5')N).  This is catalysed by the sequential actions of a triphosphatase and a 

guanylyltransferase.  The catalytic cores of the different capping enzymes are largely 

conserved in eukaryotes whereas the holo-enzymes have different configurations.  In this 

review, we focus discussion on the mammalian capping enzymes.  In mammals, a single 

enzyme, RNGTT (RNA guanylyltransferase and 5' triphosphatase) possess both 

triphosphatase and guanylyltransferase activities 7,8.  Guanosine cap 7'-N methylation, 

creating m7G(5')ppp(5')N, is catalysed by RNMT (RNA guanine-7 methyltransferase), which 

is found in a complex with its activating subunit RAM (RNMT-activating miniprotein) 9-11.  

Methylation of the first and second transcribed nucleotides at the ribose 2’-O position is 

catalysed by CMTR1 and CMTR2, respectively 12,13.  Whilst analyses are in agreement that 

m7G(5')ppp(5')Nm is the most abundant mRNA cap structure, the relative proportion of the 
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different cap methyl groups is an area of active research 6,14,15.  Previously, mass 

spectrometric analyses of cap structures were restricted to cell lines and large organs.  With 

recent improvements in chromatography and mass spectrometry, analysis of mRNA caps in 

an increasing array of primary tissues and cells will be possible 16. 

 

mRNA cap function 

Following its discovery, the mRNA cap was found to protect mRNA from exonucleases, and 

to recruit protein complexes involved in RNA processing, nuclear export and translation and 

initiation 17,18.  In the nucleus, the binding of CBC (Cap Binding Complex) to the mRNA cap 

promotes pre-mRNA splicing, nuclear export and influences pre-mRNA 3’ end processing 

and nonsense mediated decay 19.  eIF4E and the eIF4F complex also bind to the cap and 

promote nuclear export and translation initiation 20.  Over the last decade, formation of the 

mRNA cap has been recognised to be regulated in a gene-specific manner by the influence of 

transcription factors, signalling pathways and developmental pathways 21-24.  Regulation of 

mRNA cap formation results in alterations in gene expression and subsequent changes in cell 

function and fate.  Recently CMTR1 has been recognised to be regulated in the innate 

immune response, and to have a critical role in the recognition of self-RNA 25.  This has 

reinvigorated interest in 2'-O methylation of the first nucleotide ribose. 

 

First transcribed nucleotide 2'-O methylation in gene expression 

First nucleotide 2’-O methylation and splicing 

The 7-methylguanosine cap binds to CBC which interacts with splicing factors and thus 

promotes splicing 26.  Whether 2'-O methylation of the first transcribed nucleotide of mRNA 

has a role in splicing remains to be seen. However, 2'-O methylation is present on the first 

nucleotide of U1, U2, U4 and U5 snRNAs and is important for their function in the 

mechanism of splicing 27.  snRNAs are RNA pol II transcripts and therefore receive a 7-

methylguanosine cap.  Following export into the cytoplasm, further methylation yields a 

(2,2,7) trimethylguanosine cap and the snRNA-protein complex (snRNP) is re-imported into 

the nucleus to function in splicing.  In the nucleus, the snRNAs are further modified with 

pseudouridination, and first and internal nucleotide ribose 2’-O methylation.  In vitro-

transcribed U2 snRNA cannot reconstitute splicing in U2‐depleted Xenopus oocytes or HeLa 

nuclear extract indicating that modifications of U2 snRNA are important for snRNP 

biogenesis and/or pre‐mRNA splicing 28,29.  Only when both the (2,2,7) trimethylguanosine 

cap and internal modifications are acquired does synthetic U2 snRNA become fully 

functional 30.  Moreover, 2′-O-methyl groups at positions 1, 2, 12, and 19, but not at position 

11, are individually required for the function of U2 snRNA.  The function of the 2’-O 

methylation is not clear, but is required for the E complex formation 31. Interestingly, snRNPs 
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first and second nucleotide 2’-O methylation only occurs in higher eukaryotes, indicating that 

CMTR1 and CMTR2 are potentially involved in these methylations 32. 

 

First nucleotide 2'-O-methylation in mRNA translation 

The 7-methyl guanosine cap is critical for eIF4E binding and translation initiation 33.  eIF4E 

binds to the scaffold protein eIF4G and helicase eIF4A forming the eIF4F complex, which 

recruits the 40S ribosomal subunit to mRNA.  First nucleotide 2’-O methylation was 

recognised to have a role in translation shortly after its discovery; it was demonstrated to 

enhance ribosome binding and translation 34,35.		In vivo, first nucleotide 2'-O methylation was 

demonstrated to be important for translation during Xenopus or sea urchin development.  In 

1985, Caldwell and Emerson reported significant upregulation of 1st nucleotide 2'-O 

methylation in maternal mRNA following the fertilization of sea urchin embryos.  Further 

studies by the Ritcher lab reported that first nucleotide 2'-O methylation is upregulated during 

Xenopus oocyte maturation (Kuge, 1995)36.  Of note, c-mos mRNA translation and resultant 

oocyte maturation was found to be dependent upon first nucleotide O-2 methylation 36.	
 

CMTR1: first nucleotide 2’-O-methyltransferase  

First nucleotide 2'-O methyltransferase activity was initially characterised in vaccinia virus 

and HeLa cells 37,38.  However, the methyltransferase responsible for first nucleotide 2’-O 

methylation in mammalian cells, CMTR1 (Cap Methyltransferase 1), was only identified 

recently by Belanger et al. (Belanger et al, 2010) (Figure 1).  In vitro, CMTR1 catalyses 

methylation of ribose 2′-OH group on the first transcribed nucleotide of guanosine-capped 

RNA.  Although CMTR1 requires a cap guanosine structure (GpppN) in its substrates, it acts 

independently of N-7 methylation 12,39.  CMTR1 is also unable to methylate internal residues.  

Extracts of HeLa cells depleted of CMTR1 are defective for first nucleotide 2’-O methylation, 

indicating that there is not a completely redundant methyltransferase present in these cells 40.  

Belanger et al also reported that knock-down of CMTR1 does not impact on global 

translation as measured by 35S methionine incorporation, although it is a possibility that the 

remaining CMTR1 may be sufficient to maintain translation.  As discussed above, first 

nucleotide 2'-O methylation has been linked to mRNA translation in several eukaryotic 

systems and deletion of the 1st and 2nd transcribed nucleotide 2’-O-methyltransferase in 

Trypanosomes results in a significant reduction in global translation 41.   

 

CMTR1 had previously been identified as KIA0082/ISG95, a protein implicated in the 

response to interferon treatment and viral infection 42-45.  Following these studies CMTR1 was 

characterised as a multi-domain protein with a nuclear localization signal, G-patch domain, a 

RrmJ/FtsJ methyltransferase domain, a non-functional cap guanylyltransferase-like domain 
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and a WW domain 46.  Deletion of the domains C-terminal to the methyltransferase 

(guanylyltransferase-like and WW domains) reduces the activity of CMTR1 in vitro and 

therefore these domains are likely to contribute to substrate recruitment and/or structural 

configuration 39.  The CMTR1 WW domain interacts with the C-terminal domain (CTD) of 

the largest subunit of RNA polymerase II (RNA Pol II) 46.  Whether CMTR1 has enhanced 

affinity for a particular CTD phosphorylation state, remains to be determined.  Since first 

nucleotide 2’-O-methylation does not inhibit or enhance 7'-N methylation of the cap 

guanosine it is not clear whether RNMT or CMTR1 methylates the cap first, or indeed 

whether they have an order of action.   

 

Structural analysis of the CMTR1 catalytic domain resolved a Rossman-like fold 

methyltransferase domain and determined the mechanism of guanosine cap recognition 39.  In 

the CMTR1 active site, the methylated guanosine (m7G) is accommodated in a deep pocket 

and the transcribed nucleic acids adopt an L shape with nucleotide 1 located at the bend.  

Analysis of the positioning of the RNA in the exit of the active site suggests that substrate 

binding and methylation are sequence-independent. However, whether the domains N- and C- 

terminal to the methyltransferase domain interact with RNA and/or other proteins, potentially 

providing substrate specificity, will require further exploration.  As discussed above, CMTR1 

has other domains (G-patch, WW and guanylyl-transferase-like) which have been 

demonstrated to influence activity 39.  The N- and C-terminal domains of CMTR1 are 

intrinsically unstructured, which to date has impaired structural characterisation of the full-

length enzyme.   

 

CMTR1 and 2’-O-methylation in “self”-RNA distinction 

In recent years, the cap1 structure (m7GpppNm) has emerged as a key factor in "self-RNA" 

identification during the innate immune response 47 (Figure 2).  "Non-self" RNA 

intermediates from viruses are recognised by the cellular innate immune system as foreign, 

triggering cellular mechanisms which protect the cell.   The role of cap1 in the innate immune 

response was revealed by studying the viral first nucleotide 2’-O methyltransferases in the 

evasion of the innate immune system 48.  First nucleotide 2’-O methylation was required for 

optimal infectivity; viruses lacking this methylation were unable to propagate.  2′-O 

methylation of viral RNA enhanced virulence through evasion of intrinsic cellular defense 

mechanisms involving IFN-induced proteins with tetratricopeptide repeats (IFIT proteins) 48.  

This study suggested that 2’-O methylation of the 5’ cap distinguishes self (cellular) and non-

self (viral) RNA.  In addition, this study suggested co-evolution of 2’-O methylation and viral 

strategies for infection.   
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Cap1 functions to prevent the aberrant activation of innate immune response readers, RIG-I 

and MDA5.  RIG-I (Retinoic Acid Inducible Gene-I), an innate immune receptor, is a 

cytoplasmic protein which detects triphosphate RNA (pppRNA) and induces cellular 

signaling responses that ultimately drive to an interferon response.  The impact of individual 

cap modifications, including cap guanosine 7'-N methylation and first nucleotide 2’-O 

methylation, on RIG-I activation was analysed using synthetic RNA 25,49.  First nucleotide 2’-

O methylation was found to prevent RIG-I activation, in a mechanism utilizing a highly 

conserved histidine residue (H830).  In cells, experimental interference with this "key-lock" 

mechanism elicits an interferon response similar to that triggered by viral infection.  The 

RIG-I H830A mutation results in stimulation of RIG-I by endogenous mRNA.  Furthermore, 

suppression of CMTR1 results in RIG-I stimulation in primary human fibroblasts and 

induction of IFN-beta mRNA in primed A549 cells.  MDA-5, another RIG-like receptor, has 

also been linked to the induction of type I interferon by viruses deficient in 2′-O-

methyltransferase activity.  MDA-5 recognizes the internal duplex structure of long dsRNA 
50.  Whether the composition of the viral and endogenous mRNA cap structure has a role in 

this interaction remains an open question 51.  Upon sensing of viral RNA, the cellular proteins 

RIG-I or MDA5 induce type I interferon (IFN) secretion, resulting in upregulation of antiviral 

IFN-induced proteins (IFIT) in the infected and neighboring cells 52.  These IFIT proteins 

include those which inhibit virus replication or protect against new infection.  

 

When the innate immune response is triggered, the expression of effector proteins protect the 

host from the external agent 52.  IFIT1 is a key effector of the innate immune response, which 

blocks the translation of viral mRNA by competing with the eIF4F complex for binding to the 

cap.  Over-expression of human IFIT1 in cells or reticulocyte lysates reduces translation 

significantly 53.  Specific features of mRNAs were indicated to influence their sensitivity to 

IFIT1 (Young et al., 2016).  Structural analysis of IFIT1 revealed that it forms a tight 

interaction with ribose 2′-hydroxyls of first and second nucleotides.  Cellular mRNAs 

methylated at these positions are not recognised by IFIT1 thus restricting IFIT1 activity to 

unmethylated viral mRNAs 54.  Importantly, methylation of the first nucleotide alone is not 

sufficient to protect all endogenous mRNAs from IFIT1.  2'-O methylation of the second 

transcribed nucleotide also contributes to inhibition of IFIT1 action on cellular RNA, 

particularly on susceptible RNA sequences and at high IFIT1 concentrations 54.  This suggests 

a role for CMTR2, the second transcribed nucleotide 2'-O methyltransferase in innate 

immunity.  Furthermore, RNA sensors may also have functional interactions with the second 

nucleotide, as single 2’-O methylation of the second transcribed nucleotide partially abolished 

RIG-I activation (Schubert et al., 2015). 
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Regulation of CMTR1 

Since CMTR1 has important roles in translation and innate immunity, its regulation is of 

interest.  Analysis of mouse tissues revealed differences in the extent of 1st nucleotide 2'-O 

methylation suggesting tissue specific regulation of CMTR1 expression or activity 15.  

CMTR1 has several domains through which subcellular localisation, activity or expression 

may be regulated, potentially by protein:protein interactions or by post-translational 

modifications.  The 7'-N cap methyltransferase, RNMT-RAM, has been demonstrated to be 

regulated at the level of expression, recruitment to chromatin and activity 21,23,24,55. 

 

CMTR1 expression has been observed to be upregulated during the innate immune response.  

In four independent studies where an interferon response was elicited, the expression of 

CMTR1 was upregulated ~3-fold 42-45.  Despite differences in model cell lines or organisms, 

upregulation of CMTR1 expression is transient and efficiently cleared after the initial anti-

viral response.  In human fibroblasts, CMTR1 knockdown was sufficient to elicit an 

interferon-like innate immune response 25.  

 

Future perspectives : ribose O-2 methylation and disease 

A causative effect for CMTR1 in human diseases has yet to be elucidated.  However, 

significant changes in CMTR1 mRNA levels in patients experiencing asthma 

exacerbations have been observed, suggesting a role for CMTR1 in the pathogenesis of 

asthma exacerbations 56.  Highly pathogenic viruses include RNA genome-based viruses 

which give rise to zoonotic and epidemic diseases 57.  Inactivation of flavivirus, coronavirus 

and poxvirus families 2’-O MTases increased sensitivity to antiviral actions of type I IFN 58. 

Therapeutic targeting of 2’-O MTases may offer a new avenue to treat some of these viral 

infections. 
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Figure	1.	CMTR1	functional	domains
NLS,	nuclear	localization	signal;	G-patch,	glycine	rich	domain;	RFM,	Rossman-fold		methyltransferase	domain;	GT-like,	guanylyltransferase-
like	domain;	WW,	protein	interaction	domain;	phos,	amino	acid	28-66	multiple	phosphorylation	sites	(sites	with	more	than	5	references	
in	Phosphosite	plus);	(Haline-Vaz et	al,	2008;	Smietanski et	al,	2014)	
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Figure	2.	“Self”-RNA	recognition	and	immune	tolerance	to	2’-O	methylated	RNA		
CMTR1	 and	viral	methyltransferases	(Mtases)	catalyse first	nucleotide	ribose	2’-O	methylation,	which	prevents	transcript	recognition	by	
RIG-I	or	MDA5.		In	the	absence	of	ribose	2’-O	methylation,	RIG-I	or	MDA5	elicit	the	interferon	response	which	includes	expression	of	IFIT	
proteins.	IFIT1	binds	to	transcripts	unmethylated on	ribose	2’-O	to	inhibit	translation.		m7GpppN,	7’-N cap	(N,	first	nucleotide);	m,	ribose	
2’-O	methylation;	Green	lines,	activity	or	permissive	effect;	Black	line,	binding	and	repression;	Grey	dotted	lines,	absence	of	translation.


