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The effect of farm characteristics on the persistence of
technical inefficiency: a case study in German dairy

farming

Abstract

This paper provides a way to include explanatory variables that may impact the
persistence of farms’ technical inefficiency by extending the conventional paramet-
ric dynamic efficiency model. Estimation of the model is performed using typical
Bayesian techniques. The empirical findings reveal a high degree of inefficiency per-
sistence through time, which is increasing in the amount of subsidies received, while
older farmers exhibit higher inefficiency persistence, as opposed to younger ones,
presumably due to their luck of motivation to adopt state-of-the-art technologies.
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1 Introduction

The adoption of technical innovation in farming is necessary to ensure that farms remain
productive and competitive in an evolving sector. The technological treadmill theory
introduced by Cochrane, (1958), states that early adopters of new technologies enjoy
high returns, which are gradually eliminated as more and more farmers adopt the new
technology. This results from an increase in supply and the associated fall in prices.
Therefore, farmers are trapped on a treadmill, with these initial high returns and the
need to keep up with technology evolution providing strong incentives for continuous
investment in new technologies. However, empirical evidence has shown that investment
in new equipment takes place in irregular intervals, often referred as investment spikes
(Geylani and Stefanou, 2013). Investment is irregular because inputs such as capital are
not freely adjusted but there exist some adjustment costs associated with altering their
level (Stefanou, 2009).

The adjustment cost hypothesis described by Penrose, (1959), maintains that it is
costly for the decision maker to rapidly adjust the level of quasi-fixed factors of production
to their optimal levels. Therefore, the decision making unit exhibits a certain degree of
inertia when it comes to the adoption of a new technology when high adjustment costs
are present. These adjustment costs are due to financial constraints and learning costs.
In efficiency analysis, this sluggish adjustment of quasi-fixed factors of production and
the associated lag in technology adoption, have implications on the dynamic evolution of
farms’ efficiency scores. Considering a farm which operates in a dynamic environment,
governmental regulation or unpredictable events (i.e. extreme weather conditions, pest
outbreaks etc.) may force the farm to be inefficient at a certain point in time. To become
efficient and stay viable, the farm will need to reorganise its production process. However,
when adjustment costs are high, immediate adjustment may not be optimal. Therefore,
the decision making unit may have an incentive to remain inefficient in the short-run,
which will imply that inefficiency will persist1 from one period to the next (Emvalomatis
et al., 2011).

Inefficiency persistence is, therefore, the result of high adjustment costs that slow
down the adjustment of some production factors. Stefanou, (2009) provides a description
and categorizes adjustment costs in two major subcategories, external and internal ad-
justment costs. External adjustment costs are pecuniary in nature and involve the lack of
credit sources that prevent farms from raising their capital stock beyond the level that is
currently in use. Furthermore, information asymmetries may result in low selling prices
of used equipment, even if it has been used minimally. For instance, in dairy farming, an
example of an external adjustment cost is the following: consider a farmer who has just
bought an Automatic Milking System (AMS) but an advanced AMS that incorporates
udder cleaning and removal of the milking equipment from dairy cows, becomes avail-
able on the market. While the farmer will observe some of his neighbors milking more
efficiently their cows using the advanced AMS, it may not be optimal for him to sell his

1Since inefficiency is defined as one minus efficiency, if most farms are fully efficient or close to being fully
efficient, one should refer to efficiency persistence and not inefficiency persistence. However, the term
inefficiency persistence is used as we expect that only few farms will be fully efficient or close to that.
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newly bought AMS to buy the advanced AMS, as this will entail high costs due to the
low selling price of his newly bought AMS. This implies that the optimal decision for the
farmer would be to exploit the full potential of his AMS and buy the new machine when
its value depreciates enough. However, this implies that his optimal strategy is to remain
inefficient compared to his peers using the advanced AMS.

Internal adjustment costs do not involve financial constraints but are rather perceived
as learning costs. A manager who invests in a new technology, needs to devote a certain
amount of time on learning how to efficiently use the new equipment. New skills and
experience need to be developed that will initially prevent the farmer from taking advan-
tage of his newly bought equipment. Following the previous example of the availability of
an advanced AMS on the market, the farmer should devote a particular amount of time
on learning how to use the computer that programs the new milking procedure. This
implies that more efficient milking will not start immediately after the purchase of the
new AMS but only when the farmer becomes familiar with using it. This is an example
of an internal adjustment cost.

Based on the aforementioned types of adjustment costs, the degree of inefficiency per-
sistence is expected to be influenced by financial constraints/aid, as well as by managers’
experience. In terms of the former, farms facing credit constraints have limited access to
external funding because of being unable to offer adequate guarantees to lenders and, as
a result, tend to invest less (Kumbhakar and Bokusheva, 2009). Subsidies may play a key
role in ameliorating access to external funding, since they can induce credit access and
lower the cost of borrowing (Ciaian and Swinnen, 2009; Kumbhakar and Bokusheva, 2009;
Rizov et al., 2013). However, subsidies may also act as an additional source of income
that provides farmers with less motivation to invest in new technologies (Zhu et al., 2012,
Rizov et al., 2013). Hence, the effect of subsidies on inefficiency persistence depends on
the way farmers perceive subsidies. If farmers view subsidies as a credit access tool, they
may induce investment in new technologies and result in lower inefficiency persistence.
Nevertheless, if subsidies are viewed simply as an additional income source, farmers may
invest in subsidy-seeking activities instead of investing in new technologies, which would
imply higher inefficiency persistence.

Regarding internal adjustment costs, Luh and Stefanou, (1993), argue that learning
plays a key role in facilitating the adjustment of quasi-fixed inputs to their optimal lev-
els, in the sense that knowledge accumulation accelerates the familiarization of farms
operators with using new equipment. Stefanou and Saxena, (1988), state that managers
with high experience have higher ability to learn. Hence, older farmers are expected to
learn quicker than younger ones and as a result, farms owned by older managers may
adjust faster and exhibit lower inefficiency persistence. However, very old farmers may
not be willing to invest in new technologies in comparison with younger ones due to lack
of motivation (Hadley, 2006, Abdulai and Tietje, 2007), especially in the absence of a
successor. Accordingly, farms owned by young or middle-aged operators may adopt eas-
ier new technologies compared to very old ones, which would result in lower inefficiency
persistence.

The main objective of this paper is to include and test whether particular farm-specific
characteristics that are related to adjustment costs, have an impact on the persistence
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of German dairy farms’ technical inefficiency. The concept of inefficiency persistence
has been tackled in both non-parametric and parametric settings. In a non-parametric
framework, Nemoto and Goto, (1999, 2003) and Silva and Stefanou, (2007) account for
inefficiency persistence by assuming intertemporal cost-minimizing behaviour and making
use of price information2. Parametrically, the method of Stochastic Frontier Analysis
(SFA), introduced by Aigner et al., (1977) and Meeusen and Broeck, (1977), has undergone
several changes until being considered as truly dynamic. With the availability of panel
data, early attempts to describe the evolution of efficiency scores over time considered
inefficiency as a deterministic function of time (Cornwel et al., 1990, Kumbhakar, 1990,
Battese and Coelli, 1992, Lee and Schmidt, 1993), ignoring firms’ dynamic behavior.

A more recent generation of SFA models that are truly dynamic has emerged, with the
novel work of Ahn and Sickles, (2000), who specified an autoregressive process on firm-
specific efficiency scores to account for persistence of shocks in firms’ efficiency. Criticism
related to the formulation of an autoregressive process on nonnegative variables, has led
Tsionas, (2006) to specify an autoregressive process on transformed efficiency that can
take any value on the real line. Since then, several studies have considered this type of
models, including Emvalomatis et al., (2011), Emvalomatis, (2012a) and Galán et al.,
(2015). All these models, irrespective of the way efficiency is transformed, recognize that
under the presence of high adjustment costs, inefficient firms are likely to remain inefficient
in the future, or, in other words, exhibit high inefficiency persistence. All studies find very
high inefficiency persistence, thus adding credibility to the adjustment cost theory.

However, in this dynamic SFA framework, all the aforementioned studies do not al-
low for firm characteristics to impact inefficiency persistence. In this study, we extend
the dynamic SFA model in a way that it can accommodate factors that may influence
inefficiency persistence. Such a modelling approach allows one not only to test the ad-
justment cost theory as previous studies do, but also, include and test whether particular
farm-specific characteristics affect inefficiency persistence. In the next section we describe
the modelling approach and the Bayesian techniques used to estimate the model. A de-
scription of the data used and the econometric specification follows. Then, the results
are presented, while the final section provides some discussion on the implications of the
study and offers some concluding remarks.

2 Modelling approach

An output distance function is used to measure efficiency in a multi-output production
technology3. If we assume that a vector of inputs x̃ ∈ RN

+ is used to produce a vector of
outputs ỹ ∈ RM

+ , the output distance function can be written as:

2For a thorough literature review on non-parametric dynamic efficiency studies see Fallah-Fini et al.,
(2014).

3The model can also be applied to an input or a hyperbolic distance function. However, the output
distance function makes sense for the application that follows.
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Do(x̃, ỹ, t) = min

{
θ :

ỹ

θ
can be produced by x̃ in period t

}
(1)

The output distance function takes an output-expanding approach to measure the
distance of a producer to the boundary of the production possibilities set, and gives the
minimum amount by which the output vector can be deflated to reach this boundary. Its
values are bounded on the unit interval and Do(x̃, ỹ, t) = 1 defines the boundary of the
production possibilities set. The technical efficiency of a firm i in period t is then defined
as TEit = Do(x̃it, ỹit, t). Taking the logarithm of both sides, imposing linear homogeneity
on the outputs, and then appending an error term, all lead to the following econometric
version of the output distance function:

− log ỹmit = logDo

(
x̃it,

ỹit
ỹmit

, t

)
+ vit − log(TEit) (2)

where ỹmit is the normalizing output, and vit is a linear error term that accounts for random
noise. Notice that the left hand-side variable is negative and log(TEit) is subtracted from
the right hand-side. Hence, the distance elasticities with respect to inputs should be
negative and the skewness of the efficiency term suggests that we estimate the frontier
as if it is a cost frontier. If we let yit be the dependent variable in equation (2) and
the logarithm of the distance function a linear function of parameters and monotonic
transformations of its arguments, the distance function can take the following estimable
form:

yit = x
′

itβ + vit − log(TEit), vit ∼ N (0, σ2
v) (3)

where yit is minus the logarithm of the normalizing output, x
′
it is a vector of time-varying

covariates, β is a vector of parameters to be estimated, vit is a two-sided error term that
captures statistical noise, and TEit is the technical efficiency of firm i in time t.

We follow Tsionas, (2006) and we consider a dynamic stochastic frontier model by
specifying an autoregressive process on firm-specific technical efficiency. TEit is treated
as a random variable that lies on the unit interval TEit ∈ (0, 1]. To avoid criticism
related to the specification of an autoregressive process on a nonnegative variable, a one-
to-one transformation of TEit is used to project it from the unit interval to the real
line. Following Emvalomatis, (2012a), we use the inverse of the logistic function for this
transformation. We define sit = log( TEit

1−TEit ) as the latent-state variable and assume the
following autoregressive process on sit:

sit = z
′

iδ + ρisi,t−1 + ξit, ξit ∼ N (0, σ2
ξ) (4)

si1 =
z
′
iδ

1− ρi
+ ξi1, ξi1 ∼ N (0, σ2

ξ1) (5)

where z is a vector of time-invariant covariates, δ and ρi are parameters to be estimated,

ξit is a two-sided error term that accounts for statistical noise, and σ2
ξ1 =

σ2
ξ

1−ρ2i
, due to
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stationarity. Imposing stationarity on the s series and, therefore, time-invariant covariates
in the z vector, is necessary both from an econometric point of view and theoretically.
Econometrically, since s is an unobserved quantity, a distribution in the initial period
expressed by equation (5) needs to be defined. This is possible if we impose stationarity
on the s series (Wooldridge, 2005). Theoretically, if the s series is not stationary, then,
it’s expected value will approach either positive or negative infinity dependent on the sign
of the term z

′
iδ. This implies that technical efficiency will approach either unity or zero.

Observing fully efficient or fully inefficient firms in efficiency analysis is something quite
rare.

2.1 Modelling inefficiency persistence

Based on the modelling approach presented in equation (4), the inefficiency persistence
parameter ρi can be viewed as an elasticity that measures the firm-specific percentage
change in the efficiency to inefficiency ratio that is carried out from one period to the
next. Stationarity of the s series requires that the inefficiency persistence parameter,
ρi, remains between -1 and 1. However, we restrict ρi on the unit interval since we
do not expect negative adjustment towards the long-run equilibrium. For interpretation
purposes, a value of ρi close to 1 implies that inefficiency persistence is very high and
firms find it difficult to adjust their quasi-fixed inputs to their optimal levels, while, lower
values for ρi suggest that the adjustment towards optimal conditions is faster. Regarding
the modelling approach, we transform the inefficiency persistence parameter in a way
that not only restricts it on the unit interval, but also, firm-effects are allowed to have
an impact on it. Therefore, we consider the following transformation4 for the inefficiency
persistence parameter:

ρi =
exp{hi}

1 + exp{hi}
(6)

where hi is a firm-specific latent-state variable that is assumed to exhibit the following
relationship:

hi = w
′

iη + λi, λi ∼ N (0, σ2
λ) (7)

where w
′
i is a vector of time-invariant covariates, η is a vector of parameters to be esti-

mated, and λi is a linear error term that captures random noise. Hence, hi is a continuous
variable that can take any value on the real line while, based on our transformation in
equation (6), ρi lies on the unit interval. Besides, firm-specific factors can be incorpo-
rated into the vector w that will have a non-linear impact on the inefficiency persistence
parameter ρi as equation (6) implies. This modelling approach allows us to include and
test whether firm-specific factors have an impact on inefficiency persistence.

4Note that we use again the inverse of the logistic function for the transformation and we define a

latent-state variable hi = log
(

ρi
1−ρi

)
. Solving for ρi yields equation (6).
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2.2 Bayesian inference

Bayesian techniques are used to estimate the model in equations (3-7). We define si as a
Ti × 1 vector of the transformed technical efficiency for firm i, where Ti represents farm-
specific time periods, and h as an N×1 vector of the transformed inefficiency persistence.
All structural parameters to be estimated are collected in a vector θ = [β, σv, δ, σξ,η, σλ]

′
.

The complete data likelihood and the latent states is:

p(y, {si},h|θ,X,Z,W) = p(y|{si},β, σv,X)× p({si}|h, δ, σξ,Z)× p(h|η, σλ,W )

=
1

(2πσ2
v)

∑N
i=1

Ti
2

exp

{
−

N∑
i=1

Ti∑
t=0

(yit − x
′
itβ + log TEit)

2

2σ2
v

}

× 1

(2πσ2
ξ)

∑N
i=1

(Ti−1)

2

exp

{
−

N∑
i=1

Ti−1∑
t=1

(sit − z
′
iδ − ρisi,t−1)2

2σ2
ξ

}

× 1

(2πσ2
ξ1)

N
2

exp

{
−

N∑
i=1

(si1 − z
′
iδ)

2

2σ2
ξ1

}

× 1

(2πσ2
λ)

N
2

exp

{
−

N∑
i=1

(hi − w
′
iη)2

2σ2
λ

}
(8)

where y is the stacked vector of the dependent variable over farms and time periods, X is
the matrix of covariates in equation (3), Z is the matrix of covariates in equations (4-5),
and W is the matrix of covariates in equation (7).

The first line of equation (8) is due to the normality assumption of σv. The second
and third lines are due to equations (4-5). These assumptions state that transformed
inefficiency s depends on the covariates in z and w (since s depends on ρi which is a
function of the covariates in w) but not on our inputs X. This is a standard assumption
in the frontier literature and a convenient one since, if it fails, the covariates in X should
also appear in the inefficiency component making identification potentially weak (as these
variables will appear in the model twice). This is what non-neutral stochastic frontiers do
(Karagiannis and Tzouvelekas, 2005). The fourth line of equation (8) is due to equation
(7) and states that inefficiency persistence is independent of our inputs X and of the
covariates in z. The first assumption is somewhat straightforward since inefficiency per-
sistence depends on investment decisions which are related to farm characteristics rather
than input volumes. The second assumption states that the variables that affect efficiency
should not affect inefficiency persistence. This assumption stems from the fact that farm
characteristics that may affect the efficiency of farms, do not necessarily affect their abil-
ity to change the efficiency levels as a response to a shock (i.e. introduction of a new
technology). An important issue here is that this holds for farm characteristics that are
not related to adjustment costs.

Back to our econometric formulation and using Bayes’ rule, the joint posterior density
of the model’s parameters and latent-states can be written as:
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π(θ, {si},h|y,X,Z,W ) ∝ p(y, {si},h|θ,X,Z,W )× p(θ) (9)

where p(θ) is the product of all prior densities. Proper, but rather vague priors are used for
the structural parameters5. We use normal priors for β, δ and η while, inverted-Gamma
priors are used for the three variance parameters. Such prior specification has the desirable
property of resulting in posteriors of the same distributional form. We estimate the
posterior moments of the model’s parameters using Markov Chain Monte Carlo (MCMC)
techniques. Drawing samples from the posterior for the latent-state variables requires
data augmentation techniques, while Metropolis-Hastings updates are used for si and h
as their complete conditionals do not belong to any known distributional family6.

2.3 Alternative models

Since we extend previously applied models, we compare our results with two base models:
(i) the most popular panel-data stochastic frontier specification introduced by Battese
and Coelli, (1992), where the inefficiency component is defined as ui

t = γ(t) · ui, with ui
being a firm-specific effect that captures technical inefficiency and is assumed to follow
an one-sided distribution (in our specification an exponential distribution), and γ(t) =
exp(η{T−t}). This model has been extensively used in the stochastic frontier literature as
it relaxes the assumption of time-invariant inefficiency by estimating only one additional
parameter (η). However, this model fails to capture firms’ dynamic behavior as it considers
inefficiency as a deterministic function of time, (ii) the dynamic efficiency model used by
Emvalomatis et al., (2011) where (transformed) inefficiency s is defined as si

t = δ +
ρsi,t−1 + wit. This model, in contrast to the Battese and Coelli specification, is able
to capture firm-level dynamic behavior by specifying an autoregressive process on firm-
specific efficiency scores. However, it does not allow for firm-specific characteristics to
impact efficiency while, it restricts the inefficiency persistence parameter to be the same
across firms. The results under the two aforementioned specifications and the specification
used in this paper are similar and are presented in Table A2 in the Appendix.

3 Data and econometric specification

The utilized data come from the Farm Accountancy Data Network (FADN)7 and cover the
period from 1999 to 2009. The dataset contains farm-level information on physical units
such as outputs and inputs, economic and financial data such as production cost, subsidies
and debts, geographical information that allows one to distinguish different regions, as
well as, characteristics of the farm’s primary operator such as age. FADN uses a stratified
random sampling and farms remain in the panel on average for a period of 4-5 years. The
data used contain such information for German dairy farms, and since this study focuses
on farms engaged primarily in dairy production, we have selected farms whose revenue

5Table A1 in the Appendix presents the parameterization of priors.
6A technical appendix with the complete and full conditionals can be provided upon request.
7Data source: EU-FADN - DG AGRI.
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from sales of cow’s milk, beef and veal comprise at least 66% of their total revenues, for
every year the farm is observed. Furthermore, given the dynamic nature of our modelling
approach, we retained farms that are observed for at least four consecutive years. Our
final dataset consists of an unbalanced panel of 1,625 farms with 12,965 observations.

Two outputs are used in the specification of the output distance function: (i) deflated
revenues from sales of cow’s milk (milk), (ii) deflated revenues plus change in valuation
of beef and veal, pigmeat, sheep and goats, and poultry meat, plus deflated revenues
from sales of other livestock and products (other). The reported revenues are deflated
with price indices obtained from EUROSTAT, using 2000 as the base year. Deflation of
milk was based on its own price index, while, an aggregate price index of agricultural
products was used to deflate outputs other than milk. Additionally, six categories of
inputs are specified in equation (2): (i) buildings and machinery (K) are measured in
deflated book value. A Törnqvist index was constructed using price indices for each of
the two components. The total reported value was deflated using the Törnqvist index, (ii)
total labor (L) is measured in man-hours and consists of family and hired labor, (iii) total
utilized agricultural area (A) is measured in hectares and includes owned, as well as rented
land, (iv) materials and services (M) are measured in deflated value. This input consists
of ten subcategories of inputs: seeds and plants, fertilizers, crop protection, energy, other
livestock-specific costs, other crop-specific costs, forestry-specific costs, feed for pigs and
poultry, contract work and other direct inputs. A Törnqvist index was constructed using
expenditure and price indices for each input subcategory. The total reported value was
deflated using the Törnqvist index, (v) total livestock units (S) is measured in livestock
units and includes the total number of equines, cattle, sheep, goats, pigs and poultry
of the holding, and (vi) purchased feed (F) is measured in deflated value. It includes
concentrated feedingstuffs for grazing stock and coarse fodder for grazing stock. The
value of feed produced within the farm is excluded.

We further account for differences in technology and climatic conditions across regions
in Germany by including dummy variables for south (base category), east, west, and north
Germany. Recognizing that several factors may affect technical efficiency, the z vector in
equations (4-5) includes the following variables: the economic size of farms measured in
hundreds of European Size Units (ESU), specialization in milk production captured by
the ratio of revenues that come from milk production to total revenues, and stock den-
sity, defined as livestock units per hectare. The criteria for choosing the aforementioned
covariates are based on theoretical arguments that their validity has been examined by
several empirical studies. For instance, farm size is expected to exert a positive effect on
efficiency due to higher managerial effort of big farm’s operators (Davidova and Latruffe,
2007; Latruffe et al., 2008; Zhu et al., 2012) . Specialization may affect efficiency either
positively because of farmers’ experience when they are engaged in a single production
activity (Latruffe et al., 2005, Zhu et al., 2012, Sauer and Latacz-Lohmann, 2015), or,
negatively, when economies of scope arise (Brümmer, 2001; Coelli and Fleming, 2004).
Finally, stock density is associated with intensive production techniques and it can pos-
itively impact efficiency (Alvarez and Corral, 2010). The variables in z are specified as
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time-invariant as they do not vary significantly over time8.
Thew vector in equation (7) that examines in a direct way variation in the transformed

inefficiency persistence parameter hi and, indirectly, variation in inefficiency persistence
ρi through equation (6), consists of the following covariates: (i) the total amount of
subsidies per hectare that farms receive. This variable consists of subsidies on crops,
livestock, other subsidies (related to forestry, environmental programs etc.), subsidies on
intermediate consumption and external factors, and decoupled payments, (ii) a dummy
variable that captures the effect of the primary operators’ age on inefficiency persistence.
We use as a base category those farms whose primary operator is aged 65 years old or
above9. The reasoning behind these choices is the following: (i) subsidies are included in
order to test whether financial support is perceived as an investment tool that could lower
inefficiency persistence, or, as an additional source of income that could lower farmers’
motivation to work efficiently and therefore, increase their inefficiency persistence, (ii)
the dummy variable for age examines whether very old farmers exhibit higher inefficiency
persistence compared to young and middle-aged ones, due to their luck of motivation to
invest in new technologies10. Since inefficiency persistence is not changing over time, the
covariates in w are specified as time-invariant11.

The selection of the covariates in z and w is solely based on their connection with
adjustment costs and how likely is it that they play a role in farmer’s investment deci-
sion as a response to a shock (i.e. introduction of a new technology). Farm size, milk
specialization and stock density (covariates in z) may affect the efficiency of farms but
not the ability to change efficiency as a response to a shock (i.e. introduction of a new
technology) if we control for human capital. For instance, higher specialization in milk
production may allow the farmer to do better in daily basis and be efficient. However, if
a new technology arises, being more specialized in milk production should not affect his
decision to invest or not. Such a decision would probably be made based on his experi-
ence (age) or his financial situation. Furthermore, robustness checks with respect to the
inclusion of all covariates in both the z and w vectors were performed, resulting in weak
identification due to pour mixing of chains and many insignificant coefficient estimates.
Summary statistics of the models’ variables are presented in Table 1.

Recognizing the multi-output nature of German dairy farms’ production technology,
their ability to lease and purchase milk quota rights, and the main argument of the paper

8We derive farm-specific coefficients of variation for ESU, specialization and stock density in the following
way: for each variable, we calculate each farm’s mean and mean standard deviation over the years that
is observed. Then, for every variable, we divide each farm’s mean standard deviation by each farm’s
mean. Figure A1, Figure A2 and Figure A3 in the Appendix present histograms of the coefficient of
variation for ESU, specialization and stock density respectively.

9Note that 25% of the farms in our sample are managed by primary operators who are aged 65 or above
on average. Besides, age was initially specified as a continuous variable, and then, using 3 categories
(young, middle-aged and old). All specifications resulted in insignificant coefficient estimates.

10Financial indicators such as debt-to-asset ratio and liabilities-to-asset ratio where also included, result-
ing in highly insignificant coefficient estimates. Note that these indicators were very close to 0 for most
farms with extremely low variation across farms and time.

11We compute again farm-specific coefficient of variation for subsidies. Figure A4 in the Appendix
presents a histogram of the coefficient of variation for subsidies.
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Table 1: Summary statistics of the models’ variables

Variable Mean Std. dev. 5% 95%
Revenues from cow’s milk (1,000e) 125.52 126.29 32.24 311.13
Revenues from other output (1,000e) 24.37 25.14 4.31 63.06
Capital (1,000e) 176.53 162.16 28.77 444.71
Labor (1,000 man-hours) 3.36 2.01 1.80 6.30
Land (hectares) 64.79 56.77 19.00 156.83
Materials (1,000e) 51.02 53.60 13.01 125.45
Livestock (livestock units) 96.40 76.56 31.95 214.79
Purchased feed (1,000e) 22.76 26.48 2.25 64.39
Size (100 ESU) 0.78 0.66 0.25 1.75
Specialization (milk revenues/total revenues) 0.72 0.12 0.52 0.89
Density (livestock units/hectare) 2.01 0.67 1.10 3.15
Subsidies (1,000e/hectare) 0.04 0.02 0.01 0.06
Age (years) 56.89 9.19 41.00 71.00

concerning quasi-fixity of some factors of production, an output distance function is used.
A translog specification is used as it is more flexible when compared to the Cobb-Douglas
functional form. Hence, the output distance function is specified as translog in inputs
(x), outputs (y), and time trend (t). Based on equation (2), the output distance function
can be written as:

− log ymit = α0 +
∑
n

αn log xnit +
∑
l

βl log

(
ylit
ymit

)

+
1

2

∑
n

∑
r

αnr log xnit log xrit

+
1

2

∑
l

∑
m

βlm log

(
ylit
ymit

)
log

(
ylit
ymit

)

+
1

2

∑
n

∑
l

ζnl log xnit log

(
ylit
ymit

)

+ µ1t+ µ2t
2 +

∑
n

γnt log xnit

+
∑
l

φlt log

(
ylit
ymit

)
+ vit − log(TEit)

(10)

A time trend is included to capture technological progress, while its interaction with
inputs and outputs allows it to be nonneutral. The data for outputs and inputs are
normalized by their respective geometric means, so that the parameters associated with
the first-order terms are directly interpretable as distance function elasticities, evaluated
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at the geometric mean of the data.

4 Results

The results reported below are based on the following sampling scheme: we use 10 chains
and after a long burn-in of 50,000 iterations, each chain contributes 80,000 draws from
the posterior12. To remove potential autocorrelation induced by the Metropolis-Hastings
updates, in each chain, every one in 10 draws is retained so that we end up with a total
of 80,000 draws from the posterior. The full set of results is provided in Table A3 in
the Appendix. Table 2 presents the parameter estimates of the first-order terms of the
distance function for output and inputs, the trend estimate, the scale elasticity and the
three variance parameters. All distance function elasticities have the expected signs and
are statistically significant, as the corresponding credible intervals do not contain zero.

Table 2: Posterior means, standard deviations and 95% credible intervals of the model’s
parameters

Variable Mean Std. dev. 95% Credible Interval
intercept -0.417* 0.029 [-0.480, -0.370]
log other 0.125* 0.003 [0.119, 0.130]
log K -0.017* 0.004 [-0.024, -0.010]
log L -0.051* 0.007 [-0.064, -0.037]
log A -0.087* 0.010 [-0.106, -0.067]
log M -0.162* 0.007 [-0.175, -0.148]
log S -0.422* 0.012 [-0.445, -0.399]
log F -0.175* 0.004 [-0.182, -0.167]
trend -0.020* 0.000 [-0.021, -0.019]

scale 0.913* 0.013 [0.886, 0.937]

σv 0.105 0.001 [0.103, 0.107]
σξ 0.086 0.010 [0.066, 0.106]
σλ 0.340 0.029 [0.282, 0.395]
*The corresponding credible interval does not contain zero

The estimate of the output distance function elasticity implies that an 1% increase
in output other than milk, will result to a 0.125% increase in the distance function,
and farms will move closer to the frontier. The negative signs of the input elasticities
suggest that potential increases in inputs shift the frontier outwards and farms become
less efficient. There is also evidence that German dairy farms experience technological
progress as the frontier shifts outwards with time. We also derive the scale elasticity by

12Convergence of chains for all parameters has been met with low autocorrelation. Details on convergence
diagnostics can be provided upon request.
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adding the distance function elasticities with respect to inputs and multiplying them by
minus 1. The scale elasticity is 0.91, indicating that German dairy farms operate, on
average, on the decreasing returns to scale part of the technology13 .

Moving to the technical efficiency scores, the average value of technical efficiency across
farms and years is 0.714. This means that farms are producing, on average, 70% of what is
feasible using the observed amounts of inputs. The reported score is a bit lower than what
has been reported by Emvalomatis et al., (2011), and can be attributed to the fact that
their sample consists of farms which are more specialized in milk production. Turning
to the determinants of transformed technical efficiency (s), Table A4 in the Appendix
presents the corresponding parameter estimates. Since s is a monotonic transformation
of efficiency, we are able to interpret the signs but not the magnitude of the estimates on
technical efficiency. For this purpose, we derive the marginal effects of the variables in
z on technical efficiency by calculating the derivative of technical efficiency with respect
to the covariates in z15. The marginal effects were calculated at the mean values of the
variables and are reported in Table 3. All marginal effects are statistically significant.

Table 3: Marginal effects of the variables in z on technical efficiency

Variable Mean Std. dev. 95% Credible Interval
size 0.003* 0.001 [0.002, 0.004]
specialization 0.022* 0.005 [0.013, 0.034]
density 0.001* 0.000 [0.001, 0.002]
*The corresponding credible interval does not contain zero

The marginal effect with respect to size is positive and implies that an 1 unit (100
ESU) increase in size causes a 0.3% increase in technical efficiency. Hence, bigger economic
farm size is associated with higher efficiency levels. This may be due to the fact that large
(in economic size) farms are more business/market oriented and use more mental labor
that can lead to higher efficiency as also Latruffe et al., (2008) and Zhu et al., (2012)
concluded in their studies. Specialization in milk production has a positive marginal effect
on technical efficiency, with an 1% increase in specialization leading to a 2.2% increase
in technical efficiency, as a result of high experience of managers that are engaged in a
single production activity. Finally, stock density is also positively related with technical
efficiency. An 1 unit (livestock/ha) increase in stock density leads to a 0.1% increase in
technical efficiency, suggesting that farms which adopt intensive production techniques,

13Empirically, we observe that studies who have used higher thresholds for farms’ milk specialization tend
to report higher returns to scale in contrast to those who have applied lower thresholds. For instance,
Emvalomatis, (2012b) reports a scale elasticity of 0.9 applying a threshold of 50% milk specialization
while, Brümmer, (2001) and Emvalomatis et al., (2011) use a threshold of 80% milk specialization and
report a unit elasticity. Based on these empirical facts, the scale elasticity reported in this paper is, as
expected, closer to the one of Emvalomatis, (2012b).

14Technical efficiency is obtained as exp{sit}
1+exp{sit} .

15The derivative of technical efficiency with respect to the lth explanatory variable in z is given by:
∂TEit

∂zl
=

δl×exp{z
′
iδ}

(1+exp{z′
iδ})2

.
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are more technically efficient. This result is consistent with what Alvarez and Corral,
(2010) have reported in their study on dairy farms.

Turning to the inefficiency persistence ρi estimates, Figure 1 presents the posterior
density along with summary statistics16.

Figure 1: Posterior density and summary statistics of inefficiency persistence ρi

Inefficiency persistence is found to be very high with a mean value across farms of 0.97,
verifying that inefficiency scores are very highly autocorrelated due to the presence of high
adjustment costs. This result is very similar to what Emvalomatis et al., (2011) have re-
ported for the case of German dairy farms. Additionally, inefficiency persistence exhibits
very little variation around the mean, implying that all farms face high adjustment costs,
which lead them to remain inefficient also in the future. In terms of the covariates af-
fecting inefficiency persistence, Table A5 in the Appendix reports the determinants of
transformed inefficiency persistence h. However, since the main interest of the paper lies
on determining the effect of certain covariates on inefficiency persistence, we derive the
marginal effects of the variables in w on inefficiency persistence.17 These marginal effects
were calculated at the mean values of the variables in w and are presented in Table 4.
All marginal effects are statistically significant.

Subsidies have a positive marginal effect on inefficiency persistence with an 1 unit
(1000/ha) increase in subsidies leading to a 0.2% increase in inefficiency persistence. This
implies that subsidies are most probably not used for investment purposes, but are rather
perceived by farmers as an additional source of income. Since farmers themselves, do
not view subsidies as a credit provision tool for investing in new technologies, their inef-
ficiency persistence increases slightly with subsidies. Furthermore, based on our dataset,

16The inefficiency persistence parameter ρi presented in Figure 1 is obtained as follows: we first calculate
the mean of all the draws for each farm and then plot these means using a kernel density plot.

17The derivative of inefficiency persistence with respect to the mth explanatory variable in w is given by:
∂ρi
∂wm

=
ηm×exp{w

′
iη}

(1+exp{w′
iη})2

.
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Table 4: Marginal effects of the variables in w on inefficiency persistence

Variable Mean Std. dev. 95% Credible Interval
subsidies 0.002* 0.001 [0.001, 0.004]
age<65 -0.003* 0.001 [-0.005, -0.001]
*The corresponding credible interval does not contain zero

governmental intervention does not take care of distributing a part of subsidies for in-
vestment purposes, as the share of subsidies on investment to total subsidies is negligible.
Hence, external adjustment costs persist as subsidies do not ameliorate access to exter-
nal funding that can be used for investment in new equipment. Farms whose primary
operator is younger than 65 years old, exhibit lower inefficiency persistence compared to
those managed by older ones. This finding suggests that very old farmers are probably
less motivated to adopt state-of-the-art technologies, as opposed to young or middle-aged
farmers, resulting in slightly higher inefficiency persistence. Even though increasing age
offers more experience to farmers and higher ability to manage new resources as Stefanou
and Saxena, (1988) and Luh and Stefanou, (1993) point out, there exists a point where
lack of farmers’ motivation to invest in new technologies prevails over their experience
advantage.

5 Discussion and conclusions

In this article, we provided a way to include and test for the effect of farm characteristics
on their inefficiency persistence. Previous studies on dynamic stochastic frontier analysis
have taken for granted that high adjustment costs result in high inefficiency persistence,
without allowing for farm-specific factors to influence this persistence. Our model, apart
from testing the hypothesis that inefficiency is highly autocorrelated through time, it
also allows for testing the effect of farm-specific characteristics on inefficiency persistence.
In order to quantify the persistence of inefficiency, we specify an autoregressive process
on transformed technical efficiency, while, the inefficiency persistence parameter is also
transformed to allow for farm-specific effects to have an impact on it. The model is applied
to an unbalanced micro-panel of German dairy farms that covers the period from 1999 to
2009 and Bayesian techniques are used for the estimation.

The model’s results are quite similar when compared with different efficiency specifica-
tions such as these of Battese and Coelli, (1992) and Emvalomatis et al., (2011) strength-
ening the model’s robustness. Our results suggest a high degree of inefficiency persistence,
which implies that inefficiency does not disappear with time due to the presence of high
adjustment costs. This result is in line with the adjustment cost hypothesis described
by Penrose, (1959), which suggests that high adjustment costs provide farmers with an
incentive to remain partly inefficient in the short-run. In terms of the determinants of
inefficiency persistence, despite being statistically significant, their economic significance
is negligible. However, one could argue that since inefficiency persistence lacks units of
measurement (it is an elasticity that measures the ratio of efficiency to inefficiency that
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is carried out form a period to the next), a more reasonable approach would be to focus
on the sign of the effect rather than its magnitude. Furthermore, the lack of variation
in our financial indicators and the lack of additional potential candidates such as edu-
cation or the presence of a successor did not allow us to examine the impact of further
important candidates that could explain inefficiency persistence. Finally, farmer’s man-
agerial ability could also affect both inefficiency and its persistence. Upon the absence of
an ability indicator, this study followed the typical approach of using farmer’s age as a
proxy for experience as in Stefanou and Saxena, (1988). However, one can’t safely argue
that experience indeed reflects a farmer’s managerial ability. Such an effect should rather
be captured by the associated error component. Despite the aforementioned limitations,
this paper has presented a way to empirically look for the factors that may influence this
persistence opening an array for future research.

Subsidies turn out not to relieve the external adjustment costs that farms face. They
rather act as an additional source of income and not as a source of credit that can be
used for technology adoption purposes. Faster adjustment can be achieved if subsidies are
provided on the basis of investment in new technologies and not as a compensation for
income loss. Furthermore, if subsidies are provided for investment purposes they already
imply an income gain as a result of increased productivity related to the use of advanced
technology. However, considering the variety of subsidies that dairy farmers receive, one
could expect different effects on inefficiency persistence for different types of subsidies.
Hence, a more analytical tool to assess the impact of subsidies on inefficiency persistence
would be to split them into multiple subcategories. Nevertheless, given that inefficiency
persistence is time-invariant, this approach would be rather problematic as we would
introduce significant variation over time. For instance, decoupled payments would vary
significantly over time given that they were introduced in the middle of the time span
that our dataset considers.

Furthermore, despite being unable to test directly the theory of Luh and Stefanou,
(1993) and Stefanou and Saxena, (1988) by modelling the different stages of the farm’s life
cycle, our study revealed that technology adoption depends also on farmers’ perceptions,
as these evolve with ageing. Our results confirm that very old farmers are less keen on
adopting new technologies compared to their younger counterparts, presumably due to
lack of motivation. This result does not imply that very old farmers invest less than
younger ones, but, it rather suggests that they invest more in replacement of existing
capital and not in new equipment (productive investment) that could make them more
competitive in the long-run. Additionally, the fact that 25% of farms in our sample are
managed by primary operators that are, on average, 65 years old or above, provides a
warning that several German dairy farms are left behind in terms of technology adoption.
Hence, incentives should be provided to young people to undertake the management
of farms, as our results reveal that they are more motivated to adopt state-of-the-art
technologies that can increase the productivity of farms and make them more competitive.
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Appendix

Table A1: Parameterization of priors

Parameter Distribution Probability density function Hyper-priors

β N(b,S) |S|−
1
2

(2π)
K
2

exp
{
− (β−b)′S−1(β−b)

2

}
b = 0K , S = 1, 000× IK

τ ≡ 1
σ2
v

Gamma(a,b) ba

Γ(α)
τα−1e−bτ a = 0.001, b = 0.001

δ N(q,P) |P |−
1
2

(2π)
L
2

exp
{
− (ω−q)′P−1(ω−q)

2

}
q = 0L, P = 1, 000× IL

φ ≡ 1
σ2
ξ

Gamma(a,b) ba

Γ(α)
τα−1e−bτ a = 0.01, b = 0.01

η N(e,R) |R|−
1
2

(2π)
M
2

exp
{
− (η−e)′R−1(η−e)

2

}
e = 0M , R = 1, 000× IL

ψ ≡ 1
σ2
λ

Gamma(a,b) ba

Γ(α)
ψα−1e−bψ a = 0.1, b = 0.01
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Table A2: Parameter estimates from the three different inefficiency specifications

BC92 Emvalomatis et al. (2011) Current paper
Parameter Mean Std. dev. Mean Std. dev. Mean Std. dev.
intercept 0.225 0.009 -0.445 0.019 -0.417 0.029
log other 0.184 0.003 0.140 0.003 0.125 0.003
log K -0.021 0.004 -0.015 0.004 -0.017 0.004
log L -0.045 0.008 -0.049 0.007 -0.051 0.007
log A -0.021 0.009 -0.070 0.009 -0.087 0.010
log M -0.192 0.008 -0.146 0.007 -0.162 0.007
log S -0.506 0.011 -0.502 0.011 -0.422 0.012
log F -0.213 0.004 -0.192 0.004 -0.175 0.004
trend -0.017 0.001 -0.019 0.000 -0.020 0.000
average TE 0.770 0.661 0.700
ρ - 0.991 0.971
Note: BC92 refers to the Battese and Coelli (1992) inefficiency specification.

Table A3: Estimates of the model’s parameters

Variable Mean Std. dev. 95% Credible Interval
intercept -0.417 0.029 [-0.480, -0.370]
log other 0.125 0.003 [0.119, 0.130]
log K -0.017 0.004 [-0.024, -0.010]
log L -0.051 0.007 [-0.064, -0.037]
log A -0.087 0.010 [-0.106, -0.067]
log M -0.162 0.007 [-0.175, -0.148]
log S -0.422 0.012 [-0.445, -0.399]
log F -0.175 0.004 [-0.182, -0.167]
trend -0.020 0.000 [-0.021, -0.019]
east 0.060 0.015 [0.030, 0.089]
west 0.002 0.010 [-0.018, 0.022]
north 0.055 0.010 [0.036, 0.074]
log KK 0.008 0.002 [0.004, 0.012]
log KL -0.014 0.009 [-0.031, 0.003]
log KA -0.013 0.009 [-0.030, 0.005]
log KM 0.047 0.007 [0.033, 0.062]
log KS -0.033 0.011 [-0.054, -0.012]
log KF 0.001 0.003 [-0.006, 0.007]
log LL 0.022 0.013 [-0.004, 0.048]
log LA 0.014 0.020 [-0.025, 0.053]
log LM 0.003 0.018 [-0.031, 0.038]
log LS -0.037 0.024 [-0.085, 0.010]
log LF 0.027 0.009 [0.010, 0.044]
log AA 0.017 0.014 [-0.011, 0.045]
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log AM 0.019 0.018 [-0.016, 0.055]
log AS -0.070 0.026 [-0.122, -0.018]
log AF 0.033 0.008 [0.017, 0.049]
log MM 0.009 0.009 [-0.009, 0.027]
log MS -0.154 0.022 [-0.198, -0.109]
log MF 0.024 0.007 [0.009, 0.038]
log SS 0.135 0.022 [0.093, 0.177]
log SF 0.006 0.011 [-0.015, 0.027]
log FF -0.037 0.001 [-0.039, -0.034]
log other2 0.031 0.001 [0.029, 0.033]
trend2 0.000 0.000 [0.000, 0.000]
log K other -0.010 0.003 [-0.015, -0.004]
log L other -0.002 0.007 [-0.015, 0.011]
log A other -0.031 0.006 [-0.044, -0.019]
log M other 0.062 0.006 [0.050, 0.075]
log S other 0.008 0.009 [-0.009, 0.025]
log F other -0.015 0.003 [-0.021, -0.009]
trend log K -0.003 0.001 [-0.004, -0.001]
trend log L -0.006 0.001 [-0.009, -0.003]
trend log A 0.006 0.001 [0.003, 0.009]
trend log M 0.001 0.001 [-0.002, 0.004]
trend log S -0.001 0.002 [-0.005, 0.003]
trend log F 0.003 0.001 [0.001, 0.004]
trend log other 0.004 0.001 [0.003, 0.005]
σv 0.105 0.001 [0.103, 0.107]
σξ 0.086 0.010 [0.066, 0.106]
σλ 0.340 0.029 [0.282, 0.395]

Table A4: Determinants of transformed efficiency (s)

Variable Mean Std. dev. 95% Credible Interval
intercept -0.059 0.013 [-0.088, -0.036]
size 0.011 0.002 [0.007, 0.017]
specialization 0.087 0.022 [0.052, 0.132]
density 0.005 0.002 [0.003, 0.009]

Table A5: Determinants of transformed inefficiency persistence (h)

Variable Mean Std. dev. 95% Credible Interval
intercept 3.487 0.238 [3.041, 3.976]
subsidies 0.087 0.027 [0.039, 0.140]
age<65 -0.095 0.034 [-0.161, -0.029]
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Figure A1: Coefficient of variation for European Size Units (ESU)
Note: The data represent farm-specific values obtained by summarizing them over time

Figure A2: Coefficient of variation for specialization
Note: The data represent farm-specific values obtained by summarizing them over time
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Figure A3: Coefficient of variation for stock density
Note: The data represent farm-specific values obtained by summarizing them over time

Figure A4: Coefficient of variation for received subsidies
Note: The data represent farm-specific values obtained by summarizing them over time
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