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Abstract 

The concept of fuzzy multi criteria decision making process has received 

significant attention from research community due to its successful applications for 

human based decision making problems under fuzzy environment. It complements 

the decision makers to evaluate their subjective judgements under situations that are 

vague, imprecise, random and uncertain in nature. Inspired by such real applications, 

in this research study, the theoretical foundation of a hybrid fuzzy multi criteria 

decision making model based on new centroid defuzzification method is proposed. 

The proposed model tackles some issues that may be associated with the selection 

problems of the multi criteria decision making such as deriving decision criteria 

important weights, ranking various alternatives, suitable combination of fuzzy multi 

criteria decision making techniques and proper defuzzification method used. In 

developing the hybrid model, two multi criteria decision making techniques are 

integrated which are; 1) consistent fuzzy preference relations and; 2) fuzzy technique 

for order of preference by similarity to ideal solution. It is also incorporated together 

with new defuzzification method namely intuitive multiple centroid.  

In the view of evidence outlined in this study, the proposed model serves as a 

generic multi criteria decision making procedure, particularly when fuzzy sets are 

involved in the decision process. The two major contributions from this study are 

that: 

1) The intuitive multiple centroid defuzzification capable to cater all possible 

representations of fuzzy sets reasonably and consistent with human 

intuition or judgment. 

2) The generalised hybrid fuzzy multiple decision making model using 

intuitive multiple centroid gives better computation to evaluate criteria and 

alternatives in decision making problems under different uncertain 

environment. 

Furthermore, an empirical validation of the proposed model is investigated through 

conducting a case study of staff recruitment in MESSRS SAPRUDIN, IDRIS & CO, 

Malaysia. In this case study, a group of three decision makers, and four finalist of 

candidates are selected to take part of this case study. Their involvement achieved the 

first objective of the case study. At the end of the case study, a sensitivity analysis is 

conducted to indicate the robustness and the consistency of the results obtained. It is 

concluded that the proposed model is indeed beneficial under different environment.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

This chapter provides a prologue to the research work presented in this thesis.  

It describes the research background and explains the problems for pursuing this 

work. Likewise, it briefly summarises chapters review and illustrates the structure of 

the thesis. Details on those points above in chapters review are broadly discussed in 

following chapters. 

 

1.2 Research Background 

In real world phenomena, much of the decision making take place in an 

environment which the goals, the constraints and the consequences of possible actions 

are not known precisely. Most of the decisions are taken from an intuitionistic 

perspective or only with some very basic information. The reality is, the information 

is often not so easy to handle and it is necessary to analyse in more detail. Currently, 

contemporary science is presented in decision making environment as handling and 

solving current decision making problems that are significant and essential. It 

proposes the development and application of computerised simulations or 

mathematical models to solve numerous decision making problems appropriately. 

Due to growth in computational capability and technology development, data are 

being generated for understanding in detail of real world problems, especially in 

human based decision making problems. The availability of subjective data has 

become the essential challenge for any new mathematical approach to modelling. 

While much of the literature (Mardani, Jusoh, & Zavadskas, 2015) in decision 

making has focused on the applications of established mathematical models to solve 

decision making problems. The application based approach of decision making is 

undoubtedly pointed out as much easier than developing a mathematical model. This 

is because the previous studies involve only the use of an appropriate established 

mathematical model while the latter studies require new mathematical model 

development to handle the problem. Despite the fact that the development of a novel 

mathematical model is challenging, it suggests improved quality in terms of 

describing and observing the situation than applying established models. In 

developing the novel mathematical model, it is best if the model follows some basic 
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principles, then the experiment is only used to validate or verify that either the model 

or formulation is compatible with the structure of the phenomenon studied. Precisely, 

the mathematical formulations or models should be simple in presenting and easy to 

compute.  

Due to concerns expressed about decision environment nowadays, the 

involvement of human perception in mathematical based decision models is pointed 

out as one of the most important factors in many research areas such as computer 

science, engineering, artificial intelligent, economy, psychology, philosophy, even 

linguistic and so forth. Literally, human perception refers to the process of perceiving 

something with human senses. Human perception is defined as a generic way of 

human expressions towards a situation perceived using subjective judgements and 

preferences. For that reason, the development of an effective mathematical model for 

decision making problems is expected to have the capability in representing linguistic 

terms appropriately because the human perception is commonly associated with 

natural languages. Also, the model is expected to produce correct decision results 

such that the results obtained are consistent with the human intuition or human 

judgement. Nevertheless, both expectations are hard to achieve using a mathematical 

forms because it is impractical and unrealistic for the human nature. 

For this reason, linguistic terms are used to solve the problem using 

mathematical model is not idealistic, but it still represents rapid improvement 

regarding human knowledge. This indicates when the fuzzy set theory was introduced 

as the medium of representation of human perception. Fuzzy set theory is a 

mathematical field that is capable of dealing effectively with situations that are vague, 

imprecise and ambiguous in nature like human decision making. It provides proper 

representation for the mathematical model in signifying human perception 

appropriately. Since the application of the fuzzy set theory in human decision making 

is relevant and suitable, this study aims at developing a fuzzy based mathematical 

decision methodology that is capable of representing linguistic terms and producing 

decision results that are consistent with the human intuition. The model is also 

expected to serve as a generic decision making model for any human based decision 

making problem. 

Multi criteria decision making (MCDM) was introduced as a promising field 

of study in early 1970’s. It represents a prominent class of such decision making 

problems in operations research. The typical MCDM problem deals with the 

evaluation of a set of alternatives regarding a set of decision criteria. The challenge 

facing practitioners in some of the methodological problems in MCDM models is 

how to deal with human based decision making problems under fuzzy environment. 

In this sense, much of the literature studies the implementation of fuzzy set theory in 
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MCDM models in handling the fuzzy event. When fuzzy set theory was introduced 

into MCDM research, the associated methods were basically developed along the 

same line where decision making in practice presented that fuzzy set theory allowed 

decision making with estimated values in spite of incomplete information. Under such 

circumstances, the fuzzy systems often outperformed the classical MCDM methods. 

Hence, fuzzy set theory has powerful features to be incorporated into optimization 

techniques as MCDM.  

In this research study, the problems considered are: 1) the development of 

generalised hybrid fuzzy multi criteria decision making model based on intuitive 

multiple centroid defuzzification and 2) an evaluation process for the staff selection in 

a law firm in Malaysia case study. The proposed fuzzy decision making model is 

developed generally in order to solve under different fuzzy environment. It capable to 

deal with imprecision, vagueness and uncertain problems in human based decision 

making assessments. Since the research problem is considered as an evaluation 

process of decision making problem, this process involves a group of decision makers 

who have expertise and knowledge in law field of study to select the best candidate. 

The group of decision makers is comprised of different decision makers with different 

levels of expertise and different perceptions. Several criteria are considered that may 

affect the selection of potential candidate from a group of candidate. In dealing with 

human perception, fuzzy linguistic scales are used as the medium of representation of 

human perception or judgement. The proposed fuzzy decision making is applied in 

this case study in order to solve the evaluation process. 

Sensitivity analysis is utilised as validation method in order to evaluate how 

robust the optimal solution produced when different circumstances are considered 

with making changes in parameters. Thus, in this research study, sensitivity analysis 

acts as an instrument for the assessment of the input parameters to apply the model 

efficiently and to enable a focused planning of future research and field evaluation.  

 

1.3 Chapters Review 

This section illustrates some reviews in terms of organisation of the thesis. 

Fig. 1.1 illustrates the thesis structure. Seven chapters are presented in the thesis. The 

remaining six are described as follows. 

Chapter 2 presents the concept or idea of research interests whereby it 

describes in detail the history and chronology of research study. It identifies the 

research problems, research questions and objectives, also research contributions. It 

illustrates the gaps and limitations of established works done by previous researchers 

in human decision making based problems. At the end, the chapter previews a 
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summary whether the literature is reviewed and identified a reasonable direction for 

the thesis.   

Chapter 3 outlines the theoretical preliminaries of the thesis such that the 

definitions and formulations used in this study are given. It describes details of the 

relevant theories, definitions and methods to be used for data analysis including 

figures, tables, diagrams and procedures.  

Chapter 4 describes in detail the process of the development of intuitive 

multiple centroid defuzzification method for fuzzy sets that includes official models, 

elementary operations, basic properties and advanced applications. It considers three 

types of fuzzy sets which are type-1, type-2 and the z-number. The extensions of the 

proposed centroid method are discussed in the next two sections for type-2 fuzzy sets 

and z-numbers. The validation process for the proposed intuitive multiple centroid are 

discussed theoretically and empirically. 

For Chapter 5, it illustrates in detail the process of the development of a 

hybrid MCDM model that consist of consistent fuzzy preference relations and fuzzy 

technique for order of preference by similarity to ideal solution (TOPSIS) that 

incorporated with intuitive multiple centroid method as discussed in Chapter 4. It 

discusses how generically the proposed hybrid fuzzy MCDM model can be 

implemented in type-2 fuzzy set and the z-number. Those hybrid fuzzy MCDM 

model are validated using sensitivity analysis that is discussed in Section 6.6.2. 

Chapter 6 describes an application of the proposed methodology for hybrid 

fuzzy MCDM model that incorporates with intuitive multiple centroid. It 

demonstrates how the proposed methodology can be used in the evaluation process 

for the selection of a right employee for one of law firms in Malaysia. This chapter 

presents a comparative study between the proposed methodology for with hybrid 

fuzzy MCDM model with intuitive multiple centroid against established models by 

previous studies. 

The final chapter summarises the whole thesis whereby it illustrates the 

contributions of the research work, the concluding remarks and recommendations for 

future work. It presents a summary of all the works contributing to acknowledge in 

every chapter of the thesis. 

 

 

 



5 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. 1: Thesis structure 

 

1.4 Summary of the Chapter 

The introductory chapter briefly discusses the review of the whole thesis. This 

is later followed by Chapter 2 for literature review discussion. It also illustrates the 

research problems, research questions, research objectives and research contributions 

of the thesis. 

Chapter 1: Introduction 

Chapter 2: Literature Review 

Chapter 3: Theoretical Preliminaries 
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Centroid Defuzzification 

Chapter 5: Generalised Hybrid Fuzzy 

Multi Criteria Decision Making Model 

Chapter 6: Case Study 

Chapter 7: Conclusion 

Prologue of thesis 

Research 

literature review 

and theoretical 

background 

Research design 

and contributions 

Case study, research 

results, analysis and 

conclusion 



6 

 

CHAPTER 2 

LITERATURE REVIEW 

 

 2.1 Overview 

This chapter discusses the background of research study by reviewing the 

literature and prior researches that are related to the research questions and objectives.  

The first part of this chapter corresponds to review on basic concept of fuzzy sets 

which justify the applicability of fuzzy sets in human decision making. Then, the 

chronological development of fuzzy set tools are highlighted where provide a 

comprehensive overview on type-1 fuzzy sets and its extensions known as type-2 

fuzzy sets and z-numbers are enclosed. This chapter mainly focuses to address 

established works found in previous defuzzification methods for type-1 fuzzy sets, 

type-2 fuzzy sets and z-numbers within human based decision making problems in 

real world case studies. A brief review of the history and chronology of 

defuzzification methods to understand the development of defuzzification process for 

fuzzy sets. The following main focus here is to discuss some MCDM techniques 

which are applied by previous researchers in many field of disciplines under fuzzy 

environment. The theoretical foundations and applicability in particular decision 

making problems of established models are thoroughly discussed in this chapter.  

 

2.2 Basic Concepts on Fuzzy Sets 

In the modern age, the American philosopher Charles Pierce pointed out that 

“Logicians have too much neglect the study of vagueness, not suspecting the 

important part it plays in mathematical thought” (Peirce, 1931). Some discussions 

have been made to study the links between logics and vagueness are not unusual in 

the philosophical literature in the first half of the century (Copilowish, 1939). 

Vagueness is restricted to fuzziness sides that can be accounted for by attaching to 

any situation a grade of applicability of a given concept to it. A proposition or 

statement is said to be vague if it contains a gradual predicates. In modelling the 

gradual features enable some paradoxes of classical logic to be solved. In particular, a 

certain number of words or sentences refer to supposedly continuous numerical scales 

instead of discrete. A more realistic point of view, the motivation of fuzzy sets is to 

provide a formal setting for incomplete and gradual information, as expressed by 

human in natural language.  
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This section deliberates the suitability and reliability of fuzzy sets when 

dealing with human decision making. Natural language is regularly used in human 

decision making processes as the medium of indications towards a situation 

perceived. While it is true because subjective perceptions that expressed by human 

are only appropriate when they are described using linguistic hedges as part of natural 

language (Yeh, Deng, & Chang, 2000). Some research works have done in applying 

linguistic scale as natural language  which are (Kangari & Riggs, 1989), (Lee-Kwang 

& Lee, 1999), (R.-C. Wang & Chuu, 2004), (L. Lee & Chen, 2008), (S.-M. Chen & 

Chen, 2009), (Zamri & Abdullah, 2013), (Azadeh, Saberi, Atashbar, Chang, & 

Pazhoheshfar, 2013), (Abdullah & Najib, 2014) and (J. Wang, Wang, Zhang, & Chen, 

2015). They utilised fuzzy set theory that are brought out as a suitable tool to deal 

with natural language. Despite the fact that fuzzy set theory underpins three basic 

concepts namely graduality, epistemic uncertainty and bipolarity factors which are 

capable to present natural language appropriately (Dubois & Prade, 2012). These 

three notions of fuzzy sets are interacted closely each other. In order to clarify the 

significant of fuzzy sets in practice, the description on these three basic concepts that 

underlying the fuzzy sets are as follows. 

 

2.2.1 Graduality  

In Zadeh’s perception, the idea that many categories in natural language 

expresses by human is a matter of degree, including truth (L.A. Zadeh, 1965). 

Considering that, natural language uses by human on portraying a subject is 

distinguished by different degree of beliefs. Fuzzy set is an extension of gradual 

predicate, where the transition between membership and non-membership are, in the 

words of its inventor, “gradual rather than abrupt” (Dubois & Prade, 2012). For 

instance in the case of temperature, if the temperature is considered as ‘cold’ with 47 

Fahrenheit, then 45 Fahrenheit is not regarded as ‘cold’ but classified as ‘very cold’, 

where ‘very cold’ is another natural language is used to describe the coldness. The 

employment of both ‘cold’ and ‘very cold’ in this instance, suggest that there is a 

transition process occurs in terms of degree of belief used when information about the 

subject perceived is changed. This is expressed when degree of belief ‘cold’ increases 

and degree of belief ‘very cold’ decreases as values of temperature approaches 45 

Fahrenheit. The continuous but alternate pattern transition between the degrees of 

belief implies that natural languages convey by human are gradual rather than abrupt 

as mentioned before.  

 

 



8 

 

2.2.2 Epistemic Uncertainty 

The treatment of uncertainty in the analysis of any computerised or 

mathematical model is essential for understanding possible ranges of scenario 

implications. The capability in quantifying the impact of uncertainty in the decision 

making context is critical. Epistemic uncertainty represents a lack of knowledge about 

the appropriate value to use for a quantity. Sometimes it is referred to as state of 

knowledge uncertainty, subjective uncertainty, reducible uncertainty, where it means 

that the uncertainty can be reduce through increased understanding of research, 

increased the information and more relevant data are needed (Swiler, Paez, & Mayes, 

2009). Fuzzy set may justify for epistemic uncertainty since it extends the notion of a 

classical set. In addition, it is gradual since belief is often a matter of degree. 

Epistemic uncertainty in fuzzy sets is viewed as representation of incomplete 

information about a situation (Dubois & Prade, 2012). Among examples of the human 

decision making situations involve in this case are forecasting and group decision 

making (S.-M. Chen & Chen, 2009). The misunderstanding between graduality and 

uncertainty pervading fuzzy set theory is actually a variant of a misunderstanding 

pervading some parts of the literature in logic between truth values and belief degrees 

or information states.  

2.2.3 Bipolarity 

In human decision making analysis, especially multi-agent decision making 

analysis, is based on bipolar or double sided judgmental thinking on a positive side or 

negative side such as effect or side effect and feedforward or feedback (Zhang, 1994). 

The argument that positive and negative causal relationship should not be buried or 

eliminated in a summation if they are not counteractive at the same time, or not from 

same source, or not through same paths (Zhang, Chen, Chen, Zhang, & Bezdek, 

1988). This expresses the fact that regardless of the possibility if enough information 

about a decision is collected, human sometimes relies on their corresponding positive, 

negative or neutral effects on a circumstance.  For instance, there are options under 

consideration that are separated based on good or bad alternatives and a decision is 

made accordance to the strongest criterion or attribute produces by one of the 

alternatives. Comparable to unipolar crisp value, where the real valued bipolar 

representation suffers from the deficiency that can’t be used to represent high order 

fuzziness (Zhang, 1994). Besides, bipolarity perspective complements the capability 

of membership functions in fuzzy sets in representing both causal relations of positive 

and negative effects appropriately.  For simplicity, bipolar fuzzy set theory formalises 

a unified approach to polarity fuzziness and captures the bipolar or double-sided 

effect of human perception and cognition.  
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 2.3 Fuzzy Set Theory 

As discussed in a previous section, the description on basic concepts that 

underlying the fuzzy sets are briefly explained in order to clarify the nature of human 

being. This section illustrates the chronological development of fuzzy set theory. It 

was specifically designed to mathematically represent uncertainty and vagueness to 

provide formalised tools for dealing with imprecision intrinsic to many problems in 

human based decision making. Aforementioned in Section 2.2, fuzzy sets are pointed 

out as a suitable knowledge for human decision making where this is justified when 

basic concepts of fuzzy sets capable in representing the natural language very well, 

but it is not easy to distinguish two or more natural languages are used in a decision 

making problems as they are all defined qualitatively. Due to this concern, Zadeh 

(1965) suggested a quantitative definition for fuzzy sets which are well – suited for 

natural language known as fuzzy numbers. While much of the literature of fuzzy sets 

discuss there are three kinds of fuzzy sets found namely type-1 fuzzy sets, type-2 

fuzzy sets and z-numbers. In this study, these three fuzzy sets are considered in 

different situations in human based decision making where it is not easy to 

distinguish natural languages that are very subjectively.  

Among those three, type-1 fuzzy sets are the most applied fuzzy sets in 

research studies followed by type-2 fuzzy sets and z-numbers.  Rationally, type-1 

fuzzy sets are most usable fuzzy numbers as compared to two others because the 

chronology of fuzzy sets was started with type-1 fuzzy set in 1965, while type-2 

fuzzy sets in 1975 and z-numbers were introduced in 2011. The different types of 

fuzzy sets are not utilised simultaneously in representing the natural language. This is 

because all of them have different representations in theoretical nature, that indicate 

only one fuzzy set is applied at one time. Applying fuzzy sets in human decision 

making problems is a straightforward process due to the flexibility of using linguistic 

terms as variables to access the human’s judgements. Therefore, fuzzy sets have 

attracted the attention of many researchers and practitioners in modelling imprecision, 

vagueness and uncertainty in their decision making systems. Details on type-1 fuzzy 

sets, type-2 fuzzy sets and z-numbers are described as follows.  

 

2.3.1 Type-1 Fuzzy Sets 

Since its inception in 1965, fuzzy set theory has been applied and advanced in 

variety ways and in many disciplines. Type-1 fuzzy sets or classical fuzzy sets are the 

first fuzzy numbers introduced in literature of fuzzy set theory. It has been widely 

used in many research fields such as artificial intelligent, computer science, medicine, 

control engineering, decision theory, expert systems, logic, management science, 

operational research, pattern recognition, robotic and so forth.  The terms of type-1 



10 

 

fuzzy sets are used in discussion of many established research studies done by 

(Yager, 1980),  (L. Chen & Lu, 2002), (X.-W. Liu & Han, 2005), (Li, 2013) and so 

on. Originally, the term of type-1 fuzzy sets was changed from fuzzy set or fuzzy 

number only when type-2 fuzzy sets was introduced in the literature of fuzzy set 

theory. Even both types of fuzzy sets are fuzzy numbers, but they have difference 

representation in nature. Type-1 fuzzy set is a uniquely defined by a membership 

function. It consist of both membership and spread features as a range for information 

that are corresponding to confidence level and opinion of decision makers 

respectively (S.-M. Chen & Chen, 2009). Considering that, type-1 fuzzy sets are 

widely applied in decision making problems such as selection of beneficial project 

investment (Jiao, Lian, & Qunxian, 2009), proposing fuzzy risk analysis method 

using generalised fuzzy numbers (S.-M. Chen & Chen, 2009), improving out patient 

service for elderly patient for Healthcare Failure Mode and Effect Analysis (HFMEA) 

in Taiwan (Kuo, Wu, & Hsu, 2012), solving image processing and image 

understanding problems in dealing with imprecise information and knowledge  

(Bloch, 2015). 

 

2.3.2 Type-2 Fuzzy Sets 

Type-2 fuzzy sets notion was introduced by Zadeh as an extension of the type-

1 fuzzy sets (L.A. Zadeh, 1975). According to (Karnik & Mendel, 2001a), type-2 

fuzzy sets can be considered as fuzzy membership function where the membership 

value for each element in type-2 fuzzy set is a fuzzy set in interval range of [0,1], 

different with type-1 fuzzy set where the membership value is in crisp condition 

between [0,1]. Due to this concerned, the uncertainty representation of type-1 fuzzy 

set on natural language is insufficient enough to model perception (Dereli, 

Durmusoglu, & Daim, 2011). Plus, the imprecision level about a situation increases 

when number is translated into word which means natural language and finally to 

perceptions.  There would be some uncertainty in associating the perception in the 

information. This indicates that the representation capability of type-1 fuzzy set on 

uncertainty is arguable. The participation of higher level of uncertainty in type-2 

fuzzy sets compared to type-1 fuzzy sets, they are provided additional degree of 

freedom to represent the uncertainty in human based decision making problems. 

Uncertainty can be divided into two types which are inter and intra personal 

uncertainties, in provisioning the representation of type-1 fuzzy sets in the literature 

of fuzzy sets (Wallsten & Budescu, 1995). Due to this, type-2 fuzzy sets are utilised 

in many decision making research studies such as modelling data uncertainty on 

electric load forecasting using type-2 fuzzy set theory (Lou & Dong, 2012), proposing 

a new type-2 fuzzy set of linguistic variable for fuzzy analytic hierarchy process for 

work safety evaluation (Abdullah & Najib, 2014), evaluation of criteria and 

dimensions of human resource management problems (Abdullah & Zulkifli, 2015) 
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and developing MCDM method for robot selection with interval type-2 fuzzy sets 

(Keshavarz Ghorabaee, 2016). 

 

2.3.3 Z-Numbers 

The concept of z-number was suggested by Zadeh in (Lotfi A. Zadeh, 2011a). 

Compared to type-1 and type-2 fuzzy sets, z-numbers present the latest version of 

fuzzy sets in the literature. The idea of z-numbers is intended to provide a basis for 

computation with numbers which are not totally reliable. Z-numbers can be 

represented as an extension of type-1 fuzzy sets in term of membership function, but 

completely differ from type-2 fuzzy sets. It concerns the reliability component in 

fuzzy numbers to make sure the information are in reliable state. Z-numbers enhances 

the capability of both type-1 and type-2 fuzzy sets by taking into account the 

reliability component of fuzzy numbers are used (Lotfi A. Zadeh, 2011a). More 

concretely, a z-number is an ordered pair of two type-1 fuzzy numbers. The first 

component is a restriction of on the values which a real-valued variable can take, 

while the second component is a restriction on a degree of certainty of that real-

valued (Lotfi A. Zadeh, 2011b). According to (Lotfi A. Zadeh, 2011a), z-number is a 

new notion in fuzzy set theory that has more capability in describing the uncertain 

and complex knowledge. The idea of z-numbers is to provide a basis for computation 

with numbers which are not complete reliable and more intelligent to describe the 

knowledge of human being, also capable to cater uncertain information. In literature, 

some applications of z-numbers in human based decision making problems have been 

found which are, the evaluation of vehicle selection under uncertain environment 

(Kang, Wei, Li, & Deng, 2012b), the evaluation of best universities (Azadeh et al., 

2013) and selection of facility location using PROMETHEE under a fuzzy 

environment (Kamiński, Kersten, & Szapiro, 2015). 

 

2.4 Defuzzification 

This section illustrates a thorough review on defuzzification of fuzzy sets 

approach which is one of the important process in fuzzy logic system. A related point 

to consider is that descriptions made in this section is only focus on discussion of 

defuzzification process of fuzzy sets only. This indicates in detail associated 

defuzzification of type-1 fuzzy sets are applicable for type-2 fuzzy sets and z-

numbers. Thus, all discussions made on defuzzification of type-1 fuzzy sets are also 

relevant for defuzzification of type-2 fuzzy sets and z-numbers. 
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 2.4.1 General Overview of Defuzzification 

In dealing with complex systems in approximate reasoning, it is difficult to 

precisely describe the behavior of a complex system as there are many factors which 

influence it. One way to deal with these uncertain behaviors of the system is to use 

fuzzy logic. Fuzzy logic is an approach in computing fuzzy set theory based on 

degree of truth rather than the regular true or false Boolean logic using classical set 

theory. Defuzzification is an ultimate process in fuzzy logic system. Basically, in 

fuzzy logic system, it consists of the following five steps (Naaz S., Alam A., 2011):  

1. Fuzzification: The process of converting crisp or regular inputs to 

membership functions which comply with intuitive perception of 

system status. 

2. Rules processing: The process of computing the response from system 

status inputs according to the pre-defined rule matrix algorithm. 

3. Inference: The process of evaluating each case for all fuzzy rules to the 

fuzzy output. 

4. Composition: The process of combining the information from fuzzy 

rules. 

5. Defuzzification: The process of converting results of fuzzy output of 

the inference engine using membership function to crisp or regular 

values. 

 

 

 

 

 

 

Fig. 2. 1: Fuzzy inference system 

Fig. 2.1 depicts the fuzzy inference system where it illustrates the process of 

formulating the mapping from a given input to an output using fuzzy logic operators. 

The process involves the membership functions to convert the crisp inputs using 

linguistic variable that stored in the fuzzy knowledge base, then fuzzy logic operator 

acts as an inference engine to operate the system in what practitioners need with rules 

in evaluating all fuzzy rules before combine the information from rules in 

Input Fuzzifier  
Inference 

Engine 
 Defuzzifier Output 

Fuzzy Knowledge 

Base 
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composition process and finally, defuzzification process in converting the fuzzy 

outputs of the inference engine to crisp using membership functions analogous to the 

ones used by fuzzifier. As previously mentioned, the descriptions made in this section 

only focusing on the discussion of defuzzification process.  

Defuzzification plays as a key role in the performance of fuzzy systems 

modelling techniques. Generally, defuzzification process is guided by the output 

fuzzy subset in possibility distribution that one value would be selected as a single 

crisp value as the system output. It is the last step in generating an output from a 

fuzzy inference system. There are variation defuzzification methods have largely 

developed. However, they have different performances in different applications 

according to membership function for output variable, but there is no general method 

that can gain satisfactory performance in all condition (Mogharreban & Dilalla, 

2006).  Most of the practitioners of fuzzy system in human decision making problems 

utilised the defuzzification process in order to access the final results at the same time 

fulfill the human perception. According to (Saletic, Velasevic, & Mastorakis, 2002), 

in discussion on fuzzy systems, defuzzification process often is not treated as much in 

details as the other processes in the system. It seem that in the domain of 

defuzzification a practitioner has too wide possibilities of choices, so that some 

indicators in connection of defuzzification approach are welcome. The defuzzification 

method selection essentially influence the output value determined by selected 

method, so it is important to use an appropriate method in order to consider the need 

of human perception.  

In the representation of fuzzy sets, the most typical fuzzy set membership 

function used in the graph are triangular and trapezoidal. But there are others 

representation of fuzzy set membership function such as singleton, Gaussian, 

generalised bell-shape, s-shape, sigmoidal, z-shape and pi-shape ( ). In this research 

work, the linear fuzzy membership functions are considered because of the non-linear 

fuzzy sets are too complex to handle and they are normally transformed into linear 

type for convenience (M. Y. Chen & Linkens, 2004).  

 

2.4.2 Characteristics of Defuzzification 

The task of developing a general theory of defuzzification methods consider 

several characteristics or features that are important in solving human based decision 

making problems. From an application point of view the following characteristics of 

defuzzification methods are considered (Saletic et al., 2002): defuzzification result 

continuity, computational efficiency, design suitability and compatibility of fuzzy 

system. 
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Under first character of defuzzification regarding the continuity result of 

defuzzification, it considers the small changes in membership values of the output 

fuzzy set should not give large changes in the results of defuzzification. In fuzzy 

system, this character is seem to be very important because it requires input and 

output continuity where if there are small changes in input parameters, it should give 

or should effect small changes as well of output values. In this respect, the 

defuzzification methods must be continuous because assuming overlapping output 

membership functions, the best compromise does not jump to a different value with a 

small change to the inputs. Some defuzzification methods like centre of maximum 

(COM) and mean of maximum (MOM) are discontinuous, because an arbitrary small 

change in the input values of the fuzzy system can cause the output value to switch to 

another to get more plausible output.  The resulting behavior of fuzzy system using 

any of defuzzification methods have been studied to establish the automatic and 

computational determination of fuzzy membership functions. This is in order to come 

out the optimal solutions in fuzzy systems (Mitsuishi, Sawada, & Shidama, 2009).  

Computational efficiency refers to the dependency of defuzzification method 

in computing mostly on the types and a number of operations that required for 

obtaining the results of defuzzification. Consistency refers to the process in 

computing and the results’ achieve of defuzzification process possible for all cases 

fuzzy numbers that considers the need of human intuition as well. The several 

defuzzification methods exploit the pre-calculation to achieve an excellent 

approximation with substantially fewer computations. The efficiency of 

defuzzification computation is important because it is the main parameter for the 

choice, since, for instant in real time systems the number of operations required to 

evaluate a defuzzified value should be strongly reduced to concretely achieve the 

maximum efficiency. Many researchers have been working on the choice of 

defuzzification methods for execution of fuzzy systems and their impacts for the 

performance’s systems. This is describes that the computational efficiency in 

defuzzification method is utmost important in for fuzzy system design.  

Design suitability expresses the impact of a defuzzification method on a 

software or hardware implementation and tuning of fuzzy system. The fuzzy systems 

will achieve better prediction accuracy than the classical counterpart, by 

incorporating fuzzy suitability membership of environment factors in the modelling 

process. Moreover, these fuzzy systems also produce more informative fuzzy 

suitability system through the choice of defuzzification process. The suitable design 

of defuzzification methods selection in fuzzy systems can be converted into 

conventional systems with clearly defined the problems. Qiu et al., (2013) applied 

fuzzy suitability in modelling the suitability of land to support specific land uses 

using Geographic information systems (GISs) (Qiu, Chastain, Zhou, Zhang, & 
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Sridharan, 2013). The authors examined the classical models within a more general 

framework defined by fuzzy logic concept. Through a defuzzification procedure 

based on the model calibration procedure proposed in the study, the fuzzy suitability 

maps is converted into conventional suitability maps with clearly defined boundaries 

were also derived.  

Compatibility of fuzzy system refers to operation that can be used in fuzzy 

systems like inference and composition. According to (Oussalah, 2002), previous 

studies were accomplished on the topological level as well as on the parametrization 

level that include Left – Right type (Dubois & Parade, 1980) in order to improve the 

foundation of the theory and to simplify the performance of different combination 

operations in fuzzy sets. Later, in many practical applications, the need for a 

permanent switch from a fuzzy representation to numerical representation that is 

carried out by the defuzzification process which is easily recognizable. The benefit of 

such analysis in compatibility of fuzzy system is when the matter is the determination 

of the defuzzified value affecting to the results of some manipulation of fuzzy 

quantities, the explicit determination of the resulting fuzzy sets or fuzzy distribution 

can be removed, while the process may be restricted to a standard computation over 

single values corresponding to defuzzify initial inputs.  

It seem that in the domain of defuzzification, these characteristics 

abovementioned are described and discussed the defuzzification features. These 

characteristics are presented for defuzzification of type-1 fuzzy sets, type-2 fuzzy sets 

and z-numbers as well. The general ideas underlying defuzzification representation of 

type-1 fuzzy sets are applicable for type-2 fuzzy sets and z-numbers. However, the 

defuzzification computation process is different for each type of fuzzy set. Some of 

the defuzzification methods for type-1 fuzzy sets are not compatible for type-2 fuzzy 

sets and z-numbers and instead.  

2.4.3 Defuzzification Methods 

This section briefly identifies the most commonly used defuzzification 

mechanisms in the literature of fuzzy system. Fundamentally, it is worth noting that 

the defuzzification methods focus on geometric area-based computation applications. 

There are four most often used defuzzification methods in the literature of fuzzy set 

theory as follows. 

Centre of gravity (COG) is most prevalent and is often used as a standard 

defuzzification method in experimental as well as decision making models. This 

method also referred to as a centre of area (COA) method in fuzzy literature. It 

returns the centre of area under the curve that make sure the shape of fuzzy set would 

balance along x-axis and y-axis. Recently, most of researchers use word ‘centroid’ in 
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representing COG or COA. The term centroid is widely applied in many human 

decision making based problems especially ranking problems. Ranking problem plays 

an important role in practical use of MCDM techniques. Mean of maxima (MOM) is 

a defuzzification method that computes the centre of gravity of the area under the 

maxima of fuzzy set. According to (Filev & Yager, 1991), MOM method generates 

poor steady-state performance and yields a less smooth response curve compare with 

the COG method. In general, the MOA is not similar to the centroid method. This is 

 Zbecause, for symmetric regions, the concept of MOA is more or less overlap, 

apart from some technical issues. These methods are quite popular as they are 

computationally inexpensive and easy to implement within fuzzy systems.  

2.4.4 Centroid Defuzzification 

According to (Y.-M. Wang, 2009), centroid point can be defined as a point 

which is situated at a middle of fuzzy number which is reflects as a representation of 

fuzzy number using crisp number. Centroid defuzzification process is significant in 

computing ranking fuzzy numbers since most of the centroid methods were 

developed for ranking purposes. Ranking fuzzy numbers is one of the important task 

that use defuzzification process has become an essential role in real-world use such as 

in approximate reasoning, decision making, optimizing, forecasting, control and other 

usage. In fuzzy decision analysis, fuzzy numbers are frequently applied to describe 

the performance of criteria and alternatives in modelling a real world human decision 

making based problem (Ramli & Mohamad, 2009). The centroid concept has been 

applied in various disciplines since hundred years ago, the involvement of centroid 

concept in ranking fuzzy numbers only started in 1980 by Yager. Other than (Yager, 

1980), a number of researchers like (Murakami & Meada, 1984), (Cheng, 1998), 

(Shi-Jay Chen & Chen, 2002) (Chu & Tsao, 2002), (Shi-Jay Chen & Chen, 2003), (Y. 

M. Wang, Yang, Xu, & Chin, 2006), (Liang, Wu, & Zhang, 2006), (Shieh, 2007), (S. 

J. Chen & Chen, 2007) and (Y. J. Wang & Lee, 2008) have also implemented 

centroid concept in developing ranking method for fuzzy numbers. For each of 

centroid defuzzification method, researchers present their own definition and 

representation where some of the centroid methods are based on the value of x alone 

while some are based on contribution of both x and y values (Ramli & Mohamad, 

2009).  

   In type-1 fuzzy logic system, the output is type-1 fuzzy set. This set is 

normally defuzzified using the useful defuzzification methods involve a centroid 

calculation (Mendel, 1995). Type-2 fuzzy logic system has been developed, where the 

output is a type-2 fuzzy set. A major calculation in a type-2 fuzzy logic system is 

type-reduction (Karnik & Mendel, 2001a), where it can be represented as an 

extension of type-1 defuzzification process. Meaning that, before the conversion 
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process of type-2 fuzzy numbers into crisp numbers, we need to reduce type-2 fuzzy 

numbers into type-1 fuzzy numbers. This concept of type-reduction has implemented 

in practical applications for generalised type-2 fuzzy sets, interval type-2 fuzzy sets, 

also Gaussian type-2 fuzzy sets. Several researchers applied type-reduction procedure 

in their study such as, (F. Liu, 2008) proposed an efficient centroid type-reduction 

strategy for generalised type-2 fuzzy logic system, (Hsiao, Li, Lee, Chao, & Tsai, 

2008) designed of interval type-2 fuzzy sliding-mode controller form linear and non-

linear system, (Figueroa, 2012) proposed an approximate method for type-reduction 

of an interval type-2 fuzzy set based on cut . Later, some researchers have 

developed direct method to defuzzify fuzzy numbers without type-reduction 

procedure such as (Nie & Tan, 2008), (Greenfield, Chiclana, Coupland, & John, 

2009), (Gong, 2013),  (Gong, Hu, Zhang, Liu, & Deng, 2015), (Abu Bakar & Gegov, 

2015a).  

The notion of z-numbers has more capability to describe the uncertain 

information in human decision making based problems. The theory of z-number is 

still pre-mature where to convert z-numbers into crisp numbers are significant in real 

world case studies. Defuzzification of z-numbers are quite tricky because the 

consideration of two components (fuzzy restriction and reliability of fuzzy restriction) 

for one z-number representation. Under this situation, (Kang et al., 2012b) proposed a 

conversion method for z-numbers to classical fuzzy numbers which are type-1 fuzzy 

sets according to the multiplication operation of triangular fuzzy numbers. Later, 

(Kang, Wei, Li, & Deng, 2012a) proposed a method of converting z-numbers to 

classical fuzzy numbers that is according Fuzzy Expectation. This conversion method 

has more influence to describe the knowledge of human being and widely used in 

uncertain information. In solving human decision making based problems, much of 

the information on which decision are based in uncertain condition. Z-numbers are 

extension of type-1 fuzzy sets that has capability to describe the knowledge of human 

being in uncertain environment. There is number of researchers employed z-numbers 

in their research works such as, (Kang et al., 2012a), (Azadeh et al., 2013), (Xiao, 

2014) and (Yaakob & Gegov, 2016). 

A fuzzy MCDM model is used to assess the alternatives versus selected 

criteria through a group of decision makers, where suitability of alternatives versus 

criteria, and the importance weights of criteria, can be evaluated in linguistic values 

represented by fuzzy numbers (Hadi-vencheh & Mirjaberi, 2011). Most of MCDM 

methods apply ranking operation for criteria or alternatives selection. In dealing with 

ranking fuzzy numbers in fuzzy MCDM models, centroid methods are commonly 

used in and often require membership functions to be known. There are numerous 

fuzzy MCDM techniques based on centroid of fuzzy numbers have been proposed 

thus far such as (Sun, 2010), (Rostamzadeh & Sofian, 2011), (Hadi-Vencheh & 
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Mokhtarian, 2011), (Azadeh et al., 2013), (Kahraman, ßar, ßi, Sarı, & Turanog ˘lu, 

2014), (Abdullah & Zulkifli, 2015), (Salehi, 2015), (Yaakob & Gegov, 2016) and so 

forth. There are many researchers and practitioners have attempted to understand the 

logic and the workings of the defuzzification operation. It has been found that in 

many cases that the choice of defuzzification method in human decision making 

based problems can be critical in designing the fuzzy system in MCDM models. Due 

to this sense, the next section briefly overviews decision making process followed by 

decision making process under fuzzy environment.  

 

2.5 Decision Making 

This section explains a comprehensive review on decision making process 

which regular part of human being life with thousands of decisions having to be made 

in many fields every single day. All of us make decision of varying important every 

day, thus the idea of decision making study is to give best solution in evaluating the 

available alternatives in order to choose the most desirable one.  

 

2.5.1 General Overview of Decision Making 

Decision making can be described as the study of identifying and choosing 

alternatives that based on the values and preferences of the decision makers. It can be 

considers as a cognitive process of ranking and evaluating available alternatives from 

a list of opinions in order to choose the most desirable solution (Zimmermann, 1987). 

Decision making is crucial factor to succeed in any discipline, particularly in a field 

which requires handling large amounts of information and knowledge (Jato-Espino & 

Canteras-Jordana, 2014). Another definition from (Ribeiro, 1996), he defined that 

decision making can be justified as a process of choosing or electing sufficiently good 

alternative or course of action, from a set of alternatives to attain a goal or goals. 

From these definition, for every decision making process, the consideration of a 

decision goal, a set of criteria and a set of alternatives. It can be emerged as a sub-

discipline of operation research intended to facilitate the resolution of these issues. 

Every single decision is made within a decision environment, which is defined 

as the gathering of information, criteria, values, preferences and alternatives available 

at the time of decision. In decision making environment, the state of nature and 

alternatives are confronted decisions involve a choice of one or more alternatives 

from among an arrangement of possible outcomes, the choice is being based on how 

well each alternative is measured up to a set of predefined criteria. Much decision 

making environments involve uncertainty. Hence, in dealing with imprecision, vague, 

random and uncertain information, one of the most important aspects for a useful 
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decision making process incorporate with fuzzy set theory is implemented in many 

decision making problems. According to (Bellman & Zadeh, 1970), much of the 

decision making problems in real world phenomena take place in an environment 

where the goals, the constraints and the consequences of possible actions are not 

known precisely. In this research work, the integration of decision making process 

with fuzzy set theory is considered in order to deal quantitatively with decision 

making problems under fuzzy environment.  

 

2.5.2 Multi Criteria Decision Making 

Multi criteria decision making (MCDM) is a one of the most popular branches 

of decision making studies. The field of MCDM can be traced to Benjamin Franklin 

(1706-1790), who was the American statesman (Steuer & Zionts, 2016). He 

specifically designed as a simple paper system for deciding important issues. MCDM 

was introduced in the early 1970’es as one of the important study in dealing with 

decision making problems. It is standout amongst the most perceived branches of 

decision making over the last four decades for solving decision problems in the 

presence of multiple criteria and alternatives. It has become one of the most important 

and fastest growing subfields operation research and management science. There are 

a lot of modern researchers have considered MCDM problems that represented as an 

evaluation problem, where the decision maker selects among a finite set of discrete 

alternatives as a design problem (Köksalan, Wallenius, & Zionts, 2011). The set of 

decision alternatives in MCDM is described with a mathematical model.  

The motivations for developing the MCDM techniques to decision making 

problems emerged from the limitation of the classical decision making techniques to 

the study of single criterion decisions (Banville, Landry, Martel, & Boulaire, 1998). It 

also capable in handling massive real decision making problems that involve many 

criteria and decision makers. It is worth noting that descriptions of MCDM is to guide 

decision makers in determining the course of action that best achieves the long term 

goals. Saaty was motivated to develop a simple way to help lay people make complex 

decisions in MCDM problems (Saaty, 2008). According to (Dooley, Sheath, & 

Smeaton, 2005) several advantages of MCDM can be concluded: provide people with 

a quantitative means to assist with decision making where there are multiple and 

conflicting goals measured in different units, making a decision more transparent to 

others, providing a means of problems structuring and working through the 

information, providing a focus for discussion, helping people better understand a 

problem from their own and other’s viewpoints and so forth. The field of MCDM is 

used in discussion of many established research studies done by (Zimmermann, 

1987), (E Triantaphyllou, Shu, Sanchez, & Ray, 1998), (Satapathy & Bijwe, 2004), 

(Shyur & Shih, 2006), (W. S. Lee, Tzeng, Guan, Chien, & Huang, 2009), 
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(Mamaghani, 2012), (Zolfani, Esfahani, Bitarafan, Zavadskas, & Arefi, 2013), (Jato-

Espino & Canteras-Jordana, 2014) and so forth.  

On the classical decision making approaches, there is no uniform 

classification of MCDM techniques. As a consequence, there are many ways to 

classify them, such as the form of the model linearity (e.g. linear, non-linear or 

stochastic), the characteristics of the decision space (e.g. finite or infinite, and the 

solution process (prior specification of preferences or interactive). Later, (Hwang & 

Yoon, 1981) and (Zimmermann, 1987) provided a general classification of the 

MCDM fields into two categories that based on different purposes and different data 

types which are multi objective decision making (MODM) and multi criteria decision 

making (MCDM). Multi objective decision making studies the decision problems is 

which the decision space is in continuous condition. It is therefore not associated with 

problems in which alternatives have been predetermined. The decision makers are 

primarily concern to design the most promising alternative with respect to limited 

resources. Multi objective decision making (MODM) is used for design, dealing with 

the problem or resolving a set of conflicting goals that cannot be achieved 

simultaneously. A typical example is mathematical programming problems with 

multiple objective functions (Evangelos Triantaphyllou, 2000).  

Multi criteria decision making (MCDM) is associated with problems together 

with a discrete decision space where it involves evaluation of a definite set of 

alternatives according to a predefined set of evaluation attributes. An attribute or 

criterion is a property, quality or characteristic of an alternative. For evaluating an 

alternative, ‘a criterion is set up for each of its attribute and the attribute is examined 

against the criterion'. Because of the one to one correspondence between an attribute 

and a criterion, sometimes attributes are also referred to as criteria. In the context of 

MCDM, the word attributes and criteria are used interchangeably (Xu & Yang, 2001). 

The terms MADM and MCDM are normally used the same class of models. Some 

researchers or practitioners used MADM and MCDM as the same class of models in 

their studies. In MCDM problems, there are two typical categories of problems and 

the distinction between the two categories is based on the number of alternatives 

under evaluation: the first involves a finite number of alternative solutions and 

another one having an infinite number of solutions (Xu & Yang, 2001). Commonly, 

in problems related to evaluation and selection, the number of alternative solutions is 

limited whereas, in problems associated with design, the potential alternative 

solutions could be infinite. If this is the case, the problem is referred to as MODM 

instead of MCDM problem. Looking back to the research problem, one can be 

noticed that it is a decision selection problem with a finite number of alternatives 

available. Therefore, the problem tackled in this study should be considered as a 

MCDM problem.  
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Generally, MCDM problems are complex and ill-structured. When the 

MCDM technique is used, the decision making processes are composed of three main 

steps, as suggested by (Belton & Stewart, 2002) which are; 1) Problem identification 

and structuring; 2) Model building and utilisation and; 3) Model testing and taking 

action. According to (Evangelos Triantaphyllou, 2000), in handling MCDM process, 

the main quantified and formal procedures that should be utilised for any decision 

making involving multiple criteria and finite alternatives are identified as follows: 1) 

Determine the relevant criteria and alternatives associated with the problems 

considered; 2) Attach numerical measures to the relative importance of the criteria 

and the impacts of the alternatives on these criteria and; 3) Process the numerical 

values to determine a ranking for each alternative. Most of MCDM techniques 

proposed in the literature are applied to judge group decision making.  

A group decision making can be defined as ‘two or more people who are 

jointly responsible for detecting a problem, elaborating on the nature of the problem, 

generating possible solution, evaluating potential solutions, or formulating strategies 

for implementing solutions’ (DeSanctis & Gallupe, 1987). In group decision making 

process, in finding mathematical model for aggregating the information preferences 

expressed by the group members and to determine the weights or priorities or ranking 

for the decision alternatives are core problem (Indrani & Saaty, 1993). This group 

decision making is used as basis for establishing the MCDM techniques for judging 

group decision supports approaches. While much of the literature of MCDM 

techniques discuss the capability of each technique to handle and solve the variety 

decision making problems with a group of decision makers. Among of them are 

Analytic Hierarchy Model (AHP), Analytic Network Process (ANP), preference 

relation, ELimination and Choice Expressing Reality (ELECTRE), Preference 

Ranking Organization METhod for Enrichment of Evaluations (PROMETEE), 

Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), Simple 

Additive Weighting Method (SAW), multidisciplinary optimization compromise 

solution (VIKOR), Decision Making Trial and Evaluation Laboratory (DEMATEL), 

and so forth. These MCDM techniques have been applied in many situations in real 

world decision making problems. In this research work, only several MCDM 

techniques are considered which are AHP, TOPSIS, preference relation and VIKOR. 

It has been found that in many cases that the choice of MCDM techniques in human 

based decision making problems under uncertain or imprecise environment. 

Considering this sense, next section discusses modelling uncertainty in MCDM 

techniques processes. 
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2.5.3 Modelling Uncertainty in Multi Criteria Decision Making 

This section provides a review the tools that can model the uncertainty issue 

in MCDM problems. Uncertainty can be defined as the situation which is incomplete 

or conflicting information. According to (Zimmermann, 2000), he defined uncertainty 

in the context of practical application in MCDM as; Uncertainty implies that in a 

certain situation a person does not dispose about information which quantitatively and 

qualitatively is appropriate to describe, prescribe or predict deterministically and 

numerically a system, its behavior or other characteristic. There are two different 

types of uncertainty which are external and internal uncertainties (Durbach & 

Stewart, 2012). External uncertainty denotes concern regarding issues outside the 

control of the decision makers. It refers to results from lack of understanding or 

knowledge about the consequences of a particular choices (Stewart, 2005). While 

internal uncertainty relates to the process of problem structuring and analysis, as well 

as to ignorance, complexity of information, subjective judgements and imprecision in 

human judgements (Durbach & Stewart, 2012). In human based decision making 

problems, it is common that people may not be 100 percent sure when making 

subjective judgements.  

Since the problem of selecting the best alternatives in decision making 

problems is subject to uncertainty due to imprecision and subjectivity in the decision 

makers’ judgements, method for representing uncertain information in decision 

making are summarised and analysed in the following: probability theories, the 

Dempster-Shafer (D-S) theory, rough set theory and fuzzy set theory. The previously 

reported review indicates very clearly that probability theories, the Dempster-Shafer 

theory, rough set theory and fuzzy set theory are the most frequently used frameworks 

for handling information about uncertainty in decision making. Despite the 

aforementioned limitations, fuzzy set theory can provides a vital alternative to 

probability theories, the Demspter-Shafer or rough set for modelling uncertainty. The 

subject nature of human’s opinions, incomplete judgements and ranking evaluations 

in many researches are major barriers against using the tools of probability theories, 

the Dempster-Shafer and rough set theory. Since there are several limitations from 

Demspter-Shafer or rough set, fuzzy set theory offers great potential in modelling 

uncertainty in this study.  

Generally, the probability theory has several shortcomings of providing a 

comprehensive methodology for dealing with uncertainty and imprecision (Lotfi A 

Zadeh, 1994), there are: 1) Probability does not support the concept of fuzzy event; 2) 

Probability offers no techniques for dealing with fuzzy quantifiers like many, most, 

several, few: 3) Probability theory does not provide a system for computing with 

fuzzy probabilities expressed as likely, unlikely, not very likely, and so forth; 4) 
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Probability theory does not provide methods for estimating fuzzy probabilities; 5) 

Probability theory is not sufficiently expressive as a meaning-representation 

language; 6) The limited expressive power of probability theory makes it difficult to 

analyse problems in which the data are described in fuzzy terms. Fuzzy logic is pretty 

much the same tools as probability theory. In any case, it is utilising them trying to 

capture a very different idea. According to (Lotfi A. Zadeh, 2003), to enable 

probability theory to deal with perceptions, it is necessary to add fuzzy component 

drawn from semantics of natural languages. Without this fuzzy component, there are 

many situations in which probability theory cannot answer questions that arise when 

everyday decisions have to be made on the basis of perception-based information. 

Fuzzy logic is all about the degrees of truth, where it is about fuzziness and partial or 

relative truths. Probability theory is keen on trying to make predictions about events 

from the state of partial knowledge. But, probability theory says nothing about how to 

reason about things that are not entirely true or false.     

Its advantage over these other theories is its ability to represent imprecise and 

incomplete judgement, which is a typical problems in the evaluation process for 

selection of alternatives. Obviously, fuzzy set theory is the most applicable of these 

tools for the modelling of uncertainty due to the huge numbers of papers published in 

the literature. Moreover, fuzzy set theory requires less time regarding the computation 

process because there are many software programmes that can be applied in analysing 

and designing fuzzy set theory concepts. Therefore, for this research work, the fuzzy 

set theory approach is considered as the most appropriate and practical tools to handle 

uncertainty.  

 

2.5.4 Fuzzy Multi Criteria Decision Making 

This section discusses the consideration fuzzy set theory in MCDM 

techniques in solving real world problems under fuzzy environment. It is not 

surprising to see that uncertainty always exist in the human based decision making 

problems (Shu-Jen Chen & Hwang, 1992). In human based decision making 

problems, uncertain and imprecise judgements by decision makers are taken into 

account through the application of fuzzy numbers instead of crisp numbers by using 

linguistic scales. Moreover, there are some difficulties to make decisions where 

experts or decision makers are unable to give exact numerical values to their 

preferences. In such cases, in evaluating the alternatives, linguistic assessments are 

used instead of numerical values to express preferences (Adamopoulos & Pappis, 

1996). Due to flexibility of using linguistic variables, incorporating fuzzy set theory 

in MCDM problems is a straightforward process to assess decision makers’ 

judgements.  
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Fuzzy set theory has attracted the attention of many researchers and 

practitioners for modelling the uncertainty in MCDM problems.  Bellman and Zadeh 

were the first who proposed the decision making under a fuzzy environment, then 

they initiated fuzzy multi criteria decision making (FMCDM) (Bellman & Zadeh, 

1970). In decision making situation, making choices which depends on numerous 

factors limited to human ability that is very difficult to deal with (T. C. Wang & 

Chen, 2008). The consideration of fuzzy aspect in MCDM techniques is significant in 

order to solve these issues. In the literature, there are huge amount of research studies 

integrating fuzzy set theory with MCDM techniques to deal with uncertainty aspect of 

any decision making problem (Van Laarhoven & Pedrycz, 1983), (Buckley, 1985) 

(Boender, de Graan, & Lootsma, 1989), (Chang, 1996), (E Triantaphyllou et al., 

1998),  (Yeh et al., 2000), (Kahraman, Cebeci, & Ruan, 2004), (T.-C. Wang & 

Chang, 2007), (T. C. Wang & Chen, 2008), (Kang et al., 2012b), (S. Chen & Wang, 

2013), (Abdullah & Najib, 2014), (Mardani et al., 2015), (J. Wang et al., 2015) and 

(Keshavarz Ghorabaee, 2016). 

Most of the research utilising fuzzy aspect in MCDM techniques consider 

fuzzy numbers in linguistic variables to express decision makers’ preferences in order 

to evaluate the criteria and alternatives. Numerous studies have attempted to discuss 

about fuzzy numbers as linguistic variables. Most of the researchers implemented 

triangular fuzzy numbers instead of trapezoidal fuzzy numbers as linguistic variables 

to express natural languages (Kahraman et al., 2004), (T.-C. Wang & Chang, 2007), 

(Lin & Wu, 2008), (Hadi-Vencheh & Mokhtarian, 2011) and so forth. This is because 

the representation of triangular fuzzy numbers is not as complicated as trapezoidal 

fuzzy numbers. However, studies on trapezoidal fuzzy numbers for MCDM 

techniques have aroused lately. Zheng et al., (2012) adopted trapezoidal fuzzy 

numbers in fuzzy AHP for work safety in hot and humid environment in Taiwan 

(Zheng, Zhu, Tian, Chen, & Sun, 2012). Salehi developed a hybrid fuzzy MCDM 

approach for project selection problem (Salehi, 2015). Fu et al., (2011) presented 

fuzzy AHP and VIKOR methodology to perform a benchmarking analysis in the hotel 

industry (Fu, Chu, Chao, Lee, & Liao, 2011). Thus, this research study aims to 

investigate the implementation of trapezoidal fuzzy numbers that are preferred instead 

of triangular fuzzy numbers.  

Aforementioned in Section 2.3, there are three different types of fuzzy sets 

found in literature namely type-1 fuzzy sets, type-2 fuzzy sets and z-numbers. Each of 

these fuzzy sets has their own capability in dealing with imprecision, vagueness, 

randomness and uncertainty. Type-1 fuzzy sets have limited capability in modelling 

uncertainty because the representation of type-1 fuzzy sets is on natural language 

which is insufficient enough to model human perception. Recently, type-2 fuzzy sets 

are used predominantly in MCDM problems. Several studies have been discussed in 
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this thesis to implement type-2 fuzzy sets in MCDM problems. Gong investigated the 

fuzzy multi-attribute group decision making problems to solve global supplier 

selection which all the information given is expressed in interval type-2 fuzzy sets 

(Gong, 2013). Kahraman lead his research team to develop an interval type-2 fuzzy 

AHP method based on new defuzzification method proposed to a supplier selection 

problem in Turkey (Kahraman et al., 2014).  Abdullah and Zulkifli integrated fuzzy 

AHP and fuzzy DEMATEL together with interval type-2 fuzzy sets and was tested 

this proposed methodology to a case of human resource management (Abdullah & 

Zulkifli, 2015). 

Decision are based on information given. Most of the information on which 

decisions are based is uncertain. In describing the uncertain information, information 

must be reliable. Basically, the concept of z-numbers relates to the issues of reliability 

of information as mentioned in Section 2.3.3. In MCDM problems, the consideration 

of z-numbers as a linguistic variable are lesser than type-1 and type-2 fuzzy sets. This 

is because the z-numbers present the latest version of fuzzy sets in the literature. 

Several studies have done to implement z-numbers with MCDM techniques. Kang et 

al., (2012) studied vehicle selection for journey under uncertain environment (Kang et 

al., 2012b). Moreover, Azadeh et al., (2013) proposed new AHP method based on z-

numbers to search the criteria’s for the evaluation of best universities (Azadeh et al., 

2013).  Xiao (2014) proposed new multi criteria fuzzy decision making method using 

z-numbers by converted z-numbers to the interval-valued fuzzy set with footprint of 

uncertainty (FOU) (Xiao, 2014). Kaminski et al., (2015) proposed fuzzy MCDM 

model to select the facility location using PROMETHEE under a fuzzy environment 

(Kamiński et al., 2015). Later, Yaakob & Gegov (2016) proposed interactive TOPSIS 

method using z-number to rank stock selection (Yaakob & Gegov, 2016). 

 

2.6 Sensitivity Analysis 

This section discusses the sensitivity analysis application in decision making 

models for validation purposes. In this research work, sensitivity analysis is utilised 

as validation method in order to evaluate how robust the optimal solution produced 

when different circumstances are considered with making changes in parameters. 

Thus, sensitivity analysis acts as an instrument for the assessment of the input 

parameters to apply the model efficiently and to enable a focused planning of future 

research and field evaluation.  

2.6.1 General Overview of Sensitivity Analysis 

It is recognized that sensitivity analysis is one of the validation of the results 

of mathematical models or systems. Sensitivity analysis can be defined as the study 
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how uncertainty in the output of a model can be attributed to different sources of 

uncertainty in the model input (Saltelli, 2004). Sensitivity analysis is broadly defined, 

is the investigation of these potential changes and errors, and their impacts for the 

conclusion to be drawn from the model (Pannell, 1997). Sensitivity analysis is 

valuable tool for identifying important models parameters, testing the model 

conceptualization, and improving the model structure (Bahremand & Smedt, 2008). 

Sensitivity can be beneficial for the wide range of purposes including (Pannell, 1997); 

test the robustness of the results of a model or system in the presence of uncertainty; 

increased understanding of the relationship between input and output variable in a 

model or system; uncertainty reduction; ease the calibration stage. The sensitivity 

analysis after the problem solving can effectively contribute to making accurate 

decisions. The conduction of sensitivity analysis is to indicate how important the 

model make the changes to management suggested by the changing optimal solution. 

The robustness and reliability of the results obtained which mean that the model 

insensitive to changes in parameters. 

2.6.2 Sensitivity Analysis in Multi Criteria Decision Making 

Sensitivity analysis for MCDM techniques is one of the discussed issues in 

MCDM fields. Many researchers studied regarding this technique about a couple of 

decades ago. The MCDM techniques always deal with unbalanced and changeable 

data inputs. Therefore, the sensitivity analysis after problem solving can effectively 

contribute to making accurate decisions by assuming that a set of weights for 

attributes or alternatives then obtained a new round of weights for them, so that the 

efficiency of alternatives has become equal or their order has changed. It focused on 

determining the most sensitive criteria and the least value of the modification. It 

clearly indicates that the sensitivity analysis is calculated the changing in the final 

score of alternatives when a changes occur in the weight of one alternative. The 

results of MCDM techniques is crucially needed to validate and calibrate in analysing 

the quality and how robustness of MCDM techniques to reach a right decision under 

different conditions.  

Sensitivity analysis is performed by changing the specific input parameter on 

model to determine the impact of such changes on the evaluation of the outcomes and 

to test the strength of the results of the proposed model. It, therefore, provides the 

information on the stability of the final ranking in MCDM techniques. Of the ranking 

is highly sensitive to small changes in the parameter values, a careful review of those 

parameters is recommended. Thus, sensitivity analysis after the problem solving can 

effectively contribute to making accurate decisions. In this research study, the 

scenario was investigated to examine the stability of the final ranking under varying 

weights of criteria which are the criteria weights. When a change occurs in the weight 
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of one criterion, the change in the score and final ranking of alternatives are 

calculated. In doing so, a sensitivity analysis method proposed by (Amini & 

Alinezhad, 2011) is applied here. In varying the weight of one criterion is 

accompanied by decreasing the weights of others criteria by certain amounts such that 

the total of all criteria weights is equal to one.   

Many studies in the literature where the application of sensitivity analysis in 

MCDM techniques have been found. Bevilacqua & Braglia, (2000) improved the 

effectiveness of the application of AHP model for selecting the maintenance strategy 

for important Italian oil refinery using sensitivity analysis (Bevilacqua & Braglia, 

2000). Besides, Memariani et al., (2009) proposed a new sensitivity analysis of 

MADM problems for SAW technique (Memariani, Amini, & Alinezhad, 2009). 

Amini & Alinezhad, (2011) developed a new sensitivity analysis MADM problems 

for TOPSIS technique (Amini & Alinezhad, 2011). Likewise, Rezaie et al., (2014) 

developed integrated fuzzy AHP and VIKOR to evaluate the performance of 27 

Iranian cement firms in the Tehran stock exchange market for two years which from 

2008 until 2009, separately (Rezaie, Ramiyani, Nazari-Shirkouhi, & Badizadeh, 

2014). 

 

2.7 Research Problems 

In this research work, the main problems are considered in developing of new 

hybrid MCDM model that is incorporated with new defuzzification method in 

evaluating decision making problems in fuzzy environment. This research addresses 

the evaluation and selection processes in order to understand the generic phenomena 

in decision making problems, whereby at the same time it considers the need for 

human intuition or human judgement in computational process. This section discusses 

research problems that cover gaps and limitations faced by established centroid 

defuzzification methods and established hybrid fuzzy MCDM models in evaluating 

the weights and alternatives. The following details signify gaps and limitations of the 

established methods in literature of centroid defuzzification methods and hybrid fuzzy 

MCDM models. 

The first and foremost gap in the literature of centroid defuzzification methods 

is the inability of established centroid methods in converting fuzzy numbers into 

regular numbers with considering the degree of membership component. The centroid 

proposed by (Yager, 1980) only considers horizontal axis in Cartesian plane whereby 

he did not consider the vertical axis which represents a membership degree 

component. He made no assumption on the normality and convexity of fuzzy number. 

Hence, the centroid method that proposed by (Yager, 1980) is biassed and irrelevant 
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in finding the correct centre point of fuzzy number. Another main gap in the literature 

for centroid defuzzification methods is there are some established centroid methods 

such as (Y. M. Wang et al., 2006), that are not appropriately applicable in solving 

decision making problems. With regards to the discussion made on the first gap in 

term of considering y – axis or vertical axis in fuzzy numbers representation and, it is 

worth considering that all aforementioned centroid methods are unable to deal with 

real decision making problems appropriately. This is because all of them are limited 

to give correct centre point in certain cases of fuzzy numbers theoretically which 

implies that all of them are unable to solve decision making problems in real world 

situations under fuzzy environment.  

In literature, most of centroid defuzzification methods unable to present 

human intuition or human judgement properly in their computational formulation 

such as (Yager, 1980), (Murakami & Meada, 1984), (Cheng, 1998), (Shi-Jay Chen & 

Chen, 2002) (Chu & Tsao, 2002), (Shi-Jay Chen & Chen, 2003) and (Liang et al., 

2006). This is refer to the capability of producing the correct centroid formulae for all 

possible cases of fuzzy numbers. In real world phenomena, the representation of 

fuzzy events are too varies. Even, some of the established centroid defuzzification 

methods are developed to focus on particular type of fuzzy numbers. The 

applicability of centroid defuzzification for all types of fuzzy sets are limited since 

most of the established centroid methods are developed for type-1 fuzzy sets only. As 

it should be pointed out that only several established centroid defuzzification methods 

such as (Karnik & Mendel, 2001a), (Wu & Mendel, 2007), (Nie & Tan, 2008), 

(Gong, 2013), (Kang et al., 2012a, 2012b), (Azadeh et al., 2013) and (Abu Bakar & 

Gegov, 2015b) are developed or extended for type-2 fuzzy sets or z-numbers. In 

developing mathematical formulation, validation process is needed to prove the 

theoretical and empirical foundation in formulating ideas and identify underlying 

assumptions. 

While much of the literature for fuzzy MCDM techniques has their special 

ability in solving decision making problems. Some of fuzzy MCDM techniques are 

integrated or combined several techniques together to give better results in evaluating 

criteria and alternatives under fuzzy environment. This is because in some cases in 

decision making problems, not only just making the final decision. There are some 

phases are steps in solving decision making problems especially massive cases that 

need more decision making techniques to work together such as; evaluation of the 

performance of global top four notebook computer Original Design Manufacturers 

(ODM) companies (Sun, 2010); selection the best plastic recycling methods  (Vinodh, 

Prasanna, & Hari Prakash, 2014); determination of certain number of projects for 

investment from among twenty research and development (R&D) projects (Collan, 

Fedrizzi, & Luukka, 2015); evaluation of the dimensions and several criteria of 
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human resource management (HRM)  problems (Abdullah & Zulkifli, 2015) and so 

forth. The second primary gap here is most of researchers that integrate fuzzy MCDM 

techniques are unable to cope fuzzy entities appropriately in terms of imprecision, 

vagueness and uncertainty.  

There are also several limitations in previous studies performed in combining 

fuzzy MCDM techniques together which are; most of researchers and practitioners 

abandoned to consider y-axis part of Cartesian in fuzzy representation; focused on 

particular case of representation of fuzzy number only such as triangular fuzzy 

numbers; focused on particular type of fuzzy set only such as type-1 fuzzy set; 

inappropriate defuzzification method used in converting fuzzy numbers into regular 

numbers; no validation process after final results appear to evaluate the robustness of 

the model. In this research study, the development of new centroid defuzzification is 

developed in order to make sure the final results are consistent with human intuition 

or human judgment in evaluating human based decision making problems. All of 

these gaps and limitations are identified in order to improve decision making 

evaluation with considering human intuition and capable to solve uncertain 

information. 

However, in the literature centroid defuzzification methods and hybrid fuzzy 

MCDM models indicate that both of them are extensive, gaps and limitations faced 

by established research works are still unsolved. Consequently, the study is carried 

out to solve these gaps and limitations appropriately. 

 

2.8 Research Questions 

The research work identifies seven main research questions on the 

development of novel centroid defuzzification method and hybrid fuzzy MCDM 

model. All research questions are identified based on underlying the research 

problems. This indicates that research problems underpin research questions of the 

thesis. The questions are listed below: 
 

1. Is there any established centroid defuzzification method that considers 

human intuition or human judgement in their computational formulation 

which is capable of producing the correct centroid formulae for all 

possible cases of fuzzy numbers that considered in literature? 
 

2. Does the proposed centroid defuzzification method has only limited to 

type-1 fuzzy sets?  
 

3. Is there any validation process for the proposed centroid defuzzification 

method to verify how consistent there are with human intuition?  
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4. Is there any hybrid fuzzy MCDM model that integrates consistent fuzzy 

preference relations and fuzzy TOPSIS together whereby incorporate with 

proposed centroid method for defuzzification process purposes? 
 

5. Does the proposed hybrid fuzzy MCDM model have only limited to type-

1 fuzzy sets?  
 

6. Is there any validation process for the proposed hybrid fuzzy MCDM 

model to verify how robust and consistent they are?  

7. Does the implementation of centroid defuzzification method in any fuzzy 

MCDM technique give impact the final results? 

 
 

2.9 Research Objectives 

The specific objectives of this research that will realise in answering the 

research questions where the research aims are: 

1. To develop a new defuzzification method for type-1 fuzzy sets which is 

named as intuitive multiple centroid that considers all possible cases of 

fuzzy numbers which represents the correct centroid formulae from the 

viewpoint of median analytical geometry such that the results are 

consistent with human intuition. 

2. To extend the proposed intuitive multiple centroid defuzzification method 

of type-1 fuzzy sets on type-2 fuzzy sets and z-numbers. 

3. To validate the reliability and consistency of intuitive multiple centroid 

defuzzification method of type-1 fuzzy sets and its extension of type-2 

fuzzy sets and z-numbers theoretically and empirically respectively. 

4. To develop the new generic hybrid fuzzy MCDM model that consist of 

consistent fuzzy preference relations and fuzzy TOPSIS, together with the 

implementation of the proposed intuitive multiple centroid. 

5.  To extend the methodology for hybrid fuzzy MCDM model that consists 

of consistent fuzzy preference relations and fuzzy TOPSIS on type-2 fuzzy 

sets and z-numbers. 

6. To validate reliability and consistency of the proposed hybrid fuzzy 

MCDM model for type-1 fuzzy sets and its extension on type-2 fuzzy sets 

and z-numbers theoretically and empirically. 
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7. To apply the proposed hybrid fuzzy MCDM model that is incorporated 

with intuitive multiple centroid for type-1 fuzzy sets and its extension on 

type-2 fuzzy sets and z-numbers in decision making case study, then 

validate the proposed models with the established hybrid fuzzy MCDM 

models using sensitivity analysis. 

 

2.10 Research Contributions 

This research study has contributed to knowledge in the form of theoretical 

and practical contributions. Research questions and research objectives are 

underpinned the research contributions. This study makes some significant theoretical 

contributions in the following ways. 

The first main theoretical contribution of this study is proposed a new centroid 

defuzzification method for type-1 fuzzy sets and its extension for type-2 fuzzy sets 

and z-number to comprehend the centroid defuzzification formulation that consistent 

with human intuition in decision making problems. In the literature, there are many 

centroid defuzzification methods for fuzzy numbers proposed, but there is no research 

that extends the centroid method into type-2 fuzzy sets and z-numbers. Moreover, the 

proposed centroid defuzzification methods might be applied to any decision making 

model with uncertainty in different areas. The theoretical validations for the proposed 

centroids are broadly illustrated in Chapter 4.  

In ongoing effort, the second theoretical contribution is the development of a 

novel hybrid fuzzy MCDM model based on consistent fuzzy preference relations and 

fuzzy TOPSIS as well which takes into account the application of new centroid 

defuzzification method that is mentioned in point one. The consistent fuzzy 

preference relations has been extended by including the defuzzification process to get 

the weight of criteria before the final ranking evaluation process is implemented. The 

improvising of fuzzy TOPSIS has been extended by considering several additional 

steps compare to classical one including the application of different normalisation 

method used. The proposed centroid defuzzification method is applied for alternatives 

evaluation phase to get the final rank. The novel hybrid fuzzy MCDM model is 

validated using sensitivity analysis to evaluate the robustness of the results of a model 

or system in the presence of uncertainty. 

The third of theoretical contribution of this study is that there are several 

prototypes of decision making tools and sensitivity analysis calculator are developed 

in Microsoft Excel. The decision making tools present the proposed hybrid fuzzy 

MCDM model that consist of consistent fuzzy preference relations and fuzzy TOPSIS 

together with new centroid defuzzification method. The prototypes are developed in 
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order to assist decision makers to implement the proposed methodology for ranking 

alternatives with considering the criteria’s weight. Moreover, the implementation of 

the prototypes are necessary as in fuzzy decision making environment where fuzzy 

numbers are utilised as data representation. Thus, this indicates that these prototypes 

are developed not only to rank the alternatives but capable to solve decision making 

problems. 

The practical contributions consider the case study application and some 

recommendation for the future works. There are presented as follows. 

Referring to the first theoretical contribution, the proposed centroid 

defuzzification method is extended to type-2 fuzzy sets and z-numbers. All of them 

are compared numerically in order to evaluate the consistency of proposed method 

and established methods in literature. Both proposed and established centroid 

defuzzification methods for all fuzzy sets are compared with all possible cases in 

representing fuzzy numbers. In order to do so, the reliable centroid defuzzification 

has capability to calculate all possible cases of fuzzy numbers that consistent with 

human intuition. Also capable to deal with imprecision, vagueness and uncertainty. 

The numerical validation for the proposed centroids are discussed in Chapter 4. 

For the second practical contribution, this study provide a case study and 

briefly explains the decision making process for staff recruitment in a company in 

Malaysia. The evaluation process of selecting a right employee includes; identifying 

the selection criteria, deriving the criteria weights and ranking the available 

alternatives. The results or findings of the case study provide some recommendations 

in enabling the decision makers in the company to develop decision making model in 

searching the right employees which might increase the productivity of the company. 

The results and findings also provide practical study in order to be applied for other 

companies or industries cases. The proposed hybrid fuzzy MCDM model is extended 

to type-2 fuzzy sets and z-numbers, where are compared with other several 

established hybrid fuzzy MCDM models in the literature in evaluating the results and 

findings. 

The third of practical contribution refers to the validation process of hybrid 

fuzzy MCDM model using sensitivity analysis. It evaluates the proposed and 

established hybrid fuzzy MCDM models in order to study the robustness of the 

model. Likewise, sensitivity analysis assists the decision makers to implement the 

proposed methodology for ranking alternatives with considering the criteria’s weight. 

The sensitivity analysis evaluation method is used to validate the robustness of the 

proposed and established hybrid fuzzy MCDM models in a case study of the thesis.   
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As a final point, this research contributes to knowledge of the subject of 

human based decision making problems under fuzzy environment, since there is a 

lack of literature in this area.  

 

2.11 Summary of the Chapter 

This chapter broadly discusses a review of the literature. A brief review of the 

basic concept of fuzzy sets is first discussed in this chapter and followed by the 

development of fuzzy sets. The literature on defuzzification process is then reviewed 

whereby thorough reviews on characteristics of defuzzification process and some of 

the defuzzification methods are illustrated. Afterwards, Section 2.5 broadly reviews 

regarding decision making study which covers an overview of decision making in 

modern perspective, MCDM techniques, modelling uncertainty in MCDM and fuzzy 

MCDM. In addition, the validation of proposed methodology which using sensitivity 

analysis method is explicitly discussed. Later on, the results of literature review are 

presented the research problems, research questions, research objectives and research 

contributions such that all of them illustrate the gaps, targets and contributions by this 

study respectively. In Chapter 3, the thesis discusses theoretical preliminaries 

regarding some theories, methods or tools applied in this research work.    
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CHAPTER 3 

THEORETICAL PRELIMINARIES 

 

3.1 Overview 

The purpose of this chapter is to review some definitions and theoretical 

background that are used in the thesis. It illustrates some notions and basic concepts 

of fuzzy set theory and MCDM techniques throughout the thesis. The necessary 

condition of terminology used where some of the concepts are defined using experts’ 

definitions while some are provided with theoretical proves. In addition, details on 

those aforementioned points are broadly explained in sections and subsections of this 

chapter. 

  

3.2 Basic Concepts of Fuzzy Set Theory 

In the literature of decision making, researchers show that the classical set 

theory serves as a useful tool in solving decision making problems. Classical sets are 

sets with crisp boundaries where usually is called a collection of elements which have 

some properties distinguishing them from other elements which do not possess these 

properties. The membership degree of elements in a classical set is in binary or 

bivalent conditions where representing either 0 or 1 to indicate whether an element is 

not a member or a member of a set respectively. If weather condition for today is 

considered as an example, then today weather is either ‘hot’ or ‘not hot’ when the 

classical sets are used. However, consideration only to two binary terms by classical 

sets is inadequate as human perceptions are vary among people, as different people 

employ different types of perceptions which are vague and fuzzy (Cheng, 1998). 

Due to limitation of the classical sets, fuzzy set theory was introduced in 

decision making environment as dealing with situations that are fuzzy in nature is 

important. In contrast with classical sets, fuzzy sets allow gradual assessments of an 

element’s degree of belongingness in the interval of 0 and 1 where these values 

indicate variation in terms of human perceptions about a situation perceived. The 

definition of fuzzy set theory is given as follows. 

Definition 3.1 (Cheng, 1998) A fuzzy set iA  in a universe of discourse U is 

characterised by a membership function )(x
iA  which maps each element x  in U 

such that x  is real number in the interval [0,1]. 
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Membership function for iA  , )(x
iA  is given as   

                                              1,0:)( Xx
iA               (3.1) 

 

 

 

 

 

 

 

 

Fig. 3. 1: Membership function of a fuzzy set 

Equation (3.1) and Fig. 3.1 indicate that value of membership of fuzzy set is defined 

within interval [0,1]. For instance, if )(xcold  is defined as membership function of 

‘cold’ as weather condition for today and the membership value is approaching 0, 

then x is closer to ‘not cold’ or ‘very hot’. In contrary, x is closer to ‘cold’ when the 

membership value is approaching 1. The following Table 3.1 illustrates differences 

between classical set theory and fuzzy set theory. 

 

Table 3. 1: The representation of classical set theory and fuzzy set theory  

Set theory Representation Membership degree 

Classical Binary 0 and 1 

Fuzzy Gradual [0,1] 

 

3.3 Fuzzy Sets Operations 

There are three basic operations of fuzzy sets defined in the literature of fuzzy 

sets namely fuzzy union, fuzzy intersection and fuzzy complement. All of these 

operations are defined in by (Klir, Clair, & Yuan, 1997) the following definitions.  

Let iA  and jA  be two fuzzy subsets of the universal interval U with 

membership functions for iA  and jA  are denoted by )(x
iA  and )(x

jA  

respectively. Definition of fuzzy union, fuzzy intersection and fuzzy complement 

based on (Klir et al., 1997) are given as 

)(x
Ai

  

 

x  
1ia  

2ia  3ia  

1 
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a) Fuzzy union of iA  and jA  is denoted by ji AA   such that the 

membership function is defined as  

 ,)(),(max)( xxx
jiiji AAAA    for all Ux  

b) Fuzzy intersection of iA  and jA  is denoted by ji AA   such that the 

membership function is defined as  

 ,)(),(min)( xxx
jiiji AAAA    for all Ux  

c) Fuzzy complement of iA  is denoted by )(x
iA

  such that the membership 

function is defined as  

),(1)( xx
ii

AA
   for all Ux  

3.4 Fuzzy sets 

As discussed in Section 2.3, three types of fuzzy sets are pointed out in the 

literature of fuzzy sets namely type-1 fuzzy sets, type-2 fuzzy sets and z-numbers 

where all of them are defined chronologically as follows. 

3.4.1 Type-1 Fuzzy Sets 

In Section 2.3.1, type-1 fuzzy sets are chronologically developed as the first 

fuzzy numbers are established in literature of fuzzy sets (Lotfi A. Zadeh, 1965). As 

fuzzy numbers are actually type-1 fuzzy sets, definition of fuzzy numbers given by 

the (Dubois & Parade, 1983) which reflects as the definition of type-1 fuzzy sets, is as 

follows. 

Definition 3.2: (Dubois & Parade, 1983) A type-1 fuzzy set iA  is a fuzzy subset of 

the real line   that is both convex and normal that must satisfies the following 

properties: 
 

i. 
iA  is a continuous mapping from   to the closed interval ],0[ h , 10  h , 

ii. 0)( x
iA , for all  1,ax  , 

iii. 
iA  is strictly increasing on ],[ 21 aa , 

iv. hx
iA )( , for all  32 ,aax  where h is a constant and 10  h , 

v. 
iA  is strictly decreasing on ],[ 43 aa , 

vi. 0)( x
iA  for all   ,4ax , 
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where 4321 aaaa  ; 1a , 2a , 3a  and 4a  are component of a type-1 fuzzy set and 

real number  , while h represents the height or membership degree of a type-1 fuzzy 

set. 

3.4.2 Type-2 Fuzzy Sets 

Type-2 fuzzy sets are developed in the literature of fuzzy sets as extension of 

type-1 fuzzy sets, as the capability of type-1 fuzzy sets to represent human perception 

is inadequate (Wallsten & Budescu, 1995). As the type-2 fuzzy sets are used in this 

research work, thus the definition of type-2 fuzzy sets by (Mendel, John, & Liu, 

2006) is as follows. 

Definition 3.3: (Mendel et al., 2006) A type-2 fuzzy set iA  in a universe of discourse 

U is characterised  by a type-2 membership function )(x
iA  which maps each 

element x in U a real number in the interval ]1,0[ . 

The membership function for iA , )(x
iA  is given as  

       1),(0,1,0,,,,  uxJuUxuxuxA
ii AxAi             (3.2) 

where xJ  represents an interval in ]1,0[ . 

According to (Mendel et al., 2006), another representation of type-2 fuzzy set is given 

in the following equation depicted as  

     ),/(),( uxuxA AJuUxi x
              (3.3) 

where  1,0xJ  and   represents the union over all allowable x and u. 

It has to be noted that from equation (3.3), if 1),( uxA , then iA  is known as an 

interval type-2 fuzzy set. It is worth mentioning here that interval type-2 fuzzy set is a 

special case of type-2 fuzzy set (Mendel et al., 2006) where it can be represented by 

the following equation 

     ),/(1 uxA
xJuUxi               (3.4) 

where   1,0xJ . 
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Interval type-2 fuzzy sets are utilised in the research works as the frequent used type-

2 fuzzy set in the literature. According to (L.A. Zadeh, 1975), representation of 

interval type-2 fuzzy sets using number is called as interval type-2 fuzzy numbers. 

The following Fig. 3.2 illustrates interval type-2 fuzzy set. 
 

 

 

 

 

 

 

 

 

Fig. 3. 2: Interval type-2 fuzzy set 

It is noticeable that type-2 fuzzy set in Fig. 3.2 is more complex in terms of 

representation where this indicates that type-2 fuzzy set needs more complicated 

computational technique than type-1 fuzzy set. According to (Greenfield & Chiclana, 

2011), there are numerous defuzzification strategies developed in the literature of 

fuzzy sets which plan on converting type-2 fuzzy numbers into type-1 fuzzy numbers. 

This strategy is intentionally introduced to reduce the complexity of type-2 fuzzy 

numbers without losing information on the computational results. Among them that 

consider this strategy are (Karnik & Mendel, 2001a), (Nie & Tan, 2008), (Wu & 

Mendel, 2009) and (Greenfield & Chiclana, 2011). Nevertheless, based on a thorough 

comparative analysis made by (Greenfield & Chiclana, 2011) on all the 

aforementioned methods, (Nie & Tan, 2008) reduction method outperforms other 

approaches on reducing type-2 fuzzy set into type-1 fuzzy set. Therefore, without loss 

of generality of the reduction method is as follows (Nie & Tan, 2008). 

       AUALAT xxx  
2

1
)(              (3.5) 

 

where T is the resultant type-1 fuzzy set. 
 

3.4.3 Z-Numbers 

According to (Lotfi A. Zadeh, 2011a), z-numbers are the latest type of fuzzy 

numbers introduced in the literature of fuzzy sets. Definition of z-numbers given by 

(Kang et al., 2012a) is as follows. 

x  
Ua1  Ua2  

U

A
h~  

L

A
h~  

La1  La2  
La3  

Ua3  
La4  

Ua4  

)(~ x
A

  
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Definition 3.4: (Kang et al., 2012a) A z-number is an ordered pair of fuzzy set 

denoted as  RAZ
~

,
~

 . The first component, A
~

 is known as the restriction component 

where it is real-valued uncertain on X whereas the second component R
~

, is a measure 

of reliability for A
~

. The following Fig. 3.3 illustrates z-number based on (Kang et al., 

2012a) definition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. 3: A z-number,  RAZ
~

,
~

  

 As mentioned in Chapter 2, z-numbers describe better representation as 

compared to type-1 fuzzy sets and type-2 fuzzy sets. This is due to the fact that z-

numbers (level 3) are classified as the highest level in terms of generalised types than 

type-1 and type-2 fuzzy sets which level 2 (Lotfi A. Zadeh, 2011a). Therefore, (Lotfi 

A. Zadeh, 2011a) suggests any computational work involving z-numbers that need to 

be reduced into certain level without losing the informativesness of the computational 

results. This suggestion is taken into account by (Kang et al., 2012b) where a method 

of converting z-numbers into type-1 fuzzy sets or regular fuzzy sets based on Fuzzy 

Expectation of a fuzzy set is proposed. With no loss of generality of (Kang et al., 
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2012b) work, the conversion process of z-numbers into regular fuzzy numbers is as 

follows. 

Step 1: Convert the reliability component, R
~

 into crisp value,   using the following 

equation. 

    












dxx

dxxx

R

R

)(

)(

~

~





               (3.6) 

Note that,   represents the weight of the reliability component of a z-number. 

Step 2: Add the weight of the reliability component, R
~

 to the restriction component, 

A
~

. The z-number is now defined as weighed restriction of z-number and can be 

denoted as 

       1,0,)()(,
~

~~~ ''  xxxxxZ
AAA




             (3.7) 

Step 3: Convert the weighted restriction of z-number into a fuzzy number which can 

be represented as 

 




















 1,0,)()(,

~
~

'

''
x

x
xxxZ

AZZ 
            (3.8) 

 In (Kang et al., 2012b), it is shown that the process of converting z-numbers 

into regular fuzzy numbers was sensible and logical because the results obtained by 

the study indicates that a z-number is reduced into a lower level of generality which is 

a regular fuzzy number, but the computational informative is unaffected. Moreover, 

the conversation of a z-number into regular fuzzy number is reasonable due to the fact 

that both Z
~

 and '~
Z  are basically the same when the Fuzzy Expectation Theorem is 

applied.  

 

3.5 Forms of Fuzzy Sets 

This section covers discussion in terms of several forms of fuzzy numbers 

which are found in the literature of fuzzy sets. It has to be noted that all descriptions 

provided in this section focus only in type-1 fuzzy sets. As for type-2 fuzzy sets and 

z-numbers, their discussion are similar to in type-1 fuzzy sets as both type-2 fuzzy 

sets and z-numbers are extension of type-1 fuzzy sets. Therefore, any description of 

type-1 fuzzy sets is provided in the following subsections that are applicable to type-2 

fuzzy sets and z-numbers as well. Therefore, a generic term of fuzzy numbers is used 
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in this case to indicate that it covers type-1 fuzzy sets, type-2, fuzzy sets and z-

numbers.  

3.5.1 Linear Fuzzy Sets 

According to (S.-M. Chen & Chen, 2009), fuzzy numbers are divided into two 

types namely linear and non-linear. Nevertheless, linear fuzzy numbers are often used 

in many decision making situations since non-linear fuzzy numbers are too complex 

to handle and they are normally transformed into linear type for convenience (M. Y. 

Chen & Linkens, 2004). In literature of fuzzy sets, there are two linear types of fuzzy 

numbers which are often utilised namely triangular and trapezoidal fuzzy numbers. 

However, there is another fuzzy number that is rather extensively used in the 

literature of decision making which is a singleton fuzzy number. It is worth 

mentioning here that all of these mentioned fuzzy numbers are used throughout the 

thesis. Thus, the following Definition 3.5 and Fig. 3.4 are definition and illustrations 

of triangular fuzzy number respectively while Definition 3.6 and Fig. 3.5 are 

definition and illustration for trapezoidal fuzzy number respectively.  

Definition 3.5: (Van Laarhoven & Pedrycz, 1983) A triangular fuzzy number iA  is 

represented by the following membership function. Fig. 3.4 illustrates the 

representation of triangular fuzzy number. 
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Fig. 3. 4: A triangular fuzzy number 
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Definition 3.6: A trapezoidal fuzzy number iA  is represented by the following 

membership function given by  

 

       (3.10) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. 5: A trapezoidal fuzzy number 

 

It has to be noted here that for trapezoidal fuzzy number, if 32 aa  , then a fuzzy 

number is in the form of a triangular fuzzy number (Cheng, 1998). While, if 

4321 aaaa   or 321 aaa   for both trapezoidal and triangular fuzzy numbers, 

respectively, then both are in the form of singleton fuzzy number (S.-M. Chen & 

Chen, 2009). The following Fig. 3.6 illustrates singleton fuzzy numbers. 

 

 

 

 

 

 

 

 

 

Fig. 3. 6: A singleton fuzzy number 
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3.5.2 Generalised Fuzzy Sets 

This subsection provides discussion on another form of fuzzy numbers which 

is generalised fuzzy numbers. According to (S. J. Chen & Chen, 2003), a fuzzy 

number is better represented by generalised fuzzy numbers. This is because 

generalised fuzzy numbers provide a consistent representation for any fuzzy number 

even if any shape of fuzzy number is utilised. Starting from this point until the last 

part of this chapter, only trapezoidal fuzzy numbers are utilised as medium of 

representation. This is due to the fact that both triangular and singleton fuzzy numbers 

are special cases of trapezoidal fuzzy numbers ((Cheng, 1998) and (S. J. Chen & 

Chen, 2003)). Therefore, without loss of generality, definition of generalised 

trapezoidal fuzzy numbers is as follows.  

Definition 3.7: (S. J. Chen & Chen, 2003) Generalised trapezoidal fuzzy number iA  

is a fuzzy number );,,,( 4321 iAiiiii haaaaA   where 10 4321  iiii aaaa  with 

height  1,0
iAh . 

 It is worth pointing out here that in this research work, the consideration of 

generalised trapezoidal is utilised in term of linguistic scales of type-1 fuzzy sets can 

be implemented for type-2 fuzzy sets and z-numbers as well.  

 

3.6 Defuzzification 

This section defines the defuzzification of fuzzy sets that is represented the 

process of defuzzification of type-1 fuzzy sets, type-2 fuzzy sets and z-numbers. 

Thus, all definition made on defuzzification of type-1 fuzzy sets are also significant 

for defuzzification of type-2 fuzzy sets and z-numbers. 

3.6.1 Defuzzification Operation 

The generic fuzzy system can be represented by the following transformation 

of real number to another real number (Roychowdhury & Pedrycz, 2001): 

 )()()( ''  DefIEFuz           (3.11) 

where: 

  : real domain of real numbers 

)(Fuz : Fuzzification process 

 : domain of fuzzy sets 
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')(  IE : Inference engine 

 )(Def : Defuzzification process 

 

The used of defuzzification operation is geared toward studies of a linguistic 

reconstruction mechanism from fuzzification operation. A defuzzification operation 

can be denoted by the following transformation fuzzy numbers into real number as 

follows: 

))(/('  FuzDef             (3.12) 

 

3.6.2 Properties of Defuzzification 

The properties of defuzzification summarised by (Roychowdhury & Pedrycz, 

2001) are identified as follows: 

Property 1: A defuzzification operator always computes to one numeric value. 

Any defuzzified value must has single or unique value, not ambiguity. The 

defuzzification operator is always injective. Clearly, two fuzzy sets can have same 

defuzzified value. It is assumed that, the defuzzified value is always within the 

support set of the original fuzzy set. 

Property 2: The membership function determines the defuzzified value. 

The membership function is important in determining the defuzzified value, not only 

core area. Some of the researchers ignore the membership function while running the 

defuzzification process. In this sense, concentration of fuzzy set monotonically leads 

to the normal or non-normal fuzzy sets.  

Property 3: The defuzzified value of two triangular-operated fuzzy sets is always 

continued within the bounds of individual defuzzified values. 

If fuzzy set ),( fff BATC  fA  where fA  and fB  are fuzzy sets and T is the T-

norm, )()()( fff BDefCDefADef  , and so it is true for T-conorm (T*) 

),(* fff BATC  . 

Property 4: In the case of prohibitive information, the defuzzified value should fall in 

the permitted zone. 
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In many application of defuzzification operation in specific situations, the centre of 

the largest area strategies was found to be effective. The defuzzified value must be 

fall in the permitted zone in area of x-axis. 
 

3.7 Fuzzy Multi Criteria Decision Making 

3.7.1 Fuzzy Analytic Hierarchy Process 

The steps in fuzzy AHP are presented as follows (Vinodh et al., 2014): 

Step 1: Building the evaluation hierarchy systems for evaluating the best alternative 

among given alternatives considering the various criteria involved. 

Step 2: Determining the assessment dimensions weights using fuzzy numbers.  

The reason for using fuzzy numbers is that is intuitively easy for decision 

makers to use and calculate the evaluation for questionnaire.  

Step 3: Determining the weights for the criteria involved.  

The pairwise comparison matrix is constructed in order to present the 

preference of one criterion over the other by entering the judgement values 

by the decision makers. The formulation of aggregated process is calculated 

using Geometric mean method ir : 

kn

ijijijij aaar /121 )~...~~(~             (3.13)              

where k is the number of decision makers and i=1,2,…m; j=1,2,…n. 

Step 4: The weight of each alternative is determined using normalising the matrix 

This is done by using equation (3.14): 

    1

321 )...(  nii rrrrrw            (3.14) 

Step 5: Defuzzify each weight from Step 4 using defuzzification method proposed by 

Best Non-Fuzzy Performance (BNP). 

The defuzzification process is utilised in order to handle fuzzy sets. Then, 

normalization process is followed after defuzzification process. This is done 

by normalizing the matrix. 
 

      llmluvalueBNP  3/)()(           (3.15) 
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Step 6: Criteria are ranked based on the BNP values. The alternative that having 

larger BNP value is considered to have a greater impact when compared with 

other alternatives. 

3.7.2 Consistent Fuzzy Preference Relations 

Consistent fuzzy preference relations was proposed by (Herrera-Viedma, 

Herrera, Chiclana, & Luque, 2004) for constructing the decision matrices of pairwise 

comparisons based on additive transitivity property. Referring to (Kamis, Abdullah, 

Mohamed, Sudin, & Ishak, 2011), a fuzzy preference relation R  on the set of the 

criteria or alternatives A is a fuzzy set stated on the Cartesian product set AA  with 

the membership function  1,0:  AAR . The preference relation is denoted by 

nn  matrix )( ijrR   where ),( jiyij aar   ,i  nj ,...,1 . The preference ratio, ijr  

of the alternative ia  to ja  is determined by  











1

)1,5.0(

5.0

ijr   

ji

ji

ji

athanpreferredabsolutelyisa

athanpreferredisa

atodifferentisa

               (3.16) 

The preference matrix R  is presumed to be additive reciprocal, 

,1 jiij pp ,i  nj ,...,1 . Several propositions are associated to the consistent 

additive preference relations as follows: 

Proposition 4.1 (T. C. Wang & Chen, 2007): Consider a set of criteria or 

alternatives,  nxxX ,...,1 , and associated with a reciprocal multiplicative 

preference relation )( ijaA   for 







 9,

9

1
ija . Then, the corresponding reciprocal 

fuzzy preference relation, )( ijpP   with  1,0ijp  associated with A is given by the 

following formulation 

         )log1(
2

1
)( 9 ijijij aagp                                   (3.17) 

Generally, if 







 n

n
aij ,

1
, then ijn alog  is used, in particular, when 









 9,

9

1
ija ; 

ija9log  is considered as in the above proposition because ija  is between 
9

1
 and 9. If 

ija  is between 
7

1
 and 7, then ija7log  is used. 
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Proposition 4.2 (T. C. Wang & Chen, 2007): For a reciprocal fuzzy preference 

relation )( ijpP  , the following statements are equivalent 

(i) 
2

3
 kijkij ppp , kji ,,             (3.18) 

(ii)  
2

3
 kijkij ppp , kji                (3.19) 

Proposition 4.3 (T. C. Wang & Chen, 2007): For a reciprocal fuzzy preference 

relation )( ijpP  , the following statements are equivalent 

(i) 
2

3
 kijkij ppp , kji                         (3.20) 

(ii) 
2

1
... )1()2)(1()1(


 

ij
pppp jijjiiii , ji           (3.21) 

Proposition 4.3 is crucial because it can be used to construct a consistent fuzzy 

preference relations form the set of 1n  values  12312 ,...,, nppp . A decision matrix 

with entries that are not in the interval ]1,0[ , but in an interval  cc  1, , 0c , can be 

obtained by transforming the obtained values using a transformation function that 

preserves reciprocity and additive consistency with the function  

   1,01,:  ccf , 
)21(

)(
)(

c

cx
xf




                          (3.22) 

3.7.3 Fuzzy Technique for Order of Preference by Similarity to Ideal 

Solution 

 The formal conventional fuzzy TOPSIS procedure is illustrates as follows 

(Sun, 2010): 

Step 1: Create fuzzy performance or decision matrix. 

The judgmental values from decision makers for each decision alternatives 

corresponding to each alternative are tabulated with fuzzy numbers as 

entries. 

Step 2: Normalised the fuzzy performance matrix. 
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 The normalised fuzzy decision matrix denoted by R
~

 is shown as following 

formula: 

      
nmijrR


 ~~

            (3.23) 

where i=1,2,…m; j=1,2,…n. 

 Then, the normalization process can be performed by following formula: 

  

















j

ij

j

ij

j

ij

ij
u

u

u

m

u

l
r ,,~ ,   niuu ijij ,...,2,1max            (3.24) 

 The best aspired level is 1, otherwise the worst is 0. 

 The normalised , ijr~  is still triangular fuzzy numbers. For trapezoidal fuzzy 

numbers, the normalization process can be conducted in the same way.  

Step 3: Construct the weighted normalised decision matrix.  

 Multiply each column of normalised decision matrix by its associated weight. 

An element of the new matrix is: 

ijjij rwv              (3.25) 

where, mi ,...,1  and nj ,...,1 . 

Step 4: Determine the fuzzy positive ideal solution (FPIS) and fuzzy negative ideal 

solution (FNIS). 

The FPIS )( A  and FNIS )( A  are defined as aspiration levels and worst 

levels respectively in terms of the weighted normalised values. The range 

belong to the closed interval [0,1]. 

Fuzzy Positive Idea Solution (FPIS): 

 nj vvvA **
1

* ,...,,...,            (3.26) 

Fuzzy Negative Idea Solution (FNIS): 

 nj vvvA   ,...,,...,1            (3.27) 

where  
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),,(~)1,1,1(~
jjjjj uwmwlwwv   and  

 ),,(~)0,0,0(~
jjjjj uwmwlwwv  , nj ,...,2,1 . 

Step 5: Calculate the distance of each alternative from FPIS and FNIS. 

The distance 

id
~

 and 

id
~

 of each alternative from formulation A  and A  can 

be calculated by the area of compensation method: 

     


 
n

j

ijijjiji vvdvvd
1

),~()~,~(                            (3.28) 

     


 
n

j

ijijjiji vvdvvd
1

),~()~,~(                              (3.29) 

Step 6: Find the closeness coefficient, iCC  (relative gaps degree) and improve 

alternatives for achieving aspiration levels in each criteria.  















ii

i

ii

i
i

dd

d

dd

d
CC 1                    (3.30) 

where,    




 ii

i

dd

d
 is satisfaction degree in ith alternative and 





 ii

i

dd

d
 is 

fuzzy gaps degree in ith alternative. 

 

3.7.4 Fuzzy Multidisciplinary Optimization Compromise Solution 

The generalised fuzzy VIKOR can be computed as steps follows (Salehi, 

2015): 

Step 1: Construct the fuzzy performance decision matrix for alternatives’ evaluation. 

Step 2: Compute normalised fuzzy performance deicision matrix by using equation as 

follows 

 Assume m alternatives and n criteria. 

    

 


n

j ij

ij

ij

x

x
f

1

2

            (3.31) 



50 

 

 where, njmi ,...,2,1;,...,2,1  . 

Step 3: Determine the fuzzy best value (FBV= *

jf ) and the fuzzy worst value 

(FWV  jf ). 

If we assume the jth function represents a benefit, then ijj ff max*   (or 

setting an inspired level) and ijj ff min
 (or setting a tolerate level). 

Alternatively, if we assume the jth function represents a cost/ risk, the then 

ijj ff min*   (or setting an inspired level) and ijj ff max
 (or setting a 

tolerate level). 

Step 4: Compute the values of iS  and miRi ,...2,1;   by the equations below 

    )/()~( **

1

ijjijj

n

j

ji ffxfwS 


            (3.32) 

    )/()~( **

ijjijjji ffxfwMaxR             (3.33) 

 

 where jw  are the weights of criteria, that expressing their relative importance. 

Step 5: Compute the index values of ,...,2,1;iQ  by the equation below. 




























 *

*

*

*

)1(
RR

RR

SS

SS
Q ii

i             (3.34) 

 where, iiSvalueS max , ii SS min*  , iiRvalueR max , ii RR min*   

and    is introduced as the weight of the strategy “the majority of criteria” 

(or “the maximum group utility”) and usually 5.0 .  

Step 6: Defuzzify fuzzy number iQ  and rank the alternatives, sorting by the values 

iS , iR  and iQ  in decreasing order. 

 Defuzzification process is computed using (S. H. Chen & Hsieh, 1999) based 

on graded mean integration method.  
 

    
6

)4(
)( 321 aaa

amean


            (3.35) 

 

 Consequently, the smaller the value of iQ , the better the alternative.  
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3.8 Sensitivity Analysis 

3.8.1 Introduction 

The MCDM techniques always deal with unstable and changeable data inputs. 

Therefore, the sensitivity analysis after problem solving that can effectively 

contribute to making accurate decision by assume that a set of weights for criteria or 

alternatives then obtained a new set of weights for them, so that the efficiency of 

alternatives has become equal or their order has changed. It is focused on determining 

the most sensitive criteria and the least value of the change. It is clearly indicate that 

the sensitivity analysis is calculated the changing in the final score of alternatives 

when change occurs in the weight of one alternative. The results of MCDM 

techniques is crucially needed to validate and calibrate in analysing the quality and 

how robustness of MCDM techniques to reach a good decision under different 

conditions. In doing so, a sensitivity analysis method proposed by (Amini & 

Alinezhad, 2011) is applied in this research work. 

 

3.8.2 Computational Process 

Assume that the vector for the weights of criteria is ),...,,( 21 k

t wwwW   

where in weights are normalised and sum of them is 1, that is 





k

j

tw
1

1              (3.36) 

From this assumption, if the weight of one criterion changes, then the weight of other 

criteria change accordingly, and the new vector of weights transformed into  

)',...,','(' 21 k

t wwwW             (3.37) 

The following theorem shows changes in the weight of criteria. 

Theorem 4.4.  

In MCDM technique, if the weight of criteria thP , changes as p , the the weight of 

other criteria change as j ; kj ,...,2,1 . 

1




p

jp

j
w

w
             (3.38) 
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where kj ,...,2,1  , pj  . 

Proof:   

If the new weight of criteria are jw'  and the new weight of criterion thP  changes are  

ppp ww '              (3.39) 

Then the new weight of other criteria would change as  

     jjj ww '             (3.40) 

where kj ,...,2,1  , pj  . 

The sum of weight must be equal to 1 then 

  
  


k

j

k

j

k

j

jjj

k

j

j ww
1 1 11

0'            (3.41) 

Therefore 






k

pj
j

pp

1

             (3.42) 

Where from equation (3.38) 

   
1




p

jp

j
w

w
, kj ,...,2,1  , pj         

Since 

   

pp

p

p

k

pj
j

j

p

p

k

pj
j p

jp
k

pj
j

jp

w
w

w
w

w

w






























)1(
1

1

1

1

11

                  (3.43) 

In a MCDM problem, of the weight of the thP  criteria changes from pw  to pw'  as 
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ppp ww '              (3.44) 

Then, the weight of other criteria would change as  

   j

p

p

j

p

pp

j w
w

w
w

w

w
w 











1

'1

1

1
'           (3.45) 

where kj ,...,2,1  , pj  . 

Since, for kj ,...,2,1  , pj   we have  

1

)()1(

1
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









1

'1

1

)1(
'             (3.46) 

where kj ,...,2,1  , pj  . 

Then, new vector for weights of criteria would be  )',...,','(' 21 k

t wwwW  , that is 

















kjpjw

w

w

pjw

w
j

p

p
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j
,...,2,1,

1

'1'            (3.47) 






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


jjpp

jjpp

ppp
wwwwif

wwwwif
ww

''

''
'           (3.48) 

where kj ,...,2,1  , pj  . 

The sum of new weights of criteria that are obtained in (3.48) is 1, because 

pp
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j

k

pj
j

k

pj
j p
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pjj w
w

ww
www 




  






1 1 1 1

)1(
'''  

  









k

pj
j

ppj

p

pp
ww

w

w

11

)1(
 



54 

 

  ppp

p

pp
ww

w

w





 )1(

1

)1(
 

  11  pppp ww              (3.49) 

Corollary: In the new vector of weights that is obtained from (3.49), the weight’s ratio 

is constant which except of criterion thP , because new weights for criteria except for 

thP  is obtained by multiplying the constant value 
p

pp

w

w





1

)1(
 to old weight of 

them, then the ratio of new weight of attributes  iC  to new weight of criterion iC  for 

kji ,...,2,1,  , pji ,  is equal to the ration of old ones. That is shown below 

;
'

'

j

i

j

i

w

w

w

w
  kji ,...,2,1,   pji ,            (3.50) 

 

3.9 Summary of the Chapter 

This chapter briefly discusses the technical part of tools and methods applied 

in this thesis work. It covers the definitions, basic notions and terminologies of fuzzy 

sets that consist of type-1 fuzzy sets, type-2 fuzzy sets and z-numbers.  In addition, 

the conventional fuzzy MCDM techniques and sensitivity analysis validation method 

are discussed in order to be applied in developing the proposed methodology and case 

studies for comparative analysis in Chapter 4, 5 and 6.  Next chapter discusses the 

development of the first novelty in this research study which is intuitive multiple 

centroid defuzzification method in order to implement in fuzzy MCDM problems. 
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CHAPTER 4 

INTUITIVE MULTIPLE CENTROID 

DEFUZZIFICATION 

 

4.1 Overview 

This chapter describes in detail the process of development of intuitive 

multiple centroid defuzzification method for fuzzy sets. In developing defuzzification 

method, a novel manner of computing intuitive multiple centroid method is presented 

in formulae based on the perspective of analytic geometric principle which consider 

the coordinate on the vertical axis is as important as the coordinate on the horizontal 

axis. In dealing with intuitionistic part, the defuzzification results obtained must be 

reasonable and consistent with human intuition or judgment. Most of the 

defuzzification methods capable to defuzzify the fuzzy numbers, but ignore the 

imprecision and fuzziness of the quantity of numbers themselves. Unlike other 

defuzzification centroid methods, the proposed defuzzification method defuzzify the 

fuzzy numbers and at the same time obtained the imprecision and fuzziness of 

original quantity. Likewise, it's presented very efficient computational procedures for 

fuzzy sets. The exact computational procedures are provided for type-1 fuzzy sets and 

its’ extension for type-2 fuzzy sets and z-numbers.   

The proposed intuitive multiple centroid defuzzification method is validated 

theoretically and empirically which determine reliability and consistency 

respectively. Reliability is a theoretical based – validation method in evaluating the 

novel intuitive multiple centroid using several properties that are considered for 

justifying the applicability of centroid for fuzzy numbers. The consistency represents 

an empirical based – validation evaluates the capability of the novel centroid method 

to correctly formulae that are consistent or better with established methods in 

considering human perception aspect. Both theoretical and empirical validations 

stated are thoroughly defined in this chapter but the implementations of intuitive 

multiple centroid are demonstrated in the following chapter. Thus, this chapter 

supports the next two chapters of the thesis. Details on those aforementioned points 

are extensively discussed in sections of this chapter. In the following chapter, the 

proposed intuitive multiple centroid defuzzification method would be applied in 

developing the new hybrid fuzzy MCDM model.  
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4.2 Intuitive Multiple Centroid for Type-1 Fuzzy Sets 

In this section, a novel formulae on computing the intuitive multiple centroid 

defuzzification of fuzzy sets are developed. The formulation includes official models, 

elementary operations, basic properties and advanced applications. The presented 

formulae justify the proposed defuzzification method from the perspective of analytic 

geometry. In analytic geometry principle, also known as coordinate geometry or 

Cartesian geometry, the geometry study uses a coordinate system in Cartesian plane 

by a pair of numerical coordinates. Likewise, the intuitive multiple centroid should be 

determined naturally like the way of determining the coordinate on the horizontal 

axis. Following this method, some fundamental centroid formulae for fuzzy sets are 

proposed and derived based on simplified expressions for trapezoidal, triangular and 

singleton fuzzy numbers.  In developing the intuitive multiple centroid method, the 

coordinates of the centroid on Cartesian plane are simply the average of the 

coordinates of the vertices. The vertices in intuitive multiple centroid are considering 

the median points among several parts of trapezoid shape of fuzzy numbers.  

The word ‘intuitive’ refers to on feelings rather than facts or proof. Most 

people have an intuitive sense in making their judgements either right or wrong. 

While the word ‘multiple’ is formally defined as very many of the same type, or of 

different types. The ‘centroid’ refers to the centre of mass of a geometric object of 

uniform density. The select of fuzzy set functions affects how well fuzzy systems 

approximate function (Mitaim & Kosko, 1996). Since this has been the primary 

motivation for the proposed defuzzification method to be developed. In this sense, the 

intuitive multiple centroid defuzzification is relevant in context of human intuition or 

judgement that considers all possible fuzzy sets. The concept is similar to other 

centroid methods application, where the aim is to find the best centre point of a fuzzy 

set that is represented in crisp or single value. This proposed method is compared 

with other established centroid methods, (Shi-Jay Chen & Chen, 2002), (Y. M. Wang 

et al., 2006), (Liang et al., 2006) and (Shieh, 2007) regarding consistency.  

 

4.2.1 Intuitive Multiple Centroid for Type-1 Fuzzy Sets Methodology 

Let consider );,,,(
~

4321 AhaaaaA   as the generalised trapezoidal fuzzy number 

and )~,~( ~~
AA

yx  be the centroid point for A
~

 such that 
A

x ~
~  and 

A
y ~
~  are the horizontal x – 

axis and vertical y – axis of generalised fuzzy number A
~

 respectively. The complete 

process for intuitive multiple centroid point, )
~

(AIMC  computation is signified as 

follows. 
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Step 1: Find the centroids of the three parts of ,   and   in trapezoid plane 

representation as shown in Fig. 4.1. The trapezoid shape is divided into three 

parts, which are: 1) left triangle shape; 2) rectangle shape and; 3) right 

triangle shape. The sub centroids of right triangle shape, rectangle shape and 

left triangle shape represent as 
A
~ , 

A
~  and 

A
~  respectively. 

 

 

 

 

 

 

 

 

 

Fig. 4. 1: Intuitive multiple centroid plane representation for type-1 fuzzy set 

The blue lines represent the median lines for sub centroid points. 

Theoretically, the intuitive multiple centroid defuzzification is based on the 

median points that cover centralised of the each shape properly. The 

partition of shapes are presented in Fig. 4.2, Fig. 4.3 and Fig. 4.4, where the 

sub centroid points of 
A
~ , 

A
~  and 

A
~   based - median computation before 

there are connected each other to create another triangle plane. 

 

 

 

 

 

 

 

 

 

Fig. 4. 2: Sub centroid of left triangle 
A
~  
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Fig. 4. 3: Sub centroid of rectangle, 
A
~  

 

 

 

 

 

 

 

 
 

Fig. 4. 4: Sub centroid of right triangle, 
A
~  

 

The formulation for median point is based on the representation of the shape 

itself. A median of a triangle is a line segment from a vertex of the line 

triangle to the midpoint of the opposite side of vertex. Line segment represents 

the straight line which associates two points without extending beyond them 

(Fig. 4.5). Vertex is the common endpoint of two or more line segments (Fig. 

4.6). The median point or centre point of rectangle shape is a half of the length 

of its shape. The key to prove for all rectangles, the midpoints of the diagonals 

are coincidental at the centre of the rectangle as shown in Fig. 4.3.  
 

 

 

 

 

 

 

 

Fig. 4. 5: Line segment pq 
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Fig. 4. 6: Vertex of line segment pq and pr 

Step 2: Connect all vertices sub centroid points of 
A
~ , 

A
~  and 

A
~  each other, where 

it will create another triangular plane inside of trapezoid plane as represented 

in Fig. 4.1. The formulation of sub centroid points of 
A
~ , 

A
~  and 

A
~  are 

computed as follows. 

1) Sub centroid points of 
A
~  formula. 

  




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
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3
,

3

2
),(
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121~~
A
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h
aaayx                    (4.1) 

 

 

 

 

 

 

 

 

 

 

Fig. 4. 7: The intercept of median lines for sub centroid of left triangle, 
A
~  

Fig. 4.7 presents how the formulation for ),( ~~
AA

yx , sub centroid point of  

left triangle, 
A
~  is produced. The centroid is a point of concurrency of the 

triangle. The centroid point is formed by all three medians are intersected each 

other. This point is often described as the triangle’s centre of gravity. One of 

the properties of the centroid, it must be always located inside the shape. The 
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centroid divides each median in a ratio of 2:1. In other words, the centroid 

always be 2/3 of the way long any given median.  

 

 

 

 

 

 

 

 

 

Fig. 4. 8: The divided segment line  

From the Fig. 4.8, the centroid,   divides each median into two segments, the 

segment joining the centroid to the vertex multiplied by two is equal to the 

length of the line segment joining the midpoint to the opposite side 

where qp  2 . 

2) Sub centroid points of 
A
~  formula. 
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yx                          (4.2) 

 
 

 

 

 

 

 

 

Fig. 4. 9: The intercept of median line for sub centroid of rectangle, 
A
~  

Fig. 4.9 depicts the sub centroid point for of left rectangle, ),( ~~
AA

yx . The 

centroid of rectangle is formed when two axes of symmetry intercept each 

other and the intersection locates the centroid by half. 
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3) Sub centroid points of 
A
~  formula. 

  
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434~~
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h
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Fig. 4. 10: The intercept of median line of right triangle, 
A
~  

Fig. 4.10 depicts the representation of formulation developed for ),( ~~
AA

yx , 

sub centroid point of left triangle, 
A
~ . The explanation for centroid, 

A
~  is 

same as sub centroid points of 
A
~  formula. 

The sub centroid points of 
A
~ , 

A
~  and 

A
~  are calculated in coordinate point 

)~,~( yx  because the consideration of the degree of membership values in 

dealing with subjective events. About this, (Cheng, 1998)  claims that x  value 

on the horizontal axis is the most important index. He also stated that in 

certain cases, the value of x can be act as minor index and y becomes the 

major index in fuzzy numbers. Thus, the consideration of y – axis plays an 

important role as x – axis.  

Step 3: The centroid coordinate points of intuitive multiple centroid, )~,~( yx  of fuzzy 

number A
~

 with vertices 
A
~ , 

A
~  and 

A
~  can be calculated as 
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Intuitive multiple centroid can be summarised as 

              

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where 
 

  
A

x ~
~ : the centroid on the horizontal x-axis 

 
A

y ~
~ : the centroid on the vertical y-axis 

 )~,~( ~~
AA

yx : the centroid point of fuzzy number A
~

 

The processes of getting the final centroid coordinate )~,~( ~~
AA

yx  are illustrated 

as follows. 

Proving:   
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Centroid index of intuitive multiple centroid can be generated using 

Euclidean Distance by (Cheng, 1998) as below. 

   
2

~
2

~
~~)

~
(

AA
yxAR                                     (4.7) 

Hence 
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4.2.2 Illustrative Example 

This section illustrates a numerical – based example which is used to 

demonstrate the utilisation of the intuitive multiple centroid method developed in 

Section 4.2. A complete illustration of utilising the intuitive multiple centroid method 

in this example is as follows. 

Let 16;0.9)(12,13,15,
~
A  be a generalised trapezoidal fuzzy number to calculate the 

centroid point of A
~

, then the centroid point is computed using equation (4.5) and 

(4.8) as follows. 
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Hence, the centroid index of intuitive multiple centroid for )~,~( ~~
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yx  type-1 fuzzy set 

can be calculated as 
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4.2.3 Theoretical Validation 

This section validates theoretically in term of properties of defuzzification and 

properties of centroid. The properties of defuzzification summarised by 

(Roychowdhury & Pedrycz, 2001) as mentioned in Chapter 3 are applied while the 

properties of centroid are developed in order to fulfill the reliability requirement. The 

relevant properties of defuzzification and centroid are illustrated on the next pages. 

Let A
~

 and B
~

 are be trapezoidal and triangular fuzzy numbers respectively. 

The properties of defuzzification summarised by (Roychowdhury & Pedrycz, 2001) 

are identified as follows. 

Property 1:  A defuzzification operator always computes to one numeric value. 

Proof:  Since A
~

 and B
~

 are different types of fuzzy numbers, both of them 

must have single or unique defuzzified values, not ambiguity. The 

defuzzification operator is always injective. Clearly, two fuzzy sets can 

have same defuzzified value. It is assumed that, the defuzzified value is 

always within the support set of the original fuzzy set. 

Property 2:  The membership function determines the defuzzified value. 

Proof:  All fuzzy numbers represent together with membership function (y-

axis). The membership function is important in determining the 

defuzzified value, not only core area (x-area). In this sense, 

defuzzification process must considers normal or non-normal fuzzy 

sets even the weight of core area (x-axis) is greater than membership 

function (y-axis). 

Property 3:  The defuzzified value of two triangular-operated fuzzy sets is always 

continued within the bounds of individual defuzzified values. 

Proof:  If fuzzy set ),( 21 fff BBTC  1fB  where 1fB  and 2fB  are fuzzy sets 

and T and T-norm, )()()( 21 fff BDefCDefBDef  , and so it is true 

for T-conorm (T*) ),(* 21 fff BBTC  . 

Property 4:  In the case of prohibitive information, the defuzzified value should fall 

in the permitted zone. 

Proof:  The defuzzified values of any fuzzy numbers must be fall in the 

permitted zone in core area of x-axis. 
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The relevant properties of centroid are considered for justifying the applicability of 

centroid for fuzzy numbers, where they depend on the practically within the area of 

research. However, they shall not be regarded as complete. Therefore, with no loss of 

generality, the relevant properties of the centroid are as follows.  

Let A
~

 and B
~

 are be trapezoidal and triangular fuzzy numbers respectively, while the 

coordinate intuitive multiple centroid, )~,~(~ yxIMC
A

 and )~,~(~ yxIMC
B

 be centroid for 

A
~

 and B
~

 respectively. Centroid index of intuitive multiple centroid represents the 

crisp value of centroid point that is denoted as 
22 ~~)

~
( yxAIMC   and  

22 ~~)
~

( yxBIMC  . 
 

Property 1:  If A
~

 and B
~

 are embedded and symmetry, then )
~

()
~

( BIMCAIMC  . 

Proof:  Since A
~

 and B
~

 are embedded and symmetry, hence we know that 

BA
xx ~~
~~   and 

BA
yy ~~
~~  . Then, from equation (4.8) we have 

2
~

2
~

2
~

2
~

~~~~
BBAA

yxyx  . Therefore, )
~

()
~

( BIMCAIMC  . 

 

Property 2:  If A
~

 and B
~

 are embedded with 
BA

hh ~~  , then )
~

()
~

( BIMCAIMC  . 

Proof:  Since A
~

 and B
~

 are embedded and with 
BA

hh ~~  , hence we know that 

BA
xx ~~
~~   and 

BA
yy ~~
~~  . Then, from equation (4.8) we have 

2
~

2
~

2
~

2
~

~~~~
BBAA

yxyx  . Therefore, )
~

()
~

( BIMCAIMC  . 

 

Property 3:  If A
~

 is fuzzy singleton number, then 
2

~
2

~
~~)

~
(

AA
yxAIMC  . 

Proof:  For any crisp (real) numbers, we know that 
A

xaaaa ~4321
~  

and 1~
~ 
A

y  which are equivalent to equation (4.5). Therefore, 

2
~

2
~

~~)
~

(
AA

yxAIMC  . 

 

Property 4: If A
~

 and B
~

 are any fuzzy symmetrical or asymmetrical number, then 

41 )
~

( aAIMCa   and 41 )
~

( bBIMCb  . 

Proof: Since A
~

 and B
~

 are any fuzzy symmetrical or asymmetrical numbers, 

hence 4~1 )~,~( ayxIVCa
A

  and 4~1 )~,~( byxIVCb
B

 . Therefore, 

41 )
~

( aAIMCa   and 41 )
~

( bBIMCb   respectively. 

 



67 

 

All properties are related with computation for single crisp value )
~

(AIMC , where A
~

 

is any possible generalised type-1 fuzzy sets. 

 

4.2.4 Empirical Validation 

The empirical validation of centroid method is extensively discussed. 

Discussions of this validation are made in accordance with case studies found in the 

literature of fuzzy sets.  

There are several possible cases in representing type-1 fuzzy numbers which are: 

1) Trapezoidal normal symmetry 

2) Trapezoidal normal asymmetry 

3) Trapezoidal non – normal symmetry 

4) Trapezoidal non – normal asymmetry 

5) Triangular normal symmetry 

6) Triangular normal asymmetry 

7) Triangular non – normal symmetry 

8) Triangular non – normal asymmetry 

9) Singleton normal 

10) Singleton non – normal 

 

Representation of all possible cases for type-1 fuzzy sets: 

 

 

 

 

 

 

 

 

Fig. 4. 11: Trapezoidal normal symmetry of type-1 fuzzy number,  1;,,,
~

4321 aaaaA   
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Fig. 4. 12: Trapezoidal normal asymmetry of type-1 fuzzy number, 

 1;,,,
~

4321 aaaaA   

 

 

 

 

 

 

 

 

Fig. 4. 13: Trapezoidal non – normal symmetry of type-1 fuzzy number, 

 8.0;,,,
~

4321 aaaaA   

 

 

 

 

 

 

 

 

Fig. 4. 14: Trapezoidal non – normal asymmetry of type-1 fuzzy number, 

 8.0;,,,
~

4321 aaaaA   
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Fig. 4. 15: Triangular normal symmetry of type-1 fuzzy number,  1;,,
~

321 aaaA   

 

 

 

 

 

 

 

 

Fig. 4. 16: Triangular normal asymmetry of type-1 fuzzy number,  1;,,
~

321 aaaA   

 

 

 

 

 

 

 

 

Fig. 4. 17: Triangular non – normal symmetry of type-1 fuzzy number, 

 8.0;,,
~

321 aaaA   
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Fig. 4. 18: Triangular non – normal asymmetry of type-1 fuzzy number, 

 8.0;,,
~

321 aaaA   

 

 

 

 

 

 

 

 

Fig. 4. 19: Singleton normal of type-1 fuzzy number,  1;
~

1aA   

 

 

 

 

 

 

 

 

Fig. 4. 20: Singleton non – normal of type-1 fuzzy number,  8.0;
~

1aA   
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Application:  

The elementary problem of temperature mensuration based on arithmetic operation of centroid defuzzification methods of the 

proposed intuitive multiple centroid and established methods , (Shi-Jay Chen & Chen, 2002), (Y. M. Wang et al., 2006), (Liang et al., 

2006) and (Shieh, 2007) are compared. 

Let the temperature ( C ) of a room is measured by each possible cases of type-1 fuzzy numbers as presented in Table 4.1. All of 

possible cases of fuzzy numbers are defuzzified using five different defuzzification methods and the results are presented in table 

below.   

Table 4. 1. Comparative empirical – based validation study for centroid defuzzification of type-1 fuzzy sets 

Case  Generalised Fuzzy Numbers 
Chen & Chen (2002) Wang et al. (2006) Liang et al. (2006) Shieh (2007) 

Ku Khalif & Gegov 

(proposed) 

  
(a1, a2, a3, a4; h) x y 

Score 

Index 
x y 

Score 

Index 
x y 

Score 

Index 
x y 

Score 

Index 
x y 

Score 

Index 

1 10 12 14 16 1 13.0000 0.6111 13.0144 13.0000 0.4167 13.0067 13.0000 0.4167 13.0067 13.0000 0.4167 13.0067 13.0000 0.3889 13.0058 

2 10 12 14 17 1 13.3095 0.6190 13.3239 13.2963 0.4074 13.3025 13.2963 0.4074 13.3025 13.2963 0.4074 13.3025 13.1111 0.3889 13.1169 

3 10 12 14 16 0.9 13.0000 0.5500 13.0116 13.0000 0.3750 13.0054 13.0000 0.3750 13.0054 13.0000 0.3750 13.0054 13.0000 0.3500 13.0047 

4 10 12 14 17 0.9 13.3095 0.5571 13.3212 13.2963 0.3667 13.3014 13.2963 0.3667 13.3014 13.2963 0.3667 13.3014 13.1111 0.3500 13.1158 

5 10 12 12 14 1 12.0000 0.6667 12.0185 12.0000 0.3333 12.0046 12.0000 0.3333 12.0046 12.0000 0.3333 12.0046 12.0000 0.3889 12.0063 

6 10 12 12 15 1 12.3333 0.6667 12.3513 12.3333 0.3333 12.3378 12.3333 0.3333 12.3378 12.3333 0.3333 12.3378 12.1111 0.3889 12.1174 

7 10 12 12 14 0.9 12.0000 0.6000 12.0150 12.0000 0.3000 12.0037 12.0000 0.3000 12.0037 12.0000 0.3000 12.0037 12.0000 0.3500 12.0051 

8 10 12 12 15 0.9 12.3333 0.6000 12.3479 12.3333 0.3000 12.3370 12.3333 0.3000 12.3370 12.3333 0.3000 12.3370 12.1111 0.3500 12.1162 

9 10 10 10 10 1 10.0000 0.5000 10.0125 10.0000 0.3333 10.0056 N/A N/A N/A 13.3333 0.3333 13.3375 10.0000 0.3889 10.0076 

10 10 10 10 10 0.9 10.0000 0.4500 10.0101 10.0000 0.3000 10.0045 N/A N/A N/A 13.3333 0.3000 13.3367 10.0000 0.3500 10.0061 

Footnotes: N/A - Not available
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Based on the concept that the coordinate on the vertical axis is as important as 

the coordinate on the horizontal axis. According to (Y. J. Wang & Lee, 2008), they 

assumed that multiplying the value of x and y will degrade the importance of the 

value x whereby the importance of the degree of x should be higher than y. The core 

area (x-axis) contributes greater weight than membership function (y-axis). Moreover, 

this point is supported by several researchers in literature such as (Yager, 1980) and 

(Murakami & Meada, 1984). This is because the x-axis represents the certain values 

of fuzzy numbers while y-axis only represent the membership function or the 

confident level (uncertain) of certain values of fuzzy numbers. Logically, the range of 

membership function is between 0 until 1, but the values of core area or x-axis are 

varies. It can be positive value or negative value, with different units. 

  As can be seen in Table 4.1, several centroid defuzzification methods of 

type-1 fuzzy sets are compared with different possible cases of fuzzy numbers 

representation. The proposed intuitive multiple centroid for type-1 fuzzy 

sets,
18

)(7)(2~ 3241
~

aaaa
x

A


 , 

18

7~ ~

~
A

A

h
y   is compared with established centroid 

methods which are from: 

 

1) (Shi-Jay Chen & Chen, 2002) 

'

2

6

2

~

~

14

23
~

~






























A

A

A

h

aa

aa
h

y  

,10

,10

~41

~41





A

A

handaaif

handaaif
         (4.9) 

    

A

AAA

A h

yhaaaay
x

~

~~1423~

~

2

~~
~ 

            (4.10) 

 

2) (Y. M. Wang et al., 2006) 

Trapezoidal: 

   
   










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2134

2134

4321~

3

1~

aaaa

aaaa
aaaax

A
          (4.11) 
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23
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aaaa

aa
hy
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            (4.12) 
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Triangular: 

 321~

3

1~ aaax
A

                          (4.13) 

3

1~
~ 
A

y                (4.14) 

3) (Liang et al., 2006) 

)(3

~
2222

~

bacd

abbacdcd
x

A 


             (4.15) 

)(3

)22(~ ~

~

bacd

bacdh
y A

A 


                     (4.16) 

4) (Shieh, 2007) 

   
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
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2134

23
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3
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aaaa

aa
hy
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            (4.18) 

 

There are ten all possible cases representing fuzzy numbers as mentioned earlier. 

Case 1, 3, 5 and 7 are symmetry cases where all type-1 fuzzy numbers are in 

symmetry condition in which the length of  21 , aa  and  43 , aa  are same. All 

established methods and the proposed method give same values of horizontal x-axis 

for symmetry cases. It is depicts that the proposed method produces consistent results 

with established methods for symmetry cases of horizontal x-axis values. For vertical 

y-axis, the formulation given by  (Y. M. Wang et al., 2006), is same as (Liang et al., 

2006) and (Shieh, 2007). This is because (Liang et al., 2006) and (Shieh, 2007) use 

same formula produced by (Y. M. Wang et al., 2006) in computing y-axis. 

Nevertheless, when dealing with triangular or singleton fuzzy numbers, (Y. M. Wang 

et al., 2006) use different formulation for x-axis and y-axis as well. Since triangular 

fuzzy numbers are special cases of trapezoidal fuzzy numbers, the centroid 

formulation proposed by them are inappropriately able to deal with triangular cases. 

There are two singleton cases are considered here, which are singleton normal 

and singleton non-normal. For (Liang et al., 2006) centroid method, the formulation 

given cannot deal with singleton cases. This is because the numerator values for x and 

y formulation give zero value of results. As mentioned in Property 4 in 

defuzzification properties and Property 3 in centroid properties, logically, the 
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defuzzification values should be fall in permitted zone and the horizontal x-axis 

values must be 
A

xaaaa ~4321
~ . (Shieh, 2007) centroid method give x-values 

quite dispersed away from permitted zone. In this sense, (Shieh, 2007) centroid 

method deviates from Property 4 in defuzzification and Property 3 in centroid 

properties.   

This follows the assumption as mentioned in early point where, the weight of 

x-axis is greater than y-axis. Thus, the utilising of intuitive multiple centroid is more 

reasonable than other established centroid methods.  

 

4.3 Intuitive Multiple Centroid for Type-2 Fuzzy Sets 

This section illustrates the proposed formulae on computing the extension of 

intuitive multiple centroid defuzzification of type-2 fuzzy sets. The theoretical and 

empirical foundations of the extension of intuitive multiple centroid method for type-

2 fuzzy sets are introduced. The intuitive multiple centroid method for type-2 fuzzy 

sets takes a broad view by examples labelled by a classical intuitive multiple centroid 

defuzzification method for type-1 fuzzy sets. In real world applications, the 

implementation of fuzzy events is widely broad. Not just limited to classical fuzzy 

sets, but various types of fuzzy sets are applied. Aforementioned in Chapter 2, type-2 

fuzzy sets let us incorporate the uncertainty of membership functions into the fuzzy 

set theory.  

The development of intuitive multiple centroid for type-2 fuzzy sets is limited 

to interval type-2 fuzzy sets. Since generalised type-2 fuzzy set requires complex and 

huge computational difficult operations, the vast spread of generalised type-2 fuzzy 

systems has not occurred. The intuitive multiple centroid for type-1 fuzzy sets cannot 

be processed parallel for type-2 fuzzy sets. A similar analysis applies to the centroid 

for type-2 fuzzy sets is irrational compared to type-1 fuzzy sets. Presently, parallel 

processing is not available for most researchers, so the computational process is 

somewhat complex of the centroid for type-2 fuzzy sets. This issue motivates us to 

develop and simplify the new centroid for type-2 fuzzy sets. Currently, interval type-2 

fuzzy sets are extensively used and have been successfully applied in numerous fields 

of study.  The extension of  proposed centroid defuzzification method for all possible 

interval type-2 fuzzy sets that consist of trapezoidal, triangular and singleton fuzzy 

numbers that are incorporated into the development as well. This extension of 

proposed intuitive multiple centroid for type-2 fuzzy sets is compared with other 

established centroid methods in literature which are (Karnik & Mendel, 2001a), (Wu 

& Mendel, 2009), (Gong, 2013) and (Abu Bakar & Gegov, 2015a). 
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4.3.1 Extension of Intuitive Multiple Centroid for Type-2 Fuzzy Sets 

Let consider by ));,,,(),;,,,(()
~

,
~

( ~4321~4321

L

A

LLLLU

A

UUUULU haaaahaaaaAAA 


  

as an interval type-2 fuzzy number. The complete method process of intuitive 

multiple centroid for interval type-2 fuzzy set is signified as follows. 

 

Step 1: Find the centroids of the three parts of ,
,





,

 and 



,

 in interval type-2 

fuzzy set representation as shown in Fig. 4.21. We divide the trapezoidal 

interval type-2 fuzzy set into three parts which are: 1) two right triangle 

shapes of   and   ; 2) two rectangle shapes of    and   and; 3) two left 

triangle shapes of    and  . The sub centroids of right triangle shape, 

rectangle shape and left triangle shape represent as 
A
~ , 

A
~  and 

A
~  

respectively. 

 

 

 

 

 

 

 

 

Fig. 4. 21: Intuitive multiple centroid plane representation of type-2 fuzzy set 
 

Theoretically, intuitive multiple centroid defuzzification is based on median 

point that covers centralised of the shape properly. Fig. 4.22, Fig. 4.23 and 

Fig. 4.24 depict the sub centroid points separately to represent the median 

points of  ,
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 and 
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respectively. 
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Fig. 4. 22: Centroid for upper,   and lower forms,    of left triangles 

 

 

 

 

 

 

 

 

 

Fig. 4. 23: Centroid for upper,   and lower forms,    of rectangles 

 

 

 

 

 

 

 

 

 

Fig. 4. 24: Centroid for upper,   and lower forms,    of right triangles 
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1) Sub centroid points of 



,

 formula. 

  
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6
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3
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1
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L
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AA
hhaaaayx


          (4.19)  

                  

 

 

 

 

 

 

 

 

 

Fig. 4. 25: Sub centroid of left triangle, 



,

 

Fig. 4.25 presents the )~,~( ~~
, AA

yx


 , sub centroid point of 



,

 left shape of 

triangle are developed. Basically, the sub centroid for 



,

 is same concept 

from Fig. 4.7, 
A
~  for type-1 fuzzy sets. Aforementioned in Section 3.4.2, an 

interval type-2 fuzzy number has upper,   and lower,   form, where it has 

two type-1 fuzzy numbers in one representation on a plane. In getting the 

centroid for interval type-2 fuzzy sets, most of the researchers in literature 

(Karnik & Mendel, 2001a), (Wu & Mendel, 2009),  (Gong, 2013), (Abu Bakar 

& Gegov, 2015a), there are straightforwardly find the midpoint between upper 

and lower form. The extension of proposed intuitive multiple centroid apply 

the same process in getting the middle points between   and  . Equation 

(4.19) is formulated for the middle points between   and  : 
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Then, 
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Fig. 4. 26: Sub centroid of rectangle, 



,
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Same goes to )~,~( ~~
, AA

yx


 , the middle point between   and   is computed. 

Fundamentally, the sub centroid for )~,~( ~~
, AA

yx


  is same concept from Fig. 

4.9, 
A
~  for type-1 fuzzy sets. Equation (4.19) is formulated for the middle 

points between   and  : 

































 












 


2

22,
2

22
)~,~(

~~3232

~~
,

L

A

U

A

LLUU

AA

hhaaaa

yx


  



























 













 


44
,

44
)~,~(

~~
3232

~~
,

L

A

U

A

LLUU

AA

hhaaaa
yx


  

Hence, 









 )(

4

1
),(

4

1
)~,~( ~~3232~~

,

L

A

U

A

LLUU

AA
hhaaaayx


  

3) Sub centroid points of 



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 formula. 
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Fig. 4. 27: Sub centroid of right triangle, 



,

 

 

x  

U

A
h~  

  

L

A
h~  

La3  Ua3  
La4  Ua4  

)(x
A
  

    
    

 ,
 



80 

 

Fig. 4.27 depicts the representation of formulation developed for ),( ~~
AA

yx , 

sub centroid point of 



,

 left shape of triangle. The explanation for equation 

(4.21) are generated is similar way as sub centroid points of 



,

 formula 

from equation (4.19). 

Step 2: Connect all vertices centroids points of ,
,





,

 and 



,

 each other, where 

it will create another triangular plane inside of trapezoid plane. 

Step 3: The centroid index of intuitive multiple centroid of )~,~( ~~
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yx  with vertices 
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Intuition multiple centroid can be summarised as 
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        (4.23) 

where 

,
,

 : the centroid coordinate of first triangle plane 




,
: the centroid coordinate of rectangle plane 




,

: the centroid coordinate of second triangle plane 

)~,~( ~~
AA

yx : the centroid coordinate of fuzzy number


A  

The process of getting the final centroid coordinate )~,~( ~~
AA

yx  are illustrated as 

follows. 
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Proving: 
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Proving: 
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Centroid index of intuitive multiple centroid can be generated using Euclidean 

distance by (Cheng, 1998): 
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Hence 
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4.3.2 Illustrative Example 

This subsection illustrates a numerical – based example which is used to 

demonstrate the utilisation of the extension of intuitive multiple centroid method for 

fuzzy set of interval type-2 is developed in Section 4.3. A complete illustration of 

utilising the proposed method in this example is as follows. 

Let ))9.0;15,5.13,5.12,11(),1;16,14,12,10(()
~

,
~

( 


LU AAA  be an interval type-2 fuzzy 

number to be calculated the centroid point of 


A , then the centroid point is computed 

using equation (4.23) and (4.25) as follows. 
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Hence, the centroid index of intuitive multiple centroid for )~,~( ~~
AA

yx  fuzzy set of 

interval type-2 can be computed as 
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yxAIMC 


 
 

 22 3694.013)( 


AIMC  
 

0053.13)( 


AIMC  

4.3.3 Theoretical Validation 

The properties of defuzzification summarised by (Roychowdhury & Pedrycz, 

2001) as mentioned in Chapter 3 for type-1 fuzzy sets are extended while the 

properties of centroid are improvised in order to fulfill the reliability of type-2 fuzzy 

sets requirement. The relevant properties of defuzzification and centroid for type-2 

fuzzy sets are illustrated as follows. 

Let 


A  and 


B  are be trapezoidal and triangular type-2 fuzzy number respectively. 

The properties of defuzzification summarised by (Roychowdhury & Pedrycz, 2001) 

are identified as follows. 
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Property 1:  A defuzzification operator always computes to one numeric value. 

Proof:  Since A
~

 and B
~

 are different types of type-2 fuzzy numbers, both of 

them must have single or unique defuzzified values, not ambiguity. The 

footprint of uncertainty (FOU) is considered in order to reduce the 

uncertainty. The defuzzification operator is always injective. Clearly, 

two fuzzy sets can have same defuzzified value. It is assumed that, the 

defuzzified value is always within the support set of the original fuzzy 

set. 

Property 2:  The membership function determines the defuzzified value. 

Proof:  All type-2 fuzzy numbers represent together with membership function 

(y-axis) with two bounds, which are lower bound and upper bound. 

The area between both bounds is named as footprint of uncertainty 

(FOU). Here is where the uncertainty is located. The membership 

function is important in determining the defuzzified value, not only 

core area (x-area). In this sense, defuzzification process must 

considers normal or non-normal fuzzy sets even the weight of core 

area (x-axis) is greater than membership function (y-axis).  

Property 3:  The defuzzified value of two triangular-operated fuzzy sets is always 

continued within the bounds of individual defuzzified values. 

Proof:  If type-2 fuzzy set ),( 21 fff BBTC  1fB  where 1fB  and 2fB  are fuzzy 

sets and T and T-norm, )()()( 21 fff BDefCDefBDef  , and so it is 

true for T-conorm (T*) ),(* 21 fff BBTC  . 

Property 4:  In the case of prohibitive information, the defuzzified value should fall 

in the permitted zone. 

Proof:  The defuzzified values of any type-2 fuzzy numbers must be fall in the 

permitted zone in core area of x-axis. 

The relevant properties are considered for qualifying the applicability of centroid for 

interval type-2 fuzzy sets, where they depend on the practicality within the area of 

research, however, they are not regarded as complete. Therefore, without loss of 

generality, the relevant properties of the centroid are as follows:  
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Let 


A  and 


B  are be trapezoidal and triangular interval type-2 fuzzy number 

respectively, while )~,~( yxIMC
A
  and )~,~( yxIMC

B
  be centroid points for 



A  and 


B   

respectively. Centroid index of intuitive multiple centroid shows the crisp value of 

centroid point that is denoted as 2
~

2
~

~~)(
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yxAIMC 


 and 2
~

2
~

~~)(
BB

yxBIMC 


. 

Property 1:  If 


A  and 


B  are embedded and symmetry, then )()(


 BIMCAIMC . 

Proof:  Since 


A  and 


B  are embedded and symmetry, hence from equation 

(4.15) we have 2222 ~~~~



BBAA

yxyx . Therefore, 

)()(
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 BIMCAIMC . 

Property 2:  If 
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Proof:  Since 
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B  are embedded and with 
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LU hh ),( > 

B

LU hh ),( , hence 

we know that 
BA

yy ~~
~~  . Then, from equation (4.13) we 

have 2222 ~~~~
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yxyx . Therefore, )()(
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 BIMCAIMC . 

Property 3:  If 


A  is fuzzy singleton number, then 22 ~~)(
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


AA

yxAIMC . 

Proof: For any crisp (real) interval type-2 fuzzy set, we know that 


A

LLLLUUUU xaaaaaaaa ~
43214321  which are equivalent to 

equation (4.15). Therefore, 22 ~~)(
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


AA

yxAIMC . 

Property 4:  If 


A  is any symmetrical or asymmetrical interval type-2 fuzzy number, 

then UU aAIMCa 41 )( 


.  

Proof:  Since any symmetrical or asymmetrical interval type-2 fuzzy set has 
UUUU aaaa 4321  , hence U

A

U ayxIMCa 41 )~,~(   . Therefore, 

UU aAIMCa 41 )( 


. 
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All properties are related with computation for single crisp value )(


AIMC , where 


A  

is any possible interval type-2 fuzzy set. 

 

4.3.4 Empirical Validation 

The empirical validation of centroid method is extensively discussed. 

Discussions of this validation are made in accordance with case studies found in the 

literature of fuzzy sets.  

There are several possible cases in representing interval fuzzy sets of type-2 which 

are: 

1) Trapezoidal normal symmetry 

2) Trapezoidal normal asymmetry 

3) Trapezoidal non – normal symmetry 

4) Trapezoidal non – normal asymmetry 

5) Triangular normal symmetry 

6) Triangular normal asymmetry 

7) Triangular non – normal symmetry 

8) Triangular non – normal asymmetry 

9) Singleton normal 

10) Singleton non – normal  

 

Representation of all possible cases for interval type-2 fuzzy sets: 

 

 

 

 

 

 

 

 

 

Fig. 4. 28: Trapezoidal normal symmetry of interval type-2 fuzzy number, 

))8.0;,,,(),1;,,,(( 43214321
LLLLUUUU aaaaaaaaA 



 

 

 

x  
Ua1  Ua2  

1  

8.0  

La1  La2  La3  
Ua3  

La4  
Ua4  

)(x
A
  



87 

 

 

 

 

 

 

 

 

 

 

Fig. 4. 29: Trapezoidal normal asymmetry of interval type-2 fuzzy number, 

))8.0;,,,(),1;,,,(( 43214321
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Fig. 4. 30: Trapezoidal non – normal symmetry of interval type-2 fuzzy number, 

))8.0;,,,(),9.0;,,,(( 43214321
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Fig. 4. 31: Trapezoidal non – normal asymmetry of interval type-2 fuzzy number, 

))8.0;,,,(),9.0;,,,(( 43214321
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Fig. 4. 32: Triangular normal symmetry of interval type-2 fuzzy number, 

))7.0;,,(),1;,,(( 321321
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Fig. 4. 33: Triangular normal asymmetry of interval type-2 fuzzy number, 

))7.0;,,(),1;,,(( 321321
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Fig. 4. 34: Triangular non – normal symmetry of interval type-2 fuzzy number, 

))7.0;,,(),9.0;,,(( 321321
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Fig. 4. 35: Triangular non – normal asymmetry of interval type-2 fuzzy number, 

))7.0;,,(),9.0;,,(( 321321
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Fig. 4. 36: Singleton normal of interval type-2 fuzzy number, ))7.0;(),1;(( 11
LU aaA 



 

 

 

 

 

 

 

 

 

 

Fig. 4. 37: Singleton non – normal of interval type-2 fuzzy number, 

))7.0;(),9.0;(( 11
LU aaA 
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Application:  

The elementary problem of temperature mensuration based on arithmetic operation of centroid defuzzification methods of the 

proposed of extension intuitive multiple centroid for type-2 fuzzy sets and established methods, (Karnik & Mendel, 2001a), (Wu & 

Mendel, 2009), (Gong, 2013) and (Abu Bakar & Gegov, 2015a) are compared. 

Let the temperature ( C ) of a room is measured by each possible cases of interval type-2 fuzzy numbers as presented in Table 4.2. All 

of possible cases of fuzzy numbers are defuzzified using four different defuzzification methods and the results are presented in table 

below.  (Karnik & Mendel, 2001b) 

 

Table 4. 2. Comparative empirical – based validation study for centroid defuzzification of interval type-2 fuzzy sets  

Case 

  

Interval Type-2 Fuzzy Numbers 
Karnik & Mendel (2001) Wu & Mendel (2009) 

Gong et 

al(2013) 
Abu Bakar & Gegov (2015) 

Ku Khalif & Gegov 

(proposed) 

(aU1, aU2, aU3, aU4; hU) (aL1, aL2, aL3, aL4; hL) 
g(LA) g(RA) 

Score 

Index 
C(left) C(right) 

Score 

Index 
PMV x y 

Score 

Index 
x y 

Score 

Index 

1 10 12 14 16 1 11 12 14 15 1 12.0000 14.0000 13.0000 12.0000 14.0000 13.0000 13.0000 13.0000 0.4306 13.0071 13.0000 0.3889 13.0058 

2 10 12 14 17 1 11 12 14 16 1 12.0000 14.0000 13.0000 12.0000 14.0000 13.0000 13.1667 13.2910 0.4180 13.2976 13.2222 0.3889 13.2279 

3 10 12 14 16 1 11 12 14 15 0.9 12.0556 13.9444 13.0000 12.0556 13.9444 13.0000 12.3500 13.0000 0.4083 13.0064 13.0000 0.3694 13.0052 

4 10 12 14 17 1 11 12 14 16 0.9 12.0556 13.8889 12.9722 12.0556 13.8889 12.9722 12.5083 13.2910 0.3966 13.2969 13.2222 0.3694 13.2274 

5 10 13 13 15 1 12 13 13 14 1 13.0000 13.0000 13.0000 13.0000 13.0000 13.0000 12.9167 12.8333 0.3333 12.8377 12.8889 0.3889 12.8948 

6 10 13 13 16 1 12 13 13 15 1 13.0000 13.0000 13.0000 13.0000 13.0000 13.0000 13.0833 13.1667 0.3333 13.1709 13.1111 0.3889 13.1169 

7 10 13 13 15 1 12 13 13 14 0.9 13.0556 12.9444 13.0000 13.0556 12.9444 13.0000 12.2667 12.8333 0.3167 12.8372 12.8889 0.3694 12.8942 

8 10 13 13 16 1 12 13 13 15 0.9 13.0556 12.8889 12.9722 13.0556 12.8889 12.9722 12.4250 13.1667 0.3167 13.1705 13.1111 0.3694 13.1163 

9 10 10 10 10 1 10 10 10 10 1 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 13.3333 0.3333 13.3375 10.0000 0.3889 10.0076 

10 10 10 10 10 1 10 10 10 10 0.9 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 9.5000 13.3333 0.3167 13.3371 10.0000 0.3694 10.0068 
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Referring to Table 4.2, four centroid defuzzification methods for interval type-

2 fuzzy sets are compared with different possible cases of fuzzy numbers 

representation. The extension of proposed intuitive multiple centroid, 

36
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4. (Abu Bakar & Gegov, 2015a) 

The authors apply (Shieh, 2007) centroid method from type-1 fuzzy sets 

for interval type-2 fuzzy sets, 
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There are ten all possible cases same as type-1 fuzzy sets representing fuzzy numbers 

as mentioned earlier. Centroid defuzzification methods that proposed by (Karnik & 

Mendel, 2001a) and (Wu & Mendel, 2009) are actually same, but different in 

representation. (Wu & Mendel, 2009) improvised the computational process of 

(Karnik & Mendel, 2001a)’s centroid method to make easy to understand and 

compute. Representing both (Karnik & Mendel, 2001a) and (Wu & Mendel, 2009) 

centroid methods produce good results for normal symmetry cases (case 1, 5 and 9) 

only but not for the others cases. As can be seen at case 1, 2, 3, 5, 6 and 7, all of them 

are represented different representation of fuzzy numbers, but both (Karnik & 

Mendel, 2001a) and (Wu & Mendel, 2009) centroid methods give same value of 

defuzzification. Case 9 and 10 as well. This is irrational, illogic and not consider 

human judgment in their computations.  

(Gong, 2013; Gong et al., 2015) centroid method does not compute x and y 

values to get the defuzzification values. In order to get the defuzzification value, the 

authors defined possibility degree which are the upper and lower possibility mean 

values. The fuzzy number is divided into two parts which are lower and upper part. 

Hence, to get the defuzzification value, average between lower and upper possibility 

mean part is computed, 
2

)(
MM

AM





. Overall, this centroid method produces better 
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results compare to (Karnik & Mendel, 2001a) and (Wu & Mendel, 2009). From Table 

4.2, (Gong, 2013; Gong et al., 2015) give rational results for case 1, 2, 5 and 6. The 

remaining cases are irrational because the defuzzification values are deviated away 

too much. For instance, case 10 (singleton non-normal), the defuzzification value 

produced by (Gong, 2013; Gong et al., 2015) is about 0.5 from permitted zone 10. As 

can be seen here, (Gong, 2013; Gong et al., 2015) method is inappropriately able to 

deal with non-normal cases since produce such that results.        

Centroid method for interval type-2 fuzzy sets that proposed by (Abu Bakar & 

Gegov, 2015a) is an extension of centroid method for type-1 fuzzy sets from (Shieh, 

2007). As we know, the representation of interval type-2 fuzzy set is a pair of type-1 

fuzzy sets (refer Section 3.4.2). (Abu Bakar & Gegov, 2015a) applied (Shieh, 2007) 

centroid method for both shapes presented in type-2 fuzzy sets, where at the end of 

calculation, the average between two centroid points is computed. The results that are 

produced by (Abu Bakar & Gegov, 2015a) are good in terms of centre point of x-axis. 

Aforementioned, x-axis represents greater weight in defuzzification process compared 

to y-axis. This due to the fact that x-axis represents actual value regarding the 

information but y-axis represents membership degree of the data values. Both play 

important role in defuzzification process, but the x-axis plays greater role. This 

method inappropriately deal with singleton cases either for normal or non – normal. 

The results depict that the centroid method proposed by (Abu Bakar & Gegov, 2015a) 

are dispersed away too much from the permitted zone for singleton cases which is 10.  

The extension of the proposed intuitive multiple centroid gives consistent 

results for all cases compared to established centroid methods for interval type-2 

fuzzy sets in literature. There is no one result from all these cases gives worse 

defuzzification value. In addition, it gives better defuzzification results that consistent 

with the original values of fuzzy numbers (core value; x-axis). This proposed centroid 

method follows the assumption as mentioned in early point where, the weight of x-

axis is greater than y-axis. Thus, the utilising of intuitive multiple centroid is more 

reasonable, rational and logic than other established centroid methods for interval 

type-2 fuzzy sets for all possible cases. 
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4.4 Intuitive Multiple Centroid for Z-Numbers 

In this section, the proposed formulae on computing the extension of intuitive 

multiple centroid defuzzification of z-numbers is developed. The proposed of the 

extension of intuitive multiple centroid method is justified the presented formulae 

from the classical one, which is intuitive multiple centroid for the type-1 fuzzy sets. 

The consideration of reliability component in fuzzy sets has more ability to describe 

knowledge of human being and uncertain information process.   

In real applications, the decision makers may give their opinions by fuzzy 

numbers. However, typically, a basic question arises which is how reliable are the 

numbers that we deal with. It plays a particularly significant role in decision analysis. 

The concept of intuitive multiple centroid defuzzification for z-number has 

remarkable capability than type-1 fuzzy set to make rational decisions regarding 

considering the reliability of the numbers.  

 

4.4.1 Extension of Intuitive Multiple Centroid for Fuzzy Set Z-Numbers 

Let consider a z-number, )
~

,
~

( RAZ   is an ordered pair of fuzzy numbers with 

));,,,(),;,,,(( 43214321~
,

~ RARA
hRRRRhaaaaZ  . The first component, 

  1,0)(,
~

~  xxuxA
A

 is known as restriction component whereby it is a real-valued 

uncertain on X  while the second component,   1,0)(,
~

~  xxuxR
R

 is a measure of 

reliability for A
~

 as mentioned in Chapter 2. Let assume );,,,(
~

4321 AhaaaaA   as the 

generalised trapezoidal type-1 fuzzy number and )~,~( ~
,

~~
,

~
RARA

yx  be the centroid point 

for )
~

,
~

( RA  such that 
RA

x ~
,

~
~  and 

RA
y ~

,
~

~  are the horizontal x – axis and vertical y – axis of 

z-number of )
~

,
~

( RA  respectively. The complete process for intuitive multiple centroid 

point, )( ~
,

~
RA

ZIMC  computation is signified as follows. 

Step 1: Converting the reliability component on x – coordinate into crisp number as a 

weight for restriction component, A
~

. Find the sub centroids of the three parts 

of ,~
R


R
~  and 

R
~  in trapezoid plane of reliability R

~
, representation as 

shown in Fig. 4.38. Trapezoid shape is divided into three parts which are: 1) 

the left triangle; 2) the rectangle and; 3) the right triangle. The sub centroids 

of left triangle shape, rectangle shape and right triangle shape represent as 

A
~ , 

A
~  and 

A
~  respectively. Converting the reliability component, R

~
 on x – 

coordinate into crisp number or weight using equation (4.5). 
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Fig. 4. 38: Intuitive multiple centroid plane representation for Reliability, R
~

 

component. 

 

Step 2: Add the weight of reliability component into the restriction component, A
~

 

with multiplicative operation. The weighted z-number can be denoted as 

  1,0),()()(,
~

~~~  xxxxxZ
AAA   . Theorem 1 illustrates the 

process in getting weighted z-number. 

 

Theorem 4.1: 
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Subject to:  
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which can be denoted by the Fig. 4. 39 as next page. 
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Fig. 4. 39: Z-number after multiplying the reliability 

 

Step 3: Convert the irregular fuzzy number (weighted restriction) to regular fuzzy 

number that denoted as     1,0,)()(,
~

~~~
,

''  xxxxxZ
AZZ

 . In 

accordance with the Theorem 4.1, the conclusion can be made that '~
Z  has the 

same fuzzy expectation with Z
~

 where both are equal with fuzzy 

expectation.  
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which can be denoted by the Fig. 4.40 as next page. 
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Fig. 4. 40: The regular fuzzy number transforms from z-number 

 

Theorem 4.3: 
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Fig. 4. 41: Intuitive multiple centroid plane representation for z-number 

 

Step 4: Connect all vertices sub centroid points of 
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represented in Fig. 4.41. The formulation of sub centroid points of  
RA
~

,
~ , 

RA
~

,
~  and 

RA
~

,
~  are computed same as intuitive multiple centroid for type-1 

fuzzy sets as below. 

 
























3
,

3

2
),(

~
,

~

121~
,

~~
,

~
RA

RARA

h
aaayx             (4.48) 

       












 


2
,

2
),(

~
,

~
32

~
,

~~
,

~
RA

RARA

haa
yx


           (4.49) 

 
























3
,

3

2
),(

~
,

~

434~
,

~~
,

~
RA

RARA

h
aaayx           (4.50) 

The sub centroid points of 
RA
~

,
~ , 

RA
~

,
~  and 

RA
~

,
~  are calculated in coordinate 

point, )~,~( yx  because the consideration of degree of membership values in 

dealing with subjective events for reliability component. 

Step 3: The centroid coordinate points of intuitive multiple centroid, )~,~( yx  of fuzzy 

number A
~

 with vertices 
A
~ , 

A
~  and 

A
~  can be calculated as 
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Intuitive multiple centroid can be summarised as 
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where 
 

  
RA

x ~
,

~
~ : the centroid on the horizontal x-axis 

 
RA

y ~
,

~
~ : the centroid on the vertical y-axis 

 )~,~( ~
,

~~
,

~
RARA

yx : the centroid point of fuzzy number A
~

 

The process of getting the final centroid coordinate )~,~( ~
,

~~
,

~
RARA

yx  are 

illustrated as next page. 
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Proving:   
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Proving:   
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Centroid index of intuitive multiple centroid can be generated using 

Euclidean Distance by (Cheng, 1998) as 

 

   
2

~
,

~
2

~
,

~
~~)

~
,

~
(

RARA
yxRAR                        (4.53) 

Hence 

   
2

~
,

~
2

~
,

~
~~)

~
,

~
(

RARA
yxRAIMC                        (4.54) 



101 

 

4.4.2 Illustrative Example 

This section illustrates a numerical – based example which is used to 

demonstrate the utilisation of the extension intuitive multiple centroid method for z-

number is developed in Section 4.4. A complete illustration of utilising the extension 

of intuitive multiple centroid method for z-numbers on this example is as follows. 

Let ))1;1,1,1,75.0(),1;16,14,12,10(()
~

,
~

(  RAZ  be z-number to be calculated the 

centroid point of )
~

,
~

( RAZ  , then the centroid point is computed using equation 

(4.40), (4.43), (4.52) and (4.54) as below. At first, the reliability component, R
~

 

should be converted into crisp value for x – axis as a weightage for restriction 

component, A
~

.  
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Add the weight of the reliability to the constraint. Convert the weighted z-number to 

regular fuzzy number. 
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Hence, use equation (4.30) and (4.32) for final defuzzification calculation 
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Hence, the centroid index of intuitive multiple centroid for )~,~( ~~
AA

yx  z-number can be 

computed as 
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4.4.3 Theoretical Validation 

The properties of defuzzification summarised by (Roychowdhury & Pedrycz, 

2001) as mentioned in Section 4.2.3 are applied while the properties of centroid are 

developed in order to fulfill the reliability requirement. The relevant properties of 

defuzzification are same as type-1 fuzzy sets while properties of centroid for z-

number are presented as follows.  

The relevant properties considered for justifying the applicability of centroid 

for fuzzy numbers, where they depend on the practically within the area of research. 

However, they are not regarded as complete. Therefore, with no loss of generality, the 

relevant properties of the centroid are as follows. 

Let )
~

,
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( RAZ   and )
~

,
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( RBZ   are be trapezoidal and triangular z-number 

respectively, while the coordinate intuitive multiple centroid, )~,~( ~
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multiple centroid represents the crisp value of centroid point that is denoted as 
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Property 1:  If A
~

 and B
~

 are embedded and symmetry, then 
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Property 4: If A
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 are any symmetrical or fuzzy asymmetrical number, then 
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All properties are related with computation for single crisp value )
~

,
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( RAIMC , where 

A
~

  and R
~

is any possible generalised type-1 fuzzy set. 
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4.4.4 Empirical Validation 

The empirical validation of centroid method is extensively discussed. 

Discussions of this validation are made in accordance with case studies found in the 

literature of fuzzy sets.  

There are several possible cases in representing z-number which are: 

1) Trapezoidal normal symmetry 

2) Trapezoidal normal asymmetry 

3) Trapezoidal non – normal symmetry 

4) Trapezoidal non – normal asymmetry 

5) Triangular normal symmetry 

6) Triangular normal asymmetry 

7) Triangular non – normal symmetry 

8) Triangular non – normal asymmetry 

9) Singleton normal 

10) Singleton non – normal  

 

Representation of all possible cases in z-numbers: 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 4. 42: Trapezoidal normal symmetry of z-number, 
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Fig. 4. 43: Trapezoidal normal asymmetry of z-number, 
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Fig. 4. 44: Trapezoidal non – normal symmetry of z-number, 
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Fig. 4. 45: Trapezoidal non – normal asymmetry of z-number, 
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Fig. 4. 46: Triangular normal symmetry of z-number, 
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Fig. 4. 47: Triangular normal asymmetry of z-number, 
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Fig. 4. 48: Triangular non – normal symmetry of z-number, 
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Fig. 4. 49: Triangular non - normal asymmetry of z-number, 
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Fig. 4. 50: Singleton normal of z-number, ))1;,,,(),1;(( 43211~
,
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Application:  

The elementary problem of temperature mensuration based on arithmetic operation of 

centroid defuzzification methods of the proposed of extension intuitive multiple 

centroid for z-numbers and established methods, (Kang et al., 2012b) and (Abu Bakar 

& Gegov, 2015b) are compared. 

Let the temperature ( C ) of a room is measured by each possible cases of z-numbers 

as presented in Table 4.3. All of possible cases of fuzzy numbers are defuzzified 

using two different defuzzification methods and the results are presented in table 

below.   

 

  

Table 4. 3. Conversion process from z-numbers to classical type-1 fuzzy sets 

Case 
Z-numbers 

(a1, a2, a3, a4; h) (R1, R2, R3, R4; hR) 

1 (10, 12, 14, 16; 1) (0.75, 1, 1, 1; 1) 

2 (10, 12, 14, 17; 1) (0.75, 1, 1, 1; 1) 

3 (10, 12, 14, 16; 0.9) (0.75, 1, 1, 1; 1) 

4 (10, 12, 14, 17; 0.9) (0.75, 1, 1, 1; 1) 

5 (10, 13, 13, 15; 1) (0.75, 1, 1, 1; 1) 

6 (10, 13, 13, 16; 1) (0.75, 1, 1, 1; 1) 

7 (10, 13, 13, 15; 0.9) (0.75, 1, 1, 1; 1) 

8 (10, 13, 13, 16; 0.9) (0.75, 1, 1, 1; 1) 

9 (10, 10, 10, 10; 1) (0.75, 1, 1, 1; 1) 

10 (10, 10, 10, 10; 0.9) (0.75, 1, 1, 1; 1) 
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Table 4. 4. Comparative empirical – based validation study for centroid defuzzification of z-numbers  

 

Case Generalised Fuzzy Numbers   
Kang et al. (2012b) 

Abu Bakar & Gegov 

(2015b) 

Ku Khalif & Gegov 

(proposed) 

(a1, a2, a3, a4; h) 
x y 

Score 

Index 
x y 

Score 

Index 
x y 

Score 

Index 

1 9.71825 11.6619 13.6056 15.5492 1 12.6337 0.4167 12.6406 12.6337 0.4167 12.6406 12.6337 0.3889 12.6397 

2 9.71825 11.6619 13.6056 16.521 1 12.9217 0.4074 12.9281 12.9217 0.4074 12.9281 12.8497 0.3889 12.8556 

3 9.71825 11.6619 13.6056 15.5492 0.9 12.6337 0.3750 12.6393 12.6337 0.3750 12.6393 12.6337 0.3500 12.6386 

4 9.71825 11.6619 13.6056 16.521 0.9 12.9217 0.3667 12.9269 12.9217 0.3667 12.9269 12.8497 0.3500 12.8545 

5 9.71825 12.6337 12.6337 14.5774 1 12.3098 0.3333 12.3143 12.3098 0.3333 12.3143 12.4178 0.3889 12.4239 

6 9.71825 12.6337 12.6337 15.5492 1 12.6337 0.3333 12.6381 12.6337 0.3333 12.6381 12.6337 0.3889 12.6397 

7 9.71825 12.6337 12.6337 14.5774 0.9 12.3098 0.3000 12.3134 12.3098 0.3000 12.3134 12.4178 0.3500 12.4227 

8 9.71825 12.6337 12.6337 15.5492 0.9 12.6337 0.3000 12.6373 12.6337 0.3000 12.6373 12.6337 0.3500 12.6386 

9 9.71825 9.71825 9.71825 9.71825 1 9.7183 0.3333 9.7240 12.9577 0.3333 12.9620 9.7183 0.3889 9.7260 

10 9.71825 9.71825 9.71825 9.71825 0.9 9.7183 0.3000 9.7229 12.9577 0.3000 12.9611 9.7183 0.3500 9.7246 
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Defuzification for z-numbers is still new in the literature of z-numbers. Z-

number can be represented as an extension of type-1 fuzzy set in term of membership 

function, but completely differ from type-2 fuzzy sets. There is a pair of type-1 fuzzy 

set in representing z-number as mentioned early. The defuzzification methods 

proposed by researchers are lesser than type-1 and type-2 fuzzy sets. Defuzzification 

of z-numbers is quite complicated because the consideration of two components 

(fuzzy restriction and reliability of fuzzy restriction) for one z-number. Under this 

situation, (Kang et al., 2012b) proposed a conversion method for z-numbers to 

classical fuzzy numbers which are type-1 fuzzy sets according to the multiplication 

operation of triangular fuzzy numbers. Later, (Kang et al., 2012a) proposed a method 

of converting z-numbers to classical fuzzy numbers that is according Fuzzy 

Expectation. Most of the researchers or practitioners used this conversion method in 

dealing with z-numbers. This conversion method has more influence to describe the 

knowledge of human being and widely used in uncertain information.  

As can be seen in Table 4.4, three centroid defuzzification methods for z-

numbers are compared with different possible cases of fuzzy numbers representation. 

The extension of proposed intuitive multiple centroid for z-numbers, 
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 is compared with 

established centroid methods for z-numbers which are from:  

1. (Kang et al., 2012b) 

The authors proposed conversion process for z-numbers into regular fuzzy 

numbers by reduce the reliability component into crisp number as a weight 

for restriction component using (Y. M. Wang et al., 2006), equation (3.6). 
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

dxx

dxxx
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


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2. (Abu Bakar & Gegov, 2015b) 

The authors apply conversion process proposed by (Kang et al., 2012b) 

and reduce the z-numbers into regular fuzzy numbers by converting 

reliability using centroid defuzzification (Shieh, 2007) from equation 

(4.17) and (4.18) into crisp number as a weight for restriction component. 

There are ten all possible cases same as type-1 and type-2 fuzzy sets representing 

fuzzy numbers as mentioned earlier. Representing all centroid defuzzification 

methods for z-numbers follow (Kang et al., 2012b) conversion process according 

Fuzzy Expectation. The different is centroid method used. Referring to Table 4.4, 
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(Kang et al., 2012b) and (Abu Bakar & Gegov, 2015b) produce eight same results for 

case 1 until case 8, except case 9 and 10. Seeing that results, (Kang et al., 2012b) 

applied (Y. M. Wang et al., 2006) centroid method for defuzzification process to get 

crisp value. Instead (Abu Bakar & Gegov, 2015b) apply (Shieh, 2007) centroid 

method for defuzzification process to get the crisp value. In the literature, (Shieh, 

2007) centroid method is an improvised from (Y. M. Wang et al., 2006) in the 

representation and properties. No wonder both (Kang et al., 2012b) and (Abu Bakar 

& Gegov, 2015b) give same results for case 1 until 8. But, (Abu Bakar & Gegov, 

2015b) deal inappropriately with singleton cases which produce defuzzification 

results too far from the permitted zone which is should be close to 10.   

The extension of the proposed intuitive multiple centroid for z-numbers gives 

consistent results for all cases compared to (Kang et al., 2012b) centroid method. 

Moreover, both of them give almost similar results for all possible cases of 

representation of z-numbers. Thus, the implementation of intuitive multiple centroid 

is more reasonable, rational and logic and consistent with established one. 
 

4.5 Summary of the Chapter 

This chapter presents in detail the process of development of intuitive multiple 

centroid defuzzification method for fuzzy sets. Reviewing the advantages and 

limitations of the established centroid defuzzification methods for fuzzy sets are very 

useful task to investigate the proposed intuitive multiple centroid method that should 

be adopted in this research work and used in proposed hybrid fuzzy MCDM model in 

the next chapter. A novel intuitive multiple centroid for fuzzy sets is developed in this 

chapter that covers type-1 fuzzy sets, type-2 fuzzy sets and z-numbers. Furthermore, 

the theoretical and empirical validations are broadly discussed in this chapter. All 

relevant properties are considered on differentiating fuzzy numbers for justifying the 

applicability of centroid appropriately. 

The novel proposed intuitive multiple centroid defuzzification method for 

fuzzy sets are technically discussed in detail in this chapter. Moreover, several 

numerical examples are presented to show the applicability and performance of the 

proposed methods. As an application of the concepts of proposed method are 

introduced, it will be applied in the development of hybrid fuzzy MCDM model in 

Chapter 5. Descriptions on proposed intuitive multiple centroid defuzzification in this 

chapter underpin applications on the proposed hybrid fuzzy MCDM model for next 

two chapters. This indicates that Chapter 4 underpins Chapter 5 and Chapter 6 of the 

thesis. In Chapter 5, the development of hybrid fuzzy MCDM model is presented that 

is incorporated with intuitive multiple centroid methods in different fuzzy 

environment. 
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CHAPTER 5 

GENERALISED HYBRID FUZZY MULTI CRITERIA 

DECISION MAKING MODEL 

 

5.1 Overview 

This chapter illustrates the detail process on the development of generalised 

hybrid MCDM model that consist of consistent fuzzy preference relations and fuzzy 

TOPSIS. The novel hybrid MCDM model is developed by improvising several steps 

in computing the consistent fuzzy preference relations and fuzzy TOPSIS to make 

sure both techniques are perfectly integrated. This model capable to interact or 

cooperate with unlimited criteria in dealing with real world decision making 

problems. In developing the proposed hybrid MCDM model, the intuitive multiple 

centroid method is applied as defuzzification process in converting fuzzy values into 

crisp or single values. As mentioned in Chapter 2, it is important to use proper 

defuzzification method in order to consider the need of human perception even 

representing in regular numbers. 

The proposed intuitive multiple centroid defuzzification and hybrid MCDM 

model are validated theoretically and empirically which determine reliability, 

consistency and sensitivity analysis. Reliability, a theoretical based – validation, 

validates the: 1) novel intuitive multiple centroid using several properties that are 

considered for justifying the applicability of centroid for fuzzy numbers and: 2) novel 

hybrid MCDM model with several improvement steps from the classical one. The 

other two criteria namely consistency and sensitivity analysis, which are two distinct 

empirical based – validation, compute: 1) the capability of the novel centroid method 

to correctly formulae that are consistent with other established models and: 2) the 

proficiency of novel hybrid MCDM model using approval status table (Luukka, 2011) 

and sensitivity analysis (Amini & Alinezhad, 2011). Both theoretical and empirical 

validations stated are thoroughly defined in this chapter but the implementations are 

demonstrated in the Chapter 6. Details on those aforementioned points are extensively 

discussed in sections and subsections of this chapter. 
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5.2 Development of Hybrid Consistent Fuzzy Preference Relations 

and Fuzzy Techniques for Order of Preference by Similarity to 

Ideal Solution 

5.2.1 Introduction 

The latest trend with respect to MCDM is to combine two or more techniques 

to make up or handle shortcomings appropriately in any single particular method 

(Velasquez & Hester, 2013). In this research study, consistent fuzzy preference 

relations and fuzzy TOPSIS are integrated in dealing with uncertain judgements. In 

MCDM concept, to make best decision under different circumstances for the 

alternatives that based on criteria provided is focusing on the main objective to 

achieve is. Evaluation process for criteria and alternatives play important role in 

MCDM techniques requirement. In identifying the best decision making to be made 

among the various alternatives with several criteria, the methodology has study the 

relationship or preference among the criteria to make sure the weights of criteria are 

reliable enough to be implemented in the selection of alternatives. Both extended 

MCDM techniques include synthesis of uncertainty into group decision making by 

applying fuzzy set theory concept. Considering that, it takes the fact that each 

decision maker in the decision making group could have individual importance power 

within the group. This represents a new step and a new field of study for the existing 

MCDM techniques.  

Fuzzy set theory was introduced to rationalise uncertainty associated with 

imprecision or vagueness and plus thus applicable to human thought. To express the 

experts’ opinions, classical MCDM techniques can be used but unable to cater human 

thinking. Because of that reason, fuzzy MCDM techniques are developed to hierarchy 

imprecise problems. Consistency is crucial for achieving correct solutions in decision 

process. Due to each positive reciprocal matrix is described by fuzzy numbers in 

fuzzy linguistic terms, so to satisfy the consistency is very difficult  (T.-C. Wang & 

Chen, 2006). Besides, establishing a fuzzy positive reciprocal matrix requires 

2

)1(  nn
 judgements to be made for a level with n criteria. Hence, the number of 

comparisons increase with the numbers of criteria, so inconsistent conditions are 

likely to occur. To solve the consistency problem, the consistent fuzzy preference 

relations technique is adopted in order to construct fuzzy decision matrix instead of 

fuzzy positive reciprocal matrix. The utilisation of consistent fuzzy preference 

relations in this phase yields decision matrices for making pairwise comparison 

matrices using additive transitivity. There are only n-1 comparison judgements are 

required to ensure consistency on a level that contains n criteria. 
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According to (Zanakis, Solomon, Wishart, & Dublish, 1998), TOPSIS 

provides unique way to approach problems, intuitively appealing and easy to 

understand. In additional, it also represents the rationale of individual choice a scalar 

value that records both the best and worst alternatives concurrently a straightforward 

computation algorithm. Fuzzy TOPSIS is an extended classical TOPSIS with 

considers fuzzy component as an added value in order to deal human perceptions. In 

ongoing effort, fuzzy TOPSIS is particularly useful for those problems in which the 

valuations of the alternatives on the basis of the criteria are not represented in the 

same units (Lima Junior, Osiro, & Carpinetti, 2014). In addition, through another 

viewpoint, the TOPSIS technique is a good decision making approach due to its 

simplicity and ability to consider a non-limited number of alternatives and criteria in 

the decision making process. Regarding to the level of interaction with decision 

makers to imprecise data collection, fuzzy TOPSIS technique provides good agility in 

the decision process. Concerning the agility in the decision process, fuzzy TOPSIS 

performs better in most cases. The increase or decrease number of criteria or 

alternatives does not affect the agility of fuzzy TOPSIS.  

   The combination of consistent fuzzy preference relations and fuzzy TOPSIS 

in this study gives better computation to evaluate criteria and alternatives in MCDM 

problems. In the development of hybrid fuzzy MCDM model, particularly, consistent 

fuzzy preference relations plays role in evaluating criteria while fuzzy TOPSIS is 

utilised in evaluating alternatives. This hybrid fuzzy MCDM model incorporates 

together with intuitive multiple centroid that discussed in Chapter 4. Concerning in 

dealing with fuzzy linguistic scales, defuzzification process is needed in order to 

access the final results as regular numbers at the same time fulfill the need of human 

perception in decision making problems. Still, the development of hybrid fuzzy 

MCMD model is not only limited for type-1 fuzzy sets, but it does covers for type-2 

fuzzy sets and z-numbers. While much of the literature regarding fuzzy MCDM 

nowadays not only focusing on type-1 fuzzy sets, researchers and experts have 

initiate in using different fuzzy numbers in order to deal with different uncertain 

events appropriately. 

In conclusion, this combination of consistent fuzzy preference relations and 

fuzzy TOPSIS that incorporating with intuitive multiple centroid provide better 

selection in human based decision making problems where at the same time capable 

to deal with imprecision, vagueness and uncertainty under fuzzy environment. Due to 

access information and availability of the huge amount of data, it is hard to make 

right decision. In this sense, it is important for the decision making problems to 

extend the classical decision making techniques, adding intuitive reasoning, human 

subjectivity and imprecision. In traditional decision making processes, the researchers 

or practitioners only consider single criteria problems, the decision making is 
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extremely intuitive. The decision makers only need to choose the alternative with 

highest preference rating without considering the multiple criteria involves, the 

weights of criteria, preference dependence, conflict among criteria, how complicated 

the problems and decision making methods to be used. While it is true that human 

intuition in MCDM problems provide huge weightage in order to understand the 

imprecision, vagueness and uncertainty. As a consequence, the development of 

hybrid fuzzy MCDM model is developed to design the robust and reliable 

methodology in order to give the most promising alternative with respect to 

resources. 

 5.2.2 Methodology 

This hybrid fuzzy MCDM methodology considers general steps for any fuzzy 

set’s evaluations. The new hybrid consistent fuzzy preference relations – fuzzy 

TOPSIS methodology consist of four phases is illustrated as below. 

 

 

 

 

 

 

 

 

 

Fig. 5. 1: Hybrid consistent fuzzy preference relations – fuzzy TOPSIS framework 

Phase 1: Linguistic Evaluation 

The decision makers will use the linguistic terms to present the weights of criteria 

using consistent fuzzy preference relations evaluation based on type of fuzzy sets. 

The linguistic terms present the important of criteria preferences. For fuzzy TOPSIS 

evaluation, the another linguistic terms are used to represent the evaluating values of 

the alternatives with respect to difference criteria with degree of confidence 

respectively. 

 

Phase 2: Fuzzy Weights of Criteria Evaluation using Consistent Fuzzy 

Preference Relations 

 

Phase 1: Linguistic Evaluation 

 

Phase 3: Ranking evaluation of alternatives using fuzzy TOPSIS 

 

Phase 4: Validation process using Sensitivity Analysis 
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Phase 2: Fuzzy Weights of Criteria Evaluation using Consistent Fuzzy Preference 

Relations 

Step 1: Construct a hierarchy structure. 

The construction of hierarchy model needs judgement matrix that filled by 

decision makers about the evaluation of all criteria. 

Step 2: Construct a pairwise comparison matrices 

Consistent fuzzy preference relations is adopted to evaluate the weights of 

difference criteria for the performance of alternatives. The pairwise 

comparison matrices are constructed among all criteria in the dimension of 

the hierarchy systems based on the decision makers’ preferences in phase 1 

as following matrix A: 
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Step 3: Aggregate the decision makers’ preferences. 

The pairwise comparison matrices of decision makers’ preferences are 

aggregated using equation: 

kn

ijijijij aaaa /121 )~...~~(~                                 (5.2) 

where k is the number of decision makers and i=1,2,…m; j=1,2,…n. 

Step 4: Defuzzify the fuzzy numbers of aggregation’s results of decision makers’ 

preferences using intuitive multiple centroid. 

Defuzzify trapezoidal fuzzy weights using intuitive multiple centroid using 

equation (4.5), (4.23) and (4.52) for x - axis and y – axis, then get the crisp 

value using Euclidean Distance by (Cheng, 1998). For evaluation of criteria 

for this stage, it depend on the case study that handled, the degree of 

confidence of the decision makers’ opinions are agreed either as normal 

which is highest degree with 1h , or non-normal case with 10  h . 

Some of the linguistic scales are representing the membership degree with 

1h . Since all evaluations are 1h , most of the researchers in decision 

making analysis (Sun, 2010), (Rostamzadeh & Sofian, 2011),  (Vinodh et 
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al., 2014), only consider the defuzzification of  x – axis and ignore the y – 

axis.  Below are the intuitive multiple centroid defuzzification methods for 

type-1 fuzzy sets, interval type-2 fuzzy sets and z-numbers respectively. 
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Step 5: Compute the criteria values as weightage for alternatives’ evaluation using 

consistent fuzzy preference relations. 

In order to avoid misleading solutions in expressing the decision makers’ 

opinions, the study of consistency by means of preference relations becomes a 

very important aspect. In decision making problems based on fuzzy 

preference relations, the study of consistency is associated with the study of 

transitivity properties. In this chapter, the new characterisation of consistency 

property is defined by the additive transitivity property of fuzzy preference 

relation is developed.  

Referring to (Kamis et al., 2011), a fuzzy preference relation R  on the set of 

the criteria or alternatives A is a fuzzy set stated on the Cartesian product set 

AA  with the membership function  1,0:  AAR . The preference 

relation is denoted by nn  matrix )( ijrR   where ),( jiyij aar   

,i  nj ,...,1 . The preference ratio, ijr  of the alternative ia  to ja  is 

determined by equation (3.16): 
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The preference matrix R  is presumed to be additive reciprocal, 

,1 jiij pp ,i  nj ,...,1 . Several propositions are associated to the 

consistent additive preference relations as follows: 
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Proposition (4.1) (T. C. Wang & Chen, 2007): Consider a set of criteria or 

alternatives,  nxxX ,...,1 , and associated with a reciprocal multiplicative 

preference relation )( ijaA   for 







 9,

9

1
ija . Then, the corresponding 

reciprocal fuzzy preference relation, )( ijpP   with  1,0ijp  associated with 

A is given by the equation (3.17): 

            )log1(
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1
ija ; ija9log  is considered as in the above proposition because ija  is 

between 
9

1
 and 9. If ija  is between 

7

1
 and 7, then ija7log  is used. 

Proposition (4.2) (T. C. Wang & Chen, 2007): For a reciprocal fuzzy 

preference relation )( ijpP  , the following statements are equivalent 

(equation (3.18), (3.19) and (3.21)): 
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Proposition (4.2) (ii) and (iii) are crucial because it can be used to construct a 

consistent fuzzy preference relations form the set of 1n  values 

 12312 ,...,, nppp . A decision matrix with entries that are not in the interval 

]1,0[ , but in an interval  cc  1, , 0c , can be obtained by transforming the 

obtained values using a transformation function that preserves reciprocity 

and additive consistency with the function (equation 3.22): 
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Phase 3: Ranking evaluation of alternatives using fuzzy TOPSIS 

Step 1: Determine the weights of evaluation criteria. 

The weighting of evaluation criteria are employed from consistent fuzzy 

preference relations process before. 

Step 2: Construct the fuzzy decision matrix for alternatives’ evaluation using fuzzy 

TOPSIS. 

Concept of TOPSIS technique originally proposed by (Hwang & Yoon, 

1981). They claimed that the alternative should not be chosen based on 

having the shortest distance from the positive ideal reference point (PIRT) 

only, but also have the longest distance from the negative ideal reference 

point (NIRP) in solving the MCDM problems. Here, the proposed 

methodology for fuzzy TOPSIS is illustrated differ from others in terms of 

the usage of defuzzification method, normalization process and ranking. 

The fuzzy decision matrix is constructed and the linguistic terms from fuzzy 

numbers are used to evaluate the alternatives with respect to criteria. Then, 

aggregate DMs’ preferences: 
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where ijx  is the performance rating of alternatives, iA  with respect to 

criterion iC  evaluated by kth experts and  );,,,(~
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Step 3: Fuzzy decision matrix is weighted and normalised. Then, defuzzify the 

standardised generalised fuzzy numbers into coordinate form, )~,~( yx . The 

weighted fuzzy normalised decision matrix is denoted by V
~

 as depicted 

below with numerical example:  

  ;~~
nmijvV


    ;,...,2,1 mi    nj ,...,2,1                        (5.4) 
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where        

jijij wxv ~~~                                (5.5) 

Normalised each generalised trapezoidal fuzzy numbers into standardised 

generalised fuzzy numbers using (Zuo, Wang, & Yue, 2013): 

,
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The weights from consistent fuzzy preference relations are adopted here. 

Defuzzify the standardised generalised fuzzy numbers using intuitive 

multiple centroid ),( ** ~~
ii AA

yxIMC , then translate them into the index point 

proposed by (Yong & Qi, 2005), shown as follows: 

** ~~
ii AA

xx                                      (5.7) 

iii
S
i AAAA

STDyhy ~~~~ *5.0                                    (5.8) 

where spread, 
1

)( ~
4

1
~


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

 



n

xa
STD
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i

Aj
ij

A
 , nobservatioofnumbern     (5.9) 

Use the new point of 
iA

y ~ to compute the index centroid point of standardised 

generalised trapezoidal fuzzy numbers using Euclidean distance equation 

(4.7): 

    
22* ~~)

~
( S

iii yxAR    

Step 4: Determine the fuzzy positive-ideal solution (FPIS) and fuzzy negative-ideal 

solution (FNIS). 
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Referring to normalise trapezoidal fuzzy weights, the FPIS, A  represents 

the compromise solution while FNIS, 
A  represents the worst possible 

solution. The range belong to the closed interval [0,1]. The FPIS A  

(aspiration levels) and FNIS A  (worst levels) as following below: 

]1;1,1,1,1[A             ]1;1,1,1,1[ A  

The FPIS, A  and FNIS, A  can be obtained by centroid method for 

),(  AA
yx  and ),(  AA

yx . 

Step 5: Calculate the distance of each alternative from FPIS and FNIS. 

The distance 

id
~

 and 

id
~

 of each alternative from formulation A  and A  can 

be calculated by the area of compensation method: 

     2
~

2
~ )()()~,~( **  

AAAAjiji yyxxvvd
ii

                 (5.10) 

     2
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~ )()()~,~( **  

AAAAjiji yyxxvvd
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                   (5.11) 

Step 6: Find the closeness coefficient, iCC  and improve alternatives for achieving 

aspiration levels in each criteria. Notice that the highest iCC  value is used 

to determine the rank. 
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where,    




 ii

i

dd

d
 is satisfaction degree in ith alternative and 





 ii

i

dd

d
 is 

fuzzy gaps degree in ith alternative. 

Fuzzy gap should be improvised for reaching aspiration levels and get the 

best mutually beneficial strategy from among a fuzzy set of feasible 

alternatives. 

Phase 4: Validation process using Sensitivity Analysis 

Aforementioned in Chapter 2, sensitivity analysis can effectively contributes to 

making accurate decisions by assuming that a set of weights for criteria or 

alternatives then obtained a new round of weights for them, so that the efficiency of 

alternatives has become equal or their order has changed. The results of MCDM 



128 

 

techniques are importantly needed to validate using sensitivity analysis method to 

analyse the quality and how robustness of MCDM technique to reach a right decision 

under different conditions. The computational process for sensitivity analysis is 

calculated in Section 3.8.2. 

 

5.3 Summary of the Chapter 

This chapter comprehensively discusses the development of hybrid fuzzy 

MCDM model based on the extended method of consistent fuzzy preference relations 

(used to derive the weight of criteria) and the extended of fuzzy TOPSIS (used to 

rank the alternatives). The proposed methodology capable to apply all possible fuzzy 

sets as the linguistic terms. Computation and description details of results and 

sensitivity analysis in this chapter would be underlined in empirical validation for 

case study in the next chapter. In Chapter 6, the thesis discusses the capability of 

hybrid consistent fuzzy preference relations and fuzzy TOPSIS that incorporating 

with intuitive multiple centroid for the staff recruitment in a company in Malaysia 

with different fuzzy environments. 
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CHAPTER 6 

CASE STUDY 

 

6.1 Introduction 

Idris Zain & Co was established on the 2nd of January 2005. It is located in 

Damansara, Selangor Darul Ehsan, Malaysia and was operating with only two staff, a 

lawyer and a legal clerk. After two months of no progress, Idris Zain & Co formed a 

partnership with Saprudin & Co. Saprudin & Co has 14 years of experience in legal 

matters. They have been practicing since 1991 in Seremban, Negeri Sembilan Darul 

Khusus, Malaysia. Saprudin & Co concentrates on conveyancing and litigation while 

Idris Zain & Co concentrates on conveyancing only. The partnership is only in name 

as both branches handle its own account. Since then, Saprudin, Idris & Co has been 

an established firm and it is insured for 15 million Ringgit Malaysia. 

From year 2010, Saprudin, Idris & Co was planning to open another branch is 

the state of Selangor. After several years, they changed the name from Saprudin, Idris 

& Co into MESSRS SAPRUDIN, IDRIS & CO. At least six more staffs are needed 

for this new branch. During 12 years of the company operation, at least seven more 

staffs have resigned. Work stress, inexperience worker or unable to adapt might be 

the factor. Once a staff resigned, recruitment new staff is not only time consuming but 

also involves financial implication especially for a new company. Operating a legal 

firm is not an easy thing to do. A legal firm usually needs three to six years to 

stabilise or to reach a breakeven. Hence, selecting and hiring a capable and dedicated 

staff with the lowest risk of him/ her resigning is very important task. To tackle this 

problem, the development of new hybrid fuzzy MCDM model is used in selecting the 

right employee for MESSRS SAPRUDIN, IDRIS & CO.  

This section briefly summarises the background of the company and review 

the staff selection problems faced by MESSRS SAPRUDIN, IDRIS & CO Company. 

Details on staff selection problem above are broadly discussed in following section on 

the next page. 
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6.2 Staff Selection in MESSRS SAPRUDIN, IDRIS & CO  

6.2.1 Aim 

The purpose of the case study is to demonstrate how the proposed hybrid 

consistent fuzzy preference relations – fuzzy TOPSIS model that incorporated with 

intuitive multiple centroid defuzzification method may be used in the evaluation 

process for the selection of a right employee for MESSRS Saprudin, Idris & Co with 

the lowest of him/ her to resign. As stated by (Yin, 2014), a case study approach is 

generally used for the validation of a new proposed model. It is expected to enable 

more effective knowledge and information regarding the phenomenon under study 

based on the experts’ viewpoints (Bryman, 2008). The computation is fully figured 

out using Microsoft Excel. The main objectives of the case study are: 

i. Investigate of the evaluation process of selecting right employee, 

including identifying the selection criteria, deriving the criteria 

weights and ranking the available alternatives. 

ii. Application of the new hybrid consistent fuzzy preference relations – 

fuzzy TOPSIS that is incorporated together with new intuitive multiple 

centroid defuzzification method under different fuzzy environment. 

Sensitivity analysis is used to validate the proposed methodology in 

this study.  
  

6.2.2 Background 

The challenges faced by most employers, with regards to the quality of 

employees they hire, how loyal the employees to their company and are the 

employees’ performance achieve the employers’ satisfaction level in performance 

index. The quality of employees depend on an effective recruitment and selection 

strategy. Nevertheless, the process isn’t always smooth sailing. Most of employers 

face tangible problems such as the cost of advertising job openings and intangible 

obstacles such as improving communication between recruiters and hiring top 

managements. Finding the right candidates is a big challenge recruiting companies 

today. The clients need skilled, focused workers, and these people are not easy to 

find. Considering that, MESSRS Saprudin, Idris & Co realise regarding this 

challenging issues in recruiting new employee. Several strategies, frameworks and 

plans have been adopted in order to recruit the best employee.  

Broadly construed, in human based decision making problems, decision 

makers play important role to give the right or best selection regarding their 
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knowledge and experiences. Several criteria have been studied as performance 

evaluation to support selection process. In order to do so, questionnaire has been 

constructed for decision makers to evaluate their preferences towards criteria and 

candidates. In this case study, three decision makers are considered based on their 

position in MESSRS Saprudin, Idris & Co. There are four finalist candidates are 

evaluated after filtering stages. Questionnaires are constructed in regular numbers, 

then are translated into fuzzy linguistic terms in order to handle imprecision, 

vagueness and uncertainty in human based decision making process. The sample of 

questionnaire is presented in Appendix A.  

There are five criteria are considered which consist of emotional steadiness 

(ES), oration (O), past experience (PE), personality (P) and self-confidence (S-C). 

Four candidates were screened for the final interview. Since the research problem is 

considered as an evaluation process, the process should involve a group of people 

who have expertise and knowledge in the legal company. This group is comprised of 

different decision makers with different level of expertise and different perceptions. 

Each of decision maker has unique characteristics with regard to the evaluation 

process. Alongside, the decision makers usually make diverging decisions due to their 

different perceptions and judgements. Due to imprecise and vagueness information 

and the subjective nature of decision makers’ judgements, which are common 

problems in the selection problem, uncertainty exists in the process of selecting a 

good staff. In other words, the decision makers are unable to make reliable 

judgements regarding the evaluation procedure. Consequently, the evaluation and 

selection problem could be expressed as a group decision making problem under 

uncertain environments. 

6.3 Hybrid Fuzzy Multi Criteria Decision Making for Type-1 

Fuzzy Sets 

This section illustrates computational process of proposed and established 

hybrid fuzzy MCDM models regarding case study of staff selection in MESSRS 

Saprudin, Idris & Co. for type-1 fuzzy sets. Two established fuzzy MCDM models 

from literature are considered which are fuzzy AHP - TOPSIS (Vinodh et al., 2014) 

and fuzzy AHP – VIKOR (Rezaie et al., 2014) in order to do comparative study. 

6.3.1 Consistent Fuzzy Preference Relations – Fuzzy Technique for Order 

of Preference by Similarity to Ideal Solution for Type-1 Fuzzy Sets 

 The proposed hybrid fuzzy MCDM model is discussed in detail in Chapter 5. 

In the context of methodology, it considers all possible fuzzy numbers in order to 

solve most of imprecision based human intuition problems from information given. 
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The computational process of hybrid fuzzy MCDM model based consistent fuzzy 

preference relations – fuzzy TOPSIS are as follows. 

Phase 1: Linguistic Evaluation 

The decision makers used the linguistic terms that proposed by (Zheng et al., 

2012) as shown in Table 6.1 in presenting the weights of criteria using consistent 

fuzzy preference evaluation for type-1 fuzzy sets. The linguistic terms with the crisp 

scale of relative important present the important of criteria preferences namely 

equally important (1), intermediate value (2), moderately more important (3), 

intermediate value (4), strongly more important (5), intermediate value (6), very 

strong more important (7), intermediate important (8) and extremely more important 

(9). For fuzzy TOPSIS evaluation, the linguistic terms and the corresponding of fuzzy 

numbers that proposed by (Zheng et al., 2012) is used to represent the evaluating 

values of the alternatives with respect to difference criteria with degree of confidence 

respectively. The scales consist of absolutely-low (1), very-low (2), low (3), fairly-

low (4), medium (5), fairly-high (6), high (7), very-high (8) and absolutely-high (9). 

The linguistic scales for alternatives evaluation are depicted in Table 6.2 that are 

measure from 0 until 1. 

 

Table 6. 1. Trapezoidal fuzzy numbers preference scale (Zheng et al., 2012) 

Linguistic variables 

Scale of relative 

important  

of crisp numbers 

Trapezoidal fuzzy  

numbers 

Reciprocal trapezoidal  

fuzzy number 

Equally important (EI) 

Intermediate value (IV) 

Moderately more important (MMI) 

Intermediate value (IV) 

Strongly more important (SMI) 

Intermediate value (IV) 

Very strong more important (VSMI) 

Intermediate value (IV) 

Extremely more important (EMI) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

(1, 1, 1, 1) 

(1, 3/2, 5/2, 3) 

(2, 5/2, 7/2, 4) 

(3, 7/2, 9/2, 5) 

(4, 9/2, 11/2, 6) 

(5, 11/2, 13/2, 7) 

(6, 13/2, 15/2, 8) 

(7, 15/2, 17/2, 9) 

(8, 17/2, 9, 9) 

(1, 1, 1, 1) 

(1/3, 2/5, 2/3, 1) 

(1/4, 2/9, 2/5, 1/2) 

(1/5, 2/9, 2/7, 1/3) 

(1/6, 2/11, 2/9, 1/4) 

(1/7, 2/13, 2/11, 1/5) 

(1/8, 2/15, 2/13, 1/6) 

(1/9, 2/17, 2/15, 1/7) 

(1/9, 1/9, 2/17, 1/8) 

 

Table 6. 2. Linguistic terms and their corresponding generalised fuzzy numbers 

(Zheng et al., 2012) 

Linguistic terms 
Scale of preferences of 

crisp numbers 
Generalised fuzzy numbers 

Absolutely-low (AL) 1 (0.0, 0.0, 0.0, 0.0; 1.0) 

Very-low (VL) 2 (0.0,0.0, 0.02, 0.07;1.0) 

Low (L) 3 (0.04, 0.10, 0.18, 0.23; 1.0) 

Fairly-low (FL) 4 (0.17, 0.22, 0.36, 0.42; 1.0) 

Medium (M) 5 (0.32, 0.41, 0.58, 0.6; 1.0) 

Fairly-high (FH) 6 (0.58, 0.63, 0.80, 0.86; 1.0) 

High (H) 7 (0.72, 0.78, 0.92, 0.97; 1.0) 

Very-high (VH) 8 (0.93, 0.98, 1.0, 1.0; 1.0) 

Absolutely-high (AH) 9 (1.0, 1.0, 1.0, 1.0; 1.0) 
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Phase 2: Fuzzy Weights of Criteria Evaluation using Consistent Fuzzy Preference 

Relations 

Step 1: Construct a hierarchy structure. 

The hierarchy model below as shown in Fig. 6.1 is illustrated the connection 

of criteria and alternatives, which are the candidates to be interviewed. There 

are five criteria are considered which consist of emotional steadiness (ES), 

oration (O), past experience (PE), personality (P) and self-confidence (S-C). 

Four candidates were screened for the final interview. These criteria below 

were evaluated by decision makers and represented in judgement matrix to 

measure the weight of each criterion in the next step. 

 

Fig. 6. 1. The hierarchy of staff recruitment problem 

Step 2: Construct a pairwise comparison matrices. 

The pairwise comparison matrices are constructed among all criteria in the 

dimension of the hierarchy systems based on the decision makers’ 

preferences in phase 1 using equation (5.1). The linguistic evaluations of 

pairwise comparison matrices are based on regular numbers are depicted in 

equation (6.1), (6.2) and (6.3), then are translated into trapezoidal fuzzy 

numbers using Table 6.1. The linguistic ratings of criteria fuzzy numbers – 

based given by decision maker 1 (DM1), decision maker 2 (DM2) and 

decision maker 3 (DM3) are shown in equation (6.4), (6.5) and (6.6) 

respectively.  
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Pairwise comparison matrix of criteria evaluation from DM1 
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Pairwise comparison matrix of criteria evaluation from DM2 
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Pairwise comparison matrix of criteria evaluation from DM3 
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Type-1 fuzzy pairwise comparison matrix of criteria evaluation from DM1 
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 Type-1 fuzzy pairwise comparison matrix of criteria evaluation from DM2 
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Type-1 fuzzy pairwise comparison matrix of criteria evaluation from DM3 
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Step 3: Aggregate the decision makers’ preferences. 

The fuzzy pairwise comparison matrices for criteria’s judgement of decision 

makers (DM1, DM2 and DM3) preferences as listed in equation (6.4), (6.5) 

and (6.6) are aggregated using equation (5.2). The results of aggregated 

pairwise comparison matrix is shown in equation (6.8) on next page. 

kn

ijijijij aaaa /121 )~...~~(~                                

where k is the number of decision makers and i=1,2,…m; j=1,2,…n. 

Step 4: Defuzzify the fuzzy numbers of aggregation’s result of decision makers’ 

preferences. 

The aggregation’s result of decision maker’s preferences are defuzzify using 

intuitive multiple centroid for type-1 fuzzy sets using equation (4.5). The 

defuzzification results are presented in equation (6.7) below. 
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Defuzzification results of aggregated matrix comparison 
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The aggregated type-1 fuzzy pairwise comparison matrix of decision makers for criteria evaluation 
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Step 5: Compute the weights of criteria values for alternatives’ evaluation using 

consistent fuzzy preference relations. 

The weights of aggregated matrix comparison of criteria are calculated using 

consistent fuzzy preference relations which based on additive transitivity 

property using equation (3.16-3.22) in equation (6.9) below. 





























5.03756.07665.04034.078.0

6244.0

2335.0

5966.0

22.0

5.08909.05278.09044.0

1092.05.01369.05135.0

4722.08631.05.08766.0

09562.04865.01234.05.0

CS

PE

P

O

ES

weightsFuzzy

CSPEPOES

                (6.9) 

The consistent type-1 fuzzy preference relations matrix for criteria 

By having five criteria, 5n  so only 415)1( n  entry values 

),,( 45342312 pandppp  are required in constructing the consistent fuzzy 

preference relations matrix from equation (6.7) where: 
 

1234.0)911.0log1(
2

1
912 p  

8631.0)9312.4log1(
2

1
923 p  

1092.0)1795.0log1(
2

1
934 p  

6244.0)7275.1log1(
2

1
945 p  

The remains of the entries can be determine by utilising Proposition 2 and 3 

presented as follows. 

8766.01234.011 1221  pp  

1369.08631.011 2332  pp  

8908.01092.011 3443  pp  

3756.06244.011 4554  pp  
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5135.08631.01234.0
2

3

2

3
231231  ppp  

5278.01092.08631.0
2

3

2

3
342342  ppp  

7665.06244.01092.0
2

3

2

3
453453  ppp  

9044.01092.08631.01234.0
2

114

2

1
34231241 





 ppp

ij
p

 

78.06244.01092.08631.01234.0
2

115

2

1
4534231251 





 pppp

ij
p

 

4034.06244.01092.08631.0
2

125

2

1
45342352 





 ppp

ij
p

 

4865.05135.011 3113  pp  

0956.09044.011 4114  pp  

22.078.011 5115  pp  

4722.05278.011 4224  pp  

5966.04034.011 5225  pp  

2335.07665.011 5335  pp  

Then, the average and weight of each criterion from equation (6.9) are 

illustrated in Table 6.3 below. These results of criteria’s weight are 

implemented in following phase to evaluate alternatives selection. 

Table 6. 3. The type-1 fuzzy average and weights of criteria 

Criteria ES O P PE S-C Average Weight Rank 

ES 0.5 0.1234 0.4865 0.0956 0.2200 0.2851 0.1140 5 

O 0.8766 0.5 0.8631 0.4722 0.5966 0.6617 0.2647 2 

P 0.5135 0.1369 0.5 0.1091 0.2335 0.2986 0.1195 4 

PE 0.9044 0.5278 0.8909 0.5 0.6244 0.6895 0.2758 1 

S-C 0.7710 0.4034 0.7664 0.3756 0.5 0.5651 0.2260 3 

Total      2.5 1  
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Phase 3: Ranking evaluation of alternatives using fuzzy TOPSIS  

Step 1: Determine the weights of evaluation criteria. 

The weights of evaluation criteria are employed from consistent fuzzy 

preference relations process before. Refer Table 6.3. 

Step 2: Construct the fuzzy decision matrix for alternatives evaluation using fuzzy 

TOPSIS. 

 The construction of fuzzy decision matrix for alternatives evaluation are 

utilised linguistic terms by  (Zheng et al., 2012) presented on Table 6.4. This 

table presents the evaluations of linguistic terms of the alternatives given by 

the decision makers with respect to different criteria. 

 

Table 6. 4. Evaluating linguistic terms of the alternatives given by the decision 

makers with respect to different criteria 

Criteria 
Alternatives/ 

Candidates 

Decision Maker 

DM1 DM2 DM3 

Emotional Steadiness x1 

 

FH H  VH 

   

x2 

 

H H  FH  

   

x3 

 

VH  H  VH  

   

x4 

 

M FH  M 

        Oration x1 

 

VH  H  VH  

   

x2 

 

H  H  VH  

   

x3 

 

VH VH  H  

   

x4 

 

FH  M  FH  

        Personality 

 

x1 

 

VH VH VH 

   

x2 

 

H H VH 

   

x3 

 

VH VH  VH 

   

x4 

 

H H  H 

        Past Experience  

 

x1 

 

FL  L  FL  

   

x2 

 

M  M  M  

   

x3 

 

H  M  H  

   

x4 

 

FL  FL  FL  

        Self-Confidence 

 

x1 

 

H  FH  FH  

   

x2 

 

VH  H  H  

   

x3 

 

VH  VH  VH  

   

x4 

 

M  FH FH  
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Table 6. 5. Evaluating type-1 fuzzy values of the alternatives given by the decision makers with respect to different criteria

Criteria 
Alternatives 

(Candidates) 

Decision Maker 1     Decision Maker 2     Decision Maker 3 

 DM1       DM2         DM3 

Emotional Steadiness x1 ( 0.58 0.63 0.80 0.86; 1.00 ) ( 0.72 0.78 0.92 0.97; 1.00 ) ( 0.93 0.98 1.00 1.00; 1.00 ) 

   

x2 ( 0.72 0.78 0.92 0.97; 1.00 ) ( 0.72 0.78 0.92 0.97; 1.00 ) ( 0.58 0.63 0.80 0.86; 1.00 ) 

   

x3 ( 0.93 0.98 1.00 1.00; 1.00 ) ( 0.72 0.78 0.92 0.97; 1.00 ) ( 0.93 0.98 1.00 1.00; 1.00 ) 

   

x4 ( 0.32 0.41 0.58 0.65; 1.00 ) ( 0.58 0.63 0.80 0.86; 1.00 ) ( 0.32 0.41 0.58 0.65; 1.00 ) 

                         Oration x1 ( 0.93 0.98 1.00 1.00; 1.00 ) ( 0.72 0.78 0.92 0.97; 1.00 ) ( 0.93 0.98 1.00 1.00; 1.00 ) 

   

x2 ( 0.72 0.78 0.92 0.97; 1.00 ) ( 0.72 0.78 0.92 0.97; 1.00 ) ( 0.93 0.98 1.00 1.00; 1.00 ) 

   

x3 ( 0.93 0.98 1.00 1.00; 1.00 ) ( 0.93 0.98 1.00 1.00; 1.00 ) ( 0.72 0.78 0.92 0.97; 1.00 ) 

   

x4 ( 0.58 0.63 0.80 0.86; 1.00 ) ( 0.32 0.41 0.58 0.65; 1.00 ) ( 0.58 0.63 0.80 0.86; 1.00 ) 

                         Personality 

 

x1 ( 0.93 0.98 1.00 1.00; 1.00 ) ( 0.93 0.98 1.00 1.00; 1.00 ) ( 0.93 0.98 1.00 1.00; 1.00 ) 

   

x2 ( 0.72 0.78 0.92 0.97; 1.00 ) ( 0.72 0.78 0.92 0.97; 1.00 ) ( 0.93 0.98 1.00 1.00; 1.00 ) 

   

x3 ( 0.93 0.98 1.00 1.00; 1.00 ) ( 0.93 0.98 1.00 1.00; 1.00 ) ( 0.93 0.98 1.00 1.00; 1.00 ) 

   

x4 ( 0.72 0.78 0.92 0.97; 1.00 ) ( 0.72 0.78 0.92 0.97; 1.00 ) ( 0.72 0.78 0.92 0.97; 1.00 ) 

                         Past Experience  

 

x1 ( 0.17 0.22 0.36 0.42; 1.00 ) ( 0.04 0.10 0.18 0.23; 1.00 ) ( 0.17 0.22 0.36 0.42; 1.00 ) 

   

x2 ( 0.32 0.41 0.58 0.65; 1.00 ) ( 0.32 0.41 0.58 0.65; 1.00 ) ( 0.32 0.41 0.58 0.65; 1.00 ) 

   

x3 ( 0.72 0.78 0.92 0.97; 1.00 ) ( 0.32 0.41 0.58 0.65; 1.00 ) ( 0.72 0.78 0.92 0.97; 1.00 ) 

   

x4 ( 0.17 0.22 0.36 0.42; 1.00 ) ( 0.17 0.22 0.36 0.42; 1.00 ) ( 0.17 0.22 0.36 0.42; 1.00 ) 

                         Self-Confidence 

 

x1 ( 0.72 0.78 0.92 0.97; 1.00 ) ( 0.58 0.63 0.80 0.86; 1.00 ) ( 0.58 0.63 0.80 0.86; 1.00 ) 

   

x2 ( 0.93 0.98 1.00 1.00; 1.00 ) ( 0.72 0.78 0.92 0.97; 1.00 ) ( 0.72 0.78 0.92 0.97; 1.00 ) 

   

x3 ( 0.93 0.98 1.00 1.00; 1.00 ) ( 0.93 0.98 1.00 1.00; 1.00 ) ( 0.93 0.98 1.00 1.00; 1.00 ) 

   

x4 ( 0.32 0.41 0.58 0.65; 1.00 ) ( 0.58 0.63 0.80 0.86; 1.00 ) ( 0.58 0.63 0.80 0.86; 1.00 ) 
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Step 3: Fuzzy decision matrix is weighted using equation (5.5) and normalised each 

generalised fuzzy numbers into standardised generalised fuzzy numbers 

using (Zuo et al., 2013).  

Equation (6.10), (6.11) and (6.12) represent the fuzzy pairwise comparison 

matrices of decision makers for alternatives evaluation. Then, aggregated 

result is depicted in equation (6.13). The weighted fuzzy normalised decision 

matrix is computed using equation (5.6). The results of weighted and 

normalisation process are presented in equation (6.14) and equation (6.15) 

respectively. Defuzzify the standardised generalised fuzzy numbers using 

intuitive multiple centroid (equation (6.16)), then translate them into the 

index point proposed by (Yong & Qi, 2005) as presented  in equation (6.17), 

then do the average computational process depicted in equation (6.18). 

 

Step 4: Determine the fuzzy positive-ideal solution (FPIS) and fuzzy negative-ideal 

solution (FNIS). 

Referring to normalise trapezoidal fuzzy weights, the FPIS, A  represents 

the compromise solution while FNIS, 
A  represents the worst possible 

solution. The range belong to the closed interval [0,1]. The FPIS A  

(aspiration levels) and FNIS A  (worst levels) as following below: 

)1;1,1,1,1(A             )1;1,1,1,1( A  

The FPIS, A  and FNIS, A  can be obtained by centroid method for 

),(  AA
yx  and ),(  AA

yx . 
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

























)1;65.0,58.0,41.0,32.0()1;1,1,98.0,93.0()1;1,1,98.0,93.0()1;97.0,92.0,78.0,72.0(

)1;42.0,36.0,22.0,17.0()1;97.0,92.0,78.0,72.0()1;65.0,58.0,41.0,32.0()1;42.0,36.0,22.0,17.0(

)1;97.0,92.0,78.0,72.0()1;1,1,98.0,93.0()1;97.0,92.0,798.0,72.0()1;1,1,98.0,93.0(

)1;86.0,8.0,63.0,58.0()1;1,1,98.0,93.0()1;97.0,92.0,798.0,72.0()1;1,1,98.0,93.0(

)1;65.0,58.0,41.0,32.0()1;1,1,98.0,93.0()1;97.0,92.0,798.0,72.0()1;86.0,8.0,63.0,58.0(

1

4321

CS

PE

P

O

ES

DM

xxxx

      (6.10) 

Type-1 fuzzy pairwise comparison matrix of alternatives evaluation from DM1  
   



























)1;86.0,8.0,63.0,58.0()1;1,1,98.0,93.0()1;97.0,92.0,798.0,72.0()1;86.0,80.0,63.0,58.0(

)1;42.0,36.0,22.0,17.0()1;65.0,58.0,41.0,32.0()1;65.0,58.0,41.0,32.0()1;23.0,18.0,1.0,04.0(

)1;97.0,92.0,78.0,72.0()1;1,1,98.0,93.0()1;97.0,92.0,798.0,72.0()1;1,1,98.0,93.0(

)1;65.0,58.0,41.0,32.0()1;1,1,98.0,93.0()1;97.0,92.0,798.0,72.0()1;97.0,92.0,798.0,72.0(

)1;86.0,8.0,63.0,58.0()1;97.0,92.0,798.0,72.0()1;97.0,92.0,798.0,72.0()1;97.0,92.0,798.0,72.0(

2

4321

CS

PE

P

O

ES

DM

xxxx

      (6.11) 

Type-1 fuzzy pairwise comparison matrix of alternatives evaluation from DM2 

 



























)1;86.0,8.0,63.0,58.0()1;1,1,98.0,93.0()1;1,1,98.0,93.0()1;86.0,80.0,63.0,58.0(

)1;42.0,36.0,22.0,17.0()1;97.0,92.0,78.0,72.0()1;65.0,58.0,41.0,32.0()1;42.0,36.0,22.0,17.0(

)1;97.0,92.0,78.0,72.0()1;1,1,98.0,93.0()1;1,1,98.0,93.0()1;1,1,98.0,93.0(

)1;86.0,8.0,63.0,58.0()1;97.0,92.0,78.0,72.0()1;1,1,98.0,93.0()1;1,1,98.0,93.0(

)1;65.0,58.0,41.0,32.0()1;1,1,98.0,93.0()1;86.0,80.0,63.0,58.0()1;1,1,98.0,93.0(

3

4321

CS

PE

P

O

ES

DM

xxxx

         (6.12) 

Type-1 fuzzy pairwise comparison matrix of alternatives evaluation from DM3 
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

























)1;79.0,7267.0,5567.0,4933.0()1;1,1,98.0,93.0()1;98.0,9467.0,8467.0,79.0()1;8967.0,84.0,68.0,6267.0(

)1;42.0,36.0,22.0,17.0()1;8633.0,8067.0,6567.0,5867.0()1;65.0,58.0,41.0,32.0()1;3567.0,3.0,18.0,1267.0(

)1;97.0,92.0,78.0,72.0()1;1,1,98.0,93.0()1;98.0,9467.0,8467.0,79.0()1;1,1,98.0,93.0(

)1;79.0;7262.0,5567.0,4933.0()1;99.0,9733.0,9133.0,86.0()1;98.0,9467.0,8467.0,79.0()1;99.0,9733.0,9133.0,86.0(

)1;72.0,6533.0,4833.0,4067.0()1;99.0,9733.0,9133.0,86.0()1;9333.0,88.0,73.0,6733.0()1;9433.0,9067.0,7967.0,7433.0(

4321

CS

PE

P

O

ES

Aggregated

xxxx

 

  (6.13) 

The aggregated type-1 fuzzy pairwise comparison matrix for alternatives evaluation 
 



























)1;1786.0,1643.0,1258.0,1151.0()1;226.0,226.0,2215.0,2102.0()1;2215.0,214.0,1914.0,1786.0()1;2027.0,1899.0,1537.0,1416.0(

)1;1158.0,0993.0,06067.0,04688.0()1;2381.0,2225.0,1811.0,1618.0()1;1793.0,16.0,11301.0,0883.0()1;09837.0,0827.0,04964.0,0349.0(

)1;1159.0,1099.0,09317.0,086.0()1;1195.0,1195.0,1171.0,1111.0()1;1171.0,1131.0,1011.0,0944.0()1;1185.0,1195.0,1171.0,1111.0(

)1;2091.0,1923.0,1473.0,1306.0()1;262.0,2576.0,2417.0,2276.0()1;2594.0,2506.0,2241.0,2091.0()1;2620.0,2576.0,2418.0,2276.0(

)1;0821.0,0745.0,05512.0,04638.0()1;1129.0,1111.0,1042.0,0981.0()1;1064.0,1004.0,08325.0,0768.0()1;1076.0,1034.0,09085.0,0848.0(

4321

CS

PE

P

O

ES

Weighted

xxxx

 

  (6.14) 

The weighted aggregated type-1 fuzzy pairwise comparison matrix for alternatives evaluation 
 



























)1;6324.0,5694.0,4002.0,3372.0()1;8414.0,8414.0,8215.0,7718.0()1;8215.0,7884.0,6888.0,6324.0()1;7386.0,6822.0,523.0,4699.0(

)1;3562.0,2834.0,1133.0,05262.0()1;8946.0,8258.0,6436.0,5586.0()1;6355.0,5505.0,3441.0,2348.0()1;2793.0,2105.0,06477.0,0(

)1;3564.0,3301.0,2564.0,2249.0()1;3721.0,3721.0,3616.0,3353.0()1;3616.0,3441.0,2915.0,2617.0()1;3722.0,3721.0,3616.0,3353.0(

)1;7669.0,6931.0,4950.0,4212.0()1;1,9806.0,9106.0,8485.0()1;9883.0,9495.0,8330.0,7669.0()1;1,9806.0;9107.0,8485.0(

)1;2077.0,1742.0,08888.0,05038.0()1;3433.0,3349.0,3048.0,278.0()1;3148.0,2881.0,2127.0,1843.0()1;3199.0,3014.0,2462.0,2194.0(

4321

CS

PE

P

O

ES

Normalised

xxxx

 

              (6.15) 

The normalised weighted aggregated type-1 fuzzy pairwise comparison matrix for alternatives evaluation



145 

 





































3889.0,4848.03889.0,826.03889.0,7360.03889.0,6030.0

3889.0,1997.03889.0,7329.03889.0,4446.03889.0,1381.0

3889.0,2927.03889.0,364.03889.0,3164.03889.0,3640.0

3889.0,5940.03889.0,9409.03889.0,8882.03889.0,9409.0

3889.0,131.03889.0,3178.03889.0,2502.03889.0,2729.0

4321

yxyxyxyx

yxyxyxyx

yxyxyxyx

yxyxyxyx

yxyxyxyx

CS

PE

P

O

ES

edDefuzzifii

xxxx

                (6.16) 

 

 

The defuzzified type-1 fuzzy pairwise comparison matrix for alternatives evaluation 

 





































446.0,4848.04868.0,826.04659.0,7360.04504.0,6030.0

4447.0,1997.04393.0,7329.04284.0,4446.045.0,1381.0

4761.0,2927.0493.0,364.0482.0,3164.04931.0,3640.0

4367.0,5940.04759.0,9409.04601.0,8882.04729.0,9409.0

4716.0,131.04883.0,3178.04761.0,2502.04818.0,2729.0

4321

yxyxyxyx

yxyxyxyx

yxyxyxyx

yxyxyxyx

yxyxyxyx

CS

PE

P

O

ES

eddefuzzifiiTranslate

xxxx

     (6.17) 

 

The translate defuzzified type-1 fuzzy pairwise comparison matrix for alternatives evaluation 

 

 455.0,3404.04761.06363.04625.0,5271.04696.0,4638.0

4321

 yxyxyxyxeddefuzzifiiTranslateAverage

xxxx
 

  (6.18) 

The average translate defuzzified type-1 fuzzy pairwise comparison matrix for alternatives evaluation 
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Step 5: Calculate the distance of each alternative from FPIS and FNIS. 

The distance 

id
~

 and 

id
~

 of each alternative from formulation A  and A  can 

be calculated by the area of compensation method. 
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Step 6: Find the closeness coefficient, iCC  and improve alternatives for achieving 

aspiration levels in each criteria.  

The decision rules for five classes are depicted in Table 6.7. Notice that the 

highest iCC  value is used to determine the rank. 


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ii
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ii

i
i

dd

d

dd

d
CC 1  

4641.15371.0

4641.1


iCC  

7316.0iCC  

 

After several processes, referring to Table 6.6, the iCC  values shows candidate 3 

represents the highest rank with 0.8178 followed by candidate 2 with 0.7630, 

candidate 1 with 0.7316 and candidate 4 with 0.6698 for the last ranked. The results 

reveal that the candidate 3 is most suitable for this recruitment post because based on 

approval status from (Luukka, 2011) table in Table 6.7, the score is in approved and 

preferred range. 
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Table 6. 6. Closeness coefficients computation for type-1 fuzzy sets 
 

Alternative       Closeness Coefficient, CCi 

Candidate 1 0.7316 (Rank 3) 

Candidate 2 0.7630 (Rank 2) 

Candidate 3 0.8178 (Rank 1) 

Candidate 4 0.6698 (Rank 4) 

 

Table 6. 7. Approval status table (Luukka, 2011) 

CCi value Assessment status 

)2.0,0[iCC  Do not recommend 

)4.0,2.0[iCC  Recommend with high risk 

)6.0,4.0[iCC  Recommend with low risk 

)8.0,6.0[iCC  Approved 

]1,8.0[iCC  Approved and preferred 
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6.3.2 Fuzzy Analytic Hierarchy Process – Fuzzy Technique for Order of 

Preference by Similarity to Ideal Solution 

This section presents established hybrid fuzzy MCDM based fuzzy AHP – 

fuzzy TOPSIS proposed by (Vinodh et al., 2014). In this methodology, the authors 

only consider triangular fuzzy numbers. But, in order to make compatibility in 

information given, trapezoidal fuzzy sets are used. Several steps are replaced in order 

to fulfil the requirement of trapezoidal fuzzy sets such as, linguistic scale used, 

defuzzification step and area of compensation process. There are several phases in 

computing hybrid fuzzy MCDM model based fuzzy AHP – fuzzy TOPSIS are as 

follows. 

Phase 1: Linguistic Evaluation 

The decision makers used the linguistic terms that proposed by (Zheng et al., 

2012) as shown in Table 6.1 in presenting the weights of criteria using fuzzy AHP 

evaluation for type-1 fuzzy sets. For fuzzy TOPSIS evaluation, the linguistic terms 

and the corresponding of fuzzy numbers that proposed by (Zheng et al., 2012) as 

depicted in Table 6.2 which is used to represent the evaluating values of the 

alternatives with respect to difference criteria with degree of confidence respectively.  

Phase 2: Fuzzy Weights Evaluation using Fuzzy AHP 

Step 1: Building the evaluation hierarchy systems. 

The hierarchy model is presented in Fig. 6.1. It illustrates the connection of 

criteria and alternatives where the candidates to be interviewed. Five criteria 

are considered which consist of emotional steadiness, oration, past 

experience, personality and self-confident. 

Step 2: Determining the evaluation dimensions weights of pairwise comparison 

matrix to find the fuzzy weights.  

The pairwise comparison matrix showing the preference of one criterion over 

the others which is built by entering the judgement values by the decision 

makers. Since the values of linguistic variables are quadruplet trapezoidal 

fuzzy numbers are entered. 

Step 3: Determining the weights for the criteria involved.  

The synthetic pairwise comparison matrices for criteria’s judgement of 

decision makers (DM1, DM2 and DM3) preferences as listed in equation 

(6.4), (6.5) and (6.6) are aggregated using geometric mean method, refer 
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equation (3.13). The result of aggregated pairwise comparison matrix is 

shown in equation (6.19). 

kn

ijijijij aaar /121 )~...~~(~                                

where k is the number of decision makers and i=1,2,…m; j=1,2,…n. 

 

Step 4: The weight of each criterion is determined using normalising the matrix 

This is done by using equation (3.14) and the results are presented in equation 

(6.20). The results of normalising process is presented in equation (6.21).  

    1

321 )...(  nii rrrrrw  

 

Step 5: Defuzzify each weight from Step 4 using defuzzification method proposed by 

(Y. M. Wang et al., 2006). 

The defuzzification method proposed by (Y. M. Wang et al., 2006) is utilised 

in order to compute trapezoidal fuzzy sets.  
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           (6.23) 

Then, normalization process is followed after defuzzification process. This is 

done by normalizing the matrix using (Sun, 2010) normalise equation. 
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The aggregated pairwise comparison matrix of decision makers for criteria evaluation 
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The geometric mean of decision makers for criteria evaluation 

 



























2699.02138.01245.00982.0

5371.04361.02651.02138.0

0687.005535.00357.00299.0

5837.04633.02874.02259.0

141.01109.0069.00569.0

)(

)

)(

)(

)(

CSw

wPE

Pw

Ow

ESw

weightsnormalisedFuzzy        (6.21) 

The normalised weighted for each criteria 
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Then, the average and weightage of each criterion from equation (6.21) are 

illustrated in Table 6.8 below as follows: 

Table 6. 8. The weights of criteria 

Criteria Weight New Weight Rank 

ES 0.0949 0.08823 4 

O 0.3917 0.3641 1 

P 0.0476 0.04426 5 

PE 0.3643 0.3386 2 

S-C 0.1774 0.1649 3 

Total 2.5 1  

These results of criteria’s weightages are implemented in following phase to evaluate 

for alternatives selection. 

Phase 3: Fuzzy TOPSIS Evaluation for Alternatives Selection 

Step 1: Obtain the weighting of evaluation criteria from fuzzy AHP evaluation. 

The weighting of evaluation criteria are employed from fuzzy AHP 

evaluation process before. Refer Table 6.8. 

Step 2: Create fuzzy evaluation matrix for alternatives’ evaluation. 

 The construction of fuzzy decision matrix for alternatives’ evaluation are 

utilised linguistic terms by  (Zheng et al., 2012) presented on Table 6.5. 

Step 3: Fuzzy decision matrix is weighted and normalised each generalised fuzzy 

numbers into standardised generalised fuzzy numbers.  

The pairwise comparison matrices for decision makers for alternatives 

evaluation are presented before in equation (6.10), (6.11) and (6.12). Then, 

aggregated results is depicted in equation (6.13). The weighted fuzzy 

decision matrix is computed using equation (5.11). The normalization 

process is computed as follows. 




jjjj

i
u

a

u
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u

a

u

a
r 4321 ,,,~             (6.24) 

where, 


ju  is the maximum value in entire fuzzy decision matrix. 
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The results of weighted and normalisation process are presented in equation 

(6.25) and (6.26) respectively. The average of weighted normalised process 

is presented in equation (6.27). 

Step 4: Determine the fuzzy positive-ideal solution (FPIS) and fuzzy negative-ideal 

solution (FNIS). 

Referring to normalise trapezoidal fuzzy weights, the FPIS, A  represents 

the compromise solution while FNIS, 
A  represents the worst possible 

solution. The range belong to the closed interval [0,1]. The FPIS A  

(aspiration levels) and FNIS A  (worst levels) as following below: 

]1;1,1,1,1[A             ]1;1,1,1,1[ A  

Step 5: Calculate the distance of each alternative from FPIS and FNIS. 

The distance 

id
~

 and 

id
~

 of each alternative from formulation A  and A  can 

be calculated by the area of compensation method. 
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The weighted pairwise comparison matrix for alternatives evaluation 
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The weighted normalised pairwise comparison matrix for alternatives evaluation 
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The average weighted normalised pairwise comparison matrix for alternatives evaluation 
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Step 6: Find the closeness coefficient, iCC  and improve alternatives for achieving 

aspiration levels in each criteria.  

The decision rules for five classes are depicted in Table 6.9. Notice that the 

highest iCC  value is used to determine the rank. 
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dd
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CC 1  

3697.16324.0

3697.1


iCC  

6842.0iCC  

 

After several processes, referring to Table 6.9, the iCC  values shows candidate 3 

represents the highest rank with 0.7419 followed by candidate 2 with 0.7067, 

candidate 1 with 0.6842 and candidate 4 with 0.6453 for the last ranked. The results 

reveal that the candidate 3 is most suitable for this recruitment post because based on 

approval status table in Table 6.7, the score is in approved range. 

 

Table 6. 9. Closeness coefficients computation for type-1 fuzzy sets. 
 

Alternative       Closeness Coefficient, CCi 

Candidate 1 0.6842 (Rank 3) 

Candidate 2 0.7067 (Rank 2) 

Candidate 3 0.7419 (Rank 1) 

Candidate 4 0.6453 (Rank 4) 

 

6.3.3 Fuzzy Analytic Hierarchy Process – Fuzzy Multidisciplinary 

Optimization Compromise Solution 

This established hybrid fuzzy MCDM based fuzzy AHP – fuzzy VIKOR 

proposed by (Rezaie et al., 2014). In this study, the authors only consider triangular 

fuzzy numbers. But, in order to make compatibility in information given, trapezoidal 

fuzzy sets are used. Several steps are replace in order to fulfil the requirement of 

trapezoidal fuzzy sets such as, linguistic terms used, defuzzification step and area of 

compensation process. There are several phases in computing hybrid fuzzy MCDM 

model based fuzzy AHP – fuzzy VIKOR are as follows. 
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Phase 1: Linguistic Evaluation 

The decision makers used the linguistic terms that proposed by (Zheng et al., 

2012) as shown in Table 6.1 in presenting the weights of criteria using fuzzy AHP 

evaluation for type-1 fuzzy sets. For fuzzy TOPSIS evaluation, the linguistic terms 

and the corresponding of fuzzy numbers that proposed by (Zheng et al., 2012) as 

depicted in Table 6.2 is used to represent the evaluating values of the alternatives 

with respect to difference criteria with degree of confidence respectively.  

Phase 2: Fuzzy Weights Evaluation using Fuzzy AHP 

Same calculation as Section 6.3.2 in phase 2. 

Phase 3: Fuzzy VIKOR Evaluation for Alternatives Selection 

Step1: Create fuzzy evaluation matrix for alternatives’ evaluation. 

 The construction of fuzzy decision matrix for alternatives’ evaluation are 

utilised linguistic terms by  (Zheng et al., 2012) presented on Table 6.5. 

Step 2: Compute normalised quantities by using equation as follows. 

 Assume m alternatives and n criteria. 
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2

 

 where, njmi ,...,2,1;,...,2,1  . 

Step 3: Determine the best )( *

jf  and the worst )( 

jf  quantities in each criterion. 

If we assume the jth function represents a benefit, then ijj ff max*   (or 

setting an inspired level) and ijj ff min
 (or setting a tolerate level). 

Alternatively, if we assume the jth function represents a cost/ risk, the then 

ijj ff min*   (or setting an inspired level) and ijj ff max
 (or setting a 

tolerate level). Refer equation (6.28). 

Step 4: Determine the weights of the criteria. 

The weighting of evaluation criteria are employed from fuzzy AHP 

evaluation process before. Refer Table 6.8. 
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Step 5: Compute the values of iS  and miRi ,...2,1;   by the equations (3.32) and 

(3.33). 
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 Where jw  are the criteria‘s weights, that expressing their relative important 

from fuzzy AHP evaluation. 

Step 6: Compute the values of ,...,2,1;iQ  by the equation below: 
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 Where, iiSvalueS max , ii SS min*  , iiRvalueR max , ii RR min*   

and    is introduced as the weight of the strategy “the majority of criteria” 

(or “the maximum group utility”) and usually 5.0 (Bevilacqua & Braglia, 

2000). The whole computation are represented in equation (6.29), (6.30), 

(6.31) and (6.32). Then find the 
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ii RR min*   and  . 
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Hence, the calculation of Q for candidate 1 is illustrated as follows. 
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The defuzzification process is utilised using (Y. M. Wang et al., 2006) 

converts iS , iR  and iQ  into regular number are depicted  in Table 6.10. The 
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Table 6. 10. Defuzzification computations for type-1 fuzzy sets. 

 Candidate 1 Candidate 2 Candidate 3 Candidate 4 

Q 0.3634 (Rank 3) 0.1721 (Rank 2) 0.0000 (Rank 1) 0.4702 (Rank 4) 

S 0.3201 0.2022 0.0000 0.5986 

R 0.2239 0.1154 0.0468  0.2207 

 

Step 7: Rank the alternatives, sorting by the values iS , iR  and iQ  in decreasing 

order. 

 After several processes, referring to Table 6.10, the rank values shows 

candidate 3 represents the highest rank with the lowest Q and S with 0.00 

followed by candidate 2 with 0.1721, candidate 1 with 0.3634 and candidate 

4 with 0.4702 for the last ranked. The results show that the candidate 3 is 

most suitable for this recruitment post. For VIKOR analysis, the lowest the Q 

value, the better rank. 
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Step 8: Investigate as a compromise solution the alternative 'A , which is ranked the 

best alternative according to the measure Q(Minimum) if the following two 

conditions are satisfied: 

 Condition 1. Acceptable advantage: 

    
1

1
)'()"(




m
AQAQ  

 where "A the alternative with second position in the ranking list by mQ;  is 

the number of alternative.  

 Condition 2. Acceptable stability:  

Alternative 'A , must be also the best ranked by S or/and R. This compromise 

solution is stable within a decision making process, which could be “voting 

by the majority rule” (when 5.0  is needed), or “by consensus” 5.0 , 

“with veto” )5.0(  . Here,   is the weight of the decision making strategy 

“the majority of criteria” (or “the maximum group utility”) (Fu et al., 2011). 

If one of the conditions is not satisfied, then a set of compromise solutions is 

proposed, which consist of: 

Alternative 'A , and "A if only condition 2 is not satisfied, or; 

Alternative )(,...,",' MAAA  if condition 1 is not satisfied; )(MA  is determined 

by the relation 
1

1
)'()( )(




m
AQAQ M  for maximum m (the positions of 

these alternatives are “in closeness”). 
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The fuzzy difference for alternatives evaluation 
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The weighted of fuzzy difference for alternatives evaluation. 
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The Si weighted pairwise comparison matrix for alternatives evaluation 
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The Ri weighted pairwise comparison matrix for alternatives evaluation 
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6.4 Hybrid Fuzzy Multi Criteria Decision Making for Type-2 

Fuzzy Sets 

This section illustrates computational process of proposed and established 

hybrid fuzzy MCDM models regarding staff selection in MESSRS Saprudin, Idris & 

Co for interval type-2 fuzzy sets. The proposed hybrid fuzzy MCDM model is 

compared with fuzzy AHP – TOPSIS (Kiliç & Kaya, 2015) model from literature for 

comparative study. 

6.4.1 Consistent Fuzzy Preference Relations – Fuzzy Technique for Order 

of Preference by Similarity to Ideal Solution for Type-2 Fuzzy Sets 

 The extended hybrid fuzzy MCDM model for type-2 fuzzy sets is discussed in 

detail in Chapter 5. The proposed model is limited to interval type-2 fuzzy sets. In 

order to solve the vagueness and uncertainty based human decision making problems 

from information given, interval type-2 fuzzy sets are used to enhance judgement in 

the fuzzy decision making environment. The computational process of hybrid fuzzy 

type-2 MCDM model based consistent fuzzy preference relations – fuzzy TOPSIS are 

as follows. 

Phase 1: Linguistic Evaluation 

The decision makers used the linguistic terms that proposed by (Zheng et al., 

2012) as shown in Table 6.11 in presenting the weights of criteria using consistent 

fuzzy preference evaluation for interval type-2 fuzzy sets. The linguistic terms with 

the crisp scale of relative important present the important of criteria preferences 

namely equally important (1), intermediate value (2), moderately more important (3), 

intermediate value (4), strongly more important (5), intermediate value (6), very 

strong more important (7), intermediate important (8) and extremely more important 

(9). For fuzzy TOPSIS evaluation, the linguistic terms and the corresponding of fuzzy 

numbers that proposed by (S. M. Chen & Lee, 2010) is used to represent the 

evaluating values of the alternatives with respect to difference criteria with degree of 

confidence respectively. The scales consist of very-low (1), low (2), medium-low (3), 

medium (4), medium-high (5), high (6) and very-high (7). The linguistic scales for 

alternatives evaluation are depicted in Table 6.12 that are measure from 0 until 1. 
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Table 6. 11. Trapezoidal interval type-2 fuzzy numbers preference scale based type-1 

fuzzy numbers (Zheng et al., 2012) 

Linguistic variables 

Scale of relative 

important  

of crisp numbers 

Trapezoidal interval type-2 fuzzy  

numbers 

Reciprocal trapezoidal  

fuzzy number 

Equally important (EI) 

Intermediate value (IV) 

Moderately more 

important (MMI) 

Intermediate value (IV) 

Strongly more important 

(SMI) 

Intermediate value (IV) 

Very strong more 

important (VSMI) 

Intermediate value (IV) 

Extremely more 

important (EMI) 

1 

2 

3 

 

4 

5 

 

6 

7 

 

8 

9 

(1,1,1,1;1) (1,1,1,1;0.9) 

(1,1.5,2.5,3;1)(1.25,2,2.75,3;0.9) 

(2,2.5,3.5,4;1)(2.25,3,3.75,4;0.9) 

 

(3,3.5,4.5,5;1)(3.25,4,4.75,5;0.9) 

(4,4.5,5.5,6;1)(4.25,5,5.75,6;0.9) 

 

(5,5.5,6.5,7;1)(5.25,6,6.75,7;0.9) 

(6,6.5,7.5,8;1)(6.25,7,7.75,8;0.9) 

 

(7,7.5,8.5,9;1)(7.25,8,8.75,9;0.9) 

(8,8.5,9,9;1)(8.25,9,9,9;0.9) 

(1,1,1,1;1)(1,1,1,1;0.9) 

(0.33,0.4,0.67,1;1)(0.37,0.53,0.6,0.83;0.9) 

(0.25,0.22,0.4,0.5;1)(0.24,0.31,0.36,0.45;0.9) 

 

(0.2,0.22,0.29,0.33;1)(0.21,0.25,0.27,0.31;0.9) 

(0.17,0.18,0.22,0.25;1)(0.17,0.2,0.21,0.24;0.9) 

 

(0.14,0.15,0.18,0.2;1)(0.15,0.17,0.17,0.19;0.9) 

(0.13,0.13,0.15,0.17;1)(0.13,0.14,0.15,0.16;0.9) 

 

(0.11,0.12,0.13,0.14;1)(0.11,0.13,0.13,0.14;0.9) 

(0.11,0.11,0.12,0.13;1)(0.11,0.11,0.12,0.12;0.9) 

 

Table 6. 12. Linguistic terms and their corresponding interval type-2 fuzzy numbers 

(S. M. Chen & Lee, 2010) 

Linguistic Terms 
Scale of preferences of 

crisp numbers 
Interval type-2 fuzzy numbers 

Very-low (VL) 1 (0,0,0,0.1;1)(0,0,0,0.5;0.9) 

Low (L) 2 (0,0.1,0.1,0.3;1)(0.05,0.1,0.1,0.2;0.9) 

Medium-low (ML) 3 (0.1,0.3,0.3,0.5;1)(0.2,0.3,0.3,0.4;0.9) 

Medium (M) 4 (0.3,0.5,0.5,0.7;1)(0.4,0.5,0.5,0.6;0.9) 

Medium-high (MH) 5 (0.5,0.7,0.7,0.9;1)(0.8,0.9,0.9,0.95;0.9) 

High (H) 6 (0.7,0.9,0.9,1;1)(0.8,0.9,0.9,0.95;0.9) 

Very-high (VH) 7 (0.9,1,1,1;1)(0.95,1,1,1;0.9) 

Phase 2: Fuzzy Weights of Criteria Evaluation using Consistent Fuzzy Preference 

Relations 

Step 1: Construct a hierarchy structure. 

The hierarchy model as shown in Fig. 6.1 at Section 6.3.1 is illustrated the 

connection of criteria and alternatives, which all candidates have to be 

interviewed.  

Step 2: Construct pairwise comparison matrices. 

The pairwise comparison matrices are constructed among all criteria in the 

dimension of the hierarchy systems based on the decision makers’ 

preferences in phase 1 using equation (5.1). The linguistic evaluations of 

pairwise comparison matrices are based on regular numbers are depicted in 

equation (6.1), (6.2) and (6.3) from Section 6.3.1, then are translated into 

interval type-2 fuzzy numbers using Table 6.11. The linguistic ratings of 

criteria fuzzy numbers – based given by DM1, DM2 and DM3 are shown in 

equation (6.33), (6.34) and (6.35) respectively. 
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Type-2 fuzzy pairwise comparison matrix of criteria evaluation from DM1 
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Type-2 fuzzy pairwise comparison matrix of criteria evaluation from DM2 

 



165 

 

 

 
 
















...)9.0;5,75.4,4,25.3)(1;5,5.4,5.3,3()9.0;31.0,27.0,25.0,21.0)(1;33.0,29.0,22.0,2.0()9.0;4,75.3,3,25.2)(1;4,5.3,5.2,2(

)9.0;6,75.5,5,25.4)(1;6,5.5,5.4,4()9.0;3,75.2,2,25.1)(1;3,5.2,5.1,1()9.0;6,75.5,5,25.4)(1;6,5.5,5.4,4(

)9.0;1,1,1,1)(1;1,1,1,1()9.0;31.0,27.0,25.0,21.0)(1;33.0,29.0,22.0,2.0()9.0;31.0,27.0,25.0,21.0)(1;33.0,29.0,22.0,2.0(

)9.0;5,75.4,4,25.3)(1;5,5.4,5.3,3()9.0;1,1,1,1)(1;1,1,1,1()9.0;6,75.5,5,25.4)(1;6,5.5,5.4,4(

)9.0;5,75.4,4,25.3)(1;5,5.4,5.3,3()9.0;24.0,21.0,2.0,17.0)(1;25.0,22.0,18.0,17.0()9.0;1,1,1,1)(1;1,1,1,1(

3

CS

PE

P

O

ES

DM

POES

 

 














)9.0;1,1,1,1)(1;1,1,1,1()9;4,75.3,3,25.92)1;4,5.3,5.2,2(...

)9.0;45.0,36.0,31.0,24.0)(1;5.0,4.0,22.0,25.0()9.0;1,1,1,1)(1;1,1,1,1(

)9.0;31.0,27.0,25.0,21.0)(1;33.0,29.0,22.0,2.0()9.0;24.0,21.0,2.0,17.0)(1;25.0,22.0,18.0,17.0(

)9.0;5,75.4,4,25.3)(1;5,5.4,5.3,3()9.0;24.0,21.0,2.0,17.0)(1;1,67.0,4.0,33.0(

)9.0;45.0,36.0,31.0,24.0)(1;5.0,4.0,22.0,25.0()9.0;24.0,21.0,2.0,17.0)(1;25.0,22.0,18.0,17.0(

CSPE

     (6.35) 

 

 

Type-2 fuzzy pairwise comparison matrix of criteria evaluation from DM3 
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Step 3: Aggregate the decision makers’ preferences. 

The pairwise comparison matrices for criteria’s judgement of decision 

makers’ (DM1, DM2, DM3) preferences as listed in equation (6.33), (6.34) 

and (6.35) are aggregated using equation (5.2). The result of aggregated 

pairwise comparison matrix is shown in equation (6.37) on the next page. 

kn

ijijijij aaaa /121 )~...~~(~                                

where k is the number of decision makers and i=1,2,…m; j=1,2,…n. 

Step 4: Defuzzify the trapezoidal fuzzy numbers of aggregation’s result of decision 

makers’ preferences. 

The aggregation’s result of decision maker’s preferences are defuzzify using 

intuitive multiple centroid for type-2 fuzzy sets using equation (4.13) and 

presented in equation (6.36). 
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7848.1
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             (6.36) 

Defuzzification type-2 fuzzy results of aggregated matrix comparison 
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
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







)...9.0;3972.0,3243.0,2908.0,2275.0)(1;4368.0,3576.0,2222.0,2321.0()9.0;3019.3,0495.3,2894.2,5206.1)(1;3019.3,7967.2,7784.1,2599.1(

)9.0;5940.1,3906.1,0756.1,7172.0)(1;651.1,3572.1,7937.0,63.0()9.0;6494.6,3987.6,6462.5,8629.4)(1;6494.6,1479.6,1441.5,6416.4(

)9.0;2407.0,2155.0,2050.0,1761.0)(1;2554.0,2260.0,1839.0,1682.0()9.0;2828.0,2490.0,2353.0,1980.0)(1;3029.0,2628.0,2078.0,1882.0(

)9.0;1,1,1,1)(1;1,1,1,1()9.0;3164.6,066.6,3133.5,5601.4)(1;3164.6,8150.5,8113.4,3089.4(

)9.0;22.0,1989.0,1899.0,1651.0)(1;2321.0,2078.0,1720.0,1583.0()9.0;1,1,1,1)(1;1,1,1,1(
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)...9.0;7264.0,6488.0,5784.0,4646.0)(1;7631.0,6586.0,4979.0,4309.0()9.0;9324.4,6788.4,9149.3,1440.3)(1;9324.4,4247.4,4020.3,8845.2...(

)9.0;1,1,1,1)(1;1,1,1,1()9.0;6494.6,3987.6,6462.5,8929.4)(1;6494.6,1479.6,1441.5,6416.4(

)9.0;2049.0,1865.0,1785.0,1565.0)(1;2154.0,1944.0,1627.0,1504.0()9.0;1,1,1,1)(1;1,1,1,1(

)9.0;4057.1,1052.1,9485.0,6713.0)(1;5874.1,1587.1,7368.0,6057.0()9.0;9439.5,6914.5,9324.4,1701.4)(1;9439.5,4387.5,4247.4,9149.3(

)9.0;2049.0,1865.0,1785.0,1565.0)(1;2154.0,1944.0,1627.0,1504.0()9.0;3133.5,0623.5,3089.4,5540.3)(1;3133.5,8113.4,8058.3,3019.3(
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)9.0;1,1,1,1)(1;1,1,1,1(

)9.0;2407.2,0019.2,7074.1,3561.1)(1;3208.2,0083.2,3963.1,3104.1(

)9.0;3204.0,2730.0,2518.0,2056.0)(1;3467.0,2939.0,2078.0,2027.0(

)9.0;3089.4,0574.4,3019.3,5434.2)(1;3089.4,8058.3,7967.2,2894.2(

)9.0;6786.0,5040.0,4456.0,3166.0)(1;7937.0,5623.0,3288.0,3029.0(
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           (6.37) 

 

 

The aggregated type-2 fuzzy pairwise comparison matrix of decision makers for criteria evaluation 
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Step 5: Compute the weights of criteria values for alternatives’ evaluation using 

consistent fuzzy preference relations. 

The weights of aggregated matrix comparison of criteria are calculated using 

consistent preference relations which based on additive transitivity property 

using equation (3.16-3.22) in equation (6.38) below: 
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5.03682.07574.03869.07618.0

6318.0

2426.0

6131.0

2382.0

5.08892.05188.08937.0

1108.05.01296.05045.0

4812.08705.05.08749.0

1063.04956.01251.05.0
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              (6.38) 

The consistent type-2 fuzzy preference relations matrix for criteria 

By having five criteria, 5n  so only 415)1( n  entry values 

),,( 45342312 pandppp  are required in constructing the consistent fuzzy 

preference relations matrix from equation (6.36) where: 

1251.0)1925.0log1(
2

1
912 p  

8705.0)0933.5log1(
2

1
923 p  

1108.0)1808.0log1(
2

1
934 p  

6318.0)785.1log1(
2

1
945 p  

The remains of the entries can be determine by utilizing Proposition 2 and 3 

are presented as follows. 

8749.01251.011 1221  pp  

1296.08705.011 2332  pp  

8892.01108.011 3443  pp  
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3682.06318.011 4554  pp  

5045.08705.01251.0
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3

2

3
231231  ppp  

5188.01108.08705.0
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3

2

3
342342  ppp  

7574.06318.01108.0
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2

3
453453  ppp  

8937.01108.08705.01251.0
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4955.05045.011 3113  pp  

1063.08937.011 4114  pp  

2382.07618.011 5115  pp  

4812.05188.011 4224  pp  

6131.03869.011 5225  pp  

2426.07574.011 5335  pp  

Then, the average and weight of each criterion from equation (6.38) are 

illustrated in Table 6.13 as follows. 
 

Table 6. 13. The type-2 fuzzy average and weightage of criteria 

Criteria ES O P PE S-C Average Weights Rank 

ES 0.5 0.1251 0.4956 0.1063 0.2382 0.2930 0.1172 5 

O 0.8749 0.5 0.8705 0.4812 0.6131 0.6679 0.2672 2 

P 0.5045 0.1296 0.5 0.1108 0.2426 0.2975 0.1190 4 

PE 0.8937 0.5188 0.8892 0.5 0.6318 0.6867 0.2747 1 

S-C 0.7318 0.3869 0.7574 0.3688 0.5 0.5549 0.2219 3 

Total      2.5 1  
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These results of criteria’s weights are implemented in following phase to evaluate for 

alternatives selection. 

Phase 3: Ranking evaluation of alternatives using fuzzy TOPSIS 

Step 1: Determine the weights of evaluation criteria. 
 

The weights of evaluation criteria are employed from consistent fuzzy 

preference relations process before. Refer Table 6.13. 
 

Step 2: Construct the fuzzy decision matrix for alternatives’ evaluation using fuzzy 

TOPSIS. 
 

 The construction of fuzzy decision matrix for alternatives’ evaluation are 

utilised linguistic terms by  (S. M. Chen & Lee, 2010) presented on Table 

6.14. 
 

Table 6. 14. Evaluating linguistic terms of the alternatives given by the decision 

makers with respect to different criteria 

Criteria Alternatives 
Decision Maker 

DM1 DM2 DM3 

Emotional Steadiness x1 

 

H MH  H 

   

x2 

 

H H  MH  

   

x3 

 

VH  H  VH  

   

x4 

 

M MH  M 

        Oration x1 

 

H  H  VH  

   

x2 

 

H  H  VH  

   

x3 

 

VH VH  H  

   

x4 

 

MH  MH  MH  

        Personality 

 

x1 

 

VH VH VH 

   

x2 

 

H H VH 

   

x3 

 

VH VH  VH 

   

x4 

 

H H  H 

        Past Experience  

 

x1 

 

ML  L  ML  

   

x2 

 

M  M  M  

   

x3 

 

H  M  H  

   

x4 

 

ML  ML  ML  

        Self-Confidence 

 

x1 

 

H  MH  MH  

   

x2 

 

VH  H  H  

   

x3 

 

VH  VH  VH  

   

x4 

 

M  MH MH  
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Table 6. 15. Evaluating type-2 fuzzy values of the alternatives given by the decision makers with respect to different criteria

Criteria 
Alternatives 

(Candidates) 

Decision Maker 1 Decision Maker 2 

DM1    DM2 

Emotional Steadiness x1 ( 0.70 0.90 0.90 1.00; 1.00 ) ( 0.80 0.90 0.90 0.95; 0.90 ) ( 0.50 0.70 0.70 0.90; 1.00 ) 

   

x2 ( 0.70 0.90 0.90 1.00; 1.00 ) ( 0.80 0.90 0.90 0.95; 0.90 ) ( 0.70 0.90 0.90 1.00; 1.00 ) 

   

x3 ( 0.90 1.00 1.00 1.00; 1.00 ) ( 0.95 1.00 1.00 1.00; 0.90 ) ( 0.70 0.90 0.90 1.00; 1.00 ) 

   

x4 ( 0.30 0.50 0.50 0.70; 1.00 ) ( 0.40 0.50 0.50 0.60; 0.90 ) ( 0.50 0.70 0.70 0.90; 1.00 ) 

                         Oration x1 ( 0.70 0.90 0.90 1.00; 1.00 ) ( 0.80 0.90 0.90 0.95; 0.90 ) ( 0.70 0.90 0.90 1.00; 1.00 ) 

   

x2 ( 0.70 0.90 0.90 1.00; 1.00 ) ( 0.80 0.90 0.90 0.95; 0.90 ) ( 0.70 0.90 0.90 1.00; 1.00 ) 

   

x3 ( 0.90 1.00 1.00 1.00; 1.00 ) ( 0.95 1.00 1.00 1.00; 0.90 ) ( 0.90 1.00 1.00 1.00; 1.00 ) 

   

x4 ( 0.50 0.70 0.70 0.90; 1.00 ) ( 0.60 0.70 0.70 0.80; 0.90 ) ( 0.50 0.70 0.70 0.90; 1.00 ) 

                         Personality 

 

x1 ( 0.90 1.00 1.00 1.00; 1.00 ) ( 0.95 1.00 1.00 1.00; 0.90 ) ( 0.90 1.00 1.00 1.00; 1.00 ) 

   

x2 ( 0.70 0.90 0.90 1.00; 1.00 ) ( 0.80 0.90 0.90 0.95; 0.90 ) ( 0.70 0.90 0.90 1.00; 1.00 ) 

   

x3 ( 0.90 1.00 1.00 1.00; 1.00 ) ( 0.95 1.00 1.00 1.00; 0.90 ) ( 0.90 1.00 1.00 1.00; 1.00 ) 

   

x4 ( 0.70 0.90 0.90 1.00; 1.00 ) ( 0.80 0.90 0.90 0.95; 0.90 ) ( 0.70 0.90 0.90 1.00; 1.00 ) 

                         Past Experience  

 

x1 ( 0.10 0.30 0.30 0.50; 1.00 ) ( 0.20 0.30 0.30 0.40; 0.90 ) ( 0.00 0.10 0.10 0.30; 1.00 ) 

   

x2 ( 0.30 0.50 0.50 0.70; 1.00 ) ( 0.40 0.50 0.50 0.60; 0.90 ) ( 0.30 0.50 0.50 0.70; 1.00 ) 

   

x3 ( 0.70 0.90 0.90 1.00; 1.00 ) ( 0.80 0.90 0.90 0.95; 0.90 ) ( 0.30 0.50 0.50 0.70; 1.00 ) 

   

x4 ( 0.10 0.30 0.30 0.50; 1.00 ) ( 0.20 0.30 0.30 0.40; 0.90 ) ( 0.10 0.30 0.30 0.50; 1.00 ) 

                         Self-Confidence 

 

x1 ( 0.70 0.90 0.90 1.00; 1.00 ) ( 0.80 0.90 0.90 0.95; 0.90 ) ( 0.50 0.70 0.70 0.90; 1.00 ) 

   

x2 ( 0.90 1.00 1.00 1.00; 1.00 ) ( 0.95 1.00 1.00 1.00; 0.90 ) ( 0.70 0.90 0.90 1.00; 1.00 ) 

   

x3 ( 0.90 1.00 1.00 1.00; 1.00 ) ( 0.95 1.00 1.00 1.00; 0.90 ) ( 0.90 1.00 1.00 1.00; 1.00 ) 

   

x4 ( 0.30 0.50 0.50 0.70; 1.00 ) ( 0.40 0.50 0.50 0.60; 0.90 ) ( 0.50 0.70 0.70 0.90; 1.00 ) 
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Table 6. 12. Evaluating type-2 fuzzy values of the alternatives given by the decision makers with respect to different criteria (cont.) 

Criteria 
Alternatives 

(Candidates) 

Decision Maker 2     Decision Maker 3 

 DM2   
 

DM3 

Emotional Steadiness x1 ( 0.60 0.70 0.70 0.80; 0.90 ) ( 0.70 0.90 0.90 1.00; 1.00 ) ( 0.80 0.90 0.90 1.00; 0.90 ) 

   

x2 ( 0.80 0.90 0.90 0.95; 0.90 ) ( 0.50 0.70 0.70 0.90; 1.00 ) ( 0.60 0.70 0.70 0.80; 0.90 ) 

   

x3 ( 0.80 0.90 0.90 0.95; 0.90 ) ( 0.90 1.00 1.00 1.00; 1.00 ) ( 0.95 100 1.00 1.00; 0.90 ) 

   

x4 ( 0.60 0.70 0.70 0.80; 0.90 ) ( 0.30 0.50 0.50 0.70; 1.00 ) ( 0.40 0.50 0.50 0.60; 0.90 ) 

                         Oration x1 ( 0.80 0.90 0.90 0.95; 0.90 ) ( 0.90 1.00 1.00 1.00; 1.00 ) ( 0.95 100 1.00 1.00; 0.90 ) 

   

x2 ( 0.80 0.90 0.90 0.95; 0.90 ) ( 0.90 1.00 1.00 1.00; 1.00 ) ( 0.95 100 1.00 1.00; 0.90 ) 

   

x3 ( 0.95 1.00 1.00 1.00; 0.90 ) ( 0.70 0.90 0.90 1.00; 1.00 ) ( 0.80 0.90 0.90 1.00; 0.90 ) 

   

x4 ( 0.60 0.70 0.70 0.80; 0.90 ) ( 0.50 0.70 0.70 0.90; 1.00 ) ( 0.60 0.70 0.70 0.80; 0.90 ) 

                         Personality 

 

x1 ( 0.95 1.00 1.00 1.00; 0.90 ) ( 0.90 1.00 1.00 1.00; 1.00 ) ( 0.95 100 1.00 1.00; 0.90 ) 

   

x2 ( 0.80 0.90 0.90 0.95; 0.90 ) ( 0.90 1.00 1.00 1.00; 1.00 ) ( 0.95 100 1.00 1.00; 0.90 ) 

   

x3 ( 0.95 1.00 1.00 1.00; 0.90 ) ( 0.90 1.00 1.00 1.00; 1.00 ) ( 0.95 100 1.00 1.00; 0.90 ) 

   

x4 ( 0.80 0.90 0.90 0.95; 0.90 ) ( 0.70 0.90 0.90 1.00; 1.00 ) ( 0.80 0.90 0.90 1.00; 0.90 ) 

                         Past Experience  

 

x1 ( 0.05 0.10 0.10 0.20 0.90 ) ( 0.10 0.30 0.30 0.50; 1.00 ) ( 0.20 0.30 0.30 0.40; 0.90 ) 

   

x2 ( 0.40 0.50 0.50 0.60; 0.90 ) ( 0.30 0.50 0.50 0.70; 1.00 ) ( 0.40 0.50 0.50 0.60; 0.90 ) 

   

x3 ( 0.40 0.50 0.50 0.60; 0.90 ) ( 0.70 0.90 0.90 1.00; 1.00 ) ( 0.80 0.90 0.90 1.00; 0.90 ) 

   

x4 ( 0.20 0.30 0.30 0.40; 0.90 ) ( 0.10 0.30 0.30 0.50; 1.00 ) ( 0.20 0.30 0.30 0.40; 0.90 ) 

                         Self-Confidence 

 

x1 ( 0.60 0.70 0.70 0.80; 0.90 ) ( 0.50 0.70 0.70 0.90; 1.00 ) ( 0.60 0.70 0.70 0.80; 0.90 ) 

   

x2 ( 0.80 0.90 0.90 0.95; 0.90 ) ( 0.70 0.90 0.90 1.00; 1.00 ) ( 0.80 0.90 0.90 1.00; 0.90 ) 

   

x3 ( 0.95 1.00 1.00 1.00; 0.90 ) ( 0.90 1.00 1.00 1.00; 1.00 ) ( 0.95 100 1.00 1.00; 0.90 ) 

   

x4 ( 0.60 0.70 0.70 0.80; 0.90 ) ( 0.50 0.70 0.70 0.90; 1.00 ) ( 0.60 0.70 0.70 0.80; 0.90 ) 
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Step 3: Fuzzy decision matrix is weighted using equation (5.5) and normalised each 

generalised fuzzy numbers into standardised generalised fuzzy numbers 

using (Zuo et al., 2013).  

Equation (6.39), (6.40) and (6.41) represent the pairwise comparison 

matrices for decision makers for alternatives evaluation. Then, aggregated 

results is depicted in equation (6.42). The weighted fuzzy normalised 

decision matrix is computed using equation (5.6) (Zuo et al., 2013). The 

results of weighted and normalisation process are presented in equation 

(6.43) and (6.44) respectively. Defuzzify the standardised generalised fuzzy 

numbers using proposed intuitive multiple centroid method for type-2 fuzzy 

sets, then translate them into the index point proposed by (Yong & Qi, 2005) 

as presented in equation (6.45) and equation (6.46) respectively, then find 

average computational process as depicted in equation (6.47). 

Step 4: Determine the fuzzy positive-ideal solution (FPIS) and fuzzy negative-ideal 

solution (FNIS). 

Referring to normalise trapezoidal fuzzy weights, the FPIS, A  represents 

the compromise solution while FNIS, 
A  represents the worst possible 

solution. The range belong to the closed interval [0,1]. The FPIS A  

(aspiration levels) and FNIS A  (worst levels) as following below: 

)9.0;1,1,1,1)(1;1,1,1,1(A        )9.0;1,1,1,1)(1;1,1,1,1( A  

The FPIS, A  and FNIS, A  can be obtained by centroid method for 

),(  AA
yx  and ),(  AA

yx . 
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)9.0;4.0,3.0,3.0,2.0)(1;5.0,3.0,3.0,1.0()95.0,9.0,9.0,8.0)(1;1,9.0,9.0,7.0()9.0;6.0,5.0,5.0,4.0)(1;7.0,5.0,5.0,3.0()9.0;4.0,3.0,3.0,2.0)(1;5.0,3.0,3.0,1.0(
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)9.0;8.0,7.0,7.0,6.0)(1;9.0,7.0,7.0,5.0()9.0;1,1,1,95.0)(1;1,1,1,9.0()95.0,9.0,9.0,8.0)(1;1,9.0,9.0,7.0()9.0;95.0,9.0,9.0,8.0)(1;1,9.0,9.0,7.0(

)9.0;6.0,5.0,5.0,4.0)(1;7.0,5.0,5.0,3.0()9.0;1,1,1,95.0)(1;1,1,1,9.0()95.0,9.0,9.0,8.0)(1;1,9.0,9.0,7.0()9.0;95.0,9.0,9.0,8.0)(1;1,9.0,9.0,7.0(
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(6.39) 

The pairwise comparison matrix of DM1 for alternatives evaluation 
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)9.0;8.0,7.0,7.0,6.0)(1;9.0,7.0,7.0,5.0()9.0;1,1,1,95.0)(1;1,1,1,9.0()95.0,9.0,9.0,8.0)(1;1,9.0,9.0,7.0()9.0;8.0,7.0,7.0,6.0)(1;9.0,7.0,7.0,5.0(

)9.0;4.0,3.0,3.0,2.0)(1;5.0,3.0,3.0,1.0()9.0;6.0,5.0,5.0,4.0)(1;7.0,5.0,5.0,3.0()9.0;6.0,5.0,5.0,4.0)(1;7.0,5.0,5.0,3.0()9.0;2.0,1.0,1.0,05.0)(1;3.0,1.0,1.0,0(

)95.0,9.0,9.0,8.0)(1;1,9.0,9.0,7.0()9.0;1,1,1,95.0)(1;1,1,1,9.0()95.0,9.0,9.0,8.0)(1;1,9.0,9.0,7.0()9.0;1,1,1,95.0)(1;1,1,1,9.0(

)9.0;8.0,7.0,7.0,6.0)(1;9.0,7.0,7.0,5.0()9.0;1,1,1,95.0)(1;1,1,1,9.0()95.0,9.0,9.0,8.0)(1;1,9.0,9.0,7.0()9.0;95.0,9.0,9.0,8.0)(1;1,9.0,9.0,7.0(

)9.0;8.0,7.0,7.0,6.0)(1;9.0,7.0,7.0,5.0()95.0,9.0,9.0,8.0)(1;1,9.0,9.0,7.0()95.0,9.0,9.0,8.0)(1;1,9.0,9.0,7.0()9.0;8.0,7.0,7.0,6.0)(1;9.0,7.0,7.0,5.0(

2
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                    (6.40) 

The pairwise comparison matrix of DM2 for alternatives evaluation 



























))9.0;8.0,7.0,7.0,6.0)(1;9.0,7.0,7.0,5.0()9.0;1,1,1,95.0)(1;1,1,1,9.0()9.0;95.0,9.0,9.0,8.0)(1;1,9.0,9.0,7.0()9.0;8.0,7.0,7.0,6.0)(1;9.0,7.0,7.0,5.0(

)9.0;4.0,3.0,3.0,2.0)(1;5.0,3.0,3.0,1.0()95.0,9.0,9.0,8.0)(1;1,9.0,9.0,7.0()9.0;6.0,5.0,5.0,4.0)(1;7.0,5.0,5.0,3.0()9.0;4.0,3.0,3.0,2.0)(1;5.0,3.0,3.0,1.0(

)95.0,9.0,9.0,8.0)(1;1,9.0,9.0,7.0()9.0;1,1,1,95.0)(1;1,1,1,9.0()9.0;95.0,9.0,9.0,95.0)(1;1,1,1,9.0()9.0;1,1,1,95.0)(1;1,1,1,9.0(

)9.0;8.0,7.0,7.0,6.0)(1;9.0,7.0,7.0,5.0()9.0;95.0,9.0,9.0,8.0)(1;1,9.0,9.0,7.0()9.0;95.0,9.0,9.0,95.0)(1;1,1,1,9.0()9.0;1,1,1,95.0)(1;1,1,1,9.0(

)9.0;6.0,5.0,5.0,4.0)(1;7.0,5.0,5.0,3.0()9.0;1,1,1,95.0)(1;1,1,1,9.0()9.0;8.0,7.0,7.0,6.0)(1;9.0,7.0,7.0,5.0()9.0;95.0,9.0,9.0,8.0)(1;1,9.0,9.0,7.0(

3
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(6.41) 

The pairwise comparison matrix of DM3 for alternatives evaluation 
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














...)9.0;97.0,93.0,93.0,85.0)(1;1,93.0,93.0,77.0()9.0;85.0,77.0,77.0,67.0)(1;93.0,77.0,77.0,57.0(

)9.0;6.0,5.0,5.0,4.0)(1;7.0,5.0,5.0,3.0()9.0;33.0,23.0,23.0,15.0)(1;43.0,23.0,23.0,07.0(

)9.0;97.0,93.0,93.0,85.0)(1;1,93.0,93.0,77.0()9.0;1,1,1,95.0)(1;1,1,1,9.0(

)9.0;97.0,93.0,93.0,85.0)(1;1,93.0,93.0,77.0()9.0;97.0,93.0,93.0,85.0)(1;1,93.0,93.0,77.0(

)9.0;9.0,83.0,83.0,73.0)(1;97.0,83.0,83.0,63.0()9.0;9.0,83.0,83.0,73.0)(1;97.0,83.0,83.0,63.0(
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










)9.0;73.0,63.0,63.0,53.0)(1;83.0,63.0,63.0,43.0()9.0;1,1,1,95.0)(9.0;1,1,1,9.0((...

)9.0;4.0,3.0,3.0,2.0)(1;5.0,3.0,3.0,1.0()9.0;83.0,77.0,77.0,67.0)(1;9.0,77.0,77.0,57.0(

)9.0;95.0,9.0,9.0,8.0)(1;1,9.0,9.0,7.0()9.0;1,1,1,95.0)(9.0;1,1,1,9.0(

)9.0;8.0,7.0,7.0,6.0)(1;9.0,7.0,7.0,5.0()9.0;98.0,97.0,97.0,9.0)(1;1,97.0,97.0,83.0(

)9.0;67.0,57.0,57.0,47.0)(1;77.0,57.0,57.0,37.0()9.0;98.0,97.0,97.0,9.0)(1;1,97.0,97.0,83.0(

43 xx

    (6.42) 

 

 

The aggregated pairwise comparison matrix for alternatives evaluation 
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














)...9.0;2145.0,2072.0,2072.0,1887.0)(1;2219.0,2071.0,2071.0,1702.0()9.0;1887.0,1702.0,1702.0,148.0)(1;2072.0,1702.0,1702.0,1258.0(

)9.0;1648.0,1373.0,1373.0,1099.0)(1;1923.0,1373.0,1373.0,0824.0()9.0;0916.0,0641.0,0641.0,0412.0)(1;119.0,0641.0,0641.0,0183.0(

)9.0;115.0,1111.0,1111.0,1011.0)(1;119.0,1111.0,1111.0,0912.0()9.0;119.0,119.0,119.0,113.0)(1;119.0,119.0,119.0,1071.0(

)9.0;2583.0,2494.0,2494.0,2271.0)(1;2672.0,2494.0,2494.0,2048.0()9.0;2583.0,2494.0,2494.0,2271.0)(1;2672.0,2494.0,2494.0,2048.0(

)9.0;1055.0,0977.0,0977.0,086.0)(1;1133.0,0977.0,0977.0,0742.0()9.0;1055.0,0977.0,0977.0,08596.0)(1;1133.0,0977.0,0977.0,0742.0(
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










)9.0;1628.0,1406.0,1406.0,1184.0)(1;185.0,1406.0,1406.0,0962.0()9.0;2219.0,2219.0,2219.0,2108.0)(1;2219.0,2219.0,2219.0,1998.0(...

)9.0;1628.0,1406.0,1406.0,1184.0)(1;1373.0,0824.0,0824.0,0275.0()9.0;2289.0,2106.0,2106.0,1831.0)(1;2472.0,2016.0,2106.0,1556.0(

)9.0;113.0,1071.0,1071.0,0952.0)(1;119.0,1071.0,1071.0,0833.0()9.0;119.0,119.0,119.0,113.0)(1;119.0,119.0,119.0,1071.0(

)9.0;2137.0,187.0,187.0,1603.0)(1;2405.0,187.0,187.0,1336.0()9.0;2627.0,2583.0,2583.0,2405.0)(1;2672.0,2583.0,2583.0,2226.0(

))9.0;0781.0,0664.0,0664.0,0547.0)(1;0899.0,0664.0,0664.0,0043.0()9.0;1153.0,1133.0,1133.0,1055.0)(1;1172.0,1133.0,1133.0,0977.0(

43 xx

 

(6.43) 

The weighted aggregated pairwise comparison matrix for alternatives evaluation 
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


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
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







)...9.0;7588.0,7588.0,6845.0)(1;3817.0,3189.0,7588.0,7588.0,6102.0()9.0;6845.0,6102.0,6102.0,521.0)(1;7588.0,6102.0,6102.0,4318.0(

)9.0;5887.0,4783.0,4783.0,3679.0)(1;699.0,4783.0,4783.0,2575.0()9.0;2943.0,184.0,184.0,092.0)(1;4047.0,184.0,184.0,0(

)9.0.;9642.0,9284.0,9284.0,3329.0)(1;4046.0,3727.0,3727.0,293.0()9.0;4046.0,4046.0,4046.0,3807.0)(1;4046.0,4046.0,4046.0,3568.0(

)9.0;9642.0,9284.0,9284.0,839.0)(1;1,9284.0,9284.0,07495()9.0;9642.0,9284.0,9284.0,839.0)(1;1,9284.0,9284.0,7495.0(

)9.0;3503,3189.0,3189.0,2718.0)(1;3817.0,3189.0,3189.0,2247.0()9.0;3503,318.0,3189.0,2718.0)(1;3817.0,3189.0,3189.0,2247.0(
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










)9.0;5804.0,4913.0,4913.0,4021.0)(1;6696.0,4913.0,4913.0,3129.0()9.0;8183.0,8183.0,8183.0,7737.0)(1;8183.0,8183.0,8183.0,7291.0(...

)9.0;3679.0,2575.0,2575.0,1472.0)(1;4783.0,2575.0,2575.0,0368.0()9.0;8462.0,7726.0,7726.0,6622.0)(1;9198.0,7726.0,7726.0,5519.0(

)9.0;3807.0,3568.0,3568.0,3089.0)(9.0;4046.0,3568.0,3568.0,2611.0()9.0;4046.0,4046.0,4046.0,38007.0)(1;4046.0,4046.0,4046.0,3568.0(

)9.0;7853.0,6779.0,6779.0,5706.0)(1;8926.0,6779.0,6779.0,4632.0()9.0;9821.0,9642.0,9642.0,8926.0)(1;1,9642.0,9642.0,8211.0(

)9.0;2404.0,1933.0,1462.0)(1;2875.0,1933.0,1933.0,0991.0()9.0;3896.0,3817.0,3817.0,3503.0)(1;3974.0,3817.0,3817.0,3189.0(

43 xx

                  (6.44) 
 

The normalised weighted aggregated pairwise comparison matrix for alternatives evaluation 
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
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
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















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









3694.0,4913.03694.0,8208.03694.0,7514.03694.0,6077.0

3694.0,2575.03694.0,7665.03694.0,4783.03694.0,187.0

3694.0,3528.03694.0,4006.03694.0,3687.03694.0,4006.0

3694.0,6779.03694.0,9553.03694.0,9195.03694.0,9195.0

3694.0,1933.03694.0,3778.03694.0,3163.03694.0,3163.0
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    (6.45) 

 

The defuzzified type-2 fuzzy pairwise comparison matrix for alternatives evaluation 

 





































4346.0,4913.04620.0,8208.04478.0,7514.04379.0,6077.0

4251.0,2575.04328.0,7665.04251.0,4783.04291.0,187.0

4582.0,3528.04680.0,4006.04616.0,3687.04680.0,4006.0

4264.0,6779.04525.0,9553.04450.0,9195.04450.0,9195.0

4537.0,1933.04651.0,3778.04570.0,3163.04570.0,3163.0
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    (6.46) 

 

 

The translate defuzzified type-2 fuzzy pairwise comparison matrix for alternatives evaluation 

 

 4396.0,3946.04561.06622.04478.0,5668.04474.0,4862.0

4321

 yxyxyxyxeddefuzzifiiTranslateAverage

xxxx
 

  (6.47) 

The average translate defuzzified fuzzy pairwise comparison matrix for alternatives evaluation 
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Step 5: Calculate the distance of each alternative from FPIS and FNIS. 

The distance 

id
~

 and 

id
~

 of each alternative from formulation A  and A  can 

be calculated by the area of compensation method: 

     2
~

2
~ )()()~,~( **  

AAAAjiji yyxxvvd
ii

 

     22 )5.04474.0()14862.0()~,~( 

jiji vvd  

5165.0)~,~( 

jiji vvd  

2
~

2
~ )()()~,~( **  

AAAAjiji yyxxvvd
ii

 

     22 )5.04474.0()14862.0()~,~( 

jiji vvd  

4871.1)~,~( 

jiji vvd  

Step 6: Find the closeness coefficient, iCC  and improve alternatives for achieving 

aspiration levels in each criteria.  

The decision rules for five classes are depicted in Table 6.7. Notice that the 

highest iCC  value is used to determine the rank. 















ii

i

ii

i
i

dd

d

dd

d
CC 1  

4871.15165.0

4871.1


iCC  

7422.0iCC  

 

 

After several processes, referring to Table 6.16, the iCC  values shows candidate 3 

represents the highest rank with 0.83 followed by candidate 2 with 0.7823, candidate 

1 with 0.7422 and candidate 4 with 0.6964 for the last ranked. The results reveal that 

the candidate 3 is most suitable for this recruitment post because based on approval 

status table, the score is in approved and preferred range. 
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Table 6. 16. Closeness coefficients computation for type-2 fuzzy sets. 
 

Alternative       Closeness Coefficient, CCi 

Candidate 1 0.7422 (Rank 3) 

Candidate 2 0.7823 (Rank 2) 

Candidate 3 0.83 (Rank 1) 

Candidate 4 0.6964 (Rank 4) 

 

Table 6. 7. Approval status table (Luukka, 2011) 

CCi value Assessment status 

)2.0,0[iCC  Do not recommend 

)4.0,2.0[iCC  Recommend with high risk 

)6.0,4.0[iCC  Recommend with low risk 

)8.0,6.0[iCC  Approved 

]1,8.0[iCC  Approved and preferred 
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6.4.2 Fuzzy Analytic Hierarchy Process – Fuzzy Technique for Order of 

Preference by Similarity to Ideal Solution 

This section presents established hybrid fuzzy MCDM for type- 2 fuzzy sets 

based fuzzy AHP – fuzzy TOPSIS proposed by (Kiliç & Kaya, 2015). In this research 

study, the authors combined AHP and TOPSIS based on interval type-2 fuzzy sets. 

There are several phases in computing hybrid fuzzy MCDM model based fuzzy AHP 

– fuzzy TOPSIS are as follows. 

Phase 1: Linguistic Evaluation 

The decision makers used the linguistic terms that proposed by (Zheng et al., 

2012) as shown in Table 6.11 in presenting the weights of criteria using fuzzy AHP 

evaluation for interval type-2 fuzzy set. For fuzzy TOPSIS evaluation, the linguistic 

terms and the corresponding of fuzzy numbers that proposed by (S. M. Chen & Lee, 

2010) as depicted in Table 6.12 is used to represent the evaluating values of the 

alternatives with respect to difference criteria with degree of confidence respectively.  

Phase 2: Fuzzy Weights Evaluation using Fuzzy AHP 

Step 1: Building the evaluation hierarchy systems. 

The hierarchy model is presented in Fig. 6.1 is illustrated the connection of 

criteria and alternatives, which are the candidates to be interviewed. Five 

criteria are considered which consist of emotional steadiness, oration, past 

experience, personality and self-confidence. 

Step 2: Determining the evaluation dimensions weights of pairwise comparison 

matrix to find the fuzzy weights.  

The pairwise comparison matrix showing the preference of one criterion over 

the other is built by entering the judgement values by the decision makers. 

Since the values of linguistic variables are quadruplet trapezoidal fuzzy 

numbers are entered. 

Step 3: Determining the weights for the criteria involved.  

The synthetic pairwise comparison matrices for criteria’s judgement of 

decision makers (DM1, DM2 and DM3) preferences as listed in equation 

(6.33), (6.34) and (6.35) are aggregated using geometric mean method, refer 

equation (5.2). The result of aggregated pairwise comparison matrix and 

fuzzy geometric mean are shown in equation (6.50) and (6.51) respectively. 
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kn

ijijijij aaar /121 )~...~~(~                                

where k is the number of decision makers and i=1,2,…m; j=1,2,…n. 

 

Step 4: The fuzzy weight of each criterion is determined using normalising equation. 

This is done by using equation (3.14). The results of fuzzy normalised 

weighted of each criterion are presented in equation (6.52). 

    1

321 )...(  nii rrrrrw  

Step 5: Defuzzify each weight from Step 4 using best nonfuzzy performance (BNP). 

The best nonfuzzy performance (BNP) based centre of area (COA) 

defuzzification method is utilised in order to handle interval type-2 fuzzy sets 

to find arithmetic mean of upper bound and lower bound. This is represented 

in equation (6.53). 

    


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

dxxu

dxxxu
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~              (6.48) 
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
          (6.49) 

 

Compute the criteria values as weights for alternatives’ evaluation using 

fuzzy AHP. 
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
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)...9.0;3972.0,3243.0,2908.0,2275.0)(1;4368.0,3576.0,2222.0,2321.0()9.0;3019.3,0495.3,2894.2,5206.1)(1;3019.3,7967.2,7784.1,2599.1(

)9.0;5940.1,3906.1,0756.1,7172.0)(1;651.1,3572.1,7937.0,63.0()9.0;6494.6,3987.6,6462.5,8629.4)(1;6494.6,1479.6,1441.5,6416.4(

)9.0;2407.0,2155.0,2050.0,1761.0)(1;2554.0,2260.0,1839.0,1682.0()9.0;2828.0,2490.0,2353.0,1980.0)(1;3029.0,2628.0,2078.0,1882.0(

)9.0;1,1,1,1)(1;1,1,1,1()9.0;3164.6,066.6,3133.5,5601.4)(1;3164.6,8150.5,8113.4,3089.4(

)9.0;22.0,1989.0,1899.0,1651.0)(1;2321.0,2078.0,1720.0,1583.0()9.0;1,1,1,1)(1;1,1,1,1(
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The aggregated type-2 fuzzy pairwise comparison matrix of decision makers for criteria evaluation 
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The type-2 fuzzy geometric mean of decision makers for criteria evaluation 
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The weight for each criteria 
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Then, the average and weights of each criterion from equation (6.53) are 

illustrated in Table 6.17 as follows: 

 

Table 6. 17. The weights of criteria 

Criteria Weight New Weight Rank 

ES 0.1959 0.087 4 

O 0.8171 0.364 1 

P 0.0984 0.044 5 

PE 0.7624 0.34 2 

S-C 0.3683 0.164 3 

Total 2.2422 1  

 

These results of criteria’s weights are implemented in following phase to evaluate for 

alternatives selection. 

Phase 3: Fuzzy TOPSIS Evaluation for Alternatives Selection 

Step 1: Obtain the weighting of evaluation criteria from fuzzy AHP evaluation. 

The weights of evaluation criteria are employed from fuzzy AHP evaluation 

process before. Refer Table 6.17. 

Step 2: Create fuzzy evaluation matrix for alternatives’ evaluation. 

 The construction of fuzzy decision matrix for alternatives’ evaluation are 

utilised linguistic terms by  (Zheng et al., 2012) presented on Table 6.4. Fig. 

6.33, 6.34 and 6.35 represent the pairwise comparison matrices for decision 

makers for alternatives evaluation. Then, aggregated results. 

Step 3: Weighted normalised decision matrix can be obtained by multiplying 

normalised matrix with the weights of criteria.  

The results of weighted normalised process are presented in equation (6.57).  
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                             (6.54) 

 Where 1A  denotes the set of benefit criteria, 2A  denotes the set of cost 

criteria, and mi 1 . 
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Step 4: The fuzzy evaluation matrices are defuzzified. 

The best nonfuzzy performance (BNP) based centre of area (COA) 

defuzzification method is utilised in order to handle interval type-2 fuzzy sets 

to find arithmetic mean of upper bound and lower bound.  
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The results of defuzzified process are presented in equation (6.56) as follows. 
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The defuzzified values of type-2 fuzzy numbers 
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The weighted normalised aggregated pairwise comparison matrix for alternatives evaluation 
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Step 5: Determine the fuzzy positive-ideal solution (FPIS) and fuzzy negative-ideal 

solution (FNIS). 

Referring to normalise trapezoidal fuzzy weights, the FPIS, A  represents 

the compromise solution while FNIS, 
A  represents the worst possible 

solution. The range belong to the closed interval [0,1]. The FPIS A  

(aspiration levels) and FNIS A  (worst levels) as following below: 

)9.0;1,1,1,1)(1;1,1,1,1(A        )9.0;1,1,1,1)(1;1,1,1,1( A  

Step 6: Calculate the distance of each alternative from FPIS and FNIS. 

The distance 

id
~

 and 

id
~

 of each alternative from formulation A  and A  can 

be calculated by the area of compensation method: 
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Step 7: Find the closeness coefficient, iCC  and improve alternatives for achieving 

aspiration levels in each criteria.  

The decision rules for five classes are depicted in Table 6.7. Notice that the 

highest iCC  value is used to determine the rank. 
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5544.29472.1

5544.2


iCC  

5674.0iCC  

 

Table 6. 7. Approval status table (Luukka, 2011) 

CCi value Assessment status 

)2.0,0[iCC  Do not recommend 

)4.0,2.0[iCC  Recommend with high risk 

)6.0,4.0[iCC  Recommend with low risk 

)8.0,6.0[iCC  Approved 

]1,8.0[iCC  Approved and preferred 

  

After several processes, referring to Table 6.18, the iCC  values shows candidate 3 

represents the highest rank with 0.5872 followed by candidate 2 with 0.5754, 

candidate 1 with 0.5645 and candidate 4 with 0.5546 for the last ranked. The results 

reveal that the candidate 3 is most suitable for this recruitment post because based on 

approval status table, the score is in recommended with low risk range. 

 

Table 6. 18. Closeness coefficients computation for type-2 fuzzy sets. 
 

Alternative       Closeness Coefficient, CCi 

Candidate 1 0.5645 (Rank 3) 

Candidate 2 0.5754 (Rank 2) 

Candidate 3 0.5872 (Rank 1) 

Candidate 4 0.5546 (Rank 4) 
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6.5 Hybrid Fuzzy Multi Criteria Decision Making for Z-Numbers 

This section demonstrates computational process of proposed hybrid fuzzy 

MCDM model regarding case study of staff selection in MESSRS Saprudin, Idris & 

Co. for z-numbers. There is no comparative study for z-numbers. This is because the 

established hybrid fuzzy MCDM for z-numbers is not found in literature so far.  

 

6.5.1 Consistent Fuzzy Preference Relations – Fuzzy Technique for Order 

of Preference by Similarity to Ideal Solution for Z-Numbers 

Phase 1: Linguistic Evaluation 

The decision makers used the linguistic terms that proposed by (Zheng et al., 

2012) as shown in Table 5.1 in presenting the weights of criteria using consistent 

fuzzy preference evaluation using trapezoidal type-1 fuzzy sets. The linguistic terms 

with the crisp scale of relative important present the important of criteria preferences 

namely equally important (1), intermediate value (2), moderately more important (3), 

intermediate value (4), strongly more important (5), intermediate value (6), very 

strong more important (7), intermediate important (8) and extremely more important 

(9). For fuzzy TOPSIS evaluation, the linguistic terms and the corresponding of fuzzy 

numbers that proposed by (Zheng et al., 2012) is used to represent the evaluating 

values of the alternatives with respect to difference criteria with degree of confidence 

respectively. The scales consist of absolutely-low (1), very-low (2), low (3), fairly-

low (4), medium (5), fairly-high (6), high (7), very-high (8) and absolutely-high (9). 

The linguistic scales for alternatives evaluation are depicted in Table 6.2 that are 

measure from 0 until 1. Both linguistic scales as mentioned are supported with 

reliability linguistic terms that is proposed by (Kang et al., 2012b) to represent z-

numbers in measuring reliability for the first components. Reliability linguistic scales 

is presented in Table 6.19.  

 

 

Table 6. 19. Reliability linguistic terms and their corresponding z-numbers (Kang et 

al., 2012b) 

Linguistic Terms 
Scale of reliability 

of crisp numbers 
Generalised fuzzy numbers 

Very-low (VL) 1 (0,0,0,0.25;1) 

Low (L) 2 (0,25,0.25,0.5;1) 

Medium (M) 3 (0.25,0.5,0.5,0.75;1) 

High (H) 4 (0.5,0.75,0.75,1;1) 

Very-high (VH) 5 (0.75,1,1,1;1) 
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Phase 2: Fuzzy Weights Evaluation using Consistent Fuzzy Preference Relations 

Step 1: Construct a hierarchy structure. 

The hierarchy model as shown in Fig. 5.1 in Section 6.3.1 which is illustrated 

the connection of criteria and alternatives, which are the candidates to be 

interviewed.  

Step 2: Construct a pairwise comparison matrices. 

The pairwise comparison matrices are constructed among all criteria in the 

dimension of the hierarchy systems based on the decision makers’ 

preferences in phase 1 using equation (5.1). The linguistic evaluations of 

pairwise comparison matrices are based on regular numbers are depicted in 

equation (6.58), (6.59) and (6.60), then are translated into z-numbers using 

Table 6.1 (Section 6.3) and Table 6.19 for reliability component. The 

linguistic ratings of criteria fuzzy numbers – based given by DM1, DM2 and 

DM3 are shown in Fig. 6.54, 6.55 and Fig 6.56 respectively. 
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Pairwise comparison matrix of criteria with reliability component from DM1 
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Pairwise comparison matrix of criteria with reliability component from DM2 
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Pairwise comparison matrix of criteria with reliability component from DM3  



192 

 

Step 3: Convert decision makers’ preferences from z-numbers into type-1 fuzzy sets. 

The pairwise comparison matrices for criteria’s judgement of decision 

makers’ (DM1, DM2, DM3) preferences as listed in equation (6.61), (6.62) 

and (6.63) are converted into regular fuzzy numbers which is type-1 fuzzy 

sets using equation (4.21). The results of conversion process of pairwise 

comparison matrix are shown in equation (6.64), (6.65) and (6.66). 
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The z-numbers of pairwise comparison matrix of DM1 for criteria evaluation 
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












)1;1,1,1,75.0)(1;1,1,1,1()1;1,75.0,75.0,5.0)(1;33.0,2857.0,2222.0,2.0...(

)1;1,1,1,75.30)(1;5,5.4,5.3,3()9.0;1,1,1,1)(1;1,1,1,1(

)1;1,1,1,75.0)(1;5.0,4.0,22.0,25.0()1;1,1,1,75.0)(1;2.0,1818.0,1538.0,1429.0(

)1;1,1,1,75.0)(1;4,5.3,5.2,2()1;1,1,1,75.0)(1;4,5.3,5.2,2(

)1;1,1,1,75.0)(1;1,6667.0,4.0,3333.0()1;1,1,1,75.0)(1;2.0,1818.0,1538.0,1429.0(

CSPE

    (6.62) 

 

 

The z-numbers pairwise comparison matrix of DM2 for criteria evaluation 
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














...)1;1,75.0,75.0,5.0)(1;5,5.4,5.3,3()1;1,1,1,75.0)(1;333.0,2857.0,2222.0,2.0()1;1,1,1,75.0)(1;4,5.3,5.2,2(

)1;1,1,1,75.0)(1;6,5.5,5.4,4()1;1,1,1,75.0)(1;3,5.2,5.1,1()1;1,1,1,75.0)(1;6,5.5,5.4,4(

)1;1,1,1,75.0)(1;1,1,1,1()1;1,1,1,75.0)(1;333.0,2857.0,2222.0,2.0()1;1,75.0,75.0,5.0)(1;3333.0,2857.0,2222.0,2.0(

)1;1,1,1,75.0)(1;5,5.4,5.3,3()1;1,1,1,75.0)(1;1,1,1,1()1;1,1,1,75.0)(1;6,5.5,5.4,4(

)1;1,1,1,75.0)(1;5,5.4,5.3,3()1;1,1,1,75.0)(1;25.0,2222.0,,1818.0,1667.0()1;1,1,1,75.0)(1;1,1,1,1(
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












)1;1,1,1,75.0)(1;1,1,1,1()1;1,75.0,75.0,5.0)(41,5.3,5.2,2..(.

)11;1,1,1,75.0)(1;5.0,4.0,22.0,25.0()9.0;1,1,1,1)(1;1,1,1,1(

)1;1,1,1,75.0)(1;3333.0,2857.0,2222.0,2.0()1;1,1,1,75.0)(1;25.0,2222.0,1818.0,1667.0(

);1,1,1,75.30)(1;5,5.4,5.3,3()1;1,75.0,75.0,5.0)(1;1,6667.0,4.0,3333.0(

)1;1,1,1,75.0)(1;5.0,4.0,22.0,25.0()1;1,1,1,75.0)(1;25.0,2222.0,1818.0,1667.0(

CSPE

    (6.63) 

 

 

The z-numbers of pairwise comparison matrix of DM3 for criteria evaluation 
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



























)1;98.0,986.0,986.0,986.0()1;3287.0,2817.0,2817.0,2191.0,1972.0()1;196.5,763.4,8971.3,464.3()1;4314.0,3451.0,1917.0,2157.0()1;5981.2,1651.2,299.1,866.0(

)1;930.4,437.4,451.3,958.2(

)1;2465.0,2191.0,1793.0,1643.0(

)1;944.3,451.3,465.2,972.1(

)1,;866.0,5774.0,3464.0,2887.0(

)1;986.0,986.0,986.0,986.0()1;902.6,409.6,423.5,930.4()1;958.2,465.2,479.1,986.0()1;9021.6,4091.6,4231.5,9301.4(

)1;1972.0,1793.0,1517.0,1409.0()1;986.0,986.0,986.0,986.0()1;2465.0,2191.0,1793.0,16.0()1;2465.0,2191.0,1793.0,1643.0(

)1;9860.0,6573.0,3944.0,3287.0()1;916.5,423.5,4371.4,944.3()1;986.0,986.0,986.0,986.0()1;9021.6,4091.6,4231.5,9301.4(

)1;1972.0,1793.0,1517.0,1409.0()1;9161.5,423.5,437.4,944.3()1;1972.0,1793.0,1517.0,1409.0()1;986.0,986.0,986.0,986.0(
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(6.64) 

The fuzzy pairwise comparison matrix of DM1 for criteria evaluation after conversion process 





























)1;986.0,986.0,986.0,986.0()1;2887.0,2474.0,125.0,1732.0()1;9441.3,451.3,465.2,972.1()1;4330.0,3464.0,1925.0,2165.0()1;958.2,4650.2,4790.1,9860.0(

)1;9301.4,4371.4,451.3,958.2(

)1;493.0,3944.0,2191.0,2465.0(

)1;944.3,451.3,465.2,972.1(

)1,;986.0,6573.0,3944.0,3287.0(

)1;986.0,986.0,986.0,986.0()1;9021.6,4091.6,4231.5,9301.4()1;493.0,3944.0,2191.0,2465.0()1;0622.6,6292.5,7631.4,3301.4(

)1;1972.0,1793.0,1517.0,1409.0()1;986.0,986.0,986.0,986.0()1;1972.0,1793.0,1517.0,1409.0()1;3287.0,22817.0,2191.0,1972.0(

)1;9144.3,451.3,465.2,972.1()1;9021.6,4091.6,4231.5,9301.4()1;986.0,986.0,986.0,986.0()1;9161.5,423.5,437.4,944.3(

)1;1972.0,1793.0,1517.0,1409.0()1;9301.4,4371.4,451.3,958.2()1;2465.0,2191.0,1793.0,1643.0()1;986.0,986.0,986.0,986.0(
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  (6.65) 
The fuzzy pairwise comparison matrix of DM2 for criteria evaluation after conversion process 





























)1;98.0,986.0,986.0,986.0()1;9441.3,451.3,465.2,972.1()1;3301.4,8971.3,0311.3,5981.2()1;3287.0,2817.0,2191.0,1972.0()1;9441.3,451.3,465.2,9720.1(

)1;4930.0,3944.0,2191.0,2465.0(

)1;3287.0,2817.0,2191.0,1972.0(

)1;9301.4,4371.4,451.3,958.2(

)1;4930.0.3944.0.2191.0.2465.0(

)1;986.0,986.0,986.0,986.0()1;9161.5,4231.5,4371.4,9441.3()1;958.2,465.2,479.1,986.0()1;9161.5,4231.5,4371.4,9441.3(

)1;2465.0,2191.0,1793.0,1643.0()1;986.0,986.0,986.0,986.0()1;3287.0,2817.0,2191.0,1972.0()1;2887.0,2474.0,1925.0,1732.0(

)1;8660.0,5774.0,3464.0,2887.0()1;930.4,437.4,451.3,958.2()1;986.0,986.0,986.0,986.0()1;9161.5,4231.5,4371.4,9441.3(

)1;2465.0,2191.0,1793.0,1643.0()1;930.4,437.4,451.3,958.2()1;2465.0,2191.0,1793.0,1643.0()1;986.0,986.0,986.0,986.0(
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  (6.66) 

The fuzzy pairwise comparison matrix of DM3 for criteria evaluation after conversion process 
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Step 4: Aggregate the decision makers’ preferences. 

The converted pairwise comparison matrices for criteria’s judgement of 

decision makers’ (DM1, DM2, DM3) preferences as listed in equation (6.64), 

(6.65) and (6.66) are aggregated using equation (5.2). The result of 

aggregated pairwise comparison matrix is shown in equation (6.68) on next 

page. 

kn

ijijijij aaaa /121 )~...~~(~                                

where k is the number of decision makers and i=1,2,…m; j=1,2,…n. 

Step 5: Defuzzify the trapezoidal fuzzy numbers of aggregation’s result of decision 

makers’ preferences  

The aggregation’s result of decision maker’s preferences are defuzzify using 

intuitive multiple centroid for z-numbers using equation (4.30) is presented 

in equation (6.67). 
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
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
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






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

986.055.05379.32708.01587.2

7033.1

2526.0

2546.3

4423.0

986.0567.50747.13313.5

1770.0986.02036.02243.0

9262.08622.4986.02387.5

1770.02481.41884.0986.0
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             (6.67) 

Defuzzification results of aggregated matrix comparison 
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


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







)...1;4604.4,0013.4,0765.3,6085.2()1;3945.0,3229.0,2007.0,2096.0()1;1179.3,6409.2,6793.1,1897.1(

)1;5564.6,062.6,0722.5,5767.4()1;6279.1,3382.1,7826.0,6211.0()1;2789.6,8054.5,8575.4,3829.4(

)1;986.0,986.0,986.0,986.0()1;2519.0,2228.0,1813.0,1659.0()1;2789.6,8054.5,8575.4,3829.4(

)1;8608.5,3626.5,3628.4,8601.3()1;986.0,986.0,986.0,986.0()1;228.6,7336.5,744.4,2486.4(

)1;239.5,744.4,7526.3,2557.3()1;2288.0,2049.0,1696.0,1561.0()1;986.0,986.0,986.0,986.0(
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

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





)1;986.0,986.0,986.0,986.0()1;7206.0,6219.0,4702.0,4069.0...(

)1;2883.2,9802.1,3768.1,292.1()1;986.0,986.0,986.0,986.0(

)1;3418.0,2898.0,2049.0,1999.0()1;2124.0,1917.0,1604.0,1483.0(

)1;2486.4,7526.3,7576.2,2574.2()1;4989.1,0941.1,6957.0,5720.0(

)1;7495.0,531.0,3105.0,286.0()1;2124.0,1917.0,1604.0,1483.0(

CSPE

        (6.68) 

 

 

The aggregated fuzzy pairwise comparison matrix for criteria evaluation after conversion process 
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Step 5: Compute the criteria values as weights for alternatives’ evaluation using 

consistent fuzzy preference relations 

The weights of aggregated matrix comparison of criteria are calculated using 

consistent preference relations which based on additive transitivity property 

using equation (4.35-4.40) in equation (6.69) below. 
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
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5.03788.07729.04130.07928.0

6212.0

2271.0

587.0

2072.0

5.09412.05342.0914.0

1059.05.01401.05199.0

4658.08599.05.08798.0

086.04801.01202.05.0
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                               (6.69) 

The consistent fuzzy preference relations matrix for criteria 

 

By having five criteria, 5n  so only 415)1( n  entry values 

),,( 45342312 pandppp  are required in constructing the consistent fuzzy 

preference relations matrix from equation (6.67) where: 

1202.0)1884.0log1(
2

1
912 p  

8599.0)8622.4log1(
2

1
923 p  

1059.0)1770.0log1(
2

1
934 p  

6212.0)7033.1log1(
2

1
945 p  

The remains of the entries can be determine by utilizing Proposition 2 and 3 

presented as follows. 

8798.01202.011 1221  pp  

1401.08599.011 2332  pp  
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8941.01059.011 3443  pp  

3788.0.06212.011 4554  pp  

5199.08599.01202.0
2

3

2

3
231231  ppp  

5342.01059.08599.0
2

3

2

3
342342  ppp  

7729.06212.01059.0
2

3

2

3
453453  ppp  

914.01059.08599.01202.0
2

114

2

1
34231241 





 ppp

ij
p  

7928.06212.01059.08599.01202.0
2

115

2

1
4534231251 





 pppp

ij
p

 

413.06210.01059.08599.0
2

125

2

1
45342352 





 ppp

ij
p  

 

4801.05199.011 3113  pp  

086.0914.011 4114  pp  

2072.07928.011 5115  pp  

4658.05342.011 4224  pp  

587.0413.011 5225  pp  

2271.07729.011 5335  pp  

Then, the average and weights of each criterion from equation (6.69) are 

illustrated in Table 6.10 as follows. 

 

Table 6. 20. The average and weightage of criteria 

Criteria ES O P PE S-C Average Weights Rank 

ES 0.5 0.1202 0.4801 0.086 0.2072 0.2787 0.1115 5 

O 0.8798 0.5 0.8599 0.4658 0.587 0.6585 0.2634 2 

P 0.5199 0.1401 0.5 0.1059 0.2271 0.2986 0.1195 4 

PE 0.914 0.5342 0.8941 0.5 0.6212 0.6927 0.2771 1 

S-C 0.7928 0.413 0.7729 0.3788 0.5 0.5715 0.2286 3 

Total      2.5 1  



201 

 

These results of criteria’s weightage are implemented in following phase to evaluate 

for alternatives selection. 

Phase 3: Fuzzy TOPSIS Evaluation for Alternatives Selection 

Step 1: Determine the weights of evaluation criteria. 

The weights of evaluation criteria are employed from consistent fuzzy 

preference relations process before. Refer Table 6.20. 

Step 2: Construct the fuzzy decision matrix for alternatives’ evaluation using fuzzy 

TOPSIS. 

 The construction of fuzzy decision matrix for alternatives’ evaluation are 

utilised linguistic terms by  (Zheng et al., 2012) presented on Table 6.21 and 

Table 6.22. 

Step 3: Convert decision makers’ preferences from z-numbers into type-1 fuzzy sets. 

The pairwise comparison matrices for criteria’s judgement of decision 

makers’ (DM1, DM2, DM3) preferences as listed in equation (6.70), (6.71) 

and (6.72) are converted into regular fuzzy numbers which is type-1 fuzzy 

sets using equation (4.21). The results of conversion process of pairwise 

comparison matrix are shown in equation (6.73), (6.74) and (6.75). 
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Table 6. 21. Evaluating linguistic terms of the alternatives with reliability 

components given by the decision makers with respect to different criteria 

Criteria 
Alternatives/ 

Candidates 

Decision Maker 

DM1 DM2 DM3 

Emotional Steadiness x1 

 

FH (VH) H (VH)  VH (H) 

   

x2 

 

H (H) H (VH) FH (VH) 

   

x3 

 

VH (VH) H (VH) VH (VH) 

   

x4 

 

M (VH) FH (VH) M (VH) 

        Oral x1 

 

VH (VH) H (VH) VH (VH) 

   

x2 

 

H (VH) H (H) VH (VH) 

   

x3 

 

VH (VH) VH (VH) H (VH) 

   

x4 

 

FH (H) M (VH) FH (VH) 

        Personality 

 

x1 

 

VH (VH) VH (VH) VH (VH) 

   

x2 

 

H (VH) H (VH) VH (VH) 

   

x3 

 

VH (VH) VH (VH) VH (VH) 

   

x4 

 

H (VH) H (VH) H (VH) 

        Past Experience  

 

x1 

 

FL (VH) L (VH) FL (VH) 

   

x2 

 

M (VH) M (H) M (VH) 

   

x3 

 

H (H) M (VH) H (VH) 

   

x4 

 

FL (VH) FL (VH) FL (VH) 

        Self-Confidence 

 

x1 

 

H (VH) FH (VH)  FH (VH) 

   

x2 

 

VH (H) H (VH) H (H) 

   

x3 

 

VH (VH) VH (VH) VH (VH) 

   

x4 

 

M (VH) FH (VH) FH (VH) 
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Table 6. 22. Evaluating values of the alternatives with reliability components given by the decision makers with respect to different 

criteria

Criteria 
Alternatives/ 

Candidates 

Decision Maker 1 Decision Maker 2 

DM1    DM2 

Emotional Steadiness x1 ( 0.58 0.63 0.80 0.86; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.72 0.78 0.92 0.97; 1.00 ) 

   

x2 ( 0.72 0.78 0.92 0.97; 1.00 ) ( 0.50 0.75 0.75 1.00; 1.00 ) ( 0.72 0.78 0.92 0.97; 1.00 ) 

   

x3 ( 0.93 0.98 1.00 1.00; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.72 0.78 0.92 0.97; 1.00 ) 

   

x4 ( 0.32 0.41 0.58 0.65; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.58 0.63 0.80 0.86; 1.00 ) 

                         Oration x1 ( 0.93 0.98 1.00 1.00; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.72 0.78 0.92 0.97; 1.00 ) 

   

x2 ( 0.72 0.78 0.92 0.97; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.72 0.78 0.92 0.97; 1.00 ) 

   

x3 ( 0.93 0.98 1.00 1.00; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.93 0.98 1.00 1.00; 1.00 ) 

   

x4 ( 0.58 0.63 0.80 0.86; 1.00 ) ( 0.50 0.75 0.75 1.00; 1.00 ) ( 0.32 0.41 0.58 0.65; 1.00 ) 

                         Personality 

 

x1 ( 0.93 0.98 1.00 1.00; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.93 0.98 1.00 1.00; 1.00 ) 

   

x2 ( 0.72 0.78 0.92 0.97; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.72 0.78 0.92 0.97; 1.00 ) 

   

x3 ( 0.93 0.98 1.00 1.00; 1.00 ) ( 0.50 0.75 0.75 1.00; 1.00 ) ( 0.93 0.98 1.00 1.00; 1.00 ) 

   

x4 ( 0.72 0.78 0.92 0.97; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.72 0.78 0.92 0.97; 1.00 ) 

                         Past Experience  

 

x1 ( 0.17 0.22 0.36 0.42; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.04 0.10 0.18 0.23; 1.00 ) 

   

x2 ( 0.32 0.41 0.58 0.65; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.32 0.41 0.58 0.65; 1.00 ) 

   

x3 ( 0.72 0.78 0.92 0.97; 1.00 ) ( 0.50 0.75 0.75 1.00; 1.00 ) ( 0.32 0.41 0.58 0.65; 1.00 ) 

   

x4 ( 0.17 0.22 0.36 0.42; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.17 0.22 0.36 0.42; 1.00 ) 

                         Self-Confidence 

 

x1 ( 0.72 0.78 0.92 0.97; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.58 0.63 0.80 0.86; 1.00 ) 

   

x2 ( 0.93 0.98 1.00 1.00; 1.00 ) ( 0.50 0.75 0.75 1.00; 1.00 ) ( 0.72 0.78 0.92 0.97; 1.00 ) 

   

x3 ( 0.93 0.98 1.00 1.00; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.93 0.98 1.00 1.00; 1.00 ) 

   

x4 ( 0.32 0.41 0.58 0.65; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.58 0.63 0.80 0.86; 1.00 ) 
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Table 6. 22. Evaluating values of the alternatives given by the decision makers with respect to different criteria (cont.) 

Criteria 
Alternatives/ 

Candidates 

Decision Maker 2     Decision Maker 3 

 DM2   
 

DM3 

Emotional Steadiness x1 ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.93 0.98 1.00 1.00; 1.00 ) ( 0.50 0.75 0.75 1.00; 0.90 ) 

   

x2 ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.58 0.63 0.80 0.86; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) 

   

x3 ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.93 0.98 1.00 1.00; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) 

   

x4 ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.32 0.41 0.58 0.65; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) 

                         Oration x1 ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.93 0.98 1.00 1.00; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) 

   

x2 ( 0.50 0.75 0.75 1.00; 0.90 ) ( 0.93 0.98 1.00 1.00; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) 

   

x3 ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.72 0.78 0.92 0.97; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) 

   

x4 ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.58 0.63 0.80 0.86; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) 

                         Personality 

 

x1 ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.93 0.98 1.00 1.00; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) 

   

x2 ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.93 0.98 1.00 1.00; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) 

   

x3 ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.93 0.98 1.00 1.00; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) 

   

x4 ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.72 0.78 0.92 0.97; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) 

                         Past Experience  

 

x1 ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.10 0.30 0.30 0.50; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) 

   

x2 ( 0.50 0.75 0.75 1.00; 0.90 ) ( 0.32 0.41 0.58 0.65; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) 

   

x3 ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.72 0.78 0.92 0.97; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) 

   

x4 ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.10 0.30 0.30 0.50; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) 

                         Self-Confidence 

 

x1 ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.58 0.63 0.80 0.86; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) 

   

x2 ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.72 0.78 0.92 0.97; 1.00 ) ( 0.50 0.75 0.75 1.00; 0.90 ) 

   

x3 ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.93 0.98 1.00 1.00; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) 

   

x4 ( 0.75 1.00 1.00 1.00; 1.00 ) ( 0.58 0.63 0.80 0.86; 1.00 ) ( 0.75 1.00 1.00 1.00; 1.00 ) 
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Step 3: Fuzzy decision matrix is weighted using equation (4.43) and normalised each 

generalised fuzzy numbers into standardised generalised fuzzy numbers 

using (Zuo et al., 2013).  

Equation (6.73), (6.74) and (6.75) represent the conversion of z-numbers into 

regular fuzzy numbers of pairwise comparison matrices of decision makers 

for alternatives evaluation. Then, aggregated result is depicted in equation 

(6.76). The weighted fuzzy normalised decision matrix is computed using 

equation (5.12) (Zuo et al., 2013). The results of weighted and normalisation 

process are presented in equation (6.77) and (6.78) respectively. Defuzzify 

the standardised generalised fuzzy numbers using proposed intuitive multiple 

centroid method using equation (4.30) that is depicted in equation (6.79), 

then translate them into the index point proposed by (Yong & Qi, 2005) as 

presented in equation (6.80), then do the average computational process 

depicted in equation (6.81). 

Step 4: Determine the fuzzy positive-ideal solution (FPIS) and fuzzy negative-ideal 

solution (FNIS). 

Referring to normalise trapezoidal fuzzy weights, the FPIS, A  represents 

the compromise solution while FNIS, 
A  represents the worst possible 

solution. The range belong to the closed interval [0,1]. The FPIS A  

(aspiration levels) and FNIS A  (worst levels) as following below: 

)1;1,1,1,1(A             )1;1,1,1,1( A  

The FPIS, A  and FNIS, A  can be obtained by centroid method for 

),(  AA
yx  and ),(  AA

yx . 
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

























)1;1,1,1,75.0)(1;65.0,58.0,41.0,32.0()1;1,1,1,75.0)(1;1,1,98.0,93.0()1;1,75.0,75.0,5.0)(1;1,1,98.0,93.0()1;1,1,1,75.0)(1;97.0,92.0,78.0,72.0(

)1;1,1,1,75.0)(1;42.0,36.0,22.0,17.0()1;1,75.0,75.0,5.0)(1;97.0,92.0,78.0,72.0()1;1,1,1,75.0)(1;65.0,58.0,41.0,32.0()1;1,1,1,75.0)(1;42.0,36.0,22.0,17.0(

)1;1,1,1,75.0)(1;97.0,92.0,78.0,72.0()1;1,1,1,75.0)(1;1,1,98.0,93.0()1;1,1,1,75.0)(1;97.0,92.0,798.0,72.0()1;1,1,1,75.0)(1;1,1,98.0,93.0(

)1;751.0,75.0,5.0)(1;86.0,8.0,63.0,58.0()1;1,1,1,75.0)(1;1,1,98.0,93.0()1;1,1,1,75.0)(1;97.0,92.0,798.0,72.0()1;1,1,1,75.0)(1;1,1,98.0,93.0(

)1;1,1,1,75.0)(1;65.0,58.0,41.0,32.0()1;1,1,1,75.0)(1;1,1,98.0,93.0()1;1,75.0,75.0,5.0)(1;97.0,92.0,798.0,72.0()1;1,1,1,75.0)(1;86.0,8.0,63.0,58.0(
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  (6.70) 

The z-numbers of pairwise comparison matrix of DM1 for alternatives evaluation 



























)1;1,1,1,75.0()1;86.0,8.0,63.0,58.0()1;1,1,1,75.0)(1;1,1,98.0,93.0()1;1,1,1,75.0)(1;97.0,92.0,798.0,72.0()1;1,1,1,75.0)(1;86.0,80.0,63.0,58.0(

)1;1,1,1,75.0)(1;42.0,36.0,22.0,17.0()1;1,1,1,75.0)(1;65.0,58.0,41.0,32.0()1;1,75.0,75.0,5.0)(1;65.0,58.0,41.0,32.0()1;1,1,1,75.0)(1;23.0,18.0,1.0,04.0(

)1;1,1,1,75.0)(1;97.0,92.0,78.0,72.0()1;1,1,1,75.0)(1;1,1,98.0,93.0()1;1,1,1,75.0)(1;97.0,92.0,798.0,72.0()1;1,1,1,75.0)(1;1,1,98.0,93.0(

)1;1,1,1,75.0)(1;65.0,58.0,41.0,32.0()1;1,1,1,75.0)(1;1,1,98.0,93.0()1;1,75.0,75.0,5.0)(1;97.0,92.0,798.0,72.0()1;1,1,1,75.0)(1;97.0,92.0,798.0,72.0(

)1;1,1,1,75.0)(1;86.0,8.0,63.0,58.0()1;1,1,1,75.0)(1;97.0,92.0,798.0,72.0()1;1,1,1,75.0)(1;97.0,92.0,798.0,72.0()1;1,1,1,75.0)(1;97.0,92.0,798.0,72.0(
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                    (6.71) 

The z-numbers of pairwise comparison matrix of DM2 for alternatives evaluation 



























)1;1,1,1,75.0)(1;86.0,8.0,63.0,58.0()1;1,1,1,75.0)(1;1,1,98.0,93.0()1;1,75.0,75.0,5.0)(1;1,1,98.0,93.0()1;1,1,1,75.0)(1;86.0,80.0,63.0,58.0(

)1;1,1,1,75.0)(1;42.0,36.0,22.0,17.0()1;1,1,1,75.0)(1;97.0,92.0,78.0,72.0()1;1,1,1,75.0)(1;65.0,58.0,41.0,32.0()1;1,1,1,75.0)(1;42.0,36.0,22.0,17.0(

)1;1,1,1,75.0)(1;97.0,92.0,78.0,72.0()1;1,1,1,75.0)(1;1,1,98.0,93.0()1;1,1,1,75.0)(1;1,1,98.0,93.0()1;1,1,1,75.0)(1;1,1,98.0,93.0(

)1;1,1,1,75.0)(1;86.0,8.0,63.0,58.0()1;1,1,1,75.0)(1;97.0,92.0,78.0,72.0()1;1,1,1,75.0)(1;1,1,98.0,93.0()1;1,1,1,75.0)(1;1,1,98.0,93.0(

)1;1,1,1,75.0)(1;65.0,58.0,41.0,32.0()1;1,1,1,75.0)(1;1,1,98.0,93.0()1;1,1,1,75.0)(1;86.0,80.0,63.0,58.0()1;1,75.0,75.0,5.0)(1;1,1,98.0,93.0(
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  (6.72) 

The z-numbers of pairwise comparison matrix of DM3 for alternatives evaluation 
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
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
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
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



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







)1;6409.0,5719.0,4043.0,3155.0()1;986.0,986.0,9663.0,917.0()1;866.0,866.0,8487.0,8054.0()1;9564.0,9071.0,7691.0,7099.0(

)1;4141.0,355.0,2169.0,1676.0()1;84.0,7967.0,6755.0,6235.0()1;6409.0,5719.0,4043.0,3155.0()1;4141.0,355.0,2169.0,1676.0(

)1;9564.0,9071.0,7691.0,7099.0()1;986.0,986.0,9663.0,917.0()1;9564.0,9071.0,7691.0,7099.0()1;986.0,986.0,9663.0,917.0(

)1;7448.0,6928.0,5456.0,5023.0()1;986.0,986.0,9663.0,917.0()1;9564.0,9071.0,7691.0,7099.0()1;986.0,986.0,9663.0,917.0(

)1;6409.0,5719.0,4043.0,3155.0()1;986.0,986.0,9663.0,917.0()1;84.0,7967.0,6755.0,6235.0()1;8480.0,7888.0,6212.0,5719.0(
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  (6.73) 

The fuzzy pairwise comparison matrix of DM1 for alternatives evaluation after conversion process 





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






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







)1;848.0,7888.0,6212.0,5719.0()1;986.0,986.0,9663.0,917.0()1;9564.0,9071.0,7691.0,7099.0()1;848.0,7888.0,6212.0,5719.0(

)1;4141.0,355.0,2169.0,1676.0()1;6409.0,5719.0,4043.0,3155.0()1;5629.0,5023.0,3551.0,2771.0()1;2268.0,1775.0,0986.0,0394.0(

)1;9564.0,9071.0,7691.0,7099.0()1;986.0,986.0,9663.0,917.0()1;9564.0,9071.0,7691.0,7099.0()1;986.0,986.0,9663.0,917.0(

)1;6409.0,5719.0,4043.0,3155.0()1;986.0,986.0,9663.0,917.0()1;84.0,7976.0,6755.0,6235.0()1;9564.0,9071.0,7691.0,7099.0(

)1;848.0,7888.0,6212.0,5719.0()1;9564.0,9071.0,7691.0,7099.0()1;9564.0,9071.0,7691.0,7099.0()1;9564.0,9071.0,7691.0,7099.0(
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  (6.74) 

The fuzzy pairwise comparison matrix of DM2 for alternatives evaluation after conversion process 



























)1;848.0,7888.0,6212.0,5719.0()1;986.0,986.0,9663.0,9170.0()1;840.0,7967.0,6755.0,6235.0()1;848.0,7888.0,6212.0,5719.0(

)1;4141.0,355.0,2169.0,1676.0()1;9564.0,9071.0,7691.0,7099.0()1;6409.0,5719.0,4043.0,3155.0()1;4141.0,355.0,2169.0,1676.0(

)1;9564.0,9071.0,7691.0,7099.0()1;986.0,986.0,9663.0,917.0()1;986.0,986.0,9663.0,917.0()1;986.0,986.0,9663.0,917.0(

)1;848.0,7888.0,6212.0,5719.0()1;9564.0,9071.0,7691.0,7099.0()1;986.0,986.0,9663.0,917.0()1;986.0,986.0,9663.0,917.0(

)1;6409.0,5719.0,4043.0,3155.0()1;986.0,986.0,9663.0,917.0()1;848.0,7888.0,6212.0,5719.0()1;866.0,866.0,8487.0,8054.0(
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  (6.75) 

The fuzzy pairwise comparison matrix of DM3 for alternatives evaluation after conversion process 
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





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









)1;7724.0,7086.0,5383.0,469.0()1;986.0,986.0,9663.0,9170.0()1;8861.0,8554.0,7611.0,7091.0()1;8827.0,8264.0,6670.0,6146.0(

)1;4141.0,3550.0,2169.0,1676.0()1;8015.0,7449.0,5944.0,5188.0()1;6138.0,5477.0,3872.0,3022.0()1;3388.0,2817.0,1668.0,1035.0(

)1;9564.0,9071.0,7691.0,7099.0()1;9860.0,9860.0,9663.0,9170.0()1;6138.0,5477.0,8299.0,7732.0()1;9860.0,9860.0,9663.0,9170.0(

)1;8015.0,7449.0,5944.0,5188.0()1;9761.0,9590.0,8955.0,8420.0()1;9253.0,8932.0,7948.0,7404.0()1;9761.0,9590.0,8955.0,8420.0(

)1;7036.0,6366.0,4665.0,3847.0()1;9761.0,9590.0,8955.0,8420.0()1;8799.0,8292.0,6859.0,6326.0()1;8889.0,8526.0,7401.0,6889.0(
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  (6.76) 

The aggregated fuzzy pairwise comparison matrix for alternatives evaluation after conversion process 
 


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




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







)1;1766.0,162.0,1231.0,1072.0()1;2254.0,2254.0,2209.0,2096.0()1;2026.0,1955.0,174.0,1621.0()1;2018.0,1889.0,1525.0,1405.0(

)1;1147.0,0984.0,0601.0,0464.0()1;2221.0,2064.0,1647.0,1438.0()1;1701.0,1517.0,1073.0,0837.0()1;0939.0,0781.0,0462.0,0287.0(

)1;1143.0,1084.0,0919.0,0848.0()1;1178.0,1178.0,1154.0,1095.0()1;1154.0,1114.0,0991.0,0924.0()1;1178.0,1178.0,1154.0,1059.0(

)1;2026.0,1885.0,1484.0,1367.0()1;2571.0,2526.0,2359.0,2218.0()1;2437.0,2353.0,2093.0,195.0()1;2571.0,2526.0,2359.0,2218.0(

)1;0784.0,071.0,052.0,0429.0()1;1088.0,1069.0,0998.0,0939.0()1;0981.0,0924.0,0765.0,0705.0()1;0991.0,095.0,0825.0,0768.0(
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              (6.77) 

The weighted fuzzy pairwise comparison matrix for alternatives evaluation 
 













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




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)1;6475.0,5836.0,4132.0,3439.0()1;8612.0,8612.0,8415.0,7922.0()76131.0,7305.0,6362.0,5841.0()1;7578.0,7015.0,542.0,4896.0(

)1;3768,305.0,1376.0,0778.0()1;8467.0,778.0,5955.0,5038.0()1;619.0,5388.0,3441.0,241.0()1;2855.0,2162.0,0768.0,0(

)1;3746.0,3488.0,2767.0,2457.0()1;3901.0,3901.0,3798.0,354.0()1;3797.0,3622.0,3085.0,2788.0()1;3901.0,3901.0,3798.0,354.0(

)1;7615.0,6996.0,5243.0,4727.0()1;1,9803.0,9071.0,8454.0()1;9415.0,9045.0,7910.0,7283.0()1;1,9803.0,9071.0,8454(

)1;2178.0,1851.0,1021.0,0622.0()1;3508.0,3425.0,3115.0,2854.0()1;3039.0,2791.0,2092.0,1832.0()1;3083.0,2905.0,2357.0,2107.0(
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  (6.78) 

The normalised fuzzy pairwise comparison matrix for alternatives evaluation
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



































3889.0,4978.03889.0,8459.03889.0,6810.03889.0,6222.0

3889.0,2227.03889.0,6842.03889.0,4389.03889.01457.0

3889.0,3122.03889.0,3821.03889.0,3340.03889.0,3821.0

3889.0,6131.03889.0,939.03889.0,8449.03889.0,939.0

3889.0,1428.03889.0,3250.03889.0,2440.03889.0,2623.0
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       (6.79) 

 

The defuzzified pairwise comparison matrix for alternatives evaluation 
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







4447.0,4978.04867.0,8459.0468.0,6810.04505.0,6222.0

4456.0,2227.04383.0,6842.04324.0,4389.04496.01457.0

4765.0,3122.04932.0,3821.04818.0,3340.04932.0,3821.0

4463.0,6131.04723.0,939.04615.0,8449.04723.0,939.0

4720.0,1428.04883.0,3250.04779.0,2440.04822.0,2623.0
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   (6.80) 

 

The translate defuzzified pairwise comparison matrix for alternatives evaluation 

 

 457.0,3577.04758.06352.04643.0,5086.04695.0,4703.0

4321

 yxyxyxyxeddefuzzifiiTranslateAverage

xxxx
 

  (6.81) 

The average translate defuzzified pairwise comparison matrix for alternatives evaluation  
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Step 5: Calculate the distance of each alternative from FPIS and FNIS. 

The distance 

id
~

 and 

id
~

 of each alternative from formulation A  and A  

can be calculated by the area of compensation method: 

      2
~

2
~ )()()~,~( **  

AAAAjiji yyxxvvd
ii
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Step 6: Find the closeness coefficient, iCC  and improve alternatives for achieving 

aspiration levels in each criteria.  

The decision rules for five classes are depicted in Table 6.6. Notice that 

the highest iCC  value is used to determine the rank. 















ii

i

ii

i
i

dd

d

dd

d
CC 1  

4706.15306.0

4706.1


iCC  

7348.0iCC  

 

After several processes, referring to Table 6.23, the iCC  values shows candidate 3 

represents the highest rank with 0.81735 followed by candidate 2 with 0.7538, 

candidate 1 with 0.7348 and candidate 4 with 0.6785 for the last ranked. The 

results reveal that the candidate 3 is most suitable for this recruitment post because 

based on approval status table from Table 6.7, the score is in approved and 

preferred range. 
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Table 6. 23. Closeness coefficients computation for z-numbers fuzzy sets 
 

Alternative       Closeness Coefficient, CCi 

Candidate 1 0.7348 (Rank 3) 

Candidate 2 0.7538 (Rank 2) 

Candidate 3 0.8173 (Rank 1) 

Candidate 4 0.6785 (Rank 4) 

 

Table 6. 7. Approval status table (Luukka, 2011) 

CCi value Assessment status 

)2.0,0[iCC  Do not recommend 

)4.0,2.0[iCC  Recommend with high risk 

)6.0,4.0[iCC  Recommend with low risk 

)8.0,6.0[iCC  Approved 

]1,8.0[iCC  Approved and preferred 

  

6.6 Comparative Study 

6.6.1 Ranking Analysis 

This section discusses the consistency and robustness of the proposed 

hybrid fuzzy MCDM model and established models considered in the study in 

solving staff recruitment as mentioned before. The following Table 6.24 and Table 

6.25 signify the ranking results for criteria and alternatives of the proposed hybrid 

fuzzy MCDM models and established models which are considered in this study.  

Table 6. 24. Ranking results of criteria for hybrid fuzzy MCDM models 

Hybrid Fuzzy MCDM Model 
Criteria weight values 

Ranking Results 
  (ES)         (O)          (P)         (PE)          (S-C) 

Type-1 Fuzzy Sets       

Fuzzy AHP – TOPSIS 

(Vinodh et al., 2014) 

0.0882 0.3641 0.0443 0.3386 0.1649 O>PE>S-C>ES>P 

Fuzzy AHP – VIKOR (Rezaie 

et al., 2014) 

0.0882 0.3641 0.0443 0.3386 0.1649 O>PE>S-C>ES>P 

Proposed Hybrid Fuzzy 

MCDM Model 

0.1140 0.2647 0.1195 0.2758 0.2260 PE>O>S-C>P>ES 

Type-2 Fuzzy Sets       

Fuzzy AHP – TOPSIS (Kilic 

& Kaya, 2015) 

0.087 0.364 0.044 0.34 0.164 O>PE>S-C>ES>P 

Extension of Hybrid Fuzzy 

MCDM Model 

0.1172 0.2672 0.1190 0.2747 0.2219 PE>O>S-C>P>ES 

Z-Numbers       

Extension of Hybrid Fuzzy 

MCDM Model 

0.1115 0.2634 0.1195 0.2771 0.2286 PE>O>S-C>P>ES 
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Table 6. 25. Ranking results of alternatives for hybrid fuzzy MCDM models 

Hybrid Fuzzy MCDM Model 
Alternative ranking values 

Ranking Results 
(Alt1)      (Alt2)       (Alt3)       (Alt4) 

Type-1 Fuzzy Sets      

Fuzzy AHP – TOPSIS 

(Vinodh et al., 2014) 

0.6842 0.7067 0.7419 0.6453 Alt3>Alt2>Alt1>Alt4 

Fuzzy AHP – VIKOR 

(Rezaie et al., 2014) 

0.3634 0.1721 0.0000 0.4702 Alt3>Alt2>Alt1>Alt4 

Proposed Hybrid Fuzzy 

MCDM Model 

0.7314 0.7630 0.8178 0.6698 Alt3>Alt2>Alt1>Alt4 

Type-2 Fuzzy Sets      

Fuzzy AHP – TOPSIS (Kilic 

& Kaya, 2015) 

0.5497 0.5543 0.5616 0.5413 Alt3>Alt2>Alt1>Alt4 

Extension of Hybrid Fuzzy 

MCDM Model 

0.7422 0.7823 0.83 0.6964 Alt3>Alt2>Alt1>Alt4 

Z-Numbers      

Extension of Hybrid Fuzzy 

MCDM Model 

0.7348 0.7538 0.8173 0.6785 Alt3>Alt2>Alt1>Alt4 

 

Table 6.24 depicts the ranking results of criteria for hybrid fuzzy MCDM 

model that are considered in this study. The proposed hybrid fuzzy MCDM model 

and its extension for type-2 fuzzy sets and z-numbers give same ranking results for 

criteria weight values with PE>O>S-C>P>ES. All of them give past experience, 

(PE), as highest ranking, followed by, oration, (O), self-confidence, (S-C), 

personality, (P) and emotional steadiness, (ES). While all established hybrid fuzzy 

MCDM models give O>PE>S-C>ES>P. All three of them give oration, (O) as 

highest weightage, followed by past experience, (PE) as second one, self-

confidence, (S-C), emotional steadiness, (ES), and personality, (P). The last three 

criteria give same rank but not the early two. Comparing both, the evaluation of 

criteria for proposed models is computed using consistent fuzzy preference 

relations while the other established models is fuzzy AHP. Most of hybrid fuzzy 

MCDM models in the literature used fuzzy AHP in evaluating the criteria before 

proceed to ranking alternatives. We have been concerned with the invalidity of 

fuzzy theory apply to AHP technique.  

According to (Zhü, 2014), there are several flaws in fuzzy AHP which are: 

the application of fuzzy AHP violates the main logic of fuzzy set theory that the 

membership grade function used in the arithmetic operation and definition of fuzzy 

numbers are improper; the arithmetic operation of fuzzy AHP violates basic 

principles of the AHP including the reciprocal and continuity axioms, the 

operational rule of consistency; fuzzy judgement of fuzzy AHP are less effective 

than the 1-9 scale of the classical AHP and; when dealing with outcomes, fuzzy 

AHP cannot give a generally accepted method to rank fuzzy numbers and a valid 

method to check the validity of the results. Based on these evidences, it can be 

conclude that the use of fuzzy AHP for solving decision making problems is an 

inappropriate tool to be used under fuzzy environment. Considering these flaws, 

the proposed hybrid fuzzy MCDM model does not use fuzzy AHP to evaluate 
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criteria weights even there are a lot studies in literature literally thousand papers 

have been published about it. Therefore, in this research study, we prefer to use 

consistent fuzzy preference relations technique in order to avoid misleading 

solution in expressing the decision makers’ opinions by means of preference 

relations. Applying this method, it is possible to assure better consistency of the 

fuzzy preference relations provided by the decision makers and in a such away, to 

avoid the inconsistent solutions in the decision making process of criteria 

evaluation. 

As can be seen in Table 6.25, ranking results of alternatives or candidates 

for hybrid fuzzy MCDM models are depicted. Overall, all hybrid fuzzy MCDM 

models give same rank for alternatives with different ranking values. All of hybrid 

fuzzy MCDM models here applying fuzzy TOPSIS in evaluating the final ranking 

for alternatives except (Rezaie et al., 2014) where they used fuzzy VIKOR. Fuzzy 

VIKOR doesn’t use closeness coefficient, CCi, in evaluating the final results of 

ranking. The range value of fuzzy VIKOR ranking is same with closeness 

coefficient, CC which from 0 to 1, but the highest ranking is close to zero. Instead 

of closeness coefficient, CCi, the closer to one is better ranking. Since all the hybrid 

fuzzy MCDM models give same final rank, it can be say that the proposed hybrid 

fuzzy MCDM model and its extension are consistent with other established hybrid 

fuzzy MCDM models. The alternatives ranking values using fuzzy TOPSIS as final 

evaluation is based on closeness coefficient, CC from approval status Table 6.7 

proposed by (Luukka, 2011). 

Referring to the Table 6.7, the proposed and its extension models give 

‘approved’ and ‘approved and preferred’ assessment status for the final results. 

However, (Vinodh et al., 2014) and (Kiliç & Kaya, 2015) hybrid fuzzy MCDM 

models give ‘approved’ and ‘recommended with low risk’ assessment status 

respectively. This represents that the proposed and its extension models provide 

better assessment status of closeness coefficient, CC values than other established 

hybrid fuzzy MCDM models in this study. Concerning the computational 

complexity, agility and easy decision making using both positive and negative 

criteria in the decision process, fuzzy TOPSIS performs better than the other 

MCDM techniques. Moreover, it has ability to consider unlimited number of 

criteria and alternatives in decision making process. The concept of fuzzy TOPSIS 

technique is the most preferred alternative should have the shortest distance from 

the fuzzy positive ideal solution (FPIS) and the longest distance from the fuzzy 

negative ideal solution (FNIS). Consequently, fuzzy TOPSIS is recommended in 

solving human based decision making problems under fuzzy environment. Fuzzy 

TOPSIS at present offers a solution for decision makers when dealing with real 

world data that are usually multi criteria and involves a complex decision making 

process. 
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As mentioned in previous section, no comparative study for z-numbers 

because the established hybrid fuzzy MCDM model for z-numbers is not found in 

literature so far. Nevertheless, the ranking results of proposed model for z-numbers 

produces same ranking results as type-1 and type-2 fuzzy sets. All of these model 

are evaluated the robustness using sensitivity analysis in Section 6.6.2. 

6.6.2 Sensitivity Analysis Computation 

In sensitivity analysis evaluation, the focus is to test the effect of the 

criteria weight on the ranking of the results. The tests are proceed by increasing 

each original criteria weight by 50%, 100% and 150%. While one criterion is 

increased, the values of the remaining criteria are decreased by certain amount, 

such that the total amount of criteria are equal to one. A series of evaluation runs 

is conducted where each criterion’s weight is altered by 50%, 100% and 150%. 

The scenario consist of 15 evaluation runs for each fuzzy sets. The computational 

process is illustrated on the next page. 

The vector for the original weights of criteria is ),...,,( 21 k

t wwwW   where in 

weights are normalised and sum of them is 1, 



k

j

tw
1

1 . Both tables below 

represent the original weight of criteria and original alternatives results of 

proposed hybrid fuzzy MCDM model for type-1 fuzzy sets. 

 

Table 6. 26. The original weight of criteria of type-1 fuzzy sets. 
 

Criteria Weight, w 

Emotional 

steadiness 

0.1140 

Oration 0.2647 

Personality 0.1195 

Past experience 0.2758 

Self-confidence 0.2260 

Total 1 

 

Table 6. 6. The original results of closeness coefficients computation for type-1 

fuzzy sets. 
 

Alternative       Closeness Coefficient, CCi 

Candidate 1 0.7316 (Rank 3) 

Candidate 2 0.7630 (Rank 2) 

Candidate 3 0.8178 (Rank 1) 

Candidate 4 0.6698 (Rank 4) 

The weight of one criterion changes, then the weight of other criteria change 

accordingly, and the new vector of weights transformed into equation (4.51). 

)',...,','(' 21 k

t wwwW              
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The theorem 4.4 shows changes in the weight of criteria thP , changes as p , then 

the weight of other criteria change as j ; kj ,...,2,1 . By using equation (4.52), 

the changes are computed in order to increase the percentage of criteria weight. 

Here, assume that the weight of the ‘emotional steadiness’ is altered by 50%, 

100% and 150%. 

Changes for ‘emotional steadiness’ criterion. 

Increase 50% for weight of ‘emotional steadiness’ criterion, then the new vector 

of weights if criteria would be produced.  

By applying equation (4.53), the new weight of ‘emotional steadiness’ would 

change as below. 

ppp ww '               

ESESES ww '  

 1140.0%501140.0' ESw  

1711.0' ESw  

Then, the weight of other criteria would change using equation (4.59) as shown 

below. 
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Then, new vector for other weights of criteria are presented in Table 6.27 

Table 6. 27. New weights of criteria of type-1 fuzzy sets. 
 

Criteria       Weight, w 

Emotional steadiness 0.1711 

Oration 0.2477 

Personality 0.1118 

Past experience 0.2580 

Self-confidence 0.2115 

Total 1 
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Hence, the results of alternatives’ ranking would change as well. Below depicted 

the new results of all criteria weights when ‘emotional steadiness’ criterion’s 

weight is increased by 50% changes. 

 

Table 6. 28. New closeness coefficients computation for type-1 fuzzy sets. 
 

Alternative       Closeness Coefficient, CCi 

Candidate 1 0.7572 (Rank 3) 

Candidate 2 0.7872 (Rank 2) 

Candidate 3 0.8462 (Rank 1) 

Candidate 4 0.6869 (Rank 4) 

 

This sensitivity analysis computational process are evaluated for every hybrid 

fuzzy MCDM model. In this analysis, the evaluation process are required for type-

1 fuzzy sets, type-2 fuzzy sets and z-numbers for comparative study. 
 

6.6.3 Discussion 

This section discusses the sensitivity analysis evaluation results of 

proposed and established hybrid fuzzy MCDM models for all fuzzy sets. 

Sensitivity analysis investigates the effect of criteria weights on the ranking of 

alternatives. 

Consistent fuzzy preference relations – fuzzy TOPSIS (Proposed) 

Fig. 6.2 shows the analysis results of changing the criteria weights for 

proposed hybrid fuzzy MCDM model which combined consistent fuzzy 

preference relations and fuzzy TOPSIS for type-1 fuzzy sets. The horizontal axis 

represents the percentage increases in the criteria weights and the vertical axis 

represents the new values for the closeness coefficient, iCC  of the alternatives. 

Fig. 6.75 illustrates that when the weights of the criteria change, the values of the 

iCC  vary slightly. According to sensitivity analysis results here, alternative 3 or 

candidate 3, 3Alt  is determined to be the most appropriate to be selected as a 

potential staff, because he or she always has a maximum 3CC  value after the 

weight changes are applied. Alternative or candidate 3 has the highest 3CC  value 

of 0.8786 when criterion emotional steadiness, (ES), is increased by 100%, 

whereas it has lowest value of 0.6220 when criterion past experience, (PE) is 

raised by 150%. In addition, it can be observed that the 3CC  values of candidate 3 

show upward tendency when the weight of emotional steadiness, (ES) and 

personality, (P) are increased by 50% to 100%. However, when criterion oration, 

(O), past experience, (PE), and self-confidence, (S-C), are increased by 50%, 

100% and 150%, values of the 3CC  shows downward tendency. 
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The second best candidate is candidate 2, 2Alt , with the maximum 2CC  

value of 0.8149, obtained when criterion ES is increased by 100%. It has the 

smallest 2CC  value of 0.5892 when criterion PE is raised by 150%. Moreover, the 

2CC  values of candidate 2, 2Alt  depict slight upward trend when the weights of 

criterion ES and P are increased by 50% and 100%. Though, when criterion O, PE 

and S-C, are increased by 50%, 100% and 150%, values of the 2CC  shows 

downward tendency. Candidate 1, 1Alt  has the third ranking with the maximum 

1CC  value, 0.7866, when criterion ES is increased by 100%. While, the lowest 

value, 0.5588, when criterion PE is increased by 150%. Additionally, it can be 

noted that when criterion ES and P are increased by 50% and 100%, values of the 

1CC  show upward tendency. Yet, when criterion O, PE and S-C, are increased by 

50%, 100% and 150%, values of the 1CC  shows downward tendency. The last 

ranking of the case study is candidate 4, 4Alt  with the maximum 4CC  value, 

0.7147, when criterion P is increased by 100%. While the lowest 4CC  value is 

0.5534, when criterion PE is increased by 150%. It can be concluded that the 4CC  

values are upward tendency when criterion ES and P are increased by 50% and 

100%. Moreover, when criterion O, PE, and S-C, are increased by 50%, 100% and 

150%, values of the 4CC  shows downward tendency. 

 
Fig. 6. 2. Sensitivity analysis results caused by varying the weights of the criteria 

by proposed fuzzy hybrid MCDM model for type-1 fuzzy sets 

 

As a result, the proposed hybrid fuzzy MCDM model for type-1 fuzzy sets 

is robust and stable, since changes in the criteria weights do not significantly 

affect the final ranking order of the alternatives candidates. As related before, 
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referring to the Table 6.29, the consistency of correct ranking order based on 

original rank presents 100% level of consistency. Even the ranking values are 

changed, but the ranking order are significantly consistent with the original 

ranking. In the context of sensitivity analysis evaluation, it presents that the 

proposed hybrid fuzzy MCDM model for type-1 fuzzy sets is definitely 

consistent even the weights of criteria are changed. From the consistency results 

of Table 6.29, the proposed hybrid fuzzy MCDM model for type-1 fuzzy sets is 

recommended to deal with bigger case study in real world phenomena in order to 

solve human based decision making problems under fuzzy environment.  

Table 6. 29. Sensitivity analysis results of proposed hybrid fuzzy MCDM model 

for type-1 fuzzy sets 

Changes of 

criteria (%) 
Alt1 Alt2 Alt3 Alt4 Ranking results 

Consistency 

based on 

original result 

ES' (50%) 0.7572 0.7872 0.8462 0.6869 Alt3>Alt2>Alt1>Alt4 Consistent 

ES' (100%) 0.7866 0.8149 0.8786 0.7064 Alt3>Alt2>Alt1>Alt4 Consistent 

ES' (150%) 0.7316 0.7509 0.8007 0.6656 Alt3>Alt2>Alt1>Alt4 Consistent 
O' (50%) 0.6648 0.6787 0.7089 0.6186 Alt3>Alt2>Alt1>Alt4 Consistent 
O' (100%) 0.6345 0.6405 0.6595 0.5953 Alt3>Alt2>Alt1>Alt4 Consistent 
O' (150%) 0.6173 0.6186 0.6314 0.5820 Alt3>Alt2>Alt1>Alt4 Consistent 
P' (50%) 0.7631 0.7915 0.8493 0.6969 Alt3>Alt2>Alt1>Alt4 Consistent 
P' (100%) 0.7817 0.8052 0.8628 0.7147 Alt3>Alt2>Alt1>Alt4 Consistent 
P' (150%) 0.7287 0.7429 0.7864 0.6772 Alt3>Alt2>Alt1>Alt4 Consistent 
PE' (50%) 0.6332 0.6663 0.7119 0.6007 Alt3>Alt2>Alt1>Alt4 Consistent 
PE' (100%) 0.5854 0.6168 0.6542 0.5703 Alt3>Alt2>Alt1>Alt4 Consistent 
PE' (150%) 0.5588 0.5892 0.6220 0.5534 Alt3>Alt2>Alt1>Alt4 Consistent 
S-C' (50%) 0.6812 0.7073 0.7460 0.6369 Alt3>Alt2>Alt1>Alt4 Consistent 
S-C' (100%) 0.6392 0.6602 0.6870 0.6078 Alt3>Alt2>Alt1>Alt4 Consistent 
S-C' (150%) 0.6153 0.6334 0.6535 0.5913 Alt3>Alt2>Alt1>Alt4 Consistent 

Level of consistency 100% 

 

The situation illustrates that the weights of ES, P and S-C might influence 

the final preference in selection process which of them play important role in 

evaluating or selecting new staff in company or institution. Therefore, these 

criteria can be considered as critical criteria and the most sensitivity criteria in the 

model. Meanwhile, care should be given to the weighting of these sensitivity 

criteria, since this step may affect the final ranking. Aforementioned, if the 

ranking is highly sensitive to small changes in the parameter values, a careful 

review of those parameters is recommended. In addition, this analysis may also 

assist the company to improve their selecting staff by taking into account these 

critical criteria in order to meet the company requirement.  

Fuzzy AHP – fuzzy TOPSIS (Vinodh et al., 2014) 

Fig. 6.3 and Table 6.30 show the sensitivity analysis results for 

established fuzzy AHP – fuzzy TOPSIS model proposed by (Vinodh et al., 2014). 

The pattern of changes of weights for all criteria in Fig. 6.76 are slightly similar 
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to proposed hybrid fuzzy MCDM model. Two points depict that the ranking are 

affected, which are oration, (O) criterion with 150% changes and past experience, 

PE with 150% as well. Table 6.30 represents the consistency of correct ranking 

order based on original rank of (Vinodh et al., 2014) model presents 86.67% 

level of consistency. As discussed in point before, when criterion O and PE are 

increased 150%, the ranking order are changed to Alt3>Alt1>Alt2>Alt4 and 

Alt3>Alt2>Alt4>Alt1 respectively. This is depicted that the hybrid fuzzy MCDM 

model proposed by (Vinodh et al., 2014) is less robust and  less stable than the 

proposed model. 
 

 
Fig. 6. 3. Sensitivity analysis results caused by varying the weights of the criteria 

by fuzzy AHP – fuzzy TOPSIS model (Vinodh et al., 2014) for type-1 fuzzy sets 
 

Table 6. 30. Sensitivity analysis results of fuzzy AHP – fuzzy TOPSIS model 

(Vinodh et al., 2014) for type-1 fuzzy sets 

Changes of 

criteria (%) 
Alt1 Alt2 Alt3 Alt4 Ranking results 

Consistency 

based on 

original result 

ES' (50%) 0.6960 0.7178 0.7550 0.6531 Alt3>Alt2>Alt1>Alt4 Consistent 

ES' (100%) 0.7092 0.7302 0.7695 0.6618 Alt3>Alt2>Alt1>Alt4 Consistent 

ES' (150%) 0.7238 0.7440 0.7856 0.6715 Alt3>Alt2>Alt1>Alt4 Consistent 
O' (50%) 0.6372 0.6457 0.6647 0.6032 Alt3>Alt2>Alt1>Alt4 Consistent 
O' (100%) 0.6136 0.6150 0.6260 0.5821 Alt3>Alt2>Alt1>Alt4 Consistent 
O' (150%) 0.5994 0.5966 0.6027 0.5693 Alt3>Alt1>Alt2>Alt4 Inconsistent 
P' (50%) 0.6906 0.7125 0.7483 0.6508 Alt3>Alt2>Alt1>Alt4 Consistent 
P' (100%) 0.6973 0.7185 0.7550 0.6566 Alt3>Alt2>Alt1>Alt4 Consistent 
P' (150%) 0.7043 0.7249 0.7621 0.6626 Alt3>Alt2>Alt1>Alt4 Consistent 
PE' (50%) 0.6267 0.6550 0.6905 0.6060 Alt3>Alt2>Alt1>Alt4 Consistent 
PE' (100%) 0.5766 0.6051 0.6366 0.5694 Alt3>Alt2>Alt1>Alt4 Consistent 
PE' (150%) 0.5464 0.5751 0.6042 0.5474 Alt3>Alt2>Alt4>Alt1 Inconsistent 
S-C' (50%) 0.7070 0.7334 0.7715 0.6645 Alt3>Alt2>Alt1>Alt4 Consistent 
S-C' (100%) 0.7068 0.7343 0.7707 0.6655 Alt3>Alt2>Alt1>Alt4 Consistent 
S-C' (150%) 0.6679 0.6912 0.7192 0.6355 Alt3>Alt2>Alt1>Alt4 Consistent 

Level of consistency 86.67% 
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Fuzzy AHP – fuzzy VIKOR (Rezaie et al., 2014) 

As can be seen in Fig. 6.4 and Table 6.31, both present the sensitivity 

analysis results for established fuzzy AHP – fuzzy VIKOR model proposed by 

(Rezaie et al., 2014). The pattern of changes of weights for all criteria in Fig. 

6.77 are different from proposed model and fuzzy AHP – fuzzy TOPSIS model 

(Vinodh et al., 2014). Considering that, the final ranking evaluation that used is 

VIKOR method, not TOPSIS. In the context of VIKOR method, final ranking are 

started from the small to large values from 0 to 1 range. The smallest the better 

rank. Several points’ show the ranking are affected which are two from oration, 

(O) criterion with 100% and 150% changes and past experience, (PE) with 150% 

as well. Table 6.31 shows the consistency of correct ranking order based on 

original rank of (Rezaie et al., 2014) model presents 80% level of consistency. 

While the weights of criterion O increases 100% and 150%, the ranking order are 

changed to Alt3>Alt1>Alt2>Alt4 and Alt3>Alt2>Alt2>Alt4 respectively. When 

criterion PE is increased 150%, then the ranking order is changed to 

Alt3>Alt2>Alt4>Alt1. The hybrid fuzzy MCDM model proposed by (Rezaie et 

al., 2014) is less robust and less stable than the proposed model and (Vinodh et 

al., 2014).  

 
Fig. 6. 4. Sensitivity analysis results caused by varying the weights of the 

criteria by fuzzy AHP – fuzzy VIKOR model (Rezaie et al., 2014) for type-1 

fuzzy sets 
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Table 6. 31. Sensitivity analysis results of fuzzy AHP – fuzzy VIKOR model 

(Rezaie et al., 2014) for type-1 fuzzy sets 

Changes of 

criteria (%) 
Alt1 Alt2 Alt3 Alt4 Ranking results 

Consistency 

based on 

original result 

ES' (50%) 0.3552 0.1725 0.0000 0.4711 Alt3>Alt2>Alt1>Alt4 Consistent 

ES' (100%) 0.3523 0.1730 0.0000 0.4720 Alt3>Alt2>Alt1>Alt4 Consistent 

ES' (150%) 0.3494 0.1735 0.0000 0.4729 Alt3>Alt2>Alt1>Alt4 Consistent 
O' (50%) 0.1846 0.1072 0.0000 0.4794 Alt3>Alt2>Alt1>Alt4 Consistent 
O' (100%) 0.0776 0.0910 0.0000 0.4783 Alt3>Alt1>Alt2>Alt4 Inconsistent 
O' (150%) 0.0226 0.0759 0.0000 0.4771 Alt3>Alt1>Alt2>Alt4 Inconsistent 
P' (50%) 0.3543 0.1731 0.0000 0.4680 Alt3>Alt2>Alt1>Alt4 Consistent 
P' (100%) 0.3512 0.1749 0.0000 0.4665 Alt3>Alt2>Alt1>Alt4 Consistent 
P' (150%) 0.3484 0.1758 0.0000 0.4653 Alt3>Alt2>Alt1>Alt4 Consistent 
PE' (50%) 0.4109 0.1905 0.0000 0.4546 Alt3>Alt2>Alt1>Alt4 Consistent 
PE' (100%) 0.4450 0.2017 0.0000 0.4515 Alt3>Alt2>Alt1>Alt4 Consistent 
PE' (150%) 0.4780 0.2125 0.0000 0.4482 Alt3>Alt2>Alt4>Alt1 Inconsistent 
S-C' (50%) 0.3639 0.1715 0.0000 0.4749 Alt3>Alt2>Alt1>Alt4 Consistent 
S-C' (100%) 0.3437 0.1608 0.0000 0.5136 Alt3>Alt2>Alt1>Alt4 Consistent 
S-C' (150%) 0.3253 0.1370 0.0000 0.5372 Alt3>Alt2>Alt1>Alt4 Consistent 

Level of consistency 80% 

Due to these results, there are several related points to consider; 1) the 

useful of AHP method, 2) improper centroid defuzzification used and 3) 

improper normalization process used. According to (Zhü, 2014), fuzzy AHP 

violates the main logic of fuzzy sets and fuzzy judgement of fuzzy AHP are less 

effective than the 1-9 scale of the non-fuzzy AHP. Centroid defuzzification plays 

important role in getting defuzzification values to make sure the final results are 

compatible with human judgment. At the same time, the generality of fuzzy 

events are not lost. Some normalization process methods are not suitable to deal 

with fuzzy numbers, the proper way of normalization process method is 

concerned in order to make sure the range that we use would give appropriate 

results. 

Extension of consistent fuzzy preference relations – fuzzy TOPSIS for type-2 

fuzzy sets (proposed) 

The proposed hybrid fuzzy MCDM model for type-1 fuzzy sets is 

extended for type-2 fuzzy sets in order to utilise in many different situation under 

fuzzy environment especially uncertainty problems. The extension of hybrid 

fuzzy MCDM model is proposed as discussed in Section 6.4.1. Fig. 6.5 and Table 

6.32 illustrate the analysis results of changing the criteria weights for proposed 

fuzzy hybrid fuzzy MCDM model for type-2 fuzzy sets. This figure presents that 

when the weights of the criteria change, the values of the iCC  vary slightly. 

According to sensitivity analysis results here, alternative 3 or candidate 3, 3Alt  is 

determined to be the most appropriate to be selected as a potential staff to be 

selected, because he or she always has a maximum 3CC  value after the weight 
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changes are applied. Alternative or candidate 3 has the highest 3CC  value of 

0.8832 when criterion emotional steadiness, (ES), is increased by 100%, whereas 

it has its lowest value of 0.6224 when criterion past experience is raised by 

150%. Moreover, it can be observed that the 3CC  values of candidate 4 show 

upward tendency when the weight of emotional steadiness, (ES) and personality, 

(P) are increased by 50% to 100%. Though, when criterion oration, (O), past 

experience, (PE), and self-confidence, (S-C), are increased by 50%, 100% and 

150%, values of the 3CC  shows downward tendency. 

For the second rank best ranking is candidate 2, 2Alt , with the maximum 

2CC  value of 0.8291, obtained when criterion P is increased by 150%. It has the 

smallest 2CC  value of 0.5892 when criterion PE is raised by 150%. Moreover, 

the 2CC  values of candidate 2, 2Alt  depict slight upward trend when the weights 

of criterion ES and P are increased by 50% and 100%. Though, when criterion O, 

PE, and S-C, are increased by 50%, 100% and 150%, values of the 2CC  shows 

downward tendency. Candidate 1, 1Alt  has the third ranking with the maximum 

1CC  value, 0.7946, when criterion P is increased by 100%. While, the lowest 

value, 0.5570, when criterion PE is increased by 150%. Furthermore, it can be 

noted that when criterion ES and P are increased by 50% and 100%, values of the 

1CC  show upward tendency. Yet, when criterion O, PE, and S-C, are increased 

by 50%, 100% and 150%, values of the 1CC  shows downward tendency. The last 

ranking of the case study is candidate 4, 4Alt  with the maximum 4CC  value, 

0.7441, when criterion P is increased by 100%. While the lowest 4CC  value is 

0.5548, when criterion PE is increased by 150%. It can be concluded that the 

4CC  values are upward tendency when criterion ES and P are increased by 50% 

and 100%. Also, when criterion O, PE, and S-C, are increased by 50%, 100% and 

150%, values of the 4CC  shows downward tendency. 



223 

 

 
 

Fig. 6. 5. Sensitivity analysis results caused by varying the weights of the 

criteria by proposed hybrid fuzzy MCDM model for type-2 fuzzy sets 

 

As a consequence, the proposed hybrid fuzzy MCDM model for type-2 

fuzzy sets is robust and stable, since changes in the criteria weights do not 

significantly affect the final ranking order of the alternatives candidates. As 

related before, referring to the Table 6.32, the consistency of correct ranking 

order based on original rank presents 100% accurate. Even the ranking values are 

changed, but the ranking order are significantly consistent with the original 

ranking. In the context of sensitivity analysis evaluation, it presents that the 

proposed hybrid fuzzy MCDM model for type-2 fuzzy sets is definitely 

consistent even the weights of criteria are changed. With the latest development 

of type-2 fuzzy sets and the concept of interval type-2 fuzzy sets, causal 

relationship in the hybrid fuzzy MCDM model deserves to receive more 

comprehensive evaluation to the flexibility of spaces representing uncertainties 

than type-1 fuzzy sets. This is because, type-2 fuzzy sets are characterised by 

fuzzy membership functions, as each element on this set is a fuzzy set in [0,1], 

unlike type-1 fuzzy sets where the membership grade is in a crisp number in [0,1] 

(Karnik & Mendel, 2001a). Representing both, the proposed and the extension of 

hybrid fuzzy MCDM model for type-1 fuzzy sets and type-2 fuzzy sets 

respectively, the patterns depict have same trend. The different are the CCis’ 

values. Definitely, it has been noticed that both proposed hybrid fuzzy MCDM 

models or type-1 and type-2 fuzzy sets produce 100% level of consistency.  But, 

model for type-2 is more recommended based on approval status table proposed 

by (Luukka, 2011) for CCi values acceptance. As a consequence, the proposed 
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hybrid fuzzy MCDM model for type-2 fuzzy sets are better than model for type-1 

fuzzy sets. 

 Table 6. 7. Approval status table (Luukka, 2011) 

CCi value Assessment status 

)2.0,0[iCC  Do not recommend 

)4.0,2.0[iCC  Recommend with high risk 

)6.0,4.0[iCC  Recommend with low risk 

)8.0,6.0[iCC  Approved 

]1,8.0[iCC  Approved and preferred 

  

Table 6. 32. Sensitivity analysis results of proposed hybrid fuzzy MCDM model 

for type-2 fuzzy sets 

Changes of 

criteria (%) 
Alt1 Alt2 Alt3 Alt4 Ranking results 

Consistency 

based on 

original result 

ES' (50%) 0.7656 0.8056 0.8570 0.7124 Alt3>Alt2>Alt1>Alt4 Consistent 

ES' (100%) 0.7890 0.8283 0.8832 0.7280 Alt3>Alt2>Alt1>Alt4 Consistent 

ES' (150%) 0.7325 0.7612 0.8048 0.6811 Alt3>Alt2>Alt1>Alt4 Consistent 
O' (50%) 0.6716 0.6928 0.7196 0.6368 Alt3>Alt2>Alt1>Alt4 Consistent 
O' (100%) 0.6379 0.6500 0.6668 0.6083 Alt3>Alt2>Alt1>Alt4 Consistent 
O' (150%) 0.6181 0.6250 0.6359 0.5916 Alt3>Alt2>Alt1>Alt4 Consistent 
P' (50%) 0.7709 0.8089 0.8585 0.7221 Alt3>Alt2>Alt1>Alt4 Consistent 
P' (100%) 0.7946 0.8291 0.8793 0.7441 Alt3>Alt2>Alt1>Alt4 Consistent 
P' (150%) 0.7409 0.7642 0.8025 0.7015 Alt3>Alt2>Alt1>Alt4 Consistent 
PE' (50%) 0.6372 0.6753 0.7177 0.6138 Alt3>Alt2>Alt1>Alt4 Consistent 
PE' (100%) 0.5830 0.6176 0.6545 0.5730 Alt3>Alt2>Alt1>Alt4 Consistent 
PE' (150%) 0.5570 0.5892 0.6224 0.5548 Alt3>Alt2>Alt1>Alt4 Consistent 
S-C' (50%) 0.6973 0.7316 0.7667 0.6607 Alt3>Alt2>Alt1>Alt4 Consistent 
S-C' (100%) 0.6507 0.6779 0.7021 0.6231 Alt3>Alt2>Alt1>Alt4 Consistent 
S-C' (150%) 0.6234 0.6466 0.6643 0.6012 Alt3>Alt2>Alt1>Alt4 Consistent 

Level of consistency 100% 

 

Fuzzy AHP – fuzzy TOPSIS (Kiliç & Kaya, 2015) 

Fig. 6.6 and Table 6.33 show the sensitivity analysis results for 

established fuzzy AHP – fuzzy TOPSIS model proposed by (Kiliç & Kaya, 

2015). The pattern of changes of weights for all criteria in Fig. 6.6 are different to 

proposed hybrid fuzzy MCDM model. One point show the ranking is affected, 

which is ‘past experience’, PE with 150%. As can be seen from Fig. 6.6, the 

values and patterns of changes of CCi are too small compare to the proposed 

model. The ranking values between alternative to other alternative are too small. 

That is mean that the gap are small to represent the assessment status of 

acceptance. Referring approval status from Table 6.7, based on ranking results 

from original results and sensitivity analysis from (Kiliç & Kaya, 2015) model, 

the assessment status of all changes are ‘recommend with low risk’. Even, this 

model gives same ranking to proposed model, but the CCi values are quite low 
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and the gap are too small. Table 6.33 shows the consistency of correct ranking 

order based on original rank of (Kiliç & Kaya, 2015) model presents 93.33% 

level of consistency. As discussed in point before, when criterion PE is increased 

150%, the ranking order are changed to Alt3>Alt2>Alt4>Alt1. This is depicted 

that the hybrid fuzzy MCDM model proposed by (Kiliç & Kaya, 2015) is good in 

robustness but lesser than the proposed model for type-2 fuzzy sets. 

 

 
Fig. 6. 6. Sensitivity analysis results caused by varying the weights of the 

criteria by fuzzy AHP -  fuzzy TOPSIS model (Kiliç & Kaya, 2015) for type-2 

fuzzy sets 
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Table 6. 33. Sensitivity analysis results of proposed hybrid fuzzy MCDM model 

for type-2 fuzzy sets 

Changes of 

criteria (%) 
Alt1 Alt2 Alt3 Alt4 Ranking results 

Consistency 

based on 

original result 

ES' (50%) 0.5654 0.5758 0.5877 0.5547 Alt3>Alt2>Alt1>Alt4 Consistent 

ES' (100%) 0.5662 0.5761 0.5882 0.5548 Alt3>Alt2>Alt1>Alt4 Consistent 

ES' (150%) 0.5670 0.5764 0.5885 0.5549 Alt3>Alt2>Alt1>Alt4 Consistent 
O' (50%) 0.5703 0.5780 0.5872 0.5582 Alt3>Alt2>Alt1>Alt4 Consistent 
O' (100%) 0.5750 0.5796 0.5860 0.5613 Alt3>Alt2>Alt1>Alt4 Consistent 
O' (150%) 0.5786 0.5801 0.5836 0.5638 Alt3>Alt2>Alt1>Alt4 Consistent 
P' (50%) 0.5653 0.5758 0.5876 0.5554 Alt3>Alt2>Alt1>Alt4 Consistent 
P' (100%) 0.5661 0.5762 0.5879 0.5561 Alt3>Alt2>Alt1>Alt4 Consistent 
P' (150%) 0.5669 0.5766 0.5882 0.5569 Alt3>Alt2>Alt1>Alt4 Consistent 
PE' (50%) 0.5543 0.5688 0.5834 0.5483 Alt3>Alt2>Alt1>Alt4 Consistent 
PE' (100%) 0.5439 0.5618 0.5788 0.5419 Alt3>Alt2>Alt1>Alt4 Consistent 
PE' (150%) 0.5333 0.5546 0.5736 0.5353 Alt3>Alt2>Alt4>Alt1 Inconsistent 
S-C' (50%) 0.5656 0.5768 0.5883 0.5554 Alt3>Alt2>Alt1>Alt4 Consistent 
S-C' (100%) 0.5666 0.5781 0.5890 0.5562 Alt3>Alt2>Alt1>Alt4 Consistent 
S-C' (150%) 0.5674 0.5791 0.5894 0.5569 Alt3>Alt2>Alt1>Alt4 Consistent 

Level of consistency 93.33% 

 

Extension of consistent fuzzy preference relations – fuzzy TOPSIS for z-numbers 

(proposed) 

This part discusses the analysis results of changing the criteria weights for 

proposed fuzzy hybrid fuzzy MCDM model for z-numbers. Fig. 6.7 shows that 

when the weights of the criteria change, the values of the iCC  vary slightly. 

According to sensitivity analysis results here, alternative 3 or candidate 3, 3Alt  is 

determined to be the most appropriate to be selected as a potential staff, because 

he or she always has a maximum 3CC  value after the weight changes are applied. 

Alternative or candidate 3 has the highest 3CC  value of 0.8750 when criterion 

emotional steadiness, (ES), is increased by 100%, whereas it has its lowest value 

of 0.6233 when criterion past experience, PE is raised by 150%. In addition, it 

can be observed that the 3CC  values of candidate 3 show upward tendency when 

the weight of emotional steadiness, (ES) and personality, (P) are increased by 

50% to 100%. However, when criterion oration, (O), past experience (PE), and 

self-confidence, (S-C), are increased by 50%, 100% and 150%, values of the 

3CC  shows downward tendency. 
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Fig. 6. 7. Sensitivity analysis results caused by varying the weights of the criteria 

by proposed hybrid fuzzy MCDM model for z-numbers 

The second best candidate is candidate 2, 2Alt , with the maximum 2CC  

value of 0.8010, obtained when criterion ES is increased by 100%. It has the 

smallest 2CC  value of 0.5901 when criterion PE is raised by 150%. Moreover, 

the 2CC  values of candidate 2, 2Alt  depict slight upward trend when the weights 

of criterion ES and P are increased by 50% and 100%. Nevertheless, when 

criteria O, PE, and S-C, are increased by 50%, 100% and 150%, values of the 

2CC  shows downward tendency. Candidate 1, 1Alt  has the third ranking with the 

maximum 1CC  value, 0.7845, when criterion ES is increased by 100%. While, 

the lowest value, 0.5608, when criterion PE is increased by 150%. Additionally, 

it can be noted that when criterion ES and P are increased by 50% and 100%, 

values of the 1CC  show upward tendency. Yet, when criteria O, PE, and S-C, are 

increased by 50%, 100% and 150%, values of the 1CC  shows downward 

tendency. The last ranking of the case study is candidate 4, 4Alt  with the 

maximum 4CC  value, 0.7208, when criterion P is increased by 100%. While the 

lowest 4CC  value is 0.5574, when criterion PE is increased by 150%. It can be 

concluded that the 4CC  values are upward tendency when criterion ES and P are 

increased by 50% and 100%. Moreover, when criterion O, PE, and S-C, are 

increased by 50%, 100% and 150%, values of the 4CC  shows downward 

tendency. 
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Table 6. 34. Sensitivity analysis results of proposed hybrid fuzzy MCDM model 

for z-numbers 

Changes of 

criteria (%) 
Alt1 Alt2 Alt3 Alt4 Ranking results 

Consistency 

based on 

original result 

ES' (50%) 0.7580 0.7759 0.8442 0.6945 Alt3>Alt2>Alt1>Alt4 Consistent 

ES' (100%) 0.7845 0.8010 0.8750 0.7127 Alt3>Alt2>Alt1>Alt4 Consistent 

ES' (150%) 0.7352 0.7465 0.8064 0.6746 Alt3>Alt2>Alt1>Alt4 Consistent 
O' (50%) 0.6673 0.6732 0.7101 0.6242 Alt3>Alt2>Alt1>Alt4 Consistent 
O' (100%) 0.6362 0.6359 0.6606 0.5991 Alt3>Alt1>Alt2>Alt4 Inconsistent 
O' (150%) 0.6182 0.6145 0.6321 0.5847 Alt3>Alt1>Alt2>Alt4 Inconsistent 
P' (50%) 0.7657 0.7817 0.8481 0.7050 Alt3>Alt2>Alt1>Alt4 Consistent 
P' (100%) 0.7823 0.7941 0.8595 0.7208 Alt3>Alt2>Alt1>Alt4 Consistent 
P' (150%) 0.7301 0.7359 0.7853 0.6823 Alt3>Alt2>Alt1>Alt4 Consistent 
PE' (50%) 0.6405 0.6678 0.7200 0.6097 Alt3>Alt2>Alt1>Alt4 Consistent 
PE' (100%) 0.5893 0.6179 0.6578 0.5761 Alt3>Alt2>Alt1>Alt4 Consistent 
PE' (150%) 0.5608 0.5901 0.6233 0.5574 Alt3>Alt2>Alt1>Alt4 Consistent 
S-C' (50%) 0.6810 0.6957 0.7428 0.6402 Alt3>Alt2>Alt1>Alt4 Consistent 
S-C' (100%) 0.6391 0.6503 0.6853 0.6096 Alt3>Alt2>Alt1>Alt4 Consistent 
S-C' (150%) 0.6151 0.6243 0.6524 0.5920 Alt3>Alt2>Alt1>Alt4 Consistent 

Level of consistency 86.67% 

 

Table 6.34 summaries the sensitivity analysis results of proposed hybrid 

fuzzy MCDM model for z-numbers. It presents that the proposed hybrid fuzzy 

MCDM model for z-numbers is quite robust and stable, since changes in the 

criteria weights are slightly affected the final ranking order of the alternatives 

candidates. As related before, referring to the Table 6.35 below, the consistency 

of correct ranking order based on original rank presents 86.67% level of 

consistency. The ranking order are significantly consistent with original ranking. 

However, when criterion O are increased by 100% and 150%, the ranking order 

are changed to Alt3>Alt1>Alt2>Alt4 both of them. In the context of sensitivity 

analysis evaluation, it presents that the proposed hybrid fuzzy MCDM model for 

z-numbers is consistent even the weights of criteria are changed. Since there is no 

found hybrid fuzzy MCDM model for z-numbers in literature so far, the proposed 

hybrid fuzzy MCDM model for z-numbers can be considered as pioneer for 

integrating MCDM methods to deal with z-numbers. As a consequence, there no 

comparative study for z-numbers evaluation.  
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Table 6. 35. Sensitivity analysis comparative validation results  

Hybrid fuzzy MCDM model Level of Consistency 

Type-1 Fuzzy Sets  

Fuzzy AHP – Fuzzy TOPSIS (Vinodh et al., 2014) 86.67% 

Fuzzy AHP – Fuzzy VIKOR (Rezaie et al., 2014) 80% 

Consistent Fuzzy Preference Relations – Fuzzy TOPSIS 

(Proposed Model) 
100% 

Type-2 Fuzzy Sets  

Fuzzy AHP – Fuzzy TOPSIS (Kiliç & Kaya, 2015) 93.33% 

Consistent Fuzzy Preference Relations – Fuzzy TOPSIS 

(Proposed Model) 
100% 

Z-numbers  

Consistent Fuzzy Preference Relations – Fuzzy TOPSIS 

(Proposed Model) 
86.67% 

 

Table 6.35 summarises the sensitivity analysis for all comparative studies 

in this research work. Representing all models above have good results in level of 

consistency which are above 80%. As can be seen here, the proposed model for 

type-1 fuzzy sets and the extension of proposed model for type- 2 fuzzy sets 

achieve 100% level of consistency. These two models are recommended and 

suggested to solve other case studies since the level of consistency of ranking is 

better than others. This followed by fuzzy AHP – fuzzy TOPSIS (Kiliç & Kaya, 

2015) with 93.33%. The proposed model for z-numbers and fuzzy AHP – Fuzzy 

TOPSIS (Vinodh et al., 2014) share same level with 86.67%. The fuzzy AHP – 

fuzzy VIKOR proposed by (Rezaie et al., 2014) achieves 80% level of 

consistency. This is depicted that the proposed hybrid fuzzy MCDM models for 

type-1 and type-2 fuzzy sets are more robust than the other models in this study. 

For the proposed model for z-numbers, it still a good model because it gives 

consistent results with other established model in literature.   

6.7 Summary of the Chapter 

 

In this chapter, the applicability of proposed hybrid fuzzy MCDM model 

that is incorporated with intuitive multiple centroid in solving respective case 

study with different fuzzy sets are presented. The proposed model and its 

extension are applied to a staff recruitment problems in Saprudin, Idris & Co 

Company, in Malaysia. The candidates was evaluated based on several criteria by 

decision makers. All of them are evaluated by using proposed model and two 

established hybrid fuzzy models in literature in order to find out the ranking of 

the candidates. Also, each hybrid fuzzy MCDM models including proposed 

model are validated using sensitivity analysis with regard to find out the 

robustness of the model. In Chapter 7, the thesis concludes the whole research 

work. 
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CHAPTER 7 

CONCLUSION 

 

7.1 Introduction 

This chapter is devoted to summarise the contributions of this study, the 

concluding remarks, limitations and recommendations for future works. It 

illustrates a summary of all the works contributed to knowledge in every chapter 

of the thesis and suggests some significant recommendations towards improving 

the knowledge of fuzzy sets and MCDM. In terms of study, there are three main 

points to discuss and emphasize in these contributions of this study, concluding 

remarks, limitations and recommendations for future works which are; literature 

review, methodology and case study. Therefore, with no loss of generality of all 

chapters in the thesis, details on those aforementioned points are intensively 

discussed in sections of this chapter.   

 

7.2 Contributions 

These contributions are underpinned by all publications [List of 

Publication (Page 247)], which indicate the novelty and durability of the study in 

improving and enhancing the theory of fuzzy sets and MCDM techniques.  

The primary contribution of this study towards literature of fuzzy sets is 

the development of a novel intuitive multiple centroid defuzzification method 

and the development of novel hybrid fuzzy MCDM model that consist of 

consistent fuzzy preference relations and fuzzy TOPSIS. In developing the 

intuitive multiple centroid defuzzification method, a novel direction of 

computing the centre point of fuzzy numbers is proposed where it is calculated 

based on the median point of separated parts of fuzzy numbers representation. 

This kind of centroid method for fuzzy numbers is suggested in this study 

because it enhances the capability of the proposed method to give correct centre 

points in all possible fuzzy sets including type-1 fuzzy sets, type-2 fuzzy sets and 

z-numbers as highlighted in Chapter 4 of the thesis. Several theoretical properties 

of the novel centroid method are introduced and there are several established 

defuzzification properties proposed by (Roychowdhury & Pedrycz, 2001) are 

fulfilled  in this study to strengthen the capability of the method of centroid fuzzy 

numbers appropriately. Then, the novel hybrid fuzzy MCDM model is developed 

that incorporated with the novel intuitive multiple centroid method. Along with 

this contribution, this study suggests the sensitivity analysis technique in order to 
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validate the proposed hybrid fuzzy MCDM model with others established hybrid 

fuzzy MCDM models to evaluate the robustness and consistency of the models. 

Aforementioned in Chapter 2, there are three kinds of fuzzy numbers 

found in the literature of fuzzy sets; they are type-1 fuzzy sets, type-2 fuzzy sets 

and z-numbers. It is worth noting here again that the intuitive multiple centroid 

method is developed for type-1 fuzzy sets and extended to type-2 fuzzy sets and 

z-numbers as well. Also, the development of hybrid fuzzy MCDM model is 

proposed in order to solve human based decision making problems under fuzzy 

environment. Chapter 4 presents the first contribution in methodology in detail 

the process of development of intuitive multiple centroid defuzzification method 

for fuzzy sets that consist type-1 fuzzy sets, type-2 fuzzy sets and z-numbers. 

Reviewing the advantages and limitations of the established centroid 

defuzzification methods for fuzzy sets was very useful task to investigate the 

proposed intuitive multiple centroid method that should be adopted in this 

research work and used in proposed hybrid fuzzy MCDM model. A novel 

intuitive multiple centroid for fuzzy sets is developed in this chapter that covers 

type-1 fuzzy sets, type-2 fuzzy sets and z-numbers. Furthermore, the theoretical 

and empirical validations are broadly discussed in this chapter. All relevant 

properties are considered on differentiating fuzzy numbers for justifying the 

applicability of centroid for them. 

In Chapter 5, the novel hybrid fuzzy MCDM model is developed that is 

incorporated with the novel intuitive multiple centroid and the extension 

versions. In the analysis, the proposed hybrid fuzzy MCDM model contributes 

significant benchmarking examples of type-1 fuzzy sets where it extends for 

type-2 fuzzy sets and z-numbers. This chapter discusses the development of 

hybrid fuzzy MCDM model based on the extended method of consistent fuzzy 

preference relations that is used to derive the weight of criteria while the 

extended of fuzzy TOPSIS is used to rank the alternatives. These proposed 

models are capable to apply for all possible fuzzy sets as the linguistic terms.  

Computation and description details of results and sensitivity analysis are 

discussed in Chapter 6. 

Contributions cover under this section is described in detail by Chapter 6 

of the thesis. In Chapter 6, the hybrid fuzzy MCDM model that consist of 

extended of consistent fuzzy preference relations and extended of fuzzy TOPSIS 

based on proposed intuitive multiple centroid defuzzification method is applied 

to staff selection in MESSRS Saprudin, Idris & Co, Malaysia. It has to be noted 

here that, this case study is considered all possible types of fuzzy sets consist of 

type-1 fuzzy sets, type-2 fuzzy sets and z-numbers. Type-1 fuzzy sets are 

concerning the imprecision, while type-2 fuzzy sets and z-numbers concerning 

regarding the footprint of uncertainties and uncertain environment (reliability) 

respectively. Consideration of this case study in this thesis reflects the capability 
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of the proposed methodology to not only solve the problems correctly such that 

the results are consistent with human intuition but also solving any related with 

different fuzzy sets involving type-1 fuzzy sets, type-2 fuzzy sets and z-number 

effectively.  

Generally, contributions to knowledge by this study are described in 

detail by this section. It is worth pointed out here that some contributions are 

prepared for knowledge enhancement while some are done for decision making 

purposes. In the following section, the concluding remarks of this study are 

provided.  

 

7.3 Concluding Remarks 

This section discusses the concluding remarks of this study. These 

concluding remarks summarised all works done in chapters provided in the 

thesis. The concluding remark for literature review covers with descriptions of 

established works on centroid defuzzification methods and hybrid fuzzy MCDM 

models.  

In the literature review chapter, gaps of established for centroid methods 

are identified where these centroid methods have incapability to give appropriate 

centre values while dealing with several different conditions in fuzzy numbers 

such as non-normal cases, asymmetry cases and singleton cases. These 

aforementioned gaps by established centroid methods are analysed and solved by 

the first objective of this study. This indicates that the first objective of this study 

is successfully accomplished where it caters off all limitations of the established 

works on centroid defuzzification methods by developing a new centroid 

methodology for type-1 fuzzy sets also the extensions for type-2 fuzzy sets and z-

numbers. While in the literature, several gaps have been identified in applying 

hybrid fuzzy MCDM model in human based decision making problems where 

most of the researchers or practitioners prefer to use triangular fuzzy numbers 

instead of trapezoidal fuzzy numbers. To gain an intuitive insight into this 

solution, the trapezoidal fuzzy numbers is more complete to represent human 

perception under fuzzy environment. Consequently, the implementation of 

trapezoidal fuzzy numbers have been raised lately in literature. Another gap 

regarding fuzzy MCDM techniques here is, most of the researchers in literature 

prefer to use type-1 fuzzy sets rather than type-2 fuzzy sets and z-numbers. This 

is because the implementation of type-2 fuzzy sets and z-numbers are more 

complicated compared to type-1 fuzzy sets, 

This concluding remark for methodology covers description on the 

development of the hybrid fuzzy MCDM model that is incorporated with 

intuitive multiple centroid defuzzification method. In Chapter 4, the methodology 
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for intuitive multiple centroid defuzzification method is developed where it 

consist of intuitive multiple centroid for type-1 fuzzy sets, extension of intuitive 

multiple centroid for interval type-2 fuzzy sets and extension of intuitive multiple 

centroid for z-numbers. Along with these proposed methods development, 

theoretical and empirical validations are outlined in this chapter. The theoretical 

validation considers relevant established and new properties for centroid 

defuzzification purposed while the empirical validation takes into account the 

comparative studies for consistency against several established centroid methods 

for type-1 fuzzy sets, type-2 fuzzy sets and z-numbers. Based on these 

descriptions, the third and sixth objectives of this study are achieved. Besides, the 

proposed hybrid fuzzy MCDM model outperforms other established model for all 

possible fuzzy sets. 

This concluding remarks covers description on the case study of the 

thesis. In Chapter 6, staff selection case study is considered and evaluated using 

the proposed hybrid fuzzy MCDM methodology developed in this study. This 

case study is considered all possible cases of fuzzy sets that covers type-1 fuzzy 

sets, type-2 fuzzy sets and z-numbers. All of these fuzzy sets are utilised which 

are type-1 fuzzy sets are concerning the imprecision, while type-2 fuzzy sets and 

z-numbers concerning regarding the footprint of uncertainties and uncertain 

environment (reliability) respectively. The proposed methodology developed in 

this study produces consistent and efficient ranking results for the case study 

examined. This implies that the last objective is accomplished. 

Overall, the concluding remarks of this study are described in detail by 

this section where this reflects by the successfulness in accomplishing all 

objectives set up by this study. In the following section, limitations in this study 

are discussed.  

 

7.4 Limitations and Recommendation for Future Works 

This section discusses some limitations and recommendation for future 

works of this study where they are figured out from the proposed of intuitive 

multiple centroid and the proposed of hybrid fuzzy MCDM model. Thus, in this 

respect, the limitations are highlighted through literature review, methodology 

and case study as mentioned earlier. 

Citing prior research study from the basis of literature review and help lay 

the foundation for understanding the research problems’ investigating. Frankly 

speaking, discovering the limitations in literature can be served as an important 

opportunity to identify new gaps in the literature and to describe the need for 

further research. In this research work, there is a shortage of studies on the 

combination of two or more decision making techniques, especially fuzzy 
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MCDM since it is new and developing field.  Thus, there is a limited numbers of 

studies that developments and applications of two or more fuzzy MCDM 

techniques in solving decision making problems. Moreover, so far there is no 

hybrid fuzzy MCDM model proposed for z-numbers application since it can be 

categorized as the latest product of fuzzy numbers.    

The limitations for methodology, firstly covers description on the 

proposed of intuitive multiple centroid defuzzification method that is not capable 

in dealing with non-linear fuzzy numbers. This is due to the fact that the 

proposed of intuitive multiple centroid method considers only linear fuzzy 

numbers as they are easy to deal with as compared to non – linear fuzzy numbers. 

In addition, majority of established centroid methods consider only linear type of 

fuzzy numbers in their studies. Thus, consideration of non – fuzzy linear numbers 

cases are neglected in this case. Secondly, with respect to the proposed hybrid 

fuzzy MCDM model, this study suggests to analyse the dependency of criteria 

and the evaluation for decision makers. In literature, the researchers state that 

when a decision is to be made, there is a need to look at all the potential 

relationships or dependencies among the decision elements. The good problem 

structuring for MCDM would seek to study the dependence between the decision 

criteria. As a consequence, in recent years, investigating dependency in MCDM 

problems has become more important. Another important phase in decision 

making process is the evaluation towards decision makers. This is because they 

are human, human makes mistakes. Different people would give different 

judgement. (Santos & Camargo, 2013) proposed influence degree in multi 

criteria group in order to get the evaluation for decision makers based on their 

experience works. 

It is important to restrict the discussion to limitations related to the case 

study under investigation. The limitations for case study can be seen in 

discussion in sections from Chapter 6, where the proposed MCDM model for z-

numbers produces results for sensitivity analysis evaluation lesser that type-1 and 

type-2 fuzzy sets. This shows that the proposed hybrid fuzzy MCDM model for 

z-numbers is less robust and less stable than type-1 and type-2 fuzzy sets. Here, 

this study suggest to develop proper reliability linguistic scales in order to give 

better interaction with fuzzy sets. As discussed in previous point in methodology, 

the consideration of decision makers’ evaluation is one of the important aspect to 

get better model. This evaluation would study the tendency of decision makers in 

evaluating either the criteria or alternatives for any case study. Defining the list 

of the selection criteria and generating their important weights are based on 

previous study. Hence, it is limited in that it cannot be generalised straightaway 

to the decision makers’ viewpoints. More research is required to investigate the 

feasibility of achieving research finding decision makers’ perspectives. 
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Generally, the limitations of this study are described in detail by this 

section where this reflects by the successfulness in accomplishing all objectives 

set up by this study. In the following section, recommendations for future works 

are discussed.  

The recommendations focus on improvising the theoretical and empirical 

qualities in the theory of fuzzy sets and MCDM. With this respect, 

recommendations for future work of this study are pointed out through literature 

review, methodology and case study. 

In this research study, a new hybrid fuzzy MCDM model that based on 

intuitive multiple centroid defuzzification method is developed. There are two 

novelty development here which are; 1) the development of intuitive multiple 

centroid defuzzification method and; 2) the development of hybrid fuzzy MCDM 

model that is incorporated with intuitive multiple centroid method. Even though 

the proposed methodology gives good theoretical and empirical results, it is 

recommended for future work that other methods that capable to effectively 

capture human intuition are thoroughly explored. This recommendation is 

purposely suggested by this study because when more detailed investigations on 

fuzzy sets are made, more complex cases of fuzzy sets are figured out, thus 

indicates that a more commanding hybrid fuzzy MCDM model is required in this 

case. Therefore, exploring for suitable methods in the literature or real decision 

making case study are necessary as this is crucial for human based decision 

making purposes. Another recommendation by this study is on the utilisation of 

other types of fuzzy set apart from linear. As far as researches on fuzzy MCDM 

methods are concerned, majority of them use linear type of fuzzy sets in their 

analysis. Thus, consideration of non-linear fuzzy sets in the future works suggest 

the representations of fuzzy sets is more generic and practical as not all cases are 

well represented by linear type of fuzzy sets. 

Methodology is crucial for any research study because an unreliable 

method produces unreliable results. As a consequence, it undermines the value of 

interpretations of findings. In order to make sure the research has originality and 

novelty, the methodology must reliable enough to get good results. In this study, 

supposedly, we need to add two more related phases in order to get reliable 

methodology. As mentioned in Section 7.4, the dependency of each criteria and 

the evaluation for decision makers should be added in the proposed hybrid fuzzy 

MCDM model (refer Section 5.2.2). Therefore, other two MCDM techniques are 

needed in order to evaluate the dependency of criteria and evaluation for decision 

makers. The chronological evidence suggest that z-numbers are not yet 

established in the literature of fuzzy sets as compared to type-1 and interval type-

2 fuzzy sets. This study recommends both theoretical and empirical frameworks 

of z-numbers are extensively explored. This is due to z-numbers is more practical 

than type-1 and interval type-2 fuzzy sets in terms of representation. Thus, 
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finding the suitable ways to deal with z-numbers is necessary. With respect to 

centroid defuzzification methodology, the only way to defuzzify the z-numbers is 

to reduce them into type-1 fuzzy sets. This implies that z-numbers are not 

effectively dealt as this affect the representation of z-numbers. So, this study 

recommends for future works that methods that are capable to simultaneously 

defuzzify the z-numbers is developed and solve various human based decision 

making problems.  

The recommendation for future plan covers description on the case study 

of the thesis. Chapter 6 discusses the staff selection case study where from the 

observation, this case study is quite direct or straight forward. This study 

recommends for future work that the proposed hybrid fuzzy MCDM model 

should be applied in bigger or complex case studies. Due to the analysis results, 

the proposed models give better results than other established in literature. 

Therefore, application in bigger case studies will stimulate the improvement in 

human based decision making problems. Also, this study recommends the 

improvement for methodology as previous section to add two more stages for 

MCDM techniques, then the applicability of the improvising proposed model 

would give better contribution to human based decision making problems under 

fuzzy environment appropriately.     

Overall, the recommendations for future works of this study are described 

in detail by this section where this reflects by the successfulness in 

accomplishing all objectives set up by this study. The recommendations are 

provided in order to improvise this research study for human based decision 

making problems. 

 

7.5 Summary of the Chapter 

In conclusion, the contributions, the concluding remarks, limitations and 

recommendations for future works by this study are highlighted. Therefore, the 

thesis ends its discussion by citing all references used throughout the thesis 

which are provided next after this chapter.  
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This questionnaire is mainly address to decision maker in MESSRS Sapruddin, Idris & Co in 

Malaysia. It is used to see the decision maker’s evaluation representing the scoring of potential 

candidates with respect to some criteria when selecting of the most appropriate potential 

employee from several potential candidates. 

Thank you for agreeing to provide information regarding your thoughts for selecting the group 

of potential candidates. 

___________________________________________________________________________

     

The following questions should not take more than 10 minutes: 

1) For pair matrix table given below, think about which criterion has a great influence (is 

more important) with respect to another given criterion, by suing the scale shown in 

the table below: 

 

1 Equally important 

2 Intermediate value  

3 Moderately more important 

4 Intermediate value  

5 Strongly more important  

6 Intermediate value  

7 Very strong more important  

8 Intermediate value  

9 Extremely more important  

 

 

 

 

Candidate no: 

Decision Maker no: 
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With regard to the weightage of criterion, which of the pair of criteria, given below 

matrix table is more important? and how much more? (Tick in the appropriate box) 
 

Criterion 
Emotional 

Steadiness 
Oration 

Past 

experience 
Personality 

Self-

confidence 

Emotional 

Steadiness 
1     

Oration  1    

Past 

experience 
  1   

Personality    1  

Self-

confidence 
    1 

 

Question 2 and 3 are referred to the same question with different scales. Both scales are used 

for study purposes. 

2) For candidate’s evaluation, what scores do you assign to each candidate given below 

with respect to? by using the scale shown in the table below: 
 

1 Absolutely-low (AL) 

2 Very-low (VL) 

3 Low (L) 

4 Fairly-low (FL) 

5 Medium (M) 

6 Fairly-high (FH) 

7 High (H) 

8 Very-high (VH) 

9 Absolutely-high (AH) 

 

a. Emotional steadiness 

 

 

 

    AL  VL     L       FL         M           FH   H     VH       AH 
 

b. Oration 

 

 

 

    AL  VL     L       FL         M           FH   H     VH      AH 
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c. Past experience 

 

 

 

    AL  VL     L       FL         M           FH   H     VH       AH 

d. Personality 

 

 

 

    AL  VL     L       FL         M           FH   H     VH       AH 
 

e. Self-confidence 

 

 

 

    AL  VL     L       FL         M           FH   H     VH       AH 
 

 

3) For candidate’s evaluation, what scores do you assign to each candidate given below 

with respect to? by using the scale shown in the table below: 
 

1 Very-low (VL) 

2 Low (L) 

3 Medium-low (ML) 

4 Medium (M) 

5 Medium-high (MH) 

6 High (H) 

7 Very-high (VH) 

 

f. Emotional steadiness 

 

 

 

    VL  L    ML       M        MH H          VH 
 

g. Oration 

 

 

 

    VL  L    ML       M        MH H          VH 

 

h. Past experience 

 

 

 

    VL  L    ML       M        MH H          VH 
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i. Personality 

 

 

 

    VL  L    ML       M        MH H          VH 

j. Self-confidence 

 

 

 

    VL  L    ML       M        MH H          VH 

 

 

4) Reliability of scores given from question 1, 2 and 3. 
 

1 Very-low (VL) 

2 Low (L) 

3 Medium (M) 

4 High (H) 

5 Very-high (VH) 

a. Emotional steadiness 
 

 

 

    VL  L     M       H         VH 

   

b. Oration 
 

 

 

    VL  L     M       H         VH        

 

c. Past experience 
 

 

 

    VL  L     M       H         VH 

 

d. Personality 
 

 

 

    VL  L     M       H         VH 

 

e. Self-confidence 
 

 

 

           VL  L     M       H         VH 
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SchoolOrDepartment: SOC  
PrimaryRole: PostgraduateStudent 

SupervisorName: Dr Alexander Gegov  
HumanParticipants: Yes 

ParticipationBeyondAnsweringQuestionsOrInterviews: Yes  
ParticipantInformationSheets: I did my research placement at legal firm in Malaysia, 

which at Saprudin, Idris & Co, Damansara Jaya, Malaysia. I've spoke and made 

discussion with senior executive there regarding this placement before and he agreed to 

take me to do my research. I was supervised by the senior executive Mr Ilham Abadi 

Idris. I've assigned to do research regarding selecting and hiring a capable and 

dedicated staff with the lowest risk of him/ her resigning. Work stress, inexperienced 

worker or unable to adapt with the environment might be the cause of resignation. This 

firm experienced at least two staffs resigned within three years operation. Once a staff 

resigned, recruitment new staff is not only time consuming but also involves financial 

implication. So, to tackle this problem, the application of fuzzy and several other 

http://www.port.ac.uk/school-of-computing/staff/dr-carl-adams.html
http://bit.ly/KG5VoY
http://bit.ly/K0kSQe
http://bit.ly/UoPEthics
http://bit.ly/UoPEthics
http://bit.ly/UoPEthics-ParticipantTemplates
http://bit.ly/JuFGj3
http://bit.ly/KG4R4y
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techniques in machine learning will be used there. 
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ParticipantConfidentiality: They didn't give the real name or details for the decision 

makers and potentials staff to be selected in the firm because that is confidential for 

them. So, I don't have the confidential data. What I did are collecting the evaluation data 

from the decision makers in evaluating potentials staff using fuzzy scales that I 

constructed. Then, I have to analyse the evaluation data collected from the decision 

makers by using replacement names (example: Decision maker 1, Decision maker 

2...Alternative 1, Alternative 2..etc)  
InvolvesNHSPatientsOrStaff: No 

NoConsentOrDeception: No 

CollectingOrAnalysingPersonalInfoWithoutConsent: 

No InvolvesUninformedOrDependents: No 

DrugsPlacebosOrOtherSubstances: No 

BloodOrTissueSamples: No  
PainOrMildDiscomfort: No 

PsychologicalStressOrAnxiety: No 

ProlongedOrRepetitiveTesting: No 

FinancialInducements: No 

PhysicalEcologicalDamage: No 

HistoricalOrCulturalDamage: No 

HarmToAnimal: No HarmfulToThirdParties: 

No OutputsPotentiallyAdaptedAndMisused: 

No  
Confirmation-ConsideredDataUse: Confirmed Confirmation-

ConsideredImpactAndMitigationOfPontentialMisuse: Confirmed 

Confirmation-ActingEthicallyAndHonestly: Confirmed 
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Supervisor Review 
 
As supervisor, I will ensure that this work will be conducted in an ethical manner in line with 

the University Ethics Policy. 

 
Supervisor signature: 
 
Date: 
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