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Reading Small Scalar Data Fields:
Color Scales vs. Detail on Demand vs. FatFonts
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Figure 1: Scalar-field representations: Brightness and HSB scales, Interactive (tooltip) and FatFonts. The examples are excerpts
from larger fields, e.g., as seen in Fig. 3.

Abstract

We empirically investigate the advantages and disadvantages
of color- and digit-based methods to represent small scalar
fields. We compare two types of color scales (one brightness-
based and one that varies in hue, saturation and brightness)
with an interactive tooltip that shows the scalar value on de-
mand, and with a symbolic glyph-based approach (FatFonts).
Three experiments tested three tasks: reading values, com-
paring values, and finding extrema. The results provide the
first empirical comparisons of color scales with symbol-based
techniques. The interactive tooltip enabled higher accuracy
and shorter times than the color scales for reading values but
showed slow completion times and low accuracy for value
comparison and extrema finding tasks. The FatFonts tech-
nique showed better speed and accuracy for reading and value
comparison, and high accuracy for the extrema finding task
at the cost of being the slowest for this task.

Index Terms: Human-centered Computing [Visualization]:
Empirical studies in visualization—;

1 Introduction

Visualization of scalar fields is common for scientific and
non-scientific visualisation. One usual approach to represent
these data fields consists of coding the scalar value with
brightness or hue; for example, temperature is mapped to
colors on a scale from blue to red on weather maps. The
exact mapping chosen between magnitudes and colors is
arbitrary and can have a large effect on the accuracy of how
the visualizations are read [8,45]. It is therefore not surprising
that a significant effort in the scientific literature has been
devoted to the specification and testing of better scales (also
called color maps or heatmaps); errors and inaccuracies in
reading can affect many fields and applications.

Within the area of scalar fields, those that are of low
spatial resolution (e.g., in the thousands of samples or less)
still play an important role in multiple areas of application.
For example, small scalar fields are used to represent confu-
sion and correlation matrices (e.g., [29]), perceptual kernels
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(e.g., [13]), or other data that is inherently low in resolu-
tion [14]. Although color-based representations are dominant,
it is possible to represent these data in different ways: by
using symbols (digits) and interactivity.

In this paper we compare empirically the traditional ap-
proach of representing 2D scalar data through color and
monochrome scales [40,45] with two alternatives that have
not been compared previously. Our goal is to evaluate if
colour scales can be outperformed by alternative represen-
tations. The first alternative is an interactive tooltip that
complements one of the colour scales and offers an accurate
reading of the data for the location of the cursor; although
it might seem straightforward that the detail-on-demand
that this enables could improve current representations in
computer-based systems, we have found no literature compar-
ing this with static representations. The second alternative
is FatFonts, a recent technique that uses numeral glyphs that
also vary in amount of ink (and therefore in brightness) to
compose an image [28]. FatFonts is a representative of an
emerging group of techniques that use numerals (in addition
to visual variables) to represent data.

The empirical evaluation measured accuracy, time, and
preference in three tasks: reading values, comparing values,
and finding maxima and minima. We found that the detail-on-
demand approach can be fast and accurate for reading values,
but its accuracy and speed are poor when the task requires
to look at multiple values. Finally, we found that using digits
to represent the whole field has significant advantages in
terms of accuracy for all tasks, and in terms of time for value
reading and value comparison. These results, along with a
qualitative analysis of technique applicability, are an initial
step to a better characterization of techniques for visualizing
scalar fields and might help motivate the use of digit-based
techniques for small scalar field display.

2 Related Work

A large body of existing work analyses the use of color scales
for scalar field visualization. We cannot be comprehensive
about color scales but refer the reader to books and sur-
veys [38,39,41,46]. Here we focus on the issues of the tradi-
tional forms of scalar field representations and then discuss
work on visualization alternatives.

2.1 Color Scales

The basic idea behind color scales is the design of a visual
mapping of numeric values to color that allows the user
to read the information in a visual form. There is a large
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variety of possible mappings, most of which map the scalar
value to one or more of the dimensions of a color space
(e.g., hue, saturation, brightness, or red, green, blue). Some
common examples include (a) rainbow/spectral scales that
cycle through all the available hues, (b) single hue with
varying saturation, and (c) scales based on brightness.

The perceptual properties of color and color scales have
been well studied (e.g., [7, 17, 20, 45]). An often desired
property of color scales derived from existing knowledge on
color is perceptual linearity: the mapping is chosen so that
the perceived distance between colors or their differentiability
by the human visual system corresponds to the differences
in numerical values. To achieve this, color maps have to be
carefully designed taking into account aspects of human color
perception, e.g., through the use of perceptual color spaces
and models [10, 34], and through an understanding of the
characteristics of the visual sub-channels (e.g., luminance can
convey three times more spatial detail than hue [26]).

One common problem is that the color perception of an
element is influenced by the color of its direct surroundings
through simultaneous contrast effects [8,11,45]. The effective-
ness of the mapping therefore depends on the surrounding
color: a dark surround will make the color appear lighter,
while a light surround will make it appear darker, resulting
in value reading errors. If only hue is used (such as in the
common spectral/rainbow/jet scheme) problems of ordering
and perceptual artifacts appear. This type of scale has been
subject to intense controversy and is generally considered
to be problematic at best [5, 22, 35]. Additionally, these
scales are highly vulnerable to individual differences in color
perception, such as color-blindness [24]. A partial solution
for some of these problems is combining hue variation with
brightness variation to form a color sequence that traverses
a perceptual color space in a spiral fashion. These scales
might provide more accurate reading and ameliorate the
simultaneous contrast problem [9,19,20,40,45].

An alternative approach is to allow users to create their
own scales for a specific dataset with a tool [3,6,15,25,32,33,
42–44, 47]. Although promising, this approach has obvious
drawbacks such as inconsistency across representations [23],
and that it requires expertise from users.

2.2 Digit-based Representations

Some of the accuracy problems derived from color scales
can be avoided by using symbolic representations of mag-
nitude (i.e., digit glyphs). However, digits by themselves
(e.g., arranged on grids) are not ideal for scalar fields because
they do not take advantage of the integrative characteristics
of the human visual system. Although more accurate for
reading values, using digits makes other tasks much harder;
for example, finding the largest number in a grid requires
much sequential reading, whereas with color scales the eye is
almost automatically attracted to the best candidate areas.

A possibility for dynamic displays is to make use of the
interactive capability of computers, and provide the symbolic
representation only on demand, as suggested by Schneider-
man’s visualization mantra [37]. This can be done, for ex-
ample, by providing a tooltip with the value of the point for
the location of a cursor or touch. Having the symbolic infor-
mation only when it is needed might reduce visual overload
compared to information-dense digit fields.

Finally, it is possible to show digit based fields that contain
both digits and graphical encodings of the information in dy-
namic displays. One such hybrid technique is FatFonts, which
combines visual and symbolic elements to try to simultane-
ously reap the accuracy of digits and the visual overview of

images [28]. Each digit is designed to have an amount of ink
(or number of black pixels) proportional to the represented
value. For example, a 5 has five times the ink as a 1, a 4 four
times, and so on. The technique encodes values redundantly:
in the shape of the glyph (symbolic), and in the amount of
ink. This means that, for any given data point, a viewer can
read the value from the glyphs, but a grid of values can still
be interpreted as an image: darker areas represent higher
values (see Fig. 1). To span several orders of magnitude, a
smaller digit (1/10 in area) fits within the larger digit (see
Fig. 2). This technique is also related to visualizations in
spreadsheets that use color on the back of cells for the same
purpose (Conditional Formatting in Microsoft Excel). These
techniques have the drawback that they require multiple
pixels per data point, and can pack fewer points in the same
space. The original description of the technique contains a
detailed discussion of this issue and how FatFonts relates
to other techniques [28]. We know of no previous empirical
evidence comparing interactive or digit-only approaches. We
intend to start filling this gap.

Figure 2: FatFonts numbers 19, 28, 37, 46, 55, 64, 73, 82 and 91.
Reproduced with permission from [28].

3 Empirical Investigation

This section describes elements common to the three experi-
ments, starting with the four compared techniques.

3.1 Techniques

We selected four representation techniques for small scalar
fields: a Brightness scale, an HSB scale, a Detail-on-demand
technique that we refer to as Interactive, and FatFonts.

3.1.1 Brightness and HSB

We searched the literature to find static scales (adaptive scales
introduce per-participant variability and are not applicable
to static media) which were reproducible from the paper
description. We settled on the two best performing scales
from Spence et al.’s [40]. Although they tested scales that
change in fewer discrete steps, these were designed using
perceptual principles and based on previous work.

Both scales are based on Munsell’s color system. The
Brightness scale provides equal intervals in the Munsell value
dimension (values in [3,9]), while keeping H = 2.5G and C = 6
(a green hue). The HSB (Hue, Saturation, Brightness) scale
describes a spiral over the perceptual color space: the lower
end of the scale is low in value (dark) and purple in hue,
while the high end of the scale is bright and greenish in hue
(see Fig. 1, 3). We interpolated values linearly to obtain 100
different levels. Note that color appearance in this paper may
vary depending on display, printer or rendering software.

3.1.2 Interactive

The Interactive technique is like the Brighness scale, but with
a tooltip (40×40 px) to the right of the cursor that indicates
the underlying value (see Fig. 4).

3.1.3 FatFonts

We used two-level FatFonts (values 0 to 99) in the glyphs
from Fig. 2. The zero was an empty digit (zero ink). Each
number had a size of 40×40 px.
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Figure 3: A data field displayed with the HSB technique.

Figure 4: The tooltip of the Interactive technique.

3.2 Apparatus and Stimuli

The experiment took place in a light- and sound-controlled
environment. Visual stimuli were presented on a 24 inch
EDGE10 EF240a display with 1920×1080px resolution. The
white point was set to 6500 K, and the system was calibrated
with a Spyder 3 Express colorimeter. The calibration was
manually confirmed using a Minolta LS-110 luminance meter.
The participant sat in front of the screen with a keyboard on
his left and a Logitech M185 mouse on his right (see Fig. 5).

The experiment ran through custom software written with
JavaFX on Windows 7, with mouse acceleration turned off.
All data fields were 42× 27 points, with each data point
taking up an area of 40× 40 px. This size was chosen to
enable reading of digits with the digit-based techniques with
the resolution of the display. The side bands housed two
legends (one on each side—see Fig. 3) for all techniques
except FatFonts. At the beginning of each trial the cursor
was reset to the middle of the screen.

We generated 368 different random data fields for use in
all experiments. The data generation procedure was based on
Sanyal et al.’s [36], but was adapted to represent fields with
some noise and a range of fast and slow spatial variations.
The fields are generated by adding 40 randomly positioned
gaussian curves of random amplitude (20 positive and 20
negative) and random standard deviation between 2 and 12.
The overall amplitude of the resulting surface was scaled to
be between 50 and 90, and shifted in value randomily up
or down with all values staying within the 5 to 95 interval.
Finally, white gaussian noise of amplitude 2 was added. This
generation procedure results in data fields with plausible
dynamic range and data values.

For the comparison task we discarded with replacement
data fields without at least three value pairs that differed by
5, 15, and 30 units, and where each of the paired values was
on separate horizontal halfs of the field (see Exp. 2).

Figure 5: Main apparatus for all experiments.

3.3 Participants

Twenty-two participants, aged 19-39, 12 females, volunteered
to participate in exchange for a gift card. We asked partici-
pants to perform as fast and accurately as possible, and told
them that the fastest participant that was not innaccurate
would receive an extra award. Participants were screened
for color vision deviciencies with a Farnsworth-Munsell test1.
One participant could not do the Farnsworth-Munsell test for
personal reasons but was tested with the standard Ishihara
test instead. Three participants were removed before analysis
and are not counted above: one because they misunderstood
the first experimental task, two more because of moderate
color vision deficiency (F-M-CVD above 100).

3.4 General Procedure

The experimenter explained each technique and task before
the start of that task’s trials, and participants tried the task
without a time limit. All participants performed the three
experiments in the same order (reading values, finding ex-
trema, value comparison). The order in which the techniques
were presented was balanced between participants and each
participant saw the techniques in the same order within each
of the three tasks. In the first experiment the techniques
themselves were also explained in detail.

Participants saw all 368 fields once, 92 with each tech-
nique. Stimuli appeared a balanced number of times across
techniques. After each experiment, participants filled in a
questionnaire on perceived speed and accuracy (7-point Lik-
ert scales), and ranked techniques in order of preference for
that task. At the end they ranked the techniques overall.

3.5 Measures and Analysis

The software recorded time, accuracy, and mouse movements.
Measures of time and accuracy are different depending on
the task and are therefore described in the corresponding
sections. For each experiment and task, the first half of trials
is considered training and is not included in the analysis.
Erroneous trials detected by the experimenter (e.g., due to
system error or interface mistake) were marked and later
removed (a total of 14 out of 8832 data samples).

The main omnibus analyses are RM-ANOVAs of accuracy
and log-transformed trial completion time log10(TCT ). Loga-
rithmic transformation is to comply with normality assump-
tions. When averages of times are presented, these are the log-
untransformed values in seconds of averaged log-transformed
times. When the data was found not to be spherical (i.e.,
failed Mauchly’s test), we applied a Greenhouse-Geisser cor-
rection that can be identified by the non-integer values in
the reporting of the test’s degrees of freedom. All pairwise
tests were corrected for multiple comparisons using Holm’s
method. The subjective data was analysed with Friedman
non-parametric tests. Error bars in figures are 95% CIs.

4 Experiment 1: Reading Values

The first experiment tests the viewer’s ability to retrieve a
value from the scalar field. This task is considered fundamen-
tal to information visualization [1,27] and has been evaluated
in many empirical tests of color scales, e.g., [7, 8, 31,45].

4.1 Task, Design and Measures

Upon clicking on a start button, participants saw a scalar
field presented with one of the techniques. A randomly placed
bullseye in 50% grey highlighted a data point (see Fig. 1).

1http://www.color-blindness.com/farnsworth-munsell-100-
hue-color-vision-test/
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Figure 6: Average absolute error and average trial completion times
(Log-tranformed) for the Reading Task.

The participant interpreted the value in the middle of the
bullseye and clicked anywhere on the screen, after which a
new screen with a textbox allowed to input the value with
the keyboard. Bullseyes never appeared closer than two data
points away from the edge of the field to avoid display-edge
effects. The cursor moved to the center before each trial.

The task is common in the literature (e.g., [6]). Arguably,
the digit based techniques have an advantage in this task be-
cause the answers are provided in the same response domain
as the techniques themselves (digits). However, digit-based
representation of numbers is still the best method to measure
accuracy (gathering color from participant input is problem-
atic and color is difficult to remember). We consider this a
feature of these techniques because digits might be the tool
that allows humans to achieve precise quantitative judgments
in the first place (cf. [12,16]). The experiment design reflects
our belief that the use of digits in the Interactive and FatFont
techniques is an intrinsic advantage, not experimental bias.

Participants performed two blocks of 15 trials with each
technique. The first block was training (not analyzed). Error
in this task means the unsigned subtraction of the value
pointed by the bullseye and the participant response (mea-
sured in the same units as the data field, which ranges be-
tween 3 and 97). Because the data fields are not assigned
any semantics, we will call these error units.

Measured Time starts when the bullseye appears and ends
on the mouse click. It excludes keyboard input time to avoid
typing variability, which is extrinsic to our focus.

4.2 Results

Results are split into three sub-sections: accuracy (error,
correctness), completion time, and subjective measures.

4.2.1 Accuracy

A one-way RM-ANOVA of mean error magnitude shows a
strong effect of technique F2.32,48.72 = 146.80, p < 0.001,η2 =
0.83. The mean error with FatFonts was smallest (µFat = 0.08
units), followed by Interactive (µInt = 0.43). HSB and Bright-
ness were more than one order of magnitude less accurate,
with HSB’s average error (µHSB = 4.36) almost half the size
as with the Brightness scale (µB = 8.71 units—Fig. 6).

The post-hoc pair analyses show reliable differences be-
tween all techniques except between FatFonts and Interactive
(all p < 0.001 except p = 0.397). The difference in proportion
of trials with errors (correctness) between Interactive and
FatFonts was large (3% vs. 5%), but the numbers are too
small to rule out chance. Importantly, 95% of the HSB scale
trials and 97% of the Brightness scale answers were not exact.

Accuracy Speed Pref. Rank

M µ σ2 M µ σ2 M µ σ2

B 3 2.5 1.4 3 3 1.8 4 3.8 0.4
HSB 3.5 3.1 1.6 3.5 3.6 1.3 3 3 0.2
Int 7 6.7 0.8 6.5 5.9 2.7 2 1.9 0.7
Fat 7 6.7 0.5 7 6.4 0.6 1 1.4 0.3

Table 1: Subjective responses (median, mean, variance) for the
Reading Experiment.

4.2.2 Completion Time

A one-way RM-ANOVA of log10(TCT ) reveals differences in
completion time F1.73,36.26 = 120.61, p < 0.001,η2 = 0.70. The
fastest technique was FatFonts (µFat = 1.29 seconds), followed
by Interactive (µInt = 1.39 s), with HSB and Brightness taking
longer (µHSB = 3.64, µB = 3.71—see Fig. 6).

The post-hoc tests statistically separate two groups of tech-
niques. On one side the color scales (HSV and Brightness) and
on the other FatFonts and Interactive. All comparisons across
groups are significant (p < 0.001), whereas all comparison
within groups were not (Interactive vs. Fatfonts—p = 0.063;
and HSB vs. Brightness—(p = 0.754).

4.2.3 Subjective Measures

Friedman non-parametric ANOVAs show differences between
techniques on subjective evaluations of accuracy (χ2(3) =
53.42, p < 0.001), speed (χ2(3) = 44.67, p < 0.001), and prefer-
ence (χ2(3) = 45.16, p < 0.001). Averages and medians of the
three questions are best for FatFonts in speed and equal to
best (tied with Interactive) in accuracy, with Brightness and
HSB trailing far behind. FatFonts were also preferred overall
to any of the other techniques (see Tbl. 1).

4.3 Summary and Discussion

In this reading task Fatfonts and Interactive data fields result
in more accurate readings of values; traditional scales showed
error sizes at least one order of magnitude larger. This is not
surprising, since the digit techniques are designed for this
purpose, but the differences are large: almost all values were
read incorrectly with the scales, but accurately with the digit
techniques. More interesting are the time results which show
that reading values takes almost three times longer when us-
ing Brightness and HSB scales than when retrieving the value
with FatFonts and the Interactive scale. This is likely due to
the additional step of checking the legend. Subjective results
generally follow the quantitative analysis–participants recog-
nized the advantages of the digit-based techniques. These
results also offer a useful comparison between the time costs
of moving the cursor to a data point and reading a legend.
For small scalar fields on interactive media (e.g., weather
temperature maps on tablets), interactive retrieval of values
could be better than a legend.

5 Experiment 2: Comparing Values

This experiment tests participants’ ability to compare values
from separate locations of a data field. The task is common
in existing evaluations of color scales, e.g., [7, 11].

5.1 Task, Design and Measures

Clicking a start button revealed a scalar field shown with
one of the techniques. Two bullseyes appeared on screen in
separate positions, one on each of the left-right halfs of the
screen. The participant compared the two values and pressed
the left or the right arrow key to indicate the largest.

The bullseyes were positioned so that their value differences
were 5, 15 or 30 units. Participants completed a total of 30
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Figure 7: Erroneous trials for the comparison task, by value difference.

trials (10 for each value difference, in random order) in two
blocks of 15 (block 1 is training). The software measured
correctness and time from stimulus onset until the keypress.

5.2 Results

5.2.1 Accuracy

A two-way RM-ANOVA of the proportion of errors (cor-
rectness), with technique and value difference as main
factors found main effects of technique (F3,63 = 10.87, p <

0.001,η2 = 0.14) and value difference (F1.51,31.61 = 55.16, p <

0.001,η2 = 0.28), as well as an interaction (F3.87,81.29 =

6.75, p < 0.001,η2 = 0.13). Fig. 7 shows how error propor-
tions diminish with the increase in value differences, to reach
almost zero with all techniques.

When considering all value differences, the most accurate
technique was FatFonts (µFatFonts = 2% errors), ahead of Inter-
active and HSB, which have accuracy (µInt = 8%, µHSB = 8%).
The Brightness scale was the least accurate (µB = 15%). Pair-
wise post-hocs show differences between all techniques (all
p < 0.05), except for the HSB-Interactive pair (p = 0.822).

5.2.2 Completion Time

A two-way RM-ANOVA of log10(TCT ) with technique and
value difference as main factors found main effects of tech-
nique (F2.08,43.77 = 30.86, p < 0.001,η2 = 0.20) and value differ-

ence (F1.39,29.21 = 83.78, p < 0.001,η2 = 0.20), and an interac-

tion (F6,126 = 2.92, p< 0.05,η2 = 0.02). Fig. 8 shows that TCT
diminishes with larger value differences (i.e., more different
values are faster to judge). The pattern holds across differ-
ences: the Interactive technique takes longer than the second
slowest (FatFonts) for all value difference levels (µint(5) = 2.25s,
37% longer than FatFonts for 5, µint(15) = 1.98s, 44% for 15,

and µint(30) = 1.48s, 16% for 30). Pairwise comparisons col-
lapsed across value differences show differences between Inter-
active and the others (all p < 0.001). The interaction reflects
that participants used color, not tooltip, for larger differences
with the Interactive technique.

5.2.3 Subjective Measures

The non-parametric tests of the subjective responses indi-
cate perceived subjective differences in accuracy (χ2(3) =
25.12, p < 0.001), speed (χ2(3) = 8.37, p < 0.05), and prefer-
ence (χ2(3) = 18.05, p < 0.001). The medians and averages
suggest a FatFonts advantage in accuracy, an advantage of
HSB in speed (with FatFonts as a close second), and a pref-
erence for FatFonts (see Tbl. 2).

5.3 Summary and Discussion

The results show that FatFonts provides an advantage in
terms of the viewer’s ability to differentiate values. However,
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Figure 8: TCTs for the comparison task, by value difference.

Accuracy Speed Pref. Rank

M µ σ2 M µ σ2 M µ σ2

B 4 4.1 2 5 5 3 4 3.2 1.2
HSB 5 4.9 1.6 6 5.7 1.9 2 2 0.7
Int 6 6 1 5 4.9 1.6 3 2.9 0.8
Fat 7 6.2 2 6 5.7 1.9 1.5 1.8 1

Table 2: Subjective responses for the Comparison Experiment.

the advantage diminishes as the differences increase in size.
For the large value difference conditions (roughly 30% of the
range) the errors were very small for all techniques. The
mean errors for the color scales confirm previous results
where the best scales can only help reliably differentiate
sufficiently distant values, and where the color is superior
to just brightness. Interestingly, the interactive technique
showed a surprisingly large number of errors for a technique
that also provides a symbolic component. We speculate that
participants are sometimes overconfident and rely on the
color scale without querying the value with the tooltip.

In terms of speed, color scales and FatFonts are roughly
equivalent, and the Interactive technique takes longer, prob-
ably due to mouse movement. However, we also suspect that
deciding whether to trust color or further move the cursor
might have played a part in these delays. Interactive is a
hybrid technique, and there are other HCI examples where
hybrids impose cognitive overheads [30].

The subjective results follow roughly the same pattern:
participants perceive accuracy and speed differences between
techniques and generally prefer Fatfonts.

6 Experiment 3: Finding Extrema

This experiment tests a maxima and minima finding task.
This task is referred to as Find Extremum in Amar et al.’s
task categorization [1].

6.1 Task, Design and Measures

Clicking on a start button revealed a scalar field without
bullseyes. Participants had to find the location of the absolute
maximum or the minimum (depending on the trial block),
and click on it. The task was repeated a total of 32 times for
each technique in four blocks of eight trials each: training
max., training min., max., and min.

We measured error in two ways: unsigned differences be-
tween the actual extremum and the chosen point (magnitude),
and proportion of actual extrema clicked across trials.

6.2 Results

6.2.1 Accuracy

A two-way RM-ANOVA of average error found an effect of
technique on accuracy (F2.16,45.35 = 30.08, p< 0.001,η2 = 0.29),
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but not of the type of extremum (maximum vs. minimum—
F1,21 = 0.19, p = 0.670,η2 = 0.00). The interaction was signif-

icant (F2.16,45.35 = 30.08, p < 0.001,η2 = 0.29), reflecting how
HSB has increased errors for finding minimums (Fig. 9).
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Figure 9: Average error for the extrema task.

Post-hoc tests found differences between all techniques
(all p < 0.02) except between FatFonts and HSB (p = 0.195).
This splits the techniques into two groups: FatFonts and HSB
are the most accurate (µFat = 0.63 error units, µHSB = 0.88),
then Interactive (µInt = 1.98), then Brightness (µB = 3.14).

The RM-ANOVA of the proportion of correct answers
(correctness) reveals effects of technique (F3,63 = 23.86, p <

0.001,η2 = 0.28), as well as type of extremum (F3,63 =

23.86, p < 0.001,η2 = 0.28), but not of the interaction
(F0.76,15.98 = 0.87, p = 0.437,η2 = 0.01). Pairwise comparisons
are significant (all p < 0.02), except HSB vs. Interactive
(p = 0.577). FatFonts is most accurate (µFat = 23% errors),
followed by HSB (µHSB = 43%), then Interactive (µInt = 46%),
and finally the Brightness scale (µB = 61%—Fig. 10).
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Figure 10: Average trials with error for the extrema task.

6.2.2 Completion Time

A two-way RM-ANOVA of the trial completion time found
effects of technique (F2.39,50.17 = 93.03, p < 0.001,η2 = 0.42)

and the type of extrema (F1,21 = 40.05, p < 0.001,η2 = 0.04),

but not an interaction (F3,63 = 1.84, p = 0.150,η2 = 0.00).
Fig. 11 shows that the task took the longest with FatFonts
(µFatFonts = 5.31 s), with Interactive closely behind (µInt = 4.37
s), and with Brightness and HSB having roughly halved TCTs
(µB = 2.29 s, µB = 2.29 s). The post-hoc tests confirm differ-
ences among all techniques (all post-hocs p < 0.03), except
between HSB and Brightness (p = 0.250).

6.2.3 Subjective Measures

The subjective measures analysis indicates that technique
had an effect on perceived accuracy (χ2(3) = 26.25, p < 0.001)
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Figure 11: Average TCT for the extrema task for min. and max.

Accuracy Speed Pref. Rank

M µ σ2 M µ σ2 M µ σ2

B 3.5 3.9 2.1 5 5 2.1 3.5 3.1 1.1
HSB 4 4.3 1.6 5 5 2.8 2 2 1
Int 6 5.6 1 4.5 4.5 2.4 3 2.6 0.8
Fat 6 5.4 1.7 5 4.6 1.5 2 2.3 1.6

Table 3: Subjective responses (median, mean, variance) for the
Extrema Experiment.

and preference (χ2(3) = 9.22, p < 0.05), but not on perceived
speed (χ2(3) = 1.02, p = 0.796). Table 3 shows that HSB was
the preferred technique.

6.3 Summary and Discussion

Finding extrema is a more demanding task, as evidenced
by the large proportion of trials with errors and the longer
completion times. Scales have a speed advantage here because
they do not require the legend as in the first task. We
also speculate that the availability of exact data with the
Interactive and FatFonts techniques induces participants to
be more systematic and therefore slower.

Surprisingly, besides being fastest, the HSB scale also
achieves very low magnitude errors (comparable with Fat-
Fonts). The choice of technique here should depend on the
importance of the different aspects of accuracy. If error mag-
nitude is important HSB is the best; if finding the actual
coordinate of the maximum (not one close enough in value)
then using FatFonts is better (approx. 47% fewer errors).

Also surprising is the bad performance of the Interactive
technique. Participants took slightly less time to find the
extrema with the Interactive technique than with the slowest
technique (FatFonts), but the level of errors (of both types)
was almost on-par with the worst technique (Brightness).
We speculate that the large errors are probably due to the
sequential nature of the technique, which forces participants
to systematically scan areas for results, a tedious and error-
prone process. FatFonts is not that different in this respect
(the participant still needs to redirect their sight sequentially
to read the candidate numbers), but it might put less strain in
short time memory, since the image in FatFonts is unchanging.
The subjective results suggest that HSB was recognized by
participants as very good for this task.

7 Additional Analyses

This section reports the analyses that affect all three experi-
ments and an exploratory analysis of contrast effects.

7.1 Overall Preference

A non-parametric Friedman test shows technique differences
in preference rankings (χ2(3) = 23.79, p< 0.001). Participants
ranked FatFonts first, HSB and Interactive as tied seconds,
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and Brightness worst. Fatfonts was best for 12 participants,
and Brightness was worst for 15.

7.2 Contrast Effects

Color and brightness perception can be influenced by the
surround. To explore whether this was the source for the high
levels of error found with the HSB and Brightness scale, we
performed a post-hoc analysis of the data in the reading task
(inspired by [45]). For every trial we computed a surround
value s for the observed value using a 3× 3 gaussian mask
with the center set to 0. Based on s we classified each trial
as having an equal, lighter or darker surround relative to
the central color patch. We excluded trials where surround
was equal to the central color patch and then computed the
trial’s error e. A 2×2 repeated-measure ANOVA with par-
ticipant as random factor shows that the surround affects
error (F1.39,29.18 = 4.12, p < 0.05,η2 = 0.02). The interaction

(F2.43,51.07 = 6.29, p < 0.01,η2 = 0.09) tells us that not all tech-
niques are affected in the same way: surround affects error
most with the Brightness scale, somewhat with the HSB
scale, but not with the digit-based techniques.

8 General Discussion

We discuss results and implications of the study in five sub-
sections: Confirmatory Results, Interactive, FatFonts, quali-
tative analysis, and limitations and future work.

8.1 Confirmatory Results

Our exploratory analysis of the reading task offers confirma-
tion of a previous analysis performed by Ware [45] of the
effect of surrounding colours in value perception. Both color
scales are vulnerable to the effects of the surround, help-
ing generalize Ware’s results to more scenarios (Ware tested
center patches of colour surrounded by a circular gradient).
This is a partial explanation of why color scales suffer from
reading accuracy problems.

In the tested tasks and with our chosen scales we have
shown that a colour scale that uses multiple color-perceptual
variations (HSB) was superior to one that only uses brightness.
The HSB scale was more accurate than the brightness scale in
all tasks (50.12%, 55.84% and 27.99% fewer errors in the three
tasks). Readers should, however, be careful to generalize
these results. Not all color scales are good—rainbow scales are
particularly bad according to many [5]—and the small fields
that we tested might not generalize to higher resolutions.

8.2 Interactive

We included an interactive tooltip in our study because we
thought it would be a valuable addition to color scales. Ob-
viously, an interactive data tooltip cannot be used in static
(e.g., print) scenarios, but when a scalar field is in electronic
form, it is straightforward to add this functionality; interac-
tive graphics are starting to appear in scientific publications
(e.g., [2]). The tooltip might provide the advantages of ac-
cessing data points in both forms (symbolic and graphical)
without having to clutter and occlude the content, and with-
out having to radically change the visuals.

The interactive tool did deliver advantages in the reading
task (required only 38.28% of the time needed with HSB,
37.57% of the time needed with Brightness, and only 9.86%
of the error magnitude of HSB). Surprisingly, Interactive is
worse for the comparison task (worst in time and equivalent
in accuracy to the HSB scale) and the extrema task (where
accuracy is similar to the worst scale—Brightness—and com-
pletion time is similar to FatFonts—the slowest technique).
This indicates that participants took the worst of the color

and the digit-based worlds. We believe this is due to: a) the
costs of interactivity (i.e., pointing time); b) the overhead of
deciding to act upon digits vs. color; and, c) a false sense of
confidence in color perception over digit reading.

8.3 FatFonts and Digit-Based Techniques

Our results show that FatFonts is best (or equal to best)
in accuracy for all three tasks, and also fastest (or equal to
fastest) in reading and comparison. Although these results
should be carefully interpreted in the scope of these experi-
ments and limited tasks, they suggest that digit-based static
representations offer promise in small matrix applications
(e.g., confusion matrices).

Being able to access the symbolic part of the data seems
faster and more accurate than trying to read or compare
values from a legend. It can also enable operations that
correspond to the symbolic domain, such as calculating how
much higher a value is than another, or detecting values
above a threshold. FatFonts is also limited in several ways,
most notably resolution, and its performance is unknowin
other tasks such as pattern finding. We discuss these issues
below; see also the original paper for a discussion on FatFonts’
limitations and applicability [28].

8.4 Qualitative Analysis and Design Implications

The most obvious drawback of FatFonts is resolution. To
achieve accuracy and speed with FatFonts, a designer will
trade in spatial resolution. The interactive tooltip technique
is a good alternative for high spatial resolution data.

Although resolution is becoming less of a problem (displays
are becoming larger and denser), FatFonts is not a technique
for all situations. Interactive tooltips have the advantage
over FatFonts that the digit-based precision of a single value
is potentially unlimited, whereas with FatFonts this is usually
limited to two or three orders of magnitude depending on the
precision and resolution that needs to be achieved. However,
the reader should still consider that this is still about an order
of magnitude more precision than with color scales. Our
results also warn against choosing tooltips for comparisons
and finding extrema. Adding a tooltip might result in slower
or less accurate readings.

Designers should also consider a range of important tech-
nique characteristics. The Interactive technique requires a
computer, whereas the other three techniques are fine in print.
The color scales are vulnerable to uncalibrated displays [18],
to the display circumstances (e.g., lighting conditions) [4],
and to variability in perceptual ability of people (e.g., color
blindness) [24]. These problems do not affect FatFonts, and
may be partially mitigated by adding a tooltip. Table 4 pro-
vides a summary of issues to be considered by practitioners,
including conclusions derived from the empirical data.

8.5 Limitations and Future Work

In this paper we have investigated three tasks that are im-
portant for the use of scalar field representations and are
named in task analysis of InfoVis (e.g., [1,27]); however, other
low-level perceptual tasks might also be relevant in certain
scenarios, such as cluster finding [21].

Although we believe that FatFonts represents techniques
that display data visually using number glyphs, further re-
search is required to compare it with other digit-based tech-
niques such as Excel formatted cells. Similarly, emerging
color scales should be compared to digit-based approaches.

Importantly, our version of the Interactive technique is
based on the Brightness scale, which turned to be the worst
of the two scales. We do not know know if an HSB-interactive
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B HSB Int. Fat.

High Resolution ++ ++ ++ −−
Potential Precision −− − ++ +

Works on Static ++ ++ −− ++

Context Independent −− −− − ++

Person Independent − −− + ++

Accuracy (Read) −− − ++ ++

Accuracy (Comp) −− − − +

Accuracy (MaxMin) −− − − ++

Speed (Read) −− −− + ++

Speed (Comp) + + −− +

Speed (MaxMin) ++ ++ −− −−
Overall Preference − + + ++

Table 4: Quantitative and qualitative analysis summary.

combination can be better than FatFonts or HSB. This ques-
tion is worth exploring in subsequent experiments.

To conclude and summarize, we believe that this study
opens up several questions and further areas of inquiry. The
most important pieces of future work concern the extrapola-
tion of results to: a) denser scalar fields; b) other tasks; c)
other glyph-based techniques; d) other color scales.

9 Replicability and Recomputability

This paper and its analysis are written using LATEX, with
its statistics implemented in R and embedded into the
LATEXsource with Sweave. Compiling the paper from the
source will recalculate all the analyses. This enables any re-
searcher to access our exact computations for most numbers
in this text. The auxiliary file also contains the collected
data, images of all the stimuli, and the source code of the
experimental software.

10 Conclusion

Although research in scalar field representations has shown
that color scales are vulnerable to systematic error due to per-
ceptual effects, most efforts have focused on the development
of better color scales. In this paper we empirically compared
two types of color scales with two alternatives approaches
that use digits (FatFonts and an interactive tooltip). We
measured participant performance and preference for three
tasks (value reading, value comparison and extrema finding)
in small scalar fields (42×27 spatial samples). Our findings
and analysis provide the following main insights:

� Although interactive tooltips are good for reading values,
they result in relatively poor accuracy and slow times
in comparisons and extrema finding tasks.

� When the spatial resolution required is small, FatFonts
provide the best option for all three tasks in accuracy,
and in terms of speed for reading and comparison.

� Color scales show important value-reading errors due to
the visual context, whereas digit-based techniques do
not appear affected.

Although more studies are needed, our analysis and find-
ings can help designers make better decisions that result in
faster and more accurate access to the data.
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Mongus, and Borut Žalik. 2013. Visualising the Attributes
of Biological Cells, Based on Human Perception. In Human-
Computer Interaction and Knowledge Discovery in Complex,
Unstructured, Big Data. Vol. 7947. Springer, 386–399. DOI:

http://dx.doi.org/10.1007/978-3-642-39146-0_36

[16] Georges Ifrah and E F Harding David Bellos Sophie Wood
and Ian Monk. 2000. The Universal History of Numbers:
From Prehistory to the Invention of the Computer. Wiley.
xxiv, 633 pages.

[17] Alan D Kalvin, Bernice E Rogowitz, Adar Pelah, and Aron
Cohen. 2000. Building perceptual color maps for visualizing
interval data. Electronic Imaging 3959, 1 (2000), 323–335.
DOI:http://dx.doi.org/doi:10.1117/12.387169

[18] Alan D Kalvin and Thomas J Watson. 2002. Graduated pro-
filing: enumerating and generating perceptual colormaps for
uncalibrated computer displays. In Electronic Imaging, Vol.
4662. 218–225. DOI:http://dx.doi.org/10.1117/12.469517

[19] Sarah Kindlmann, Gordon and Reinhard, Erik and Creem.
2002. Face-based luminance matching for perceptual colormap
generation. In Proceedings of the conference on Visualization.
IEEE, IEEE, 299–306. DOI:http://dx.doi.org/10.1109/

VISUAL.2002.1183788

[20] Haim Levkowitz and Gabor T Herman. 1992. Color scales for
image data. IEEE Computer Graphics and Applications 12, 1
(1992), 72–80. DOI:http://dx.doi.org/10.1109/38.135886

[21] Stephan Lewandowsky, Douglas J Herrmann, John T Behrens,
Shu-Chen Li, Linda Pickle, and Jared B Jobe. 1993. Per-
ception of clusters in statistical maps. Applied Cognitive
Psychology 7, 6 (1993), 533–551. DOI:http://dx.doi.org/

10.1002/acp.2350070606

[22] Adam Light and Patrick J Bartlein. 2004. The end of the
rainbow? Color schemes for improved data graphics. (2004).
DOI:http://dx.doi.org/10.1029/2004EO400002

[23] James McNames. 2006. An effective color scale for si-
multaneous color and gray-scale publications. IEEE Sig-
nal Processing Magazine 23, 1 (2006), 82–87. DOI:http:

//dx.doi.org/10.1109/MSP.2006.1593340

[24] Gary W Meyer and Donald P Greenberg. 1988. Color-
defective vision and computer graphics displays. IEEE Com-
puter Graphics and Applications 8, 5 (1988), 28–40. DOI:

http://dx.doi.org/10.1109/38.7759

[25] Kenneth Moreland. 2009. Diverging color maps for scientific
visualization. In Advances in Visual Computing. Springer, 92–
103. DOI:http://dx.doi.org/10.1007/978-3-642-10520-3_
9

[26] Kathy T Mullen. 1985. The contrast sensitivity of human
colour vision to red-green and blue-yellow chromatic gratings.
The Journal of physiology 359, 1 (1985), 381–400. DOI:http:

//dx.doi.org/10.1113/jphysiol.1985.sp015591

[27] Tamara Munzner. 2014. Visualization Analysis and Design.
CRC Press.

[28] Miguel Nacenta, Uta Hinrichs, and Sheelagh Carpendale.
2012. FatFonts : Combining the Symbolic and Visual Aspects
of Numbers. In Proceedings of the International Working
Conference on Advanced Visual Interfaces. ACM, 407–414.
DOI:http://dx.doi.org/10.1145/2254556.2254636

[29] Andrew J Peters, Simon X Chen, and Takaki Komiyama.
2014. Emergence of reproducible spatiotemporal activity
during motor learning. Nature 510, 7504 (2014), 263–7. DOI:

http://dx.doi.org/10.1038/nature13235

[30] Umar Rashid, Miguel A Nacenta, and Aaron Quigley. 2012.
The cost of display switching: a comparison of mobile, large
display and hybrid UI configurations. In International Work-
ing Conference on Advanced Visual Interfaces. ACM, 99–106.
DOI:http://dx.doi.org/10.1145/2254556.2254577

[31] Penny L Rheingans. 1992. Color, change, and control of
quantitative data display. Proceedings of the 3rd conference
on Visualization (1992), 252–259. DOI:http://dx.doi.org/

10.1109/VISUAL.1992.235201

[32] Philip K Robertson. 1988. Visualizing color gamuts: A user
interface for the effective use of perceptual color spaces in
data displays. Computer Graphics and Applications 8, 5
(1988), 50–64. DOI:http://dx.doi.org/10.1109/38.7761

[33] Philip K Robertson and John F O’Callaghan. 1986. The
generation of color sequences for univariate and bivariate
mapping. Computer Graphics and Applications 6, 2 (1986),
24–32. DOI:http://dx.doi.org/10.1109/MCG.1986.276688

[34] Philip K Robertson and John F O’Callaghan. 1988. The
application of perceptual color spaces to the display of re-
motely sensed imagery. Transactions on Geoscience and
Remote Sensing 26, 1 (1988), 49–59. DOI:http://dx.doi.

org/10.1109/36.2999

[35] Bernice E. Rogowitz and Lloyd A Treinish. 1998. Data vi-
sualization: the end of the rainbow. IEEE Spectrum 35, 12
(1998), 52–59. DOI:http://dx.doi.org/10.1109/6.736450

[36] Jibonananda Sanyal, Song Zhang, Gargi Bhattacharya, Phil
Amburn, and Robert J Moorhead. 2009. A user study to
compare four uncertainty visualization methods for 1d and
2d datasets. Transactions on Visualization and Computer
Graphics 15, 6 (2009). DOI:http://dx.doi.org/10.1109/

TVCG.2009.114

[37] Ben Shneiderman. 1996. The eyes have it: A task by data
type taxonomy for information visualizations. In Symposium
on Visual Languages. IEEE, 336–343. DOI:http://dx.doi.

org/10.1109/VL.1996.545307

[38] Samuel Silva, Joaquim Madeira, and Beatriz Sousa Santos.
2007. There is more to color scales than meets the eye:
a review on the use of color in visualization. Information
Visualization (2007), 943–950. DOI:http://dx.doi.org/10.

1109/IV.2007.113

[39] Samuel Silva, Beatriz Sousa Santos, and Joaquim Madeira.
2011. Using color in visualization: A survey. Computers and
Graphics 35, 2 (April 2011), 320–333. DOI:http://dx.doi.

org/10.1016/j.cag.2010.11.015

[40] Ian Spence, Natasha Kutlesa, and David L Rose. 1999. Using
Color to Code Quantity in Spatial Displays. Journal of
Experimental Psychology: Applied 5, 4 (1999), 393–412. DOI:

http://dx.doi.org/10.1037/1076-898X.5.4.393

[41] Maureen Stone. 2002. A Field Guide to Digital Color. Vol. 3.
CRC Press.

[42] Christian Tominski, Georg Fuchs, and Heidrun Schumann.
2008. Task-driven color coding. In Proceedings of the In-
ternational Conference on Information Visualisation. IEEE,
373–380. DOI:http://dx.doi.org/10.1109/IV.2008.24

[43] Lujin Wang, Joachim Giesen, Kevin T McDonnell, Peter
Zolliker, and Klaus Mueller. 2008. Color design for illustrative
visualization. In Transactions on Visualization and Computer
Graphics, Vol. 14. IEEE, 1739–1746. DOI:http://dx.doi.

org/10.1109/TVCG.2008.118

[44] Lujin Wang and Klaus Mueller. 2008. Harmonic colormaps for
volume visualization. In Proceedings of the Fifth Eurographics
/ IEEE VGTC Conference on Point-Based Graphics, Vol. Vi.
Eurographics Association, 33–39.

[45] Colin Ware. 1988. Color sequences for univariate maps: The-
ory, experiments and principles. Computer Graphics and Ap-
plications (1988). http://ieeexplore.ieee.org/xpls/abs_

all.jsp?arnumber=7760

[46] Colin Ware. 2004. Information visualization: perception
for design (3rd editio ed.). Elsevier. 486 pages. DOI:http:

//dx.doi.org/10.1016/B978-0-12-381464-7.00018-1

[47] Martijn Wijffelaars, Roel Vliegen, Jarke J Van Wijk, and
Erik J. Van Der Linden. 2008. Generating color palettes using
intuitive parameters. In Computer Graphics Forum, Vol. 27.
Wiley Online Library, 743–750. DOI:http://dx.doi.org/10.

1111/j.1467-8659.2008.01203.x

9

http://dx.doi.org/10.1038/nature13420
http://dx.doi.org/10.1007/978-3-642-39146-0_36
http://dx.doi.org/doi:10.1117/12.387169
http://dx.doi.org/10.1117/12.469517
http://dx.doi.org/10.1109/VISUAL.2002.1183788
http://dx.doi.org/10.1109/VISUAL.2002.1183788
http://dx.doi.org/10.1109/38.135886
http://dx.doi.org/10.1002/acp.2350070606
http://dx.doi.org/10.1002/acp.2350070606
http://dx.doi.org/10.1029/2004EO400002
http://dx.doi.org/10.1109/MSP.2006.1593340
http://dx.doi.org/10.1109/MSP.2006.1593340
http://dx.doi.org/10.1109/38.7759
http://dx.doi.org/10.1007/978-3-642-10520-3_9
http://dx.doi.org/10.1007/978-3-642-10520-3_9
http://dx.doi.org/10.1113/jphysiol.1985.sp015591
http://dx.doi.org/10.1113/jphysiol.1985.sp015591
http://dx.doi.org/10.1145/2254556.2254636
http://dx.doi.org/10.1038/nature13235
http://dx.doi.org/10.1145/2254556.2254577
http://dx.doi.org/10.1109/VISUAL.1992.235201
http://dx.doi.org/10.1109/VISUAL.1992.235201
http://dx.doi.org/10.1109/38.7761
http://dx.doi.org/10.1109/MCG.1986.276688
http://dx.doi.org/10.1109/36.2999
http://dx.doi.org/10.1109/36.2999
http://dx.doi.org/10.1109/6.736450
http://dx.doi.org/10.1109/TVCG.2009.114
http://dx.doi.org/10.1109/TVCG.2009.114
http://dx.doi.org/10.1109/VL.1996.545307
http://dx.doi.org/10.1109/VL.1996.545307
http://dx.doi.org/10.1109/IV.2007.113
http://dx.doi.org/10.1109/IV.2007.113
http://dx.doi.org/10.1016/j.cag.2010.11.015
http://dx.doi.org/10.1016/j.cag.2010.11.015
http://dx.doi.org/10.1037/1076-898X.5.4.393
http://dx.doi.org/10.1109/IV.2008.24
http://dx.doi.org/10.1109/TVCG.2008.118
http://dx.doi.org/10.1109/TVCG.2008.118
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7760
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7760
http://dx.doi.org/10.1016/B978-0-12-381464-7.00018-1
http://dx.doi.org/10.1016/B978-0-12-381464-7.00018-1
http://dx.doi.org/10.1111/j.1467-8659.2008.01203.x
http://dx.doi.org/10.1111/j.1467-8659.2008.01203.x

	1 Introduction
	2 Related Work
	2.1 Color Scales
	2.2 Digit-based Representations

	3 Empirical Investigation
	3.1 Techniques
	3.1.1 Brightness and HSB
	3.1.2 Interactive
	3.1.3 FatFonts

	3.2 Apparatus and Stimuli
	3.3 Participants
	3.4 General Procedure
	3.5 Measures and Analysis

	4 Experiment 1: Reading Values
	4.1 Task, Design and Measures
	4.2 Results
	4.2.1 Accuracy
	4.2.2 Completion Time
	4.2.3 Subjective Measures

	4.3 Summary and Discussion

	5 Experiment 2: Comparing Values
	5.1 Task, Design and Measures
	5.2 Results
	5.2.1 Accuracy
	5.2.2 Completion Time
	5.2.3 Subjective Measures

	5.3 Summary and Discussion

	6 Experiment 3: Finding Extrema
	6.1 Task, Design and Measures
	6.2 Results
	6.2.1 Accuracy
	6.2.2 Completion Time
	6.2.3 Subjective Measures

	6.3 Summary and Discussion

	7 Additional Analyses
	7.1 Overall Preference
	7.2 Contrast Effects

	8 General Discussion
	8.1 Confirmatory Results
	8.2 Interactive
	8.3 FatFonts and Digit-Based Techniques
	8.4 Qualitative Analysis and Design Implications
	8.5 Limitations and Future Work

	9 Replicability and Recomputability
	10 Conclusion
	11 Acknowledgments

