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In situ root identification through blade penetrometer testing –

Part 1: interpretative models and laboratory testing

G. J. Meijer∗†‡§ A. G. Bengough∗† J. A. Knappett∗ K. W. Loades†

B. C. Nicoll‡ I. Mukov∗ M. Zhang∗

Abstract

Root architecture and reinforcement are important parameters to measure the safety of vegetated

slopes and stream banks against slope instability and erosion or to assess the stability of plants against

environmental loading (e.g. windthrow of trees). However, these are difficult to measure without time-

consuming sampling or counting procedures. Previous studies proposed using a penetrometer with

an adapted geometry, and showed that individual root breakages could be detected as sudden drops

in penetrometer resistance. However, there are no existing models to derive root properties from

the measured traces. Here, several interpretative models are developed and their performance at

identifying and characterising buried acrylonitrile butadiene styrene (ABS) root analogues of varying

diameter and architecture in sand are assessed. It was found that models assuming the analogues

broke in bending rather than tension provided good predictions for the force–displacement behaviour.

The simple analytical bending model developed here was shown to perform almost as well as more

sophisticated numerical models. For all models, the predictions of additional penetrometer force

required to break the root analogue were more accurate than predictions for lateral root displacement

required to reach failure. The root analogue diameter and to a lesser extent the soil resistance and

root angle were shown to affect the penetrometer resistance strongly. Root branching, root length

and the distance between the point of load application and a root boundary (root tip or parent root)

had a much smaller effect. When the root failure mechanism, root strength, root stiffness and soil

resistance are known, an accurate prediction of the root diameter can be made based on the root peak

resistance value identified from a blade penetration test. Penetrometer testing, a test which is easy

to perform in the field, coupled with an accurate interpretative model might therefore be an effective

method to rapidly quantify the spatial distribution, depths and diameters of roots.

1 Introduction

Vegetation can be beneficial for stabilising slopes both through mechanical reinforcement, where roots

add strength though tensile or bending action, and hydrological reinforcement, where plants increase

soil suctions through water uptake (Coppin and Richards, 1990; Gray and Sotir, 1996; Norris et al.,

2008). The mechanical reinforcement added by a single root can be incorporated into existing consti-

tutive soil models as an increase in soil cohesion, often referred to as ‘soil cohesion’ cr, following Wu

and Waldron’s model (WWM, Waldron, 1977; Wu et al., 1979):

cr = k′ · σt ·
Ar
A

(1)
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where σt is the root tensile strength, Ar the cross-sectional area of the root and A the area of the

plane over which the soil strength is determined. Ar/A is commonly referred to as the ‘root area

ratio’ (RAR), i.e. the fraction of the area of a cross-section through the soil occupied by roots. k′ is

a factor incorporating the effect of the root inclination with respect to the shear plane and the effect

of the soil friction angle on the root-reinforcement:

k′ = sinβ + cosβ · tanφ′ (2)

where β is the angle between the root axis and the direction perpendicular to the shear plane and φ′ the

soil angle of internal friction. k′ is generally assumed as 1.2 (Wu et al., 1979). When this model is used

to calculate reinforcement by a bundle of roots, an additional reduction factor k′′ is required to take

the reduction in reinforcement due to sequential root breakage into account (e.g. Bischetti et al., 2009)

and can be determined for example by using a fibre bundle model approach (e.g. Pollen and Simon,

2005; Schwarz et al., 2010). The exact value of k′′ depends on root biomechanical characteristics as

well as their diameters and quantities. Because of this and because root tensile strength is commonly

found to vary with root diameter (Mao et al., 2012), a more accurate expression to calculate root

cohesion is:

cr = k′ · k′′ ·
∑
i

(σt,i ·RARi) (3)

where the subscript ‘i’ indicates a single root or root diameter class. Equation 3 indicates that

information about both root diameters and root quantity is required to accurately predict mechanical

root-reinforcement. This information is also useful when the stability of plants against environmental

loading (e.g. windthrow of trees, Nicoll et al., 2006; Achim and Nicoll, 2009) or the effect of roots on

the hydrological conditions in the soil is to be modelled, although these applications are outside the

main scope of this paper.

Quantifying mechanical root-reinforcement is complicated further by spatial variability in root

distributions. Plants adapt to the mechanical, hydrological and chemical conditions within the soil.

Soil mechanical impedance limits root growth, and root growth is limited in waterlogged zones (e.g.

Stokes et al., 2009; Achat et al., 2008; Nicoll and Ray, 1996). Water and nutrients are distributed

heterogeneously throughout the soil, driving preferential root growth. Competition between plants

drives changes in root architecture (e.g. Brisson and Reynolds, 1994; Volis and Shani, 2000; Puhe,

2003) and root systems adapt to any aboveground mechanical loading such as wind loading or self

weight (Nicoll and Ray, 1996; Stokes et al., 2008) or the effect of growing on slopes (Scippa et al., 2006;

Coutts and Nicoll, 1991; Nicoll et al., 2005, 2006). Spatial trends in root distribution are important

to consider when quantifying the stability of a slope planted with vegetation since landslides often

localise in areas where root quantities are lower (Mao et al., 2014; Moos et al., 2016; Temgoua et al.,

2016; Liang and Knappett, 2017).

Since root growth and the resulting architecture depends on many different environmental and

genetic factors, it is difficult to acquire good data on the spatial distribution of root properties (e.g.

number of roots, root diameter, root depth, lateral spread of roots) without time-consuming invasive

excavation techniques. Although the distance to the nearest tree provides some indication of the

volume of root material present when combined with aboveground parameters like stem thickness,

plant height or canopy volume (Casper et al., 2003; Roering et al., 2003; Schwarz et al., 2010; Docker

and Hubble, 2009), input parameters for these root distribution models are site and species dependent,

requiring calibration for each case.

Various methods have been used to directly quantify root spatial variability and diameters in situ.

Firstly, entire root systems can be excavated. For larger root systems, this can be done by manual

excavation (Di Iorio et al., 2005; Henderson et al., 1983b), high pressure water (Watson et al., 1999;

Tosi, 2007) or air (Danjon et al., 2008; Stokes et al., 2002) or pulling over whole plants (Nicoll and

Ray, 1996; Stokes et al., 2007). Subsequently root architectures can be mapped. However, many roots

will be broken or lost during excavation (Danjon et al., 2007; Stokes et al., 2007), especially finer roots,

making these methods more useful to study coarse root architecture which may be more resistant to
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damage. Root distribution can be measured by counting root intersections on a plane, e.g. the vertical

plane of a soil pit (e.g. Abdi et al., 2010; Abernethy and Rutherfurd, 2001; Mao et al., 2012; Pierret

et al., 2000; Moos et al., 2016), but this method is labour-intensive and often neglects much fine root

material (Bengough et al., 1992). Thirdly, soil cores can be used to sample rooted soil (Ammer and

Wagner, 2005; Børja et al., 2008; Danjon et al., 2008; Genet et al., 2008; John et al., 2001; Steele

et al., 1997; Wang et al., 2006). After subsequent washing to remove the soil the root biomass can be

determined, or roots can be scanned and analysed using image analysis software to extract individual

root lengths and diameters. Finally, geophysical methods such as ground penetration radar (GPR)

can be applied to locate root depths and spread (e.g. Stokes et al., 2002; Hirano et al., 2009), based

on wave reflection of the soil–root interface. A trade-off has to be made between accuracy and root

depth making this method more useful to study coarse root architecture. Furthermore, although these

methods are non-intrusive, costs are high (Stokes et al., 2002) and accuracy is significantly degraded

in soils with high water or clay contents (Hirano et al., 2009).

Because of the limitations of these existing techniques, a new site investigation device that is

easy to use in situ and negates excavation would be most welcome. Such a device should yield

information about the spatial variability as well as the properties of the roots (e.g. root diameter),

so this information can be used directly into existing geotechnical root-reinforcement models. Such

models could then be used to define the boundaries and properties of zones of enhanced soil properties

for finite element simulations and slope stability calculations.

Using an adapted penetrometer (‘blade penetrometer’) developed by Meijer et al. (2016) for root

detection within soils could be such a method. By modifying the penetrometer tip to have a blade-like

shape, it was shown that the sensitivity to roots was increased when compared to a standard conical

tip. Laboratory testing with various root analogues in low-strength, unsaturated field soil showed that

in a fibre-reinforced soil (thin polypropylene fibres) a gradual increase in modified penetrometer force

over the rooted depth range could be detected. Thicker root analogues (modelled with acrylonitrile

butadiene styrene, ABS) showed distinct reinforcement peaks in the modified penetrometer trace.

From the moment the penetrometer hit an ABS root analogue, the resistance gradually increased until

the analogue broke, visible as a sudden drop in penetrometer resistance. These peaks of increased

resistance will be referred to as ‘root peaks’, the maximum increase in penetrometer resistance as ‘root

peak resistance’ (Fu) and the corresponding penetrometer displacement from the moment a root is

first touched to the moment it breaks as ‘root peak displacement’ (uu) in the remainder of this paper.

This previous study however gave principally qualitative comparative results; no interpretative model

was developed to use the characteristics of these root peaks for root property predictions. In this

paper such interpretative methods will be developed and validated against laboratory experiments.

Various interpretative models already exist to predict the behaviour of a single root, for example

the Wu/Waldron model introduced earlier for roots crossing a shear plane (Equation 1). The WWM

however is not derived to predict the behaviour of a root loaded by a point load (penetrometer

tip). It is also not able to predict the shape of the displaced root during loading. A more promising

interpretative method is modelling the roots and soil as spring-supported beams. Wu et al. (Wu, 2007,

2013) proposed analytical beam models for calculating the root contribution to soil shear resistance,

taking into account root bending resistance and axial force, by solving the beam differential equation:

E · I · d
4u(x)

dx4
− Tx ·

d2u(x)

dx2
= k · dr (4)

where E is the root stiffness, I the second moment of area, x the distance to the shear plane along

the root axis, u the lateral root displacement, Tx the axial force in the root in the x-direction, k the

linear elastic soil spring resistance (force per unit volume) and dr the root diameter. Wu et al. (1988)

used linear elastic soil springs instead of modelling soil resistance as a constant. However, these initial

approaches were not able to take large non-linear displacement effects into account and therefore had

to assume that u was small compared to the length of the displaced root. Duckett (2014) and Liang

et al. (2015) used non-linear springs in a numerical framework, allowing for non-linear effects and the

modelling of large relative root–soil deformations. The properties of these springs were derived from
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methods adopted for laterally loaded piles, so called p-y curves (e.g. Randolph and Gourvenec, 2011).

In this study, a new series of laboratory penetrometer tests was performed using buried ABS root

analogues with various architectures in dry sand of two differing bulk densities. Two new analytical

models for quantitatively assessing root–soil interaction were developed for roots failing in either

bending or tension, with various boundary and loading conditions (including blade penetrometer

loading and shear loading from displacing soil). Model outputs were validated against a suite of non-

linear numerical spring-supported beam models, and empirically against the laboratory test data. All

models took both soil and root characteristics into account.

2 Modelling

2.1 Soil resistance to root displacement

The soil resistance acting on laterally displacing roots was estimated using methods derived by Reese

and Van Impe (2011) and American Petroleum Institute (2000) for laterally loaded foundation piles.

To determine a p-y curve for dry sand, as used in the experiments, both methods require the soil

angle of internal friction φ′, soil unit weight γ′, pile diameter d and depth z. In addition, Reese and

Van Impe’s method requires an additional input value for the spring’s initial stiffness. In this work,

sands were classified as ‘loose’ when φ′ < 30◦, as medium dense when 30◦ ≤ φ′ < 36◦ and as dense

when φ′ ≥ 36◦, based on the classification used in the API method (American Petroleum Institute,

2000).

Both methods apply correction factors when curves are determined at shallow depth to account

for different soil failure mechanisms such as wedge failure. Because in blade penetrometer tests the

root is pushed downwards, vicinity to the surface will not have such a strong influence. Therefore

for both methods, when evaluating these correction factors, it was assumed that z/d = ∞. Because

of this simplification p and y in both methods scale linearly with diameter d, and the ultimate soil

resistance pu as defined by Reese and Van Impe (2011) can be expressed as:

pu = As ·
(
Ka · γ′ · z ·

(
tan8 β − 1

)
+K0 · γ′ · z · tanφ′ · tan4 β

)
(5)

where β = 45 + φ′/2 [◦], Ka and K0 the coefficients of lateral earth pressure in the active case and at

rest, and a dimensionless model constant As = 0.88. Example curves for both methods are presented

in Figure 1. Both models yielded similar curves when φ′ . 40 but start to diverge at higher values.

This is mainly due to some charts in the API method only being usable when φ′ ≤ 40◦. In this

analysis, when φ′ > 40◦ values corresponding with φ = 40◦ were used, resulting in underestimation

of soil resistance. Because of this limitation, Reese and Van Impe’s method was adopted during the

remainder of this study.

2.2 Benchmark numerical modelling

Root behaviour under blade penetrometer loading was numerically modelled using Abaqus/Standard

version 6.13-1 (Simulia) finite element software. Roots were modelled as one-dimensional beams with

non-linear p-y springs attached to account for soil resistance and extra resistance introduced by side

branching, see Figure 2a,b,c.

The root material was numerically modelled as linear elastic–perfectly plastic using the maximum

root strength as yield stress (Figure 2e). The root itself was implemented in the model using 1-

dimensional circular 3-node quadrilateral Timoshenko beam elements to allow for shear strain (Abaqus

reference: ‘B22’). Non-linear effects of large displacement are taken into account (Abaqus: ‘NLGEOM

= on’). A soil resistance spring, using p-y curves, was applied to each node (Figure 2d). Because

soil p-y curves yield a resistance per unit length, the soil resistance is multiplied by the length of the

segment between two nodes projected on to the plane normal to the direction of penetrometer loading

(w), see Figure 2b. The penetrometer behaviour was modelled by varying the displacement of the

closest node. By step-wise increasing this displacement and analysing residual forces on this node,
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Figure 1: Example p-y curves for piles at 150 mm depth in dry sand generated using methods derived by Reese

and Van Impe (2011) and the American Petroleum Institute (2000) (API). p is the lateral soil resistance

per unit pile length [Nmm−1] acting on a circular pile with diameter d [mm], while y indicates the

lateral pile displacement [mm].

the full force–displacement behaviour of the penetrometer was simulated (Figure 2f). The adopted

displacement step size was 0.5 mm. The root was assumed to be broken once the Von Mises stress

exceeded the yield stress anywhere in the root.

The friction on the interface between root and soil (τi) is difficult to incorporate in a spring-

supported beam model, as it depends on many factors, e.g. root type, root tortuosity, root hairs or

the presence of mucilage in the rhizosphere. Therefore, two extreme cases were modelled. In the first

(Case A), the non-root ends of the soil resistance springs were connected to nodes directly below the

root, so the spring force had a component which was active along the axis of root node displacement.

Therefore these springs also provide resistance to root axial movement. In this case:

τi ≈
p

π
· cosβ (6)

where p is the soil resistance and β the angle between the root axis and the nodal displacement

direction. In the second case (Case B), the soil resistance springs were modelled as very long so that

axial deformation does not have any significant influence on the orientation of the spring. Therefore

τi ≈ 0.

The anchoring of a root to a larger parent root or tree stump (the side of the model container in

the experiments) was modelled by fixing all degrees of freedom at that end of the root. Root branches

were not directly modelled, but represented by additional non-linear springs attached to the modelled

‘main’ root (Figure 2c). For each branch a force–displacement curve was generated using the same

numerical model as used for the ‘main’ root. The branch was assumed to be broken once the peak

strength was reached, after which the branch resistance was set to zero.

2.3 Analytical bending model

The behaviour of roots crossing a shear plane or loaded by a point load (penetrometer) can also be

approximated using analytical beam theory (Hibbeler, 2014). Simplifying assumptions made in the

modelling, the validity of which will be explored later through comparisons with the numerical models,

are:

• The beam/root fails in pure bending. Axial deformations, axial and shear stresses are neglected;
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• Non-linear geometric effects are neglected;

• Root behaviour is linear elastic up to failure;

• The full soil resistance is mobilised after infinitely small lateral root displacements;

• The root is straight and loaded perpendicular to the root axis.

Under these conditions, the beam displacement can therefore be described using a simplified form

of the Euler–Bernoulli differential equation for beam bending:

Eb · I ·
d4u(x)

dx4
= −dr · pu (7)

where Eb is the bending stiffness [MPa], u the lateral deformation [mm], x the distance from the point

of loading along the beam [mm], pu is the ultimate soil resistance [Nmm−2] and I the second moment

of area, for a circular beam with diameter dr equal to:

I =
1

64
· π · d4r (8)

Where the beam is deformed (|u| > 0), a constant soil resistance pu is assumed to be present in the

opposite direction to the deformation. Initial numerical simulations indicated the root displacement

follows a wave-like pattern, the amplitude of which decreases with increasing distance from the point

load. The displaced root shape is therefore simplified as schematised in Figure 3.

This leads to the following boundary conditions for when the beam is vertically loaded in the

middle section of the root (Figure 3a):

δu(0)
δx = 0 no rotation at point of loading

u(L1) = 0 no displacement at x = L1

δu(Lcrit)
δx = 0 no rotation at x = Lcrit

u(Lcrit) = 0 no displacement at x = Lcrit
δ3u(Lcrit)

δx3 = 0 no shear force at x = Lcrit
1
2 · F = dr · pu · (L1 − L2) vertical load equal to total soil resistance

(9)

When the root is loaded at a root end, the following boundary conditions were assumed (Figure

3b): 

δ2u(0)
δx2 = 0 no bending moments at x = 0

u(L1) = 0 no displacement at x = L1

δu(Lcrit)
δx = 0 no rotation at x = Lcrit

u(Lcrit) = 0 no displacement at x = Lcrit
δ3u(Lcrit)

δx3 = 0 no shear force at x = Lcrit

F = dr · pu · (L1 − L2) vertical load equal to total soil resistance

(10)

The same boundary conditions as in Equation 10 apply for roots passing through shear planes

within soil. This can be seen as two root end solutions combined (Figure 3c).

Solving Equation 7 once for both 0 ≤ x ≤ L1 and L1 ≤ x ≤ Lcrit with these boundary conditions

yields the beam displacement as a function of location on the beam (u(x)). The beam is assumed to

fail when the maximum bending strength σb is exceeded. The maximum bending moment a circular

beam can sustain (Mu) is equal to:

Mu =
σb · I
1
2 · dr

(11)

The bending moment can be expressed in terms of beam displacement:

M(x) = Eb · I ·
δ2u(x)

δx2
(12)
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Figure 3: Assumptions and parameters used to solve the analytical beam bending differential equation for dif-

ferent loading conditions: a) infinitely long root loaded by a point load, b) root loaded by a point load

at the root end, and c) root loaded by shear displacement of the surrounding soil. The dotted line

indicates the original position of the unloaded root. Thin arrows indicate the direction and location of

lateral soil resistance (pu) against root displacement (u).

Table 1: Analytical beam bending solutions. α and Lcrit are defined in Figure 3. Fu and uu are the maximum

shear of penetrometer resistance (in terms of force) and corresponding displacement associated with

beam failure in bending. The maximum root stress is reached first at x = xu. The force–displacement

behaviour of the point load or shearing soil is given by u(F ).

Formula Multiplication factor

Penetrometer Shear plane

Middle of root Root end

α 0.2695 0.4248 0.4248

Lcrit 0.8311 ξ1 1.0976 ξ1 1.0976 ξ1 ξ1 = dr · σ0.5
b · p−0.5

u

Fu 1.0231 ξ2 0.4431 ξ2 0.8862 ξ2 ξ2 = d2r · σ0.5
b · p0.5u

uu 0.09808 ξ3 0.5247 ξ3 1.0493 ξ3 ξ3 = dr · σ2
b · E−1

b · p−1
u

xu 0 0.4431 ξ4 0.4431 ξ4 ξ4 = dr · σ0.5
b · p−0.5

u

u(F ) 0.08954 ξ5 13.61 ξ5 1.7011 ξ5 ξ5 = F 4 · d−7
r · E−1

b · p−3
u

Using Equations 11 and 12, both the location where bending stresses will be highest and the magnitude

can be found. Thus the beam deformations associated with failure in bending can be obtained.

Results for the critical length (Lcrit), root peak resistance (Fu) and root peak displacement (uu)

associated with beam failure in bending, the location of bending failure (xu) and the penetrometer

or soil displacement associated with penetrometer or shear resistance u(F ) are summarised in Table

1. In the case of roots loaded by shearing soil, Fu is defined as the maximum root contribution

to the shear resistance. The length of root which displaces as an effect of the applied load (Lcrit)

increases with diameter and bending strength, and diminishes with increased soil resistance. The root

peak resistance corresponding with bending failure (Fu) goes up with increasing bending strength,

increasing soil resistance and especially with increasing diameter. The root peak displacement (uu)

increases when bending strength and diameter are increased, and decreases when bending stiffness

and soil resistance are increased.
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2.4 Analytical cable model

An alternative mechanism by which the root may add additional penetrometer resistance is through

tensile action. This may be more likely to occur than bending for roots with low E · I, under which

conditions lateral relative soil–root deformations will be large. Existing tension-based models which

consider roots to act as rods (i.e. neglecting lateral displacements) may be insufficient to capture such

behaviour and so an analytical model was developed assuming roots behave as buried laterally flexible

cable elements loaded in tension. The effects of root axial strain are incorporated in this model.

This modelling approach assumes that:

• The cable fails in pure tension;

• The cable can only support axial tension forces. Compression, bending and shear forces and

stiffnesses were neglected;

• The cable behaviour is linear elastic with axial stiffness Et;

• The full soil resistance is mobilized after infinitely small lateral root displacements (as with the

bending model);

• The cable is straight and loaded perpendicular to the cable axis.

The force a horizontal cable, vertically loaded by a point load, can sustain in tension can be

estimated using force vector decomposition once the maximum angle between the deformed root

under the penetrometer tip and the horizontal axis (β, see Figure 4) is known:

Fu = 2 · Ft · sin(β) (13)

where the factor 2 originates from tensile loading to both sides of the penetrometer and where Ft is

the root tensile force at failure, equal to:

Ft =
π

4
· d2r · σt (14)

where σt is the root tensile strength. However, β depends on the root–soil interaction and is therefore

not known a priori.

A solution for β was found using analytical modelling. Only half of the root was modelled because

of symmetry. At the penetrometer location, horizontal deformations were assumed to be restrained

and at the other end of the root both vertical and horizontal displacement were fixed to zero, see

Figure 4. The half-cable is split into two zones. In zone I, closest to the penetrometer tip, vertical soil

resistance is mobilised. Since this is the only force counteracting the penetrometer force, the length

of this zone can be expressed as:

LI =
1

2
· Fu
pu · dr

(15)

Over the length of zone II, it is assumed that the root only strains in the axial direction and no lateral

soil resistance is mobilised. The length of this zone is equal to:

LII = L− LI (16)

The horizontal component of the cable axial force is constant over the whole cable length since

all external forces act vertically. Therefore, the maximum axial force will occur where the root

deformation angle is largest, i.e. under the penetrometer tip. Equation 13 described this maximum

angle. The maximum axial stress in zone II can then be expressed as:

σII = σt · cosβ (17)

The increase in length due to this axial stress is:

∆LII =
σII
Et
· LII (18)
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u u

Fu / 2

LIILI / 2

LII (Zone II)LI (Zone I)

LarcLI +∆L I

∆LII

β

LI / 2

pu · dr

a)

b)

Figure 4: Schematic analytical cable model. a) schematic loading and boundary conditions, b) schematic cable

deformation. The external point load (Fu) is counteracted by lateral soil resistance (pu) over a length

LI . As a result, the cable displaces both laterally and axially in zone I, but only axially in zone II.

Because of symmetry, only half the root is shown.

The deformations in zone I were more difficult to model due to non-linear effects, and were esti-

mated as follows. Since the root is modelled as a cable and the soil resistance is constant over length

LI , the cable will deform in a parabolic shape. The length of this parabolic section can be estimated

using the analytical solution for parabola arc length:

Larc =

√
L2
I

4
+ u2u +

L2
I

4 · uu
· sinh−1

(
2 · uu
LI

)
(19)

where uu is the vertical deformation under the penetrometer tip. This parameter can be estimated in

turn using another property of a parabola, stating that the maximum gradient is equal to twice the

average gradient:

uu =
LI
2
· tanβ (20)

The average stress in zone I (σI) is estimated by averaging the stress at the beginning and end

points of the parabola:

σI =
1

2
· (σt + σII) (21)

and the increase in length is then:

∆LI =
σI
Et
· LI (22)

Now two different derivations to predict the length of the deformed root have been obtained: one

through root axial deformation under root stress and one through the arc length of the deforming

root. Both predictions should give similar results, so:

Larc ≈ LI + ∆LI + ∆LII (23)

All parameters in Equation 23 can be expressed in terms of root (dr, σt, Et and L) and soil charac-

teristics (pu), along with the penetrometer force at root tensile failure Fu.

There is no closed-form solution for Equation 23 rewritten in terms of Fu. Therefore, the equa-

tion was numerically solved for every combination of a large number of parameters: dr ∈ {0.5, 1, 2, 4, 8}
[mm], σt ∈ {5, 10, 20, 50, 100} [MPa], Et ∈ {50, 100, 200, 500, 1000} [MPa], L ∈ {10, 20, 50, 100, 200, 500, 1000}
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Figure 5: Analytical cable model solutions for the maximum angle between deformed and undeformed cable.

Realistic strain values are defined as 0.05 ≤ σt E
−1
t ≤ 0.20 (Coutts, 1983; Operstein and Frydman,

2000; Schmidt et al., 2001).

[mm] and pu ∈ {0.1, 0.2, 0.5, 1, 2, 5} [MPa], totalling 4375 combinations. The range of root diameters

(dr) was chosen to reflect diameters that realistically could be broken with the device. Root mechanical

properties (σt, Et) cover the tensile strength and stiffness range of roots with diameters 1 ≤ dr ≤ 10

mm reported in literature (Mao et al., 2012; Liang et al., 2015; Meijer et al., 2016). As roots are

known to elongate slowly penetrating into soil with penetrometer resistances exceeding qc = 2 MPa

(Bengough and Mullins, 1990; Stokes et al., 2009), the range of pu is chosen accordingly. Root length

L is the largest unknown, and therefore a wide range of values was selected, spanning two orders of

magnitude.

The results (Figure 5) show that the angle between the cable and the horizontal increases with

increasing root length and soil resistance and with decreasing cable diameter and tensile stiffness. The

results for β were fitted in the following form:

tan

(
β

2

)
=
√
η (24)

where:

η =

√
ζ − 2 ·

√
ζ + 1 + 2

ζ
(25)

ζ =
L · pu
dr · Et

(26)

This shape ensures that the solution yields realistic values at extreme values of ζ. β approaches 0

at low values of this parameter (no root deformation) and π/2 at high values (root oriented almost

vertically under the penetrometer tip). Using Equations 14, 15, 20 and 24, the root peak displacement

at failure simplifies to:

uu =
π

4
· dr ·

σt
pu
·
√
ζ (27)

and the root peak resistance to:

Fu =
π

4
· d2r · σt ·

4 · √η
1 + η

(28)

In reality, there will be a component of friction between the root and the surrounding soil (τi),

affecting axial strains and therefore influencing the cable deformation. Since the fixed model boundary

at x = L has a similar effect in this model, one was expressed in terms of the other. Assumptions
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were that the total cable elongation in both cases was equal. The maximum friction force is assumed

to be equal to the tensile force corresponding with failure. τi was assumed to be constant over the

length of the cable, so the axial force decreases linearly with x and reached 0 at a distance:

Lτ ≈
Ft

π · dr · τi
=
dr · σt
4 · τi

(29)

The total axial increase in length of the cable is then equal to

∆ux,1 =
1

2
· Lτ ·

σt
Et
≈ dr · σ2

t

8 · τi · Et
(30)

The corresponding model length L can be found when ∆ux,1 is compared with the increase in cable

length (∆ux,2) computed using the cable stiffness and stress in the cable:

∆ux,2 ≈ L ·
σt
Et

(31)

Solving ∆ux,1 = ∆ux,2 results in:

L ≈ d · σt
8 · τi

(32)

Therefore, using Equation 26:

ζ ≈ σt · pu
8 · Et · τi

(33)

Equation 33 can then be used instead of Equation 26 to find ζ, from which η can be found from

Equation 25 and then Fu and uu from Equations 28 and 27 respectively.

The cable model can also easily be used to calculate the reinforcement a single root perpendicularly

crossing a shear plane adds to soil. Because of symmetry, the force required to fail a root due

to shearing soil will be half that of the penetrometer force, and the soil displacement twice that

of the penetrometer displacement. The multiplication factor in Wu and Waldron’s original root-

reinforcement model (Equation 1), accounting for the effect of soil friction angle and the angle between

root and shear plane, can then be expressed in terms of the analytical cable model as:

k′ = sinβ + cosβ · tanφ′ =
2 · √η
1 + η

+
1− η
1 + η

· tanφ′ (34)

Equation 34 shows that the root peak contribution to soil shear strength through tensile action is

not only a function of root diameter, tensile strength and soil angle of internal friction, but also of

soil–root interface friction, root tensile stiffness and soil resistance. Depending on the exact values of

φ′ and ζ, the contribution of a single root to shear strength might be smaller or larger compared to

the Wu/Waldron model (Figure 6). An additional advantage over the Wu/Waldron model is that the

analytical cable model provides insight into the root displacements required to reach tensile failure,

which are shown to increase with increasing root diameter and strength, and decreasing soil resistance

and root stiffness.

3 Laboratory experiments

Many laboratory blade penetrometer tests were performed to verify the numerical and analytical

models using dry sand and buried ABS root analogues. Various soil densities (50% and 80% relative

density) and root properties (diameter, architecture) were tested.

3.1 Root analogues

Acrylonitrile Butadiene Styrene (ABS) plastic was selected as root analogue material. This material

has comparable mechanical characteristics to plant roots (Liang et al., 2014, 2015; Meijer et al., 2016).

A rapid prototyper (‘3D-printer’) was used to print roots in various configurations. ABS strength and
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Figure 7: Tensile and bending strength and stiffness of printed Acrylonitrile Butadiene Styrene (ABS) plastic.

Data obtained from testing by Liang et al. (2015). Lines indicate best power law fits and shading the

95% confidence interval of these fits.

stiffness was measured in both tension and bending using a universal testing machine by Liang et al.

(2015) (Figure 7). The secant stiffness at 90% of the peak strength (E90) was determined from stress–

strain curves. E90 was chosen due to yielding a better approximation of the non-linear stress–strain

curve when using a linear elastic material model.

Root analogue diameters were 2 and 4 mm with lengths of 200 or 400 mm. Because of the limited

print volume of the 3D-printer, 400 mm rods were made by connecting two 200 mm rods with epoxy

resin and a printed ABS coupler with a length of 15 mm and an external diameter 3 mm larger

than that of the rod. Roots with three commonly modelled architectures were tested: unbranched,

herringbone branching and perpendicular branching (Figure 8) (Dupuy et al., 2005a; Hamza et al.,

2007; Mickovski et al., 2007). The adopted branching angle for the herringbone pattern was 45◦,

similar to values found in situ (Henderson et al., 1983a; Riestenberg, 1994). Branch length was

chosen as 60 mm and branching distance as 200 mm (herringbone) or 100 mm (perpendicular), close

to the 150 mm reported for dr = 1–5 mm Norway spruce (Picea abies) roots (Giadrossich et al.,

2013). All tested 2 mm diameter roots were unbranched. Branch diameter was 2 mm, so that the
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Figure 8: Root architectures and branching patterns for 200 mm long analogue root sections.

child–parent diameter ratio in branched cases was 0.5, similar to the 0.45 used by Dupuy et al. (2005b)

for Maritime pine.

All tests were performed at a root depth z = 150 mm. One root end was securely anchored to the

side of the model container to simulate the root being connected to a larger parent root. Roots were

oriented in the horizontal plane or at an angle to the horizontal (‘inclined root’, 30◦ dipping down).

400 mm long horizontal root analogues were loaded at either 100 or 300 mm distance from the ‘parent

root’ (measured along the root axis) while 200 mm long horizontal analogues were loaded only at 100

mm distance. Inclined roots were only loaded at 300 mm (400 mm long roots) or 100 mm distance

(200 mm long roots) from the ‘parent root’. All inclined roots tested were unbranched.

3.2 Soil and sample preparation

Dry Congleton silica sand (HST95) was used as soil. Tests were performed in medium dense (relative

density Id = 50%) and dense sand (Id = 80%). The relative density indicates the density on a scale

from 0% (loosest achievable density) to 100% (highest achievable density).

From previous experimentation the following correlations were derived for soil peak angle of internal

friction φ′ [◦] and dry unit weight γ′d [kNm−3] as function of relative density (expressed as a fraction

in these correlations) (Lauder, 2010; Al-Defae, 2013):

φ′ = 20 · Id + 29 (35)

γ′d = 3 · Id + 14.5 (36)

A plastic box was filled with dry sand to a height of 300 mm using pluviation. The plastic box

was lined with 10 mm thick adhered wooden panels to provide walls that could easily be drilled for

mounting roots. Internal dimensions were 530×330×310 mm (length×width×height). Roots were

glued into pre-drilled holes, matching root analogue diameter, in the side of the box and supported

by wires (cut prior to testing). Following analogue placement sand was pluviated into the box using

a slot pluviator from a fixed height (Lauder, 2010; Al-Defae, 2013). Because roots were placed prior

to pluviation, some shadowing might have occurred, potentially resulting in slightly lower densities

directly under the root. Each box contained multiple roots positioned side by side. The main root

axes were spaced at least 80 mm apart to prevent interference between tests, while branched roots

were never buried next to each other.

3.3 Test equipment

The blade penetrometer shape was identical to that used by Meijer et al. (2016), i.e. a 30×2×38 mm

(width × depth × height) plate welded to a standard agricultural penetrometer (12 mm diameter 30◦
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cone connected to a 10 mm diameter shaft) with a length of 500 mm. The agricultural penetrometer

without a blade attached is referred to in the text as ‘standard penetrometer’. Penetrometers were

pushed down vertically using an universal testing machine (Instron 5980) fitted with a 30 kN load cell

(Instron 2580 Static series, accurate to 0.5% of a reading down to 1/500th of the load cell capacity)

with both force and displacement logged at 20 Hz. The test extension rate for the penetrometer was

300 mm min−1, a value similar to the expected rates likely to be used in the field. 300 mm min−1 is

also representative of landslide velocities and similar to previous testing (Meijer et al., 2016).

For reference testing, 10 blade and 11 standard penetrometer tests were performed in non-rooted

(‘fallow’), 50% relative density sand. In Id = 80% non-rooted sand, 14 and 8 tests were performed

respectively.

3.4 Data processing

In each depth–blade penetrometer resistance trace, soil and root effects were superimposed and there

was some experimental variability in soil resistance. Root effects were isolated first by calculating the

mean soil resistance without root effects at each depth level, resulting in a single ‘average’ fallow trace

for each relative density. Subsequently, for each test the average ratio between the resistance measured

during the test and the average fallow resistance was determined over a depth range 100 ≤ z ≤ 140

mm (i.e. over the depth range just before the penetrometer encountered the buried root analogue).

The root effect (‘reinforcement’) was then found by subtracting the product of this ratio and the

average fallow resistance from the resistance trace measured in each test.

Reinforcement was only studied until the root broke, visible in the force–displacement diagram

as a sudden decrease in penetrometer resistance (root peak resistance Fu). Additional peaks were

visible over a displacement range of 0–40 mm following failure. Peaks evident following failure may

be attributed to stick–slip, broken root ends sliding along the blade, and by broken root ends getting

stuck behind the shoulder of the cone. These additional peaks were therefore discarded.

Exact root depth was required for accurate determination of the root peak displacement. Root

depths were never exactly 150 mm due to experimental variation introduced during sample prepara-

tion. The depth could not be determined from the displacement–reinforcement plot due to increased

resistance prior to touching the actual root. Both uniaxial tensile tests and 3-point bending tests

showed highest root analogue stiffnesses at zero strain. Assuming this was also the case during blade

penetrometer testing, for every test the magnitude and location of the largest gradient on the mea-

sured depth–root resistance curve was determined. Subsequently, the ‘real’ initial root depth was

defined as the depth at which the the tangent at this location intersects the depth axis (Figure 10).

All data processing and statistical analyses were performed using R statistical software (R Core

Team, 2013). Statistical significance of p-values is denoted as: p = 0 < ∗∗∗ ≤ 0.001 < ∗∗ ≤ 0.01 < ∗

≤ 0.05 < . ≤ 0.1 < n.s.

3.5 Predictions for forces and displacements

Predictions of root peak resistance and displacement were made using both the numerical and both

analytical models. All models used the strength/stiffness fits (Figure 7) to account for variability

introduced by root diameter. In the analytical cable model, ABS tensile parameters were used whereas

in the analytical bending model bending parameters were used. Numerical modelling was performed

separately for both bending and tensile parameters. In the numerical model, soil–root interface friction

was modelled assuming Equation 6 (Case A). For all models, predictions were only made for horizontal

roots due to model limitations. Predictions for inclined roots were made instead by assuming they

were horizontally oriented. Since both analytical models assume infinitely long unbranched roots, no

separate analytical model predictions could be made for roots with various lengths, loading positions

and branching patterns.
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Figure 9: Average soil resistance over depth measured using the standard penetrometer and blade penetrometer
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penetrometer) and predicted using the model described by Reese and Van Impe (2011). Shaded areas

indicate the standard error of the mean for experimentally measured results. Note the linear scaling

factors for the measured blade penetrometer resistance (0.512) and the resistance predicted using Reese

and Van Impe’s model (1/0.653) to make them coincide with the experimentally measured standard

penetrometer cone resistance.
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Figure 10: Example root resistance versus depth traces for horizontal roots. L indicates root length and P the

distance between the trunk and the point of loading. Fu and uu indicate the root peak resistance

and root peak displacement respectively.

4 Validation of interpretative models

Standard cone penetrometer resistance, in non-rooted samples, was approximately half (0.497) of that

recorded for the blade penetrometer (Figure 9), with a surface area only 24% smaller when compared

to the blade penetrometer. This suggests shape effects and/or frictional resistance on the sides of the

blade played a role. Predictions for soil resistance using Equation 5 yielded on average 37.7% lower

resistances than measured using the standard penetrometer, when averaged between z = 50 mm (to

avoid near-surface effects) and z = 250 mm (to avoid bottom boundary effects).

Figure 10 shows example root resistance–depth traces, showing the same type of clearly defined root

reinforcement peaks as observed by Meijer et al. (2016). Measured root peak resistance increased with
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Figure 11: Comparison between experimentally measured and predicted root peak resistance values for varying

root branching patterns, root inclination, root diameter and soil relative density. Solid lines indicate

best linear fits, shaded areas the 95% confidence interval of the fit and the dashed line parity. Identified

outliers, not taken into account in the fit, are indicated by a red box (both cases involved large

resistances, possibly associated with a reduced soil resistance or shear failure, discussed in text).

increasing root diameter and soil density (Figures 10–11). Branching increased resistance compared to

unbranched roots, with the herringbone type yielding approximately 23% higher reinforcements than

perpendicular branching. When comparing roots with different lengths and loading positions, tests

with 400 mm long roots loaded at 100 mm distance from the fixed point generally gave the highest

results, although the effect of length and loading position was small in comparison.

The analytical cable model overestimated predictions of root peak resistance while the analytical

bending model results closely resembled experimentally measured peak resistances. Highest coeffi-

cients of variation were observed in the analytical bending model (R2 = 0.7), indicating ABS rods are

likely to have failed in a bending rather than tension failure mechanism. Numerical simulation results

also indicated that using bending parameters resulted in much better predictions than using tensile

parameters.

Two outliers were observed in some of the tests on 400 mm long 2 mm diameter roots loaded at

100 mm distance from the fixed point. Both had much higher root peak resistances (101.5 and 96.2

N) and displacements (19.1 and 17.2 mm) compared to repeat tests. It is hypothesized that this was

the result of variation in sample preparation. The density below the root might have been lower due

to the root shadowing the area just below the root from pluviated sand, resulting in lower densities.

This explains the higher displacements. Since the soil resistance is lower, a larger length of the root

will displace, increasing the peak force. Because of the proximity of the ‘parent root’, the root will also

be (partially) loaded in shear instead of bending, enhancing the higher resistances. Alternatively the

differences could have been caused by variation in the mechanical properties or diameter introduced

by the printing process.
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Figure 12: Comparison between experimentally measured and predicted root peak displacement for varying root

branching patterns, root inclination, root diameter and soil relative density. Solid lines indicate best

linear fits, shaded areas the 95% confidence interval of this fit and the dashed line parity. Identified

outliers, not taken into account in the fit, are indicated by a red box.

Inclined root analogues (30◦) resulted in higher root peak resistances (0–100%) compared to their

horizontal counterparts, especially for thicker roots and those in lower density soils. These dependen-

cies suggest that the failure mechanism might be different from the failure mechanism for horizontal

roots. It is suggested that future work focusses on studying this effect and on development of better

predictive models taking root inclination into account.

Perpendicular branching resulted in an increase in root peak resistance, but this increase was

smaller than for herringbone branching. This is probably caused by the distance between branches and

the loading point. Herringbone branches were located directly below the loading point and therefore

strained more. Perpendicular branches were located further from the loading point, reducing strain.

This distance also explains why in dense soil (Id = 80%) there was almost no difference in peak

resistance between perpendicularly branched roots and unbranched roots, as due to the higher soil

resistance, branches might have been too far away from the point of loading to be mobilised.

Inclined roots required larger displacements to reach failure than horizontal roots (Figure 12).

Both root diameter and branching pattern had a small influence on the root peak displacement. The

analytical bending model and numerical model using bending parameters yielded the best predic-

tions and the best fits between experimentally measured and predicted root peak displacement (uu).

However, predictions were lower than displacements measured, and the variability in predictions was

higher than those for peak resistance Fu (R2 = 0.40–0.41 for uu compared to 0.63–0.70 for Fu). This

suggests large variation in experimental results or inaccuracies in the models.

Higher soil densities generally resulted in shorter root peak displacements, although 2 mm diameter

roots in dense sand displaced much further compared with other roots even though peak resistances

were similar. It is unclear what caused this effect. Reinforcement–depth traces (Figure 10) suggest

18



Table 2: Comparison of the magnitude of the root peak resistance for various factors. ‘Data subset’ indicates

which experimental results were taken into account for deriving the mean and standard deviation (‘SD’)

of the differences. The statistical significance was determined using paired t-tests.

Factor Comparing Data subset Increase in root resistance n

Mean SD Significance

[%] [%] [-] [-]

Diameter 4 mm vs. 2 mm Horizontal &

Unbranched

72.2 48.1 ∗∗ 6

Relative den-

sity

80% vs. 50% Horizontal &

Unbranched

74.7 81.8 ∗ 6

Branching Herringbone vs. Unbranched Horizontal &

dr = 4 mm

50.8 47.6 ∗ 6

Perpendicular vs. Unbranched Horizontal &

dr = 4 mm

23.0 25.5 . 6

Angle 30◦ vs. 0◦ Unbranched 47.2 49.1 ∗∗ 8

Distance to

trunk

100 mm vs. 300 mm Horizontal &

Length = 400

mm

25.0 41.7 . 8

Length 400 mm vs. 200 mm Horizontal &

Distance to

trunk = 100

mm

16.4 32.6 n.s. 8

a more gradual, plastic failure mechanism might have occurred. When these measurements were

ignored, both the analytical bending model and numerical model using bending parameters resulted

in decent predictions, although lower than measured. This is attributed to roots being modelled using

a linear-elastic material using the secant stiffness at 90% strength. Since these models ignore any

plastic deformation, the modelled strain to failure and therefore the predicted displacements will be

lower.

Since predictions for root peak resistance values were better predicted than displacements, variabil-

ity in root resistances was further analysed. Replicated tests for combinations of branching, diameter,

inclination, relative density, length and loading position values were averaged so that a balanced

selection of test results was obtained. The effect of various factors (e.g. root diameter, branching

type etc.) was studied by pairwise comparison using two-sided Welch’s t-test. For example, when

quantifying the influence of root diameter, with the same inclination, branching, length, distance to

trunk and relative density but different diameters were compared. The results (Table 2) showed that

the variation in diameter and relative density had the strongest effects on the magnitude of the root

peak resistance. Root branching and inclination had a lesser effect, while the effect of distance to

trunk and especially root length was small. In addition, a type III analysis of variance test (ANOVA)

was performed on the same dataset using the same factors. This analysis suggested that most of the

variation in the data is explained by variation in root diameter (39%∗∗∗), followed by relative density

(14%∗∗∗), root inclination (12%∗∗∗), branching (11%∗∗) and the distance to the trunk (5%∗∗). Root

length was non-significant(1%n.s.). The importance of factors on the measured variation in root peak

resistance as determined using the ANOVA roughly corresponds with that found using t-tests.

19



5 Implications for practical use

5.1 Simplification of p-y curves

Both the analytical bending and cable model assume that the full soil resistance is mobilised after

infinitely small lateral root displacements instead of gradually, i.e.:{
p = 0 when |u| = 0

p = pu when |u| > 0
(37)

Based on p-y theory (Reese and Van Impe, 2011) however, the soil reaches its maximum resistance

after 3/80 ·dr. The effect of this simplification was studied by comparing numerical model simulations

using both the full p-y curves (Figure 1) and the simplified approach using a rigid plastic model

(Equation 37). Soil and root parameters were based on the experimental laboratory test conditions

adopted. Results were compared for 2 and 4 mm diameter ABS rods in dry sand with relative densities

between 10 and 90%. The root depth was varied between 50, 100, 200 and 500 mm to model a wide

range of conditions. The root length was set to 250 mm to both sides of the penetrometer and all

degrees of freedom were restrained at root ends.

The difference between results obtained with the simplified pu approach or full modelling of the

p-y curve was considered to be related to the ratio of lateral displacement at which the full curve

reaches its maximum resistance (yu = 3/80 · dr) and the root peak displacement at root failure (uu).

Using Table 1, this ratio is proportionate to pu · E · σ−2. The smaller this ratio, the less effect the

differences in p-y behaviour between 0 ≤ u ≤ yu would be expected to have on the root reinforcement

peaks.

The simplified approach almost yielded the same results as obtained by modelling the full p-y

curve, especially for the root peak resistance (Figure 13). The accuracy decreases with increasing root

bending and soil stiffness and with decreasing root strengths. For the worst case in the laboratory

testing programme (dr = 4 mm, pu ≈ 0.5 MPa) the peak force is only 0.8% higher and the displacement

3.3% lower by using the simplified approach compared to modelling the full p-y curve. Because the

roots displace large distances compared to the displacement required to reach the full soil resistance,

the simplified soil resistance approach was considered valid for the experimental conditions tested.

5.2 Limitations on the use of the analytical models

The analytical bending yielded good predictions for the experimentally measured root peak resistance,

but was dependent on many model assumptions, e.g. neglecting non-linear geometric effects. To

study when this model yielded accurate results numerical simulations were performed. First it was

investigated in which cases roots are primarily loaded in bending. Parameters which are varied

were the distance to the constraint on either side (L ∈ {0.5, 1, 2, 4, 8} × Lcrit), root strength (σ ∈
{2, 5, 10, 20, 50, 100} MPa), root Young’s modulus (E ∈ {100, 200, 500, 1000, 2000} MPa) and ultimate

soil resistance (pu ∈ {0.1, 0.2, 0.5, 1, 2} MPa). Two different models were run. In the first, axial

constraints were high (axial deformation prevented at root tips + high root–soil interface friction

case (τi ≈ p/π · cosβ)), while in the second no axial constraints were modelled (axial deformation

possible at root ends + no root–soil interface friction (τi ≈ 0)). In the latter case, a smaller number of

parameter combinations was adopted to minimise the numerical workload. Soil springs were modelled

using the simplified curves (Equation 37).

Comparison between the numerical simulations showed that the analytical bending solution gives

similar results to the analytical bending model when (Figure 14):

uu
Lcrit

≤ 0.05 (38)

or in terms of soil and root parameters:

σ1.5
b

p0.5u · Eb
≤ 0.424 (39)
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R2 = 0.92
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y = 1.005 - 0.250x

R2 = 0.94
n=72, p<0.001

Fu uu

1.00

1.01

1.02

1.03

1.04

0.80

0.85

0.90

0.95

1.00

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

pu E s-2

S
im

pl
if

ie
d 

/ F
ul

l p
-y

Figure 13: Comparison between numerical simulations simulating the full p-y curve or the simplified approach.

a) root peak resistance (Fu), b) effect on root peak displacement (uu). pu E σ−2 indicates the ratio

between the displacement required to reach the full soil resistance (according to p-y theory by Reese

and Van Impe (2011)) and uu, expressed in terms of root and soil properties, see text. pu · E · σ−2

ranges between 0.04 and 0.15 in the laboratory experiments. The shaded area indicates the 95%

confidence interval of the fit.
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Figure 14: Comparison for simulated root peak resistance between predicted numerical (Fnum) and analytical

beam (Fana) models for various root parameters, soil resistances and soil–root interface friction

assumptions.

When the root is axially constrained, when σ1.5
b ·p−0.5u ·E−1b > 0.424 predicted root peak resistances

were higher and a smaller proportion of the root stress was caused by bending effects, indicating a

build-up of tensile forces. In the unconstrained case, the resistance is less sensitive to changes in

the dimensionless parameter group σ1.5
b · p−0.5u · E−1b . In both cases, the ratio between numerical

and analytical bending model forces is relatively independent from the length of the root, given that

L ≥ Lcrit.
The analytical bending model predictions for root peak resistance were close to the experimentally

measured values, suggesting the ABS root analogues failed in bending. The highest value for σ1.5
b ·p−0.5u ·

E−1b equals approximately 0.80 (Id = 50%, dr = 2 mm) and the lowest 0.48 (Id = 80%, dr = 4 mm).

These values are just above the identified threshold level of 0.424, derived from numerical modelling
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Figure 15: Comparison for simulated root peak resistance between predicted numerical (Fnum) and analytical

beam (Fana) for various root and soil parameters and distances to a root boundary.

(Equation 39), below which numerical and analytical bending models yielded the same results for Fu.

This explained why the numerical bending model yielded similar but slightly higher predictions than

the analytical bending model. Secondly, the magnitude of this dimensionless group of parameters

explains why the root analogues failed largely due to bending rather than tension mechanisms (Figure

14).

The analytical bending model assumes infinitely long roots. However, in reality roots might be

loaded close to a root tip or close to the trunk or parent root. The behaviour of roots loaded close

to a boundary was investigated using the numerical model as in practice a penetrometer test may be

conducted close to the root anchorage, close to the tip, or anywhere in between (the root length is not

known a priori). A root with length 6 · Lcrit was modelled. The left end was fully restrained (parent

root) and the right end unsupported (root end). The distance between the point of loading and either

boundary was varied between 0 and 2 · Lcrit in steps of 0.2 · Lcrit for various root and soil properties

(dr ∈ {2, 10} mm; σ ∈ {10, 50} MPa; E ∈ {200, 1000} MPa, pu ∈ {0.2, 1} MPa).

When Equation 39 is met, Figure 15 shows that the analytical bending method is accurate so long

as the penetrometer test is not carried out within 1.2 · Lcrit of the ends of the root. In the exper-

iments conducted, predicted values for Lcrit ranged between 26.8 and 68.4 mm while the minimum

distance to the trunk or root tip is 100 mm, fulfilling this condition. When an error of approximately

10% is deemed acceptable, the analytical bending solution is valid when the root is loaded at least

approximately 0.5 · Lcrit from either end. I

5.3 Accuracy of root diameter predictions

Practical application of the modified (‘blade’) penetrometer (see Meijer et al., 2017) characterisation

of root peaks identified in the measured depth–resistance trace may be used to back-analyse the root

diameter. Rewriting the analytical bending model equation (point load, Table 1) to find root diameter

based on the measured root peak resistance (dp) yields:

dp = 0.9886 · F 0.5
u · σ−0.25b · p0.25u (40)

This shows that the diameter prediction is less sensitive to changes in root strength and soil resistance

compared to changes in measured root peak resistance. When the equation for root peak displacement
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(analytical bending model) is rewritten:

dp = 10.20 · uu · σ−2b · Eb · pu (41)

Comparing to Equation 40 indicates that predictions based on root peak displacement are likely to be

less accurate. Small variations in root stiffness, soil resistance and especially root strength will have

large effects on the predicted diameter compared to the effect of variation in the measured displacement

at peak force. This explained why the experimentally measured root peak resistance could be predicted

much more accurately than the accompanying displacements when using the analytical bending model.

Similar dependencies were found for the analytical cable model. When the root diameter is pre-

dicted based on the root peak resistance and assuming ζ = 0.5, a 100% increase in Fu results in an

increase in dp of 41%. A 100% increase in σt or pu reduces Fu by 31 or 3% respectively, while a similar

increase in Et or τi yield an increase of only 4%. When the diameter is predicted based on uu, dp is

changed by +100% (uu), -64% (σt) or +41% (Et, pu or τi) when these parameters are increased by

100%. Again, the prediction based on root peak resistance measurement is less sensitive to changes in

root strength, root stiffness, soil resistance or root–soil interface friction, compared with predictions

based on the root peak displacement.

5.4 Suggested field use

The variation in experimental root peak resistance results was best explained by variations in root

diameter and soil relative density. Branching and root inclination were of limited importance, while

the effects of root loading distance and root length were even less so. Results explained why the

analytical bending model resulted in reliable predictions for the peak resistance for horizontal root

analogues despite ignoring root length, branching and distance to trunk.

The few parameters required for both analytical models makes them easy to use in practical

applications and minimises the need for time-consuming numerical modelling. Both analytical models

require estimates for root strength and stiffness. Biomechanical data can be easily acquired using

standard material testing (tensile and bending tests), and for many species tensile data has been

published before although data on root stiffness is sparse (e.g. Mao et al., 2012) and data on bending

properties almost non-existent. A third required parameter, soil resistance pu, can be estimated for

dry sand when soil properties (φ′ and γ′) are known using Equation 5. For the practical application of

this method, it might be easier to estimate pu from standard penetrometer testing or even from blade

penetrometer testing (see Meijer et al., 2017). This study showed that in this case correction factors

are required to compensate for the difference in shape between the penetrometer and the root. The

cable model requires an additional value for root–soil interface friction (τi). In field conditions, this

value could be estimated in principle on the basis of measuring soil–soil shear strength (e.g. from in

situ shear tests such as vane testing or from penetrometer resistance when penetrometer resistance–

shear strength correlations are available) and applying a correction factor to obtain the soil–root

friction.

5.5 Comparison with existing models

The analyses showed that modelling soil resistance on laterally displacing roots is better modelled using

a constant soil resistance (similar to Wu, 2007, 2013) instead of linear springs (Wu et al., 1988). This

approach is consistent with the experimentally verified p-y theory on laterally loaded piles displaced

by relatively large distances compared to pile diameter. The simple analytical bending model solutions

provide a practical and simple model to estimate the resistance and displacements of loaded roots when

root mechanical properties and soil resistances are known. However, root displacements in experiments

were still significantly greater than analytical bending model predictions. This is attributed to the

analytical model not being able to take plastic root analogue deformation into account.

The analytical cable model is an improvement compared to existing cable models (e.g. Wu et al.,

1988; Wu, 2007, 2013) because of its ability to take non-linear deformation effects and axial elongation
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into account. However, since root analogues in the experiments described here were relatively stiff

and failed in bending, cable model predictions were inaccurate. Because many real roots are more

flexible than ABS analogues (Meijer et al., 2016), the analytical cable model is expected to yield better

predictions than the bending model for many real root cases.

6 Conclusions

• Several interpretative models were developed to predict the behaviour of a root loaded by a point

load, based on root strength, root stiffness and soil resistance. Developed models can also be used

to predict the resistance and corresponding displacements of roots crossing a shear plane. The

incorporation of root elasticity and soil resistance and the ability to estimate displacements as

well as resistances provide major improvements over the traditional Wu/Waldron model solution

for single roots.

• Numerical model simulations show that the gradual mobilisation of soil resistance against lateral

root displacement can be neglected because root displacements are large compared to the dis-

placement required to mobilise the full soil resistance. This allows for simply using the ultimate

soil resistance (pu) in models.

• The simple analytical bending model yields comparable results to numerical models when the

root displacements are relatively small, i.e. when the root strength is weak and root stiffness

and soil resistance large, and when the root is not loaded close to a root boundary (root tip or

parent root).

• Experimental penetrometer results for buried ABS root analogues in dry sand show that the

force required to break horizontal root analogues is mainly a function of root diameter. The

second most important parameter is soil density/strength. Root branching, length and the

position of loading all have a smaller influence.

• The force required by a penetrometer to fail an ABS root analogue was best predicted using the

numerical model (using strength and stiffness parameters derived from 3-point bending tests)

or the analytical bending model, showing that the root analogues failed in bending rather than

tension.

• All models poorly predict penetrometer displacement required to reach root failure.

• Root inclination potentially has a strong effect on both root peak resistance and displacement.

However, the experimental results could not be compared to modelling predictions because of

model limitations. This effect should be addressed during further model development.

• Root diameters can be predicted from ‘root peaks’ identified in the penetrometer force–depth

trace when root mechanical properties and soil resistance are known or accurately estimated if

the correct root failure mechanism (bending or tension) is known. Predictions based on the root

peak resistance Fu are more reliable than those based on lateral root displacement to reach peak

force uu.

• Both the root diameters and root location (location and depths) are essential pieces of infor-

mation required when mechanical root-reinforcement is to be quantified. Both are measured by

the blade penetrometer and can easily be implemented into existing root-reinforcement models.

• A follow-up paper (Meijer et al., 2017) will apply and further validate these methods against

field data collected for two contrasting sites/species. This will yield data for more realistic soil

(real field soil instead of dry sand) and root conditions (real plant roots instead of ABS root

analogues).
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Notation

A - Soil cross-sectional area [mm2]

Ar - Root cross-sectional area [mm2]

As - Model constant in p-y model by Reese and Van Impe (2011)

cr - Root cohesion [kPa]

dr - Root diameter [mm]

dp - Predicted root diameter [mm]

E - Secant stiffness at 90% of peak strength [MPa]

Eb - Secant bending stiffness at 90% of peak bending strength [MPa]

Et - Secant tensile stiffness at 90% of peak tensile strength [MPa]

F - Penetrometer resistance [N]

Fu - Root peak resistance, i.e. maximum increase in penetrometer resistance due to a root [N]

Ft - Root tensile force at failure [N]

I - Second moment of area [mm4]

Id - Soil relative density [%]

K0 - Coefficient of lateral earth pressure at rest [-]

Ka - Coefficient of lateral earth pressure (active) [-]

k - Spring stiffness [Nmm−1]

k′ - Ratio between root cohesion and total root tensile strength [-]

k′′ - Reduction factor calculation of cr due to root sequential breakage [-]

L - Root length [mm]

L1 - Length of laterally displaced root in analytical bending model [mm]

L2 - Length of laterally displaced root in analytical bending model [mm]

Larc - Arc length of a parabolic section [mm]

Lcrit - Length of the zone of lateral root displacement on either side of loading [mm]

LI - Length of laterally displaced root in analytical cable model [mm]

LII - Length of axially displaced root in analytical cable model [mm]

M - Bending moment [Nmm]

Mu - Bending moment at root failure [Nmm]

n - Number of samples tested [-]

P - Loading position (distance to parent root/container wall) along the root axis [mm]

p - Soil resistance against lateral root displacement [MPa]

p - Statistical significance [-]

pu - Ultimate soil resistance against lateral root displacement [MPa]

RAR - Root area ratio [-]

Tx - Axial root force [N]

u - Root lateral displacement [mm]

uu - Root peak displacement, i.e. root lateral displacement at root failure [mm]

z - Root depth [mm]

α - Ratio of displacing root lengths in analytical bending model [-]

β - Angle between root axis and direction perpendicular to the direction of loading [◦]

γ - Soil unit weight [kNm−3]

ζ - Dimensionless parameter in analytical cable model [-]
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η - Dimensionless parameter in analytical cable model [-]

σ - Peak strength [MPa]

σb - Peak strength in bending [MPa]

σt - Peak strength in uniaxial tension [MPa]

τi - Root–soil interface friction [kPa]

φ′ - Soil angle of internal friction [◦]
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