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Abstract 

A highly efficient numerical approach: extended cohesive damage model (ECDM) for 

predicting multicrack propagation is introduced in this paper. The ECDM is developed within 

the framework of the eXtended Finite Element Method (XFEM). Unlike XFEM the enriched 

degrees of freedom are eliminated from the final condensed equilibrium equations in the ECDM. 

To account for the cohesive crack effect, an equivalent damage scalar relating to a strain field 

is introduced in terms of energy dissipation. The ECDM is capable of characterizing 

discontinuities with conventional degrees of freedom (DoFs) only, thus it is significantly 

efficient in modelling multicrack propagation. The basic formulations, numerical 

implementation and detailed investigation of the performance of the ECDM through modelling 

the selected benchmark specimens are given in this paper. This investigation shows the ECDM 

can effectively guarantee the convergent solutions in nonlinear fracture analysis and can 

efficiently reduce the computer CPU time in modelling selected fracture benchmark specimens 

by more than 60% compared to the XFEM in ABAQUS. Therefore, the ECDM is a robust 

computational approach for predicting multicrack failure mechanism in engineering materials 

and structures.      
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1. Introduction 

The Numerical simulation of discontinuities and its evolution via finite element method (FEM) 

is currently one of the major concerns in computational fracture mechanics. In most FEM based 

approaches, there are two classical technologies in modelling discontinuities: the cohesive zone 

model (CZM) [1-4], and the adaptive mesh refining (AMR) approach [5-7]. In CZM based 

modelling, discontinuities must be limited at inter-element boundaries. Thus in the 

discretization stage, discontinuities must align with element boundaries. Obviously, the a priori 

knowledge of discontinuity path is necessary for numerical characterization. Recently a 

breakable CZM model was developed which is declared to model arbitrary crack propagation, 

but the crack path is still dependent on the mesh structure [8]. By real-timely modifying mesh 

topology, the AMR approach can adaptively and explicitly model a discontinuity. Nevertheless, 

to capture a propagating discontinuity, the self-adaption of a mesh in the AMR approach is 

computationally expensive in non-linear fracture analysis [6]. Therefore, the above two 

computational modelling methods of propagating discontinuities have long been restricted by 

the mesh bias dependences and significant computational burden. These deficiencies hinder 

their further applications in engineering fields.  

 

In the past decade, based on the Partition of Unity Method (PUM), a rapid development which 

can address the aforementioned drawbacks has been made to conduct the arbitrary discontinuity 

problems within continuum solids [10-14]. Among all these PUM based approaches, the 

eXtended Finite Element Method (XFEM), as a combination of the classical FEM and PUM, 

was originally introduced by Belytschko et al. [10] and subsequently enhanced by Moës et al. 

[15]. By enriching the classical piecewise polynomial approximation basis within a FEM 

framework, XFEM is capable of thoroughly conducting computational characterization for 

non-smooth features within a discontinuous medium. The existence of discontinuity can be 

freely laid within elements, irrespective of its size and specific orientation. Thus, no mesh 

regeneration is needed during discontinuity evolution, and the element boundary would no 

longer need to be the discontinuity surface, which is a significant benefit to the work of 

modelling crack propagation. Then, typical drawbacks of traditional finite elements in 
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modelling displacement discontinuities, e.g. spurious mesh size and mesh bias dependences, 

can be effectively overcome. XFEM has been applied to model cohesive cracks of mechanical 

metamaterials [16, 17], fatigue damage problems [18, 19], fluid mechanics problems [20, 21], 

thermal problems [22] and delamination [23] and matrix fracture [24, 25] in composites, etc. 

 

Besides, some other discrete discontinuity approaches based on PUM were developed as well. 

Hansbo et al. presented a phantom-node method to model arbitrary discontinuities. In their 

approach, the external nodes named ‘phantom nodes’ are placed for the description of locally 

non-polynomial phenomena. According to Areias and Belytschko [26], the phantom node 

method is just another implementation of XFEM. Working within the variation framework, K. 

Garikipati carried out the Variation Multiscalar Cohesive Method (VMCM) [27-29] to model 

the crack propagation in isotropic solid and laminated composites. The key idea of VMCM is 

the identification of a fine scalar field with a component of the displacement that has a large 

gradient. Oliver et al. [30] investigated an embedded finite element method (E-FEM) which is 

an alternative approach for XFEM. A comparative study [31] was carried out between E-FEM 

and XFEM, which demonstrated that not only the numerical accuracy but also the efficiency of 

E-FEM is evidently improved by the implementation of elemental enrichment rather than nodal 

enrichments required by XFEM. Wu et al. [32] enhanced E-FEM by combining the advantages 

of XFEM and E-FEM. On one hand, a non-uniform discontinuity mode is considered as in 

XFEM. On the other hand, the condition of traction continuity is accounted in the statically 

optimal form as in most E-FEMs. All these discrete discontinuity models are essentially 

formulated with enriched continuous displacement modes in previous finite elements by given 

additional discontinuous displacements for capturing the physical discontinuity i.e. fractures, 

cracks, slip lines, etc.  

 

The major drawback of the above mentioned PUM related methods is the enriched terms 

because additional DoFs or nodes certainly bring expensive computational cost. Sometimes, it 

tends to be even impossible to achieve convergent solution when encountering highly strong 
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nonlinearity [33]. In consideration of this drawback, a novel Extended Cohesive Damage Model 

(ECDM) was recently developed by the authors to describe the arbitrary crack propagation in 

engineering materials [34]. The purpose of this work is to introduce the numerical 

implementation and assess the performance of the ECDM in characterizing the arbitrary crack 

propagation in engineering materials. The superiority of the ECDM in computational accuracy, 

efficiency and robustness is evaluated in detail by modelling selected fracture benchmark tests. 

The computational efficiency of the developed ECDM will be demonstrated through the 

comparison with XFEM predictions. Through these modelling predictions of selected fracture 

benchmark tests, the high efficiency of the ECDM is proved. 

 

2. Theoretical fundamentals of the ECDM 

2.1 Kinematics of cohesive crack problem 

In a 2D continuum 2, consider a discontinuous physical domain Ω2, whose outward 

normal vector n, intersected by a cohesive crack d with normal vector m, as shown in Fig. 

1(a). Such that the domain is divided into two subdomains represented as Ω+ and Ω-, 

respectively, as shown in Fig. 1(b). The crack results in the presence of two new consistent 

internal boundaries 
+ 

d  and 
- 

d . The prescribed external load t ̅ is imposed on boundary t and 

the displacement u̅ is assumed on boundary u. Omitting the body forces, the strong form of 

the equilibrium equation can be written as: 

Div𝛔 = 0                               (1) 

where the second-order tensor σ denotes the stress field in the bulk domain 
   . 

The boundary conditions for the domain Ω are: 

tnσ   (on t)                            (2) 

uu   (on u)                            (3) 

Due to the presence of cohesive segment, boundary conditions imposed on the discontinuous 

boundaries 
+ 

d  and 
- 

d are given below.  

tnσt  
 (on 

+ 

d )                       (4) 

tnσt  ---  (on 
- 

d)                        (5) 
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According to the traction-separation law [1], the traction attributing to the cohesive segment 

between crack surfaces can be obtained from the relative displacement: 

 tt                                (6) 

in which δ is the relative displacement between two boundaries of discontinuity. The above 

equation serves as a nonlinear material model when discontinuity onsets. 

 

Fig 1. Notation for a 2D domain with an arbitrary discontinuity d. 

While the cohesive tractions are present within the specified segment of crack, the total 

potential of the body should take account for the contribution from cohesive tractions 

transferred through the crack surface. According to the principle of virtual work, the weak form 

of equilibrium equation based on the strong form of the equilibrium equation given in Eq. (1) 

can be written as: 

             










ddt

dddd 0: txωtxωtxωxuxω    (7) 

In the weak form, ω(x) and u(x) are test and solution functions, respectively. 

 

2.2 Displacement field and shifted Heaviside function 

Chen [35] has recently investigated the basic concept of combing XFEM with CZM without 

using a specified enriched item to cope with the singularity problem at the crack-tip. The XFEM 

test function of the discontinuous displacement field can be given as [16]: 

a b 
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  ( x ) a ( x )( x )uu ( x )
dΓ

s S t e p                       (8) 

where us(x) and a(x) stand for the regular displacement field and the displacement jump, 

respectively. )(x
d

Step  is a step function characterizing the physical jump when the element 

is completely separated (strong discontinuities). In FEM discrete form, the approximation of 

displacement field can be represented as: 

          







IiIi

h

dd iii axxxuxxu HHji NN            (9)  

in which  














Ω

Ω

0，

1，

x

x
x

d
H  is a Heaviside step function. It should be noted that, in the 

above discretization of displacement, the shifted function    ixx
dd  HH  is introduced 

for satisfying the Kronecker-δ property (i.e., Ni(xj) = δij). The introduction of a shifted 

Heaviside function does not alter the approximating basis while simplifying the implementation 

attributing to that resulting enrichment vanished in elements which are not cut by the 

discontinuity [19]. 

2.3 Discrete and condensed equilibrium equations   

Using the weak form of the equilibrium equation from the Bubnov-Galerkin method, the 

discrete form of the equilibrium equation for static analysis can be written as shown in Eq. (10). 


























a

ext

u

ext

aaau

uauu

f

f

a

u

KK

KK
                        (10) 

where Kuu and Kaa are the stiffness matrices associated with the standard FE approximation and 

the enriched approximation, respectively; Kua or Kau account for the coupling between the 

standard FE approximation and the enriched approximation;
u

fext  and 
a

fext  are the equivalent 

nodal force vectors for standard FEM DoFs and enriched DoFs, respectively; u denotes the 

standard DoFs while a denotes the enriched DoFs. 

As aforementioned, the crack shown in Fig. 1 is a cohesive crack, and the discontinuous 

boundary is a cohesive crack boundary. Thus, in Eq. (10), the equivalent nodal force vectors 

can be expressed as:  
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     coh

Ta

ext

Tu

ext

yx,yx,
dd

ftNf

tNf









 dΓ

dΓ

h

h

Γ

Γ

HH
      (11) 

Because of the existence of cohesive segment, the internal nodal force vector due to cohesive 

traction t on the crack surface 
d

 can be expressed as: 

           

Γ

ΓΓ

d

dd

Γ

ΓΓ

d

dy,xyx,dy,xyx,

T

T

ii

T

iicoh dddd












tN

tNtNf HHHH

 (12) 

The integration of the internal nodal force vector due to cohesive traction t shown in Eq. (12) 

can be obtained by numerical integration regarding to the cohesive stress on the crack surface 

d . In this work, the standard Gaussian integration scheme is used, that is, 

     iii

TT

coh ξξξd wΓ
n

1i
Γd

t NtNf 


                    (13) 

where i is the coordinate of the Gauss integration point i (1 i n);  iξw is a weight function. 

Substituting the expression for the equivalent nodal force vector in Eq. (11) into Eq. (10) results 

in Eq. (14): 

     










































  cohii

T

u

ext

aaau

uauu

y,xyx,
dd

ftN

f

a

u

KK

KK 0

dΓ
hΓ

HH
       (14) 

To be able to reach a fully condensed equilibrium system, the additional enrichment term a is 

eliminated, thus the equilibrium equation with the standard FEM unknown quantities can be 

consequently obtained as shown in Eq. (15): 

       coh

aauau

ext

aauau

ext

auaauauu
fKKMfKKfuKKKK

111
-


      (15) 

where, M is a transformation matrix to link the 
a

extf  and 
u

extf as below.   

u

ext

a

ext Mff                           (16) 
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The exact expression for M can be found in the authors’ previous work [34]. It should be noted 

that in most cases M is zero because there is no external load applied on the cohesive crack. 

Thus Eq. (15) can be rewritten as: 

     coh

aauau

ext

auaauauu
fKKfuKKKK

11
-


            (17) 

This ECDM formulation is a lower order equilibrium system compared to the XFEM in 

ABAQUS, which permits nodal displacement calculation of the cracked element using standard 

FEM DoFs only. This proposed rigorous mathematical procedure can fully cover the damage 

evolution from a weak discontinuity to a strong discontinuity. 

 

2.4 Cohesive damage model for the discontinuity 

The cohesive damage law is employed here to characterize the nonlinear cohesive segment 

evolution transferred across the discontinuity. The cohesive traction 
T

sn,coh ,tt ][t  contains 

two components, which are normal traction and shearing traction, respectively. As a function 

of the damage scalar d in both normal and tangential directions at crack surface, tcoh decreases 

monotonically to zero, which is mathematically expressed by Eq. (18) [1, 35].  

  01 tt d-coh                              (18) 

where t0 is the traction when the crack initiates. The cohesive tractions in Eq. (18) are calculated 

at the crack surface in the directions n and s, respectively. In the implementation, the 

transformation of coordinates from local coordinate n and s to global coordinate x and y is 

necessarily required and expressed by Eq. (19). 

  local

coh

global

coh tRt                            (19) 

where the transformation matrix R is given by Eq. (20).  

  









θθ

θθ

sincos

cossin
R                         (20) 

where θ is the angle between the coordinate n-s and the coordinate x-y. There is not a physical 

relative displacement  before a crack forms within the elements. Two schemes are widely 

used in approximating the evolution of cohesive failure, which are the linear softening scheme 
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and the exponential softening scheme, respectively, as shown with the traction-relative 

displacement  functions in Fig. 2. Nevertheless, as demonstrated in the ECDM equilibrium, 

eliminating the enriched DoFs has resulted in a vanishing relative displacement  in the 

ultimate solution, which brings difficulties in recognizing the softening status of cohesion. 
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Fig. 2. Cohesive damage law: (a) linear softening and (b) exponential softening. 
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Fig. 3. Material constitutive behavior: (a) linear softening scheme; (b) exponential softening 

scheme. 

 

In this developed ECDM, a new equivalent damage scalar based on strain energy dissipation is 

used to avoid the appearance of the additional DoFs related displacement gap . In the ECDM 

based FEM modelling, it is expected that evolution of the cohesive zone will present a micro 

behavior of strain softening, so that the strain energy dissipation shown in Fig. 3 due to the 

occurrence of fracture is equivalent to the released work done by cohesive traction or released 

fracture energy shown in Fig. 2. Based on this consideration, the macro performance of material 

b a 

a b 
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with the bilinear cohesive softening law and the exponential cohesive softening law follow the 

specified schemes with similar curve shapes, as demonstrated in Fig. 3a and Fig. 3b, 

respectively. Therefore, in the utilization of the ECDM, the damage scalar can be expressed 

equivalently by a released strain energy using the linear softening or the exponential softening 

law as shown in Eq. (21). 

       

   

c r a c kc

000
0

c r a c kc

00

lG

dΩσεεσdΩε
A

σ
A

d

lG
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




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


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

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











2

1
1exp

or

2

1

2

1



     (21)  

where, 0 and 0 are the material strength and the initial damage strain respectively at the onset 

of damage accumulation; lcrack is elemental crack length from the start point to the end point of 

the crack in a cracked element. The damage status is considered to be coincident along 

the elemental crack length; Gc is fracture energy; A is a parameter expressed as  

00

2

1


S

lG crackc  in which S is the total area under the curve of the softening damage law 

shown in Fig. 3. Herein a softening constitutive law is used for reducing the cohesive traction, 

i.e. 0)1(  d . Bringing this calculation into Eq. (21), an explicit expression of the 

equivalent damage scalar can be achieved as shown below: 

   

dΩσlG
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A

σ
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d
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

































2

1

2

1
1exp

or

2

1
2

1

2

1

       (22) 

It should be noted that the damage scalar d in Eq. (22) is a function of the strain field obtained 

with conventional DoFs only, with which the requirement to calculate the enriched DoFs related 

displacement gap  can be effectively avoided. 
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3. Numerical implementation 

In most existing discrete discontinuity approaches, a vital requirement for efficient 

implementation is the FEM code which allows flexible variation within limited number of DoFs 

per node and number of integration points per element. Attributing to the elimination of 

enriched DoFs, the ECDM can overcome this restriction and be easily integrated into 

commercial FEM software. Another advantage of the ECDM is that it can relieve users from 

utilizing a sophisticated global tracking algorithm, such as the level-set functions in XFEM for 

a propagating discontinuity. Consequently, large pre-calculations can be avoided when a 

discontinuity is activated in a narrow band manner e.g. crack propagation in a local region. 

Nevertheless, it is still necessary to track the crack path so that the inter-element continuity of 

a discontinuity can be enforced. This can be carried out by a common block which is accessible 

to all user elements, within which the geometric information of a discontinuity can be constantly 

updated as it propagates. Herein, a local tracking algorithm based on element connections/graph 

is adopted in numerical implementation. When an element meets the criterion, the discontinuity 

propagates within that element along a straight line with the determined orientation, from the 

discontinuity starting intersection to the end one. Fig. 4 presents the cracked element topology 

for different approaches including XFEM, the ECDM and CZM. It can be seen from Fig. 4 that 

the ECDM (Fig. 4b) is only with standard DoFs u, while for XFEM (Fig. 4a), an additional 

DoFs a is contained at each node. In the case of CZM shown in Fig. 4c, although all the nodes 

are with the standard DoFs, the embedding cohesive element requires the introduction of new 

nodes, which essentially increases the number of DoFs in a FE model. The approximations of 

the element deformation on the presence of a crack using different schemes are also illustrated 

in Fig. 4. In the ECDM scheme, the nodal displacements can be solved accurately, but the 

physical displacement gap (the dash lines in Fig. 4b) cannot be presented by nodal 

displacements. Instead, it can be presented by a strain field with a distinguished value. 
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Fig. 4. The characterization of a crack by different approaches: (a) XFEM, (b) The ECDM 

and (c) CZM. 

Identifying the element in which a discontinuity propagates and establishing the discontinuity 

configuration are required at the beginning of tracking discontinuity propagation. 

Determination of discontinuity nucleation is the first work. Nucleation is allowed to happen 

within any potential elements in the computationally accounted domain, whereas the 

propagation is originated at the front element of an existing discontinuity tip. In the numerical 

implementation, a discontinuity nucleation in an element is accounted at its midpoint where the 

maximum principal stress is over the failure criteria. The perpendicular direction to the 

direction of the maximum principal stress is determined as the crack direction. The determined 

crack starts from the middle point and ends at the edge of the cracked element through a straight 

line along the crack direction. In the case of existing cracks, normally, the existing crack should 

propagate to the element at the front of the crack tip. In the case of the cracked element at the 

boundary of the computational domain, only one tip point will be presented. Fig. 5 shows the 

(a) 

(b) 

(c) 

u, a u, a 

u, a u, a 

u u 

u u 

u u 

u u cohesive element 

u 
u 
u 

u 
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crack propagation scheme in the ECDM implementation in which the red line is an existing 

crack. Considering the situation in Fig. 5(a), if the stress state of the element at the front crack 

tip satisfies the failure criterion, then the existing crack propagates across that element. Thus 

the previous crack tip is recognized as a start point of the crack in the new cracked element. A 

restriction given by a kinking angle between 450 and -450 degree measured from the existing 

crack direction provides a potential propagation area as shown in the blue area in Fig. 5. In fact, 

this kinking restriction is a usual numerical treatment to avoid a possible crack curve back, for 

example, the XFEM model in ABAQUS also sets ±45 degree as a kinking restriction. Assuming 

a crack propagates along a straight line within the failed element, once the coordinates of the 

start point of the new crack is known, the end point of the crack can be trivially determined in 

terms of the continuity of the cracking path and the propagating orientation. This can be seen 

in Fig. 5(b). When crack propagation in an element is approximated, the discontinuity 

information will be updated for evaluating other elements. 

 

 

Fig. 5. The crack propagation scheme in the ECDM implementation. 

 

θn+1 

node 

crack-tip 

(a) (b) 
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Fig. 6. The flow chart of crack propagation scheme and solving procedure in ECDM. 

 

In the implementation of the most discrete discontinue approaches such as XFEM, in order to 

avoid introducing new DoFs into non-equilibrium states (e.g., in an iterative procedure) and to 

preserve the quadratic convergence rate of the Newton–Raphson scheme, the propagation is 

accounted after the iterative procedure performed [32]. Consequently, the increment size must 

be sufficiently small during the loading process, especially around the loading point of material 

failure, so as to capture the peak value and to avoid overestimation of element strength. In this 

work, attributing to the elimination of enriched DoFs, discontinuities are allowed to be initiated 

before iteration in the increment rather than at the end of a converged loading increment, which 
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identifies with the normal nonlinear solving procedure and obtains accurate results even if a 

relatively coarse increment size is used. 

 

The discontinuity propagation procedure according to the theoretical formulations of the 

ECDM presented in Section 2 has been implemented into FEM package ABAQUS by a user 

element UEL. Fig. 6 shows the flow chart of the UEL which uses the information for existing 

cracks, trail incremental displacements applied to the structure at the start of increment n, and 

the trail stress σ at the front of crack-tip of the identified element for evaluating crack 

propagation. If a crack is judged to propagate, the elemental crack configuration will be updated 

with computed new crack orientation and geometric information of previous crack tip. The 

updated crack information includes the location of the crack within the individual element and, 

in particular, the nodes for the starting and end points of the crack located at elemental edges. 

Subsequently, the element stiffness matrix and the nodal residual force can be updated 

according to Eq. (15) or Eq. (17). In the general route to solve nonlinear equilibrium equations, 

the Newton-Raphson iteration method associated with a line search algorithm is performed. 

When the residual nodal force reduces to the prescribed tolerance, the convergent solution is 

obtained. Subsequently, the computing process moves to increment n+1 with newly updated 

crack information. In the case of convergence failure, the computing system will automatically 

adjust the size of increment n, and repeat the above procedure using the crack information 

backed up at the end of increment n-1, until reaching the convergent solution. Since the crack 

is tracked in real time and each element can access crack information at any time, the crack can 

propagate through more than one element within one increment. 

 

4 Numerical applications 

4.1 Single-edge notched beam 

A comparative study is carried out on a benchmark test using both ECDM and XFEM to assess 

the performance of the ECDM approach regarding its accuracy and efficiency in the prediction 

of multicrack propagation. The XFEM model in the FEM commercial package ABAQUS is 
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adopted in this comparative study. In the test work [36], a single notched beam as shown in Fig. 

7 is subjected to four-point bending. A mixed failure mode with a curved cracking path was 

observed experimentally. The dimensions of the beam is 440 × 100 × 100 mm3; a notch with 

the size 5 × 20 × 100 mm3 is located at the top center. The loading and boundary conditions 

can be seen from Fig. 7. A rigid bar between two loading points is set up for the purpose of 

imposing a proportionally distributed load P at the bottom of beam. Through the rigid bar, the 

proportional loads applied on the left and right loading point are P/11 and 10P/11, respectively. 

The analysis can be material independent, following the previous test work given by references 

[16] and [32], the material properties used in modelling are: Young's modulus E = 35000 MPa, 

Poisson's ratio  = 0.2, tensile strength ft =3.0 MPa and fracture energy Gc = 0.1 N/mm. 

 

Fig. 7. Configuration of the Single-notched beam under four points bending. 

 

Four meshes, named S1, S2, S3 and S4 with different elemental sizes in the potential fracture 

zone in the middle section of the investigated beam are used in both the ECDM and XFEM for 

mesh sensitivity investigation. The average elemental side lengths used in the potential fracture 

zone are 8, 4, 2 and 1 mm, respectively. The numerical simulations are carried out without 

setting the discontinuity evolution path beforehand, so cracks can propagate arbitrarily. Fig. 8 

shows predicted deformation after failure by the ECDM using the four different meshes. The 

approximated failed elements are presented in terms of maximum principal strain (buckled zone 

is shown in grey), from which a curved feature of the crack can be observed and the predicted 

crack profiles from four meshes are very similar. At the end of analysis, the exact crack paths 

predicted by the ECDM with four different meshes together with the experimental envelope are 
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plotted as shown in Fig. 9. It can be seen from Fig. 9 that the predicted crack paths from four 

different meshes are almost identical and certainly within the experimental envelope. In both 

ECDM and XFEM modelling,crack propagation is determined using a principal stress initiation 

criterion.  

 

Fig. 10 displays the sequences of predicted failure responses, with progressively refined meshes, 

provided by the ECDM and XFEM simulations. In these responses, the relative difference of 

vertical displacements between two sides of the notch, i.e., crack mouth sliding displacement 

(CMSD), is computed as the abscissa, while the reaction force on the loading point is ordinate. 

The load - CMSD curves given by the ECDM and XFEM simulations are compared to the 

experimental solution. It can be seen from Fig. 10 that the ECDM modelling with four different 

meshes give almost identical responses; the predicted peak load agrees with the experimental 

envelope very well. In the post-failure softening stage the predicted residual stiffness is slightly 

lower than the experimental observation because a residual load capacity was still recorded in 

experimental work due to the compressive stresses around the rigid cap, however, at the later 

post-failure softening stage, the ECDM prediction has same tendency as with the experimental 

measurement. This benchmark test modelling indicates that the developed ECDM is capable of 

predicting arbitrary crack propagation with accuracy and robustness along with the change of 

mesh size. In contrast, the results of peak load are obviously overestimated by XFEM compared 

to experimental measurement, and varies to some extent for different meshes. The post-failure 

softening behavior is also changed to some extent for different meshes compared to 

experimental observation. This implies that the outcome from XFEM simulation relatively 

relates to the mesh size in this investigation. Moreover, XFEM simulation tends to overestimate 

the structural strength at the failure point and at the stage exhibiting the most softening in all 

four predicted load - CMSD curves.  
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Fig. 8. Predicted crack paths by the ECDM using different meshes. 

 

Fig. 9. Predicted crack paths by the ECDM and experimental crack envelope [36]. 
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Fig. 10. Load - CMSD curves obtained from the ECDM, XFEM simulations and experimental 

work [36]. 

 

To examine the computational efficiency of the developed ECDM, the total CPU time to solve 

the nonlinear fracture problem using both ECDM and XFEM in ABAQUS is given in Fig. 11. 

Plane strain constitutive equations are applied in both the ECDM and XFEM models. Standard 

gauss integration is performed for each element with 4 integration points. Considering the 

objectivity of the comparison between the ECDM and XFEM simulations, loading parameters 

are set to be identical with a maximum prescribed displacement of 0.05 mm, and the initial 

incremental size and the maximum incremental size (pseudo time increment) are suggested to 

be 0.01 and 0.1, respectively. Fig. 11a shows the comparison of CPU time between ECDM and 

XFEM for solving the single notched beam simulation. The CPU time decreases as element 

size increases. This comparison demonstrates that ECDM can save CPU time by more than 60% 

compared to XFEM. It should be noted that the same mesh size is used in both the ECDM and 

XFEM modelling. In particular, the CPU time from the model S3 is reduced from 1243s to 

214s, which is about 82.7% CPU time saving. Therefore, ECDM shows significantly 

improvement in computational efficiency. Fig. 11b presents the total iteration number recorded 
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for both ECDM and XFEM modelling, from which it can be seen that ECDM offers a great 

advantage in convergence rate when dealing with nonlinear crack problems compared to XFEM. 

Particularly, in the model S3 the total iteration number used in ECDM is only 25% of that spent 

in XFEM.    

 

Fig.11. Comparison between ECDM and XFEM simulations for different mesh comparison in 

(a) CPU time and (b) Total iterations. 

 

4.2. Double edge notched specimen 

Herein, another benchmark test sample is a double edge notched block, subjected to a mix-

mode load. The modelling simulation of this test sample is presented for assessing the capability 

of ECDM in predicting multicrack propagation. Fig. 12 shows a specimen with double notches 

on the left and right side, tested by Nooru-Mohamed [36], whose configuration and dimensions 

as well as loading and boundary conditions are presented in Fig. 12. The size of the specimen 

is 200 × 200 × 50 mm3, with two notches (25 mm in depth). The steel clamps in dark grey for 

applying a distributed load are treated as rigid parts in simulation. In experimental work, 

specimens were tested subjected to different loading conditions. Herein, only the following 

loading scenario is investigated: a displacement-controlled tensile axial load Fn is applied on 

the top of the specimen; a constant shear force Fs = 10KN is prescribed on the upper left side 

above the notch of specimen throughout the tensile loading procedure. The following material 

properties taken from [37] are used in the modelling analysis: Young’s modulus E = 3.0 × 

104MPa, Poisson’s ratio ν = 0.2, tensile strength ft = 3.0 MPa and fracture energy Gc = 0.11 

N/mm. Three meshes with different side lengths of element are used in this investigation, which 
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are 2, 4 and 8 mm, respectively. The sequence of these three models are defined as S1, S2 and 

S3. It should be noted that the existing notches in this specimen are characterized as initial 

cracks by the cracked ECDM elements. 

 

Fig. 12. A mixed-mode fracture test specimen. 

 

Fig. 13(a-c) show the predicted crack propagation by the ECDM simulation in terms of the 

maximum principal strain contours, from which two highly localized strain zones represent two 

nearly antisymmetric curved cracks propagating simultaneously from the roots of notches to 

the opposite sides. It can be seen from Fig. 13(d) that there is an excellent coincidence in crack 

paths obtained from three models. The comparison between modelling results and experiment 

measurement can be seen from Fig. 13(d). The ECDM modellings with the three different 

meshes track the two propagating cracks very well, which fairly coincide with the experimental 

envelope. There is only a slight difference in the crack paths given by the three different meshes. 

However, even the coarsest mesh can predict propagation of the two arbitrary cracks. Through 

the comparison given in Fig. 13, it can be declared that the ECDM approach is able to capture 

arbitrary multicrack propagation without knowing a priori crack path. This modelling 

simulation confirms the mesh independence of the developed ECDM approach and the 

robustness of the crack tracking algorithm.  
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Fig. 13. (a-c): The ECDM predicted multiple crack paths using three different meshes; (d): 

Comparison between the ECDM and experimental envelope. 

 

Fig.14 shows failure responses recorded with vertical load against the corresponding 

displacements given by ECDM, XFEM, E-FEM and the experiment work, respectively. The 

predicted failure responses by ECDM with three meshes are almost coincident, and are very 

close to simulated responses from XFEM and E-FEM. It can be seen from Fig. 14 that predicted 

failure points and the post-failure softening behaviour exhibited by the three different modelling 

approaches are almost identical. A very slight difference can be found during the post-failure 

softening stage. It should be noted that there is big gap between modelling predictions and 

experimental work. As discussed in [37] and [38], the experimental measurement obviously 

overestimated the fracture energy and the tensile strength, which is possibly attributed to the 

relatively crude characterization of the materials’ constitutive relationship. This modeling 

analysis aims to prove the capability of ECDM in prediction of multicrack propagation with 

considerably accuracy and robustness compared to XFEM and E-FEM. The computational 
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efficiency compared to XFEM is similar to that demonstrated in the last section, and is therefore 

assumed to held in this and the following sections. 
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Fig.14. Load – displacement curves given by ECDM, XFEM, E-FEM and experiment. 

 

4.3 A notched beam under asymmetric bending 

In this section, the capability of the ECDM approach for simulating the crack path of 

the notched beam subjected to asymmetric bending as reported in [39] is assessed, this 

being a widely used example for verification of FE numerical algorithms [12, 40]. The 

geometry and boundary conditions of the investigated beam are illustrated in Fig.15. 

The following material properties are taken from previous experimental work [40]: The 

Young’s modulus and Poisson’s ratio are, respectively, E=38000MPa and v=0.2, 

material tensile strength ft=3.0MPa and fracture energy Gc=70.0N/m. 

 

 

 

 

Fig. 15. A beam with a notch under asymmetrical bending. 

 

Fig. 16 shows the ECDM simulated deformation of the investigated beam in the case 

with a zero coefficient of spring, which means the support at the left top of the beam is 
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absent. Crack propagation is presented in Fig. 16 by the maximum principal strain 

contour, which shows a curved crack path propagated from the top of the initial crack 

towards the top of the beam. Fig. 17 shows the predicted failure response using the 

developed ECDM together with the XFEM prediction. A result from experimental work 

is also given in Fig. 17 for comparison. In Fig.17 (a), the predicted curves of total 

reaction versus the crack mouth opening displacement are plotted. It can be seen from 

Fig. 17 that the ECDM predicted initial stiffness agrees well with the results of 

experimental work. The computed failure load by the ECDM approach is between the 

upper and lower bound of the failure load envelope obtained from experimental work. 

In essence, most of the post-failure response given by the two models follows the 

variation of the experimental envelope. However, the ECDM prediction shows a 

smoother post-failure response than XFEM. It should be noted that XFEM needs 

viscous damping in analysis, otherwise no convergent result can be reached. This 

example demonstrates that the ECDM with embedded micro-mechanical CDM is able 

to predict the realistic damage propagation in this fracture specimen. Compared with 

the experimental observation, the ECDM predicted crack path stays within the 

experimental envelope as shown in Fig. 17b. Fig. 17b also shows XFEM predicted 

crack path by element CPE4, which agrees with experimental measurement at early 

crack path but moves away from experimental measurement at late crack path.  

 

 

 

 

Fig. 16. The ECDM simulated crack propagation in the case of K=0. 

 

Fig. 18 shows the ECDM simulation of cracked beam in the case with K=∞. Comparison of 

failure responses between the ECDM, XFEM and test in this case is shown in Fig. 19. It can be 

seen from Fig. 19a that both the ECDM and XFEM predicted initial stiffness agree with the test 

envelope. The ECDM computed failure load agrees with the tested one, while XFEM 
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overestimates the failure load by 15%. In the post failure stage, both the ECDM and XFEM do 

not follow the tested failure response, and predict higher residual stiffness than the test. The 

ECDM prediction is between experimental test and XFEM. The reason for this disagreement is 

possibly due to K=∞ as an absolute restraint applied on the top left corner of the beam model. 

The exact same condition would rarely be applied on the test samples. Any slight movement 

would possibly influence the post failure response. Fig. 19b shows crack paths from the test, 

and the ECDM and XFEM approaches. The ECDM predicted crack path agrees with the 

experimental envelope well. The XFEM prediction partly moves away from the tested crack 

path. 

 

Fig. 17. (a) The ECDM and XFEM simulated failure responses together with experimental 

envelop, (b) comparison of crack path between predictions and test in the case of K=0. 

 

The above modelling analysis of the beam under asymmetric bending demonstrates that 

the developed ECDM approach is able to capture the arbitrary crack behaviour with 

sufficient accuracy, and to characterize the crack path and residual stiffness of the 

structure during crack propagation. In addition, the convergence and stability of the 

ECDM approach are comparable to XFEM. 

 

 

 

Fig.18. The ECDM simulated crack propagation in the case of K=∞. 
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Fig. 19. (a) Crack mouth opening displacement, (b) comparison of crack path between 

predictions and test in the case of K=∞. 

 

5. Conclusion and future work 

This paper presents a study on the performance of the developed ECDM formulation. Starting 

from using the enriched displacement approximation with shifted Heaviside function, then a 

condensation is consequently performed for eliminating the enrichments at the elemental level, 

by which, the developed ECDM approach can describe arbitrary discontinuities without 

enriched Dofs. A cohesive damage law is used to characterize the failure evolution of quasi-

brittle materials. Through the introduction of an equivalent damage scalar relating to strain field, 

the energy dissipation can be consistently maintained during failure evolution. This model, 

benefiting from hiring standard shape functions, without the  need of additional Dofs or nodes, 

is expected to address the challenge of computational efficiency without sacrificing numerical 

accuracy. The equivalent damage scalar introduced by this investigation guarantees the constant 

dissipation of fracture energy which can achieve a more accurate failure load and a post failure 

response. This developed ECDM has the following specific features: (a) enriched DoFs are 

eliminated from the fully condensed equilibrium equations; (b) the cohesive damage law is 

embedded into the condensed equilibrium equation; (c) the effects from the enriched DoFs and 

the cohesive characteristic are accounted into the final condensed formulation; (d) the derived 

formulations are presented with the standard FEM displacements only; (e) a novel equivalent 

damage scalar as a function of strain field is employed based on the thermal dissipation, which 

enables the model conforms with thermodynamic consistency. The ECDM is a computationally 

efficient approach since only standard DoFs are needed. 
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This paper illustrates the implementation of the ECDM approach as a user element in ABAQUS. 

Representative numerical benchmark examples, characterized by mixed-mode fracture, are 

used to validate the performance of the ECDM. Through three fracture benchmark specimens, 

it has been demonstrated that the developed ECDM achieves a significant improvement in 

numerical accuracy, efficiency, and robustness. The ECDM approach can achieve highly 

acceptable solution even with a relatively coarse mesh, while the XFEM in ABAQUS 

overestimates the structural strength and shows the feature of mesh dependence. In discussion 

of computational efficiency through investigated examples, the ECDM approach can save great 

computational cost accounted by CPU time compared to XFEM. This investigation shows the 

significance of ECDM in computational damage analysis of engineering materials. 

 

This study shows that ECDM is a promising approach with high computational efficiency for 

predicting multicrack mechanisms in large-scalar structures. Currently, the developed ECDM 

is within the framework of 2D plain strain and stress quadrilateral elements. In the future, a 

ECDM based 3D solid element needs to be implemented. Meanwhile, the future work will 

include the development of the ECDM based thermal damage model, fatigue damage model 

and impact damage model.   
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