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Why was the cohort set up?

The prevalence of diabetes worldwide has been steadily

increasing over the past 20 years. In 1997 it was estimated

to be 124 million,1 in 2015 it was estimated to be 415 mil-

lion among 20–70 year olds, and this is expected to rise to

642 million by 2040.2 In the UK, an estimated 4 million

people have diabetes either diagnosed or undiagnosed.2

This represents a significant burden on health care re-

sources,3 particularly given that type 2 diabetes (T2D) is

associated with comorbidities including obesity,4 cardiovas-

cular disease,5 chronic kidney disease6 and neuropathy.7

T2D is a complex disorder, caused by a combination of en-

vironmental and genetic factors.8 Before the first genome-

wide association study (GWAS) was conducted for T2D in

2007,9 very few genetic loci were known to be involved

with T2D. However, linkage and candidate-gene associ-

ation studies have often failed to replicate findings through

lack of power and inadequate knowledge of the underlying

biological pathways.10,11

Diabetes Audit and Research in Tayside Scotland

(DARTS) started in 1996 as a joint collaboration between

the University of Dundee’s Department of Medicine and

Medicines Monitoring Unit (MEMO), three Tayside Health

Care Trusts (at Ninewells Hospital and Medical School,

Perth Royal Infirmary and Stracathro Hospital) and a group

of Tayside general practitioners (GPs) with a special interest

in diabetes care.12 Initially supported by the Scottish Home

and Health Department, the Wellcome Trust, the Robertson

Trust and Tenovus Tayside, the aim of the study was to iden-

tify all patients with diabetes within the wider Tayside re-

gion, through electronic record linkage, in order to improve

health care over and above that which was practical through

existing general practice lists alone. In 1998, consenting pa-

tients within this electronic database were recruited to the

Genetics of DARTS (GoDARTS) study and invited to pro-

vide a blood sample for DNA extraction, for research pur-

poses. At the same time, they were invited to provide

phenotypic data (clinical and lifestyle factors), through ques-

tionnaires and clinical examination. This resource was in-

tended to help identify the relative contribution of specific

genetic and environmental factors that are associated with

disease onset, progression and response to treatment.10,11
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Who is in the cohort?

Patients from the Tayside region of Scotland (n¼ 391 274

on 1 January 199612) were added to the DARTS register,

for clinical purposes, through electronic record linkage on

the basis of having diabetes mellitus according to primary

and/or secondary care data sources. These included hos-

pital diabetes clinics, mobile diabetes eye units, diabetes

prescription databases, the Tayside regional biochemistry

database and all diabetes-related hospital discharge

records. This electronic record linkage technique has a sen-

sitivity of 97% and is continually being updated, creating a

longitudinal dataset of clinical data which is manually vali-

dated by a dedicated team of clinicians.12 Patients with

T2D, which comprises around 90% of all diabetes cases,

were invited to participate in the GoDARTS study either at

diabetes or eye screening clinics or through their GP.

For the pilot phase of the study (GoDARTS1), 2763 pa-

tients with T2D were recruited from December 1998 to

October 2004. This phase was used to test recruitment

processes and the ability to anonymously link patient clin-

ical data from electronic records to the study, and was

funded by Tenovus Tayside. As this was the primary aim

of the pilot phase, only blood samples were taken at the

point of recruitment and no baseline data were recorded.

From October 2004 to May 2009, a second collection

(GoDARTS2) was undertaken as part of the Wellcome Trust

United Kingdom Type 2 Diabetes Case-Control Collection

(WTCCC). A total of 16 146 people were recruited in this

phase, including 7989 patients with T2D and 8157 matched

healthy controls. We initially invited five matched non-

diabetic controls per case from the corresponding GP prac-

tice; however, after initial success, this was reduced to two

controls per case and on average one of the invited controls

accepted. This incidentally included 1292 patients with T2D

who had already been recruited in the GoDARTS1 phase.

Baseline clinical and lifestyle measurements (Table 1) were re-

corded for all patients recruited in GoDARTS2. From

October 2009 until 2015, an extension to the WTCCC pro-

ject was granted (GoDARTS3), with 1342 patients with T2D

being recruited during this time. Some of these participants

had also been recruited to GoDARTS1 (n¼ 20), GoDARTS2

(n¼513) or both (n¼120), where baseline data did not exist

or original DNA quality was poor (Figure 1). This gives a

current total GoDARTS cohort of 18 306 participants,

10 149 of whom have T2D (� 44.8% of the DARTS study,

representing the diabetic population in Tayside) and 8157 of

whom were healthy controls at baseline.

Currently the cohort is in the early stages of GoDARTS4,

the fourth phase of the study. In this phase, recruitment is

continuing through a number of initiatives including the

Scottish Health Research Register (SHARE)/Scottish Diabetes

Research Network (SDRN), the Genetics of SHARE

(GoSHARE) and GoDARTS-Scotland. SHARE/SDRN is a

register of patients in Scotland who want to participate in

medical research and have provided consent for their elec-

tronic medical records to be used for research purposes

[http://www.share-sdrn.org]. GoSHARE is a parallel project

which additionally aims to get permission to collect spare

blood from people attending for routine clinical tests at hos-

pital or GP clinics, that would otherwise to go to waste after

the necessary tests had been performed [http://www.goshare.

org.uk/]. Since the aim is to involve everyone who is resident

in the Tayside area, this will inevitably include people with

T2D, and they will contribute to the GoDARTS study.

GoDARTS Scotland is a sub-study specifically recruiting peo-

ple who have been diagnosed with T2D in the past 2 years in

order to study response to therapies, including metformin.

At the point of recruitment, all participants in

GoDARTS provide, by invitation, informed consent for

their data to be used for research purposes and explicit

consent for use in collaboration with industry. This in-

cludes allowing their baseline data to be linked anonym-

ously to individual patient medical records including

laboratory data, hospital admissions and Scottish Care

Information – Diabetes (SCI-Diabetes) data. SCI-Diabetes

is a shared electronic patient record which can be accessed

by health professionals and researchers to aid the treat-

ment of diabetes patients in Scotland. In this way, longitu-

dinal data can be accessed relating to routine diabetes

management, for example glycosylated haemoglobin

(HbA1c), fasting insulin and fasting glucose, as well as pre-

vious patient diagnoses including diabetic complications.

Furthermore,� 95% of patients have consented to being

contacted for future studies, aiding research beyond T2D.

How often have they been followed up?

As patients attend a baseline clinic at recruitment, initial

measurements are cross-sectional. However, the use of

electronic record linkage, which automatically updates pa-

tient details and grants access to NHS data as far back as

1987, makes GoDARTS a longitudinal cohort. This is

made possible through the use of the community health

index (CHI) number, which is a unique numerical identi-

fier issued to each patient on first registration with a GP or

admission to a hospital in Scotland. Around 96% of the

UK population are estimated to be registered with a GP.13

The CHI is a 10-digit number consisting of six digits cor-

responding to the patient’s date of birth (DDMMYY), two

digits randomly generated, one digit corresponding to the

patients gender (odd for males, even for females) and one

check digit. The CHI number links to live databases which

are constantly being updated, such as the Scottish

Morbidity Record (SMR) providing data on primary and
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secondary diagnoses for patients discharged from hospital

since 1980, the Tayside echocardiography database pro-

viding data on all echocardiograms performed at

Ninewells Hospital since 1994, the General Registrar’s

Office providing mortality data since 1998, the biochemis-

try database listing all assays performed since 1981 and a

database containing all prescriptions dispensed since 1989.

This allows identification of an up-to-date record of every

individual’s health care processes and outcomes and

linkage of corresponding datasets. An anonymization pro-

cess converts the CHI into a study pro-CHI, to protect the

identities and confidentiality of individuals while retaining

the ability to link patient data across multiple datasets.

What has been measured?

For GoDARTS1, only blood samples were taken for DNA

extraction as this was a pilot phase used to test the ability

Table 1. Summary of baseline data collected and comparison of response rates between cases and controls in GoDARTS

Measure Response (%) Notes

Cases (n¼8698) Controls (n¼8140)

Age (years) 99.37 99.53

Gender 100 100

Ethnicity 100 100 Caucasian or non-Caucasian

Height (cm) 99.68 100

Weight (kg) 99.57 99.95

Waist (cm) 99.57 99.84

Diastolic blood pressure (mmHg) 1¼99.90 1¼99.99 Two measures taken

2¼99.17 2¼99.83

Systolic blood pressure (mmHg) 1¼99.90 1¼99.99 Two measures taken

2¼99.17 2¼99.83

Heart rate (bpm) 1¼99.75 2¼98.87 1¼99.90 2¼99.50 Two measures taken

Diabetes treatment 99.21 n/a Diet, tablets or pills

Diabetes medicationa 4.73 n/a Dose, date and time last taken

Family history of diabetesa 8.24 n/a

Present smoking status (Amount smoked) 99.71 (85.77)b 99.94 (81.80)b

Past smoking status (Amount smoked) 99.61 (95.05)b 99.90 (95.22)b

Age started smoking 99.22c 99.52c

Stopped normal periods (Age periods stopped) 99.53 (90.70)b 99.85 (73.85)b

Level of physical activity during work:

1. Recently 1¼99.66 1¼99.89

2. Past 10 years 2¼99.69 2¼99.85

3. Youth 3¼99.56 3¼99.93

Level of physical activity during travel:

1. Recently 1¼99.60 1¼99.89

2. Past 10 years 2¼99.59 2¼99.84

3. Youth 3¼99.47 3¼99.84

Level of physical activity during leisure:

1. Recently 1¼99.67 1¼99.93

2. Past 10 years 2¼99.57 2¼99.82

3. Youth 3¼99.54 3¼99.91

Confirmed type 2 diabetes 99.25 n/a

Location patient was screened 100 100 Clinic, GP surgery, home or other

HbA1c (%) 93.17 99.82

Cholesterol (mmol/l) 92.73 99.94

HDL (mmol/l) 92.72 99.94

LDL (mmol/l) 84.07 97.02

Creatinine (mmol/l) 92.99 99.84

Triglycerides (mmol/l) 92.62 99.84

n/a, not available.
aBaseline data only available in participants recruited in GoDARTS3.
bResponse rate calculated according to the number of positive responses to the main question.
cResponse rate calculated according to the number of positive responses to present and/or past smoking status.
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to link electronic health records anonymously to genetic

data. For GoDARTS2 and GoDARTS3, participants com-

pleted a lifestyle questionnaire and consented to baseline

measurements being recorded at recruitment (Table 1). In

addition, during GoDARTS3 urine samples (� 80% of re-

cruits) were taken for proteomic and metabolomics ana-

lysis and RNA (� 30% of recruits) was extracted from

blood samples. The lifestyle questionnaire contains items

relating to smoking history (present and past status, along

with amount and age started where applicable), as well as

level of physical activities in three common locations

(work/education, travel and home life) over three different

time periods in life (recently, past 10 years and youth). In

addition, women were asked about their menopausal his-

tory. Baseline observations were recorded and included

height, weight and waist measurements, as well as heart

rate and blood pressure. The patient’s recruitment infor-

mation was recorded including ethnicity, screening loca-

tion, confirmation of T2D and medication history, as well

as family history of diabetes and whether the patient had

previously participated in GoDARTS. As baseline data

were only recorded for participants recruited in

GoDARTS2 and GoDARTS3, there are 1451 participants

who were only involved in GoDARTS1 (Figure 1) and do

not have these data. Furthermore, there are 17 healthy con-

trol participants from GoDARTS2 who are missing base-

line data, meaning that a total of 16 838 patients have

these available, including 8698 cases and 8140 controls.

As well as phenotypic data, genetic data are available for

8564 T2D cases (Figure 2) and 4586 controls (Figure 3) after

quality control. Samples have been genotyped across five plat-

forms. GWAS data have been obtained for 7857 T2D cases

and 1108 controls, using the Affymetrix Genome-Wide

Human SNP Array 6.0 and the Illumina HumanOmni

Express. The Affymetrix GWAS chip contains 932 979 single

nucleotide polymorphisms (SNPs), and the Illumina GWAS

chip contains 731 296. This has allowed for imputation of

additional and missing genotypes by SHAPEIT14 and

IMPUTE215 using the 1000 Genomes reference panel.16 In

addition, 707 T2D cases and 3478 controls have been geno-

typed using custom genotyping arrays from Illumina. These

include the Immunochip, Cardio-Metabochip (Metabochip)

and Human Exome array. The Immunochip contains

Figure 1. A venn diagram showing the overlap in patient recruitment

between GoDARTS1, GoDARTS2 and GoDARTS3.

Figure 2. A venn diagram showing the overlap of T2D cases genotyped

between different platforms. Overall, 8564 cases out of a possible

10 149 have been genotyped on at least one platform, with 7857 having

genome-wide data.

Figure 3. A venn diagram showing the overlap of controls genotyped

between different platforms. Overall, 4586 controls out of a possible

8157 have been genotyped on at least one platform, with 1108 having

genome-wide data.
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196 524 genetic markers from loci that have previously been

associated with at least one of 13 autoimmune diseases,

including T1D,17 and the Metabochip contains 196 725

SNPs from loci that have prior evidence of association with

T2D, coronary artery disease/myocardial infarction and 21

related traits.18 The specific criteria by which markers on the

Cardio-Metabochip and the Immunochip have been chosen

makes these platforms a cost-effective means of replicating

and fine-mapping known loci and discovering novel loci by

virtue of overlapping biological mechanisms between the

related traits. The Human Exome Array contains 247 870

genetic markers from across the exome, allowing for studies

to focus on identifying protein-altering variants.19

What has it found?

Baseline and follow-up epidemiology

Baseline clinical and demographic statistics are summar-

ized in Table 2. Overall, 53.33% of the cohort are male,

which is similar to the proportion represented in DARTS

(52.83%), with the proportion being higher in cases

(56.38%) compared with controls (50.08%). The majority

of the cohort are Caucasian (99.70%) and the median age

at recruitment was higher in cases (67 years) compared

with controls (60 years). This observation is also apparent

when the cases and controls are further dichotomized into

males (66 vs 62 years) and females (68 vs 58 years). The

cohort contains data on a number of continuous traits

known to be associated with T2D. For example, median

body mass index (BMI) (30.6 vs 26.6 kg/m2), resting heart

rate (1st¼ 73 vs 68 bpm), creatinine (89 vs 87mmol/l) and

triglyceride (1.880 vs 1.315 mmol/l) levels were all higher

in cases compared with controls. Furthermore, there was a

higher proportion of past smokers among those with T2D

(63.14% vs 53.56%).

As of 2014, mortality data have shown that the number

of deaths at 9 years after recruitment was 2587 out of

10 149among the cases and the Kaplan–Meier survival

probability is 70.0%, whereas among the controls the

number of deaths was 851 out of 8157 and the Kaplan–

Meier survival probability is 88.2% (Figure 4). Control

group mortality data do not go beyond this, as recruitment

of controls did not begin until GoDARTS2 (approximately

7 years after the start of GoDARTS1); however, the num-

ber of deaths after 16 years among the cases was 2941 (out

of 10 149) with a Kaplan–Meier survival probability of

53.5%.

According to SCI-Diabetes data, the number of people

initially recruited as controls at baseline, but who went on

to develop diabetes, is 650 (out of 8157) and the Kaplan–

Meier cumulative incidence probability is 8.3% (Figure 5).

Also captured were self-reported physical activity data,

and these can be seen to successfully stratify the effect of

the fat mass and obesity-associated protein gene (FTO)

risk allele, rs9939609, where the genetic association with

BMI is largely attenuated in active individuals, as has been

observed in large meta-analyses (Figure 6).

Research output

Over 100 studies have been published using GoDARTS ei-

ther as the primary study cohort or as part of a larger

meta-analysis or replication. The following is a summary

of important studies, in all of which GoDARTS has been

involved. A full and up-to-date list of studies can be found

at [www.researcherid.com/rid/K-9448-2016] (Researcher

ID: K-9448-2016).

GoDARTS began in the pre-GWAS era, with its first

study being published in 2002.20 At this time candidate-

gene studies were conducted, and these were particularly

successful in replicating associations at the peroxisome

proliferator-activated receptor (PPAR) transcription factor

family, which had previously been associated with a range

of phenotypes including T2D. In particular, two variants

(rs1801282 and rs3856806) in PPARG were shown to

have opposing effects on body weight, with the non-

synonymous rs1801282 (Pro12Ala) associated with lower

BMI and the synonymous rs3856806 (C1431T) associated

with higher BMI.20 This provided an explanation for previ-

ous inconsistencies found between this gene and BMI.

Similar findings were reported with respect to T2D suscep-

tibility21 and myocardial infarction,22 with haplotype ana-

lysis confirming the protective effect of rs1801282 with

these phenotypes in contrast to the risk effect of

rs3856806. In addition, rs1801282 was shown to have an

opposing effect to another polymorphism, rs10865710

(C681G), with respect to height and weight in pre-pubertal

children.23 Further studies identified similar attenuations

in the related genes PPARA with myocardial infarction,24

and replicated an association at PPARD with reduced

adult height.25

In 2007, the GoDARTS study became part of the UK

T2D genetics consortium collection (UKT2DGCC), which

formed the main replication cohort for the WTCCC. This

involved large-scale studies investigating quantitative traits

including height and obesity, in addition to T2D. One of

the first published studies using the UKT2DGCC found an

association in the FTO gene with obesity. This effect was

observed from age 7 years and older.26 Another related

study identified associations at the MC4R gene with BMI

and childhood obesity among 7–11-year-olds.27

GoDARTS was involved in the seminal publications

describing the identification of many genes for type 2 dia-

betes, including the first descriptions of CDKAL1 and
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CDKN2A/CDKN2B variants and risk for diabetes28–32

and also the original report of the association of the

HMGA2 gene with height.33,34 Smaller-scale candidate-

gene studies have also been conducted to good effect in

T2D, as demonstrated by the identification of the WFS1

gene.35 T2D-related traits have also been studied with 10

novel loci associated with fasting glucose levels,29,36 IGF1

influencing fasting insulin29 and GIPR associated with 2-h

glucose levels after oral glucose challenge.32

In addition to GWAS of anthropometric traits and T2D

susceptibility, GoDARTS has pioneered the use of electronic

medical records for the study of drug efficacy. This was ini-

tially used to study response to sulphonylureas37 and statin

lipid-lowering agents.38 As part of the WTCCC2 consor-

tium, GoDARTS served as a discovery cohort for the

GWAS of response to statins and metformin.39 The metfor-

min analysis found a novel association of glycaemic re-

sponse to metformin at a locus including the ataxia

telangiectasia mutated (ATM) gene, which provided new

clues to the mechanism of action of this mysterious

drug.40,41 More recently, the GoDARTS cohort was the

main discovery cohort for a large Metformin Genetics

Consortium study (MetGen) that showed a variant in

SLC2A2 to be consistently associated with altered gly-

caemic response to metformin.42 Other investigated

Table 2. Comparison between cases and controls in baseline

measurements

Measure Cases

n¼8698

Controls

n¼8140

Overall

Gender (% male) 56.38 50.08 53.33

Age (years) 67 60 64

Males 66 62 65

Females 68 58 63

Ethnicity (% Caucasian) 99.68 99.72 99.70

BMI (median) (kg/m2) 30.6 26.6 28.4

Males 30.0 27.0 28.4

Females 31.5 26.2 28.4

Height (cm) 168 168.5 168

Males 174 175 175

Females 159 162 160

Weight (kg) 86.05 76.20 81.3

Males 90.4 83.2 87

Females 79.8 68.5 73

Waist (cm) 104 93 99

Males 106 98 102

Females 101 86 93

Current smokers (%) 16.37 16.35 16.36

Males 16.42 16.49 16.45

Females 16.31 16.20 16.25

Current amount smoked

(packs per week)

5 5 5

Males 6 5 5

Females 5 5 5

Past smokers (%) 63.14 53.56 58.50

Males 70.24 59.80 65.49

Females 53.97 47.30 50.52

Past amount smoked

(packs per week)

7 7 7

Males 7 7 7

Females 7 6 7

Age started smoking

(years)

16 16 16

Males 16 16 16

Females 17 17 17

Resting pulse 1 (bpm) 73 68 70

Males 72 66 69

Females 75 70 72

Resting pulse 2 (bpm) 73 68 71

Males 72 66 69

Females 75 70 72

Systolic blood pressure

1 (mm Hg)

141 135 139

Males 141 138 140

Females 141 131 136

Diastolic blood pressure

1 (mm Hg)

77 80 78

Males 78 81 79

Females 76 78 77

Systolic blood pressure

2 (mm Hg)

140 134 137

(continued)

Table 2. Continued

Measure Cases

n¼8698

Controls

n¼8140

Overall

Males 140 137 139

Females 140 130 135

Diastolic blood pressure

2 (mm Hg)

75 78 77

Males 76 80 78

Females 74 77 76

HbA1c (%) 7.1 5.5 6.0

Males 7.1 5.5 6.0

Females 7.2 5.5 5.9

Cholesterol (mmol/l) 4.30 5.24 4.72

Males 4.19 5.12 4.57

Females 4.44 5.36 4.90

HDL (mmol/l) 1.28 1.57 1.41

Males 1.21 1.41 1.30

Females 1.39 1.76 1.57

LDL (mmol/l) 2.01 2.93 2.43

Males 1.97 2.90 2.37

Females 2.05 2.97 2.51

Creatinine (mmol/l) 89 87 88

Males 95 95 95

Females 82 79 80

Triglycerides (mmol/l) 1.880 1.315 1.59

Males 1.87 1.47 1.69

Females 1.88 1.19 1.49

Median values given for all continuous data.
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phenotypes in GoDARTS include response to thiazolidine-

diones43 and sulphonylureas,37,44 and adverse reactions to

statins, metformin and angiotensin-converting enzyme

(ACE) inhibitors.40,45

Linkage of the GoDARTS study to the Tayside echocar-

diography database has allowed the identification of gen-

etic variants associated with left ventricular hypertrophy,46

as well as the association of both high (>10%) and low

(< 6%) HbA1c levels with risk of incident heart failure.47

From around 2012, the focus of studies has switched

from genome-wide analysis to more targeted approaches.

One of these methods involves genotyping with the

Metabochip. This has been influential in the discovery and

fine-mapping of loci in diabetes- and cardiovascular

disease-related phenotypes. In particular, 17 novel T2D

loci48,49 have been discovered and a further 39 genetic re-

gions have undergone variant localization and genomic an-

notation to identify the causative mutations.50 Similar

success has been seen in coronary artery disease, with 25

loci being identified.51,52 Glycaemic and anthropometric

traits have also been studied successfully, with loci being

identified with fasting insulin, fasting glucose, height and

obesity.53–57

Another targeted approach that has been increasingly

used is exome sequencing and follow-up studies using the

Illumina Exome chip. This has been used to capture rare

disease-associated variants lying within the protein coding

region of the genome, which are hypothesized to make up

much of the missing heritability in common diseases. Due

to their protein-altering nature, disease-associated poly-

morphisms discovered in these regions are likely to be

causative, and the biological pathways can be more easily

elucidated than other study methods. Exome chip genotyp-

ing in GoDARTS contributed to the demonstration that,

loss-of-function variants in APOC358 and ANGPTL459

are simultaneously associated with lower triglyceride levels

and reduced risk of coronary artery disease (CAD).

Similarly, inactivating mutations in NPC1L1 have a

Figure 4. A Kaplan-Meier plot comparing survival rate since baseline recruitment in cases and controls.

Figure 5. A Kaplan-Meier cumulative incidence plot of diabetes in the GoDARTS baseline controls group.
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protective effect on CAD risk and reduced low-density

lipoprotein (LDL) cholesterol level.60 Whereas other

phenotypes related to glycaemic traits,61,62 lipids63 and

adiponectin64 have successfully identified loci, a large

exome sequencing/exome chip study has revealed that cod-

ing variation does not play a large role in T2D

susceptibility.65

In more recent years, GoDARTS has been used in

Mendelian randomzsation studies to establish the causal

relationship between a variable and disease. This has been

used to demonstrate a role for sex hormone-binding globu-

lin66 and to rule out a causal effect between circulating

triglycerides and adiponectin in T2D.67,68 In addition, adi-

posity and adiponectin have been implicated in moderating

CVD risk.69,70 Other studies have been conducted, and a

more comprehensive list of disease phenotypes can be

found in Table 3.

What are the strengths and weaknesses?

The main strengths of GoDARTS are: its large size [includ-

ing 10 149 participants with T2D (�51% of people with

T2D in Tayside) and 8157 controls]; the availability of

rich genetic and phenotypic data; the ability to link patient

genetic and baseline data to routine electronic medical re-

cords; and the existing consent for use of these for research

and for future contact for possible research participation,

especially the potential for recruitment by genotype stud-

ies. Consent for future contact has allowed further studies

to take place. One of these is DOLORisk, an EU Horizon

2020-funded project that will be re-phenotyping

participants for neuropathic pain and related traits, to

identify possible risk factors [http://dolorisk.eu/]. As a re-

sult, the GoDARTS cohort is rich in longitudinal pheno-

typic data, such as biochemistry, prescribing, morbidity

and demography. In addition the linkage of the study to

participants’ individual electronic medical records, which

are constantly updated, means the cohort is not limited by

loss-to-follow up bias that can beset other longitudinal

studies. This linkage is made possible through the use of

the CHI number which allows patient data to remain an-

onymous. The availability of a large range of clinical and

demographic data allows a large range of diabetes-related

phenotypes to be investigated, on both genome-wide and

more targeted scales, and also provides a means to control

for common confounders such as BMI, smoking, age and

blood pressure. The large number of samples recruited at

baseline (8697 T2D cases and 8141 controls) provides the

Figure 6. A plot showing that increased physical activity successfully

stratifies the association of the obesity risk allele rs9939609 in FTO with

BMI.

Table 3. Summary of phenotypes studied using the

GoDARTS cohort

Phenotype Study reference

ACEi-induced cough (71)

Adiponectin levels (64)

ARMD and diabetic retinal disease in

T2D

(72)

Diabetic atherogenic lipid profile and

myocardial infarction

(73)

Diabetic chronic kidney disease (74)

Diabetic glomerular filtration rate (75)

Diabetic left ventricular hypertrophy (46)

Diabetic myocardial infarction (76, 77)

Diabetic nephropathy (78)

Diabetic neuropathic pain (79, 80)

Diabetic retinopathy (81)

Diabetic smoking-related cardiovascu-

lar morbidity

(82)

Diabetic statin intolerance (83)

Glycaemic response to metformin (84–86)

Glycaemic response to sulphonylureas (37, 87, 88)

Glycaemic traits (29, 61, 89)

Intolerance to metformin in T2D (90)

LDLc response to statin therapy and

CAD during statin treatment

(91)

Lipid response to statin therapy (40, 45, 92)

Prostate cancer (93)

Serum triglyceride level, insulin resist-

ance and T2D in severe obesity

(94)

Serum urate concentration, excretion

and gout

(95)

Stroke in T2D (96)

T2D (31, 35, 50, 98)

ACEi, angiotensin-converting enzyme inhibitor; ARMD, age-related macu-

lar degeneration; CAD, coronary artery disease; LDLc, low-density lipopro-

tein cholesterol; T2D, type 2 diabetes.
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statistical power with which to identify genetic variants

conferring susceptibility to disease, both as a stand-alone

cohort and as part of meta-analyses. Furthermore, RNA

has been collected from patient blood samples, which will

enable gene expression studies to be conducted in the

future.

A weakness of the GoDARTS cohort is the missing

baseline data of GoDARTS1 patients who were not subse-

quently recruited again in GoDARTS1 or 2. This is due to

GoDARTS1 being a pilot phase of the study, and conse-

quently baseline data were not collected at this stage.

However, linkage is still possible for these samples.

Patients were also not necessarily recruited at the point of

diagnosis, which creates heterogeneity in the effects of dis-

ease duration on the serum samples obtained. Another

weakness concerns the lifestyle questionnaire that was ad-

ministered to patients. As this was self-completed by the

patients, physical activity, smoking and female meno-

pausal history are subject to recall bias.

Where can I find out more?

Further information about this cohort can be found at

[http://diabetesgenetics.dundee.ac.uk/]. Access to the data-

set is available to researchers worldwide and access re-

quests, together with the general management of the

resource, are handled by the Access Group. More details

on the application and collaboration process can be found

at [http://diabetesgenetics.dundee.ac.uk/Community.aspx].

Profile in a nutshell

• GoDARTS was set up in 1998 in order study the gen-

etics underpinning type 2 diabetes (T2D) susceptibil-

ity, diabetes complications and patient response to

therapy.

• The study is a branch of the pre-existing Diabetes

Audit and Research in Tayside Scotland study,

which was set up to identify all patients within the

Tayside area with diabetes, through electronic re-

cord linkage, to provide better care over and above

existing registries.

• As of 2014, the study has 18 306 participants aged

16–98, of whom 10 149 have T2D and 8157 are con-

trols. Baseline data are available for 16 838 (8698

cases and 8140 controls), and 8564 T2D cases and

4586 controls have genetic data.

• Baseline data collection includes a self-completed

lifestyle questionnaire containing items on physical

activity, smoking history, and menopausal history

for women. In addition, clinical observations were

recorded and blood and urine samples were taken.

Baseline data are linked to existing NHS records,

providing morbidity, mortality and prescribing data

by electronic record linkage to enable long-term fol-

low-up.

• Consent has been provided by� 95% of participants

to be re-contacted regarding possible participation in

future studies. Information on collaboration and data

access can be found at [http://diabetesgenetics.dun

dee.ac.uk/]. A list of GoDARTS publications can be

found at [www.researcherid.com/rid/K-9448-2016].
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