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Abstract: Understanding changes in temperature extremes in a warmer climate is of 23 

great importance for society and for ecosystem functioning due to potentially severe 24 

impacts of such extreme events. In this study, temperature extremes defined by the 25 

Expert Team on Climate Change Detection and Indices (ETCCDI) from CMIP5 models 26 

are evaluated by comparison with homogenized gridded observations at 0.5° resolution 27 

across the Tibetan Plateau (TP) for 1961-2005. Using statistical metrics, the models 28 

have been ranked in terms of their ability to reproduce similar patterns in extreme 29 

events to the observations. Four CMIP5 models have good performance (BNU-ESM, 30 

HadGEM2-ES, CCSM4, CanESM2) and are used to create an optimal model ensemble 31 

(OME). Most temperature extreme indices in the OME are closer to the observations 32 

than in an ensemble using all models. Best performance is given for threshold 33 

temperature indices and extreme/absolute value indices are slightly less well modelled. 34 

Thus the choice of model in the OME seems to have more influences on temperature 35 

extreme indices based on thresholds. There is no significant correlation between 36 

elevation and modelled bias of the extreme indices for both the optimal/all model 37 

ensembles. Furthermore, the minimum temperature (Tmin) is significanlty positive 38 

correlations with the longwave radiation and cloud variables, respectively, but the Tmax 39 

fails to find the correlation with the shortwave radiation and cloud variables. This 40 

suggests that the cloud-radiation differences influence the Tmin in each CMIP5 model 41 

to some extent, and result in the temperature extremes based on Tmin.  42 
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1. Introduction 44 



According to the Fifth Assessment Report of the Intergovernmental Panel on Climate 45 

Change (IPCC AR5) [IPCC, 2013], the globally averaged combined land and ocean 46 

surface temperature has shown a warming of 0.85 ℃ (0.65-1.06) over the period 47 

1880-2012 [IPCC, 2013]. A warming climate has been shown to exacerbate climate 48 

extremes, which can be of particular relevance to society and ecosystems due to their 49 

severe impacts [Coumou and Rahmstorf, 2012; Easterling et al., 2000; IPCC, 2013; 50 

Rahmstorf et al., 2007]. Correspondingly, the demand for understanding and modelling 51 

future changes in climate extremes has increased in recent years [IPCC, 2013; Sillmann 52 

et al., 2013a; Sillmann et al., 2013b]. The Expert Team on Climate Change Detection 53 

and Indices (ETCCDI) (http://cccma.seos.uvic.ca/ETCCDI) has developed a set of 54 

indices to quantify extremes and thus facilitate an understanding of observed change 55 

[IPCC, 2007; 2013; Peterson and Manton, 2008]. These indices were widely used in 56 

IPCC AR4 [IPCC, 2007] and AR5 [IPCC, 2013]. 57 

The ETCCDI indices have been analyzed based on observational records [Aguilar et 58 

al., 2005; Alexander et al., 2006], reanalyses [Fang et al., 2008; You et al., 2014], and 59 

future climate modelling projections [Z Jiang et al., 2015; Z Jiang et al., 2012; Kharin 60 

et al., 2013; Sillmann et al., 2013a; Sillmann et al., 2013b]. Many studies have been 61 

applied at the global scale [Alexander et al., 2006; Donat et al., 2013; Frich et al., 2002]; 62 

but also at continental scales (such as Africa [Aguilar et al., 2009; New et al., 2006], 63 

America [Peterson et al., 2008] and Europe [E.M. Fischer and Schaer, 2010; Sillmann 64 

and Croci-Maspoli, 2009]), and regional scales (such as China [Ren et al., 2011; You 65 

et al., 2011; Zhai and Pan, 2003], the Tibetan Plateau [You et al., 2008], the Asia-66 



Pacific Network region [Choi et al., 2009] and Russia [Bulygina et al., 2007]). At the 67 

global scale increases in the number of warm days/nights and decreases in the number 68 

of cold days/nights are not in dispute [IPCC, 2013]. 69 

Climate models have improved since IPCC AR4, and can now reproduce observed 70 

continental-scale surface temperature patterns fairly accurately, along with past trends 71 

including the rapid warming since the mid-20th century and the cooling immediately 72 

following large volcanic eruptions [IPCC, 2013]. Therefore models are now being used 73 

to project changes in climate extremes [Z Jiang et al., 2015; Z Jiang et al., 2012; 74 

Sillmann et al., 2013a; Sillmann et al., 2013b; Sillmann and Roeckner, 2008; T Yang et 75 

al., 2012]. In IPCC AR5 for example, the Coupled Model Intercomparison Project 76 

Phase 5 (CMIP5) [Taylor et al., 2012] has produced a freely available multi-model 77 

dataset which has allowed evaluation of ETCCDI indices at the global scale [Sillmann 78 

et al., 2013a; Sillmann et al., 2013b; Sillmann and Roeckner, 2008]. However there are 79 

still limitations in accurately simulating regional extremes [Easterling et al., 2000]. 80 

CMIP5 model discrepancies in simulating cold extremes are generally larger than those 81 

for warm extremes, and there are larger uncertainties in the tropics and subtropics 82 

[Kharin et al., 2013]. 83 

No previous study has specifically addressed climate extremes on the Tibetan Plateau 84 

(TP). The TP is over 4000 m above sea level and is surrounded by large mountain 85 

ranges (i.e. the Kunlun, Qilian, Hengduan, and Karakoram). All 14 of the world’s peaks 86 

over 8000m are found in the TP, and 6 of the most important rivers in the world, 87 

including the Yellow, Yangtze and Yuarlung Zangbo rivers. These feed millions of 88 



people in downstream regions [Guo et al., 2016; Kuang and Jiao, 2016; T Yang et al., 89 

2012; You et al., 2011; You et al., 2016; You et al., 2014]. It is therefore pivotal to 90 

understand changes in extremes over the TP [Duan and Xiao, 2015; Guo et al., 2016; 91 

Kuang and Jiao, 2016; Yan et al., 2016; You et al., 2016]. In this study, we examine 92 

changes in temperature extremes across the plateau using CMIP5 model ensembles and 93 

compare the results with gridded observations. Such studies are essential to improve 94 

knowledge on simulations of climate extremes in the plateau region.  95 

2. Data and methods  96 

Homogenized daily mean (Tmean), maximum (Tmax) and minimum temperatures (Tmin) 97 

are provided at 0.5° resolution by the National Climate Center of China Meteorological 98 

Administration (NCC/CMA). Values are interpolated using an “anomaly approach” 99 

from over 2400 stations [Wu and Gao, 2013; Xu et al., 2009]. A 30-year Tmean, Tmax 100 

and Tmin for 1971–2000 are calculated for each Julian date at each station, and further 101 

extension of the dataset can be conducted directly based on this climatology without 102 

having to recalculate it every time. Stations with more than 1/3 (10 years) missing data 103 

are excluded from the analysis [Wu and Gao, 2013; Xu et al., 2009]. This dataset has 104 

been widely used to validate regional and global atmospheric model simulations of 105 

extreme climate indices in past studies [Z Jiang et al., 2015; Z Jiang et al., 2012; You 106 

et al., 2015]. 107 

The CMIP5 Project represents the latest and most ambitious coordinated international 108 

climate model intercomparison exercise [Taylor et al., 2012]. Table 1 lists CMIP5 109 

models used in this study. Further model details and information on their configuration 110 



or features can be found in the Program for Climate Model Diagnosis and 111 

Intercomparison (PCMDI) data portal (http://www-pcmdi.llnl.gov/) [Taylor et al., 112 

2012]. Outputs from the ‘historical’ simulations of these CMIP5 models were used by 113 

the PCMDI in IPCC AR5 [IPCC, 2013]. In this study daily Tmean, Tmax and Tmin 114 

simulations and observations covering 1961-2005 are selected and interpolated to a 115 

common 2.5×2.5° grid using a bi-linear interpolation procedure 116 

(http://code.zmaw.de/projects/cdo).  117 

Sixteen indices of temperature extremes (Table 2), including some of the ETCCDI 118 

indices are used to assess intensity, frequency and duration of climate extreme events 119 

[Aguilar et al., 2009; Aguilar et al., 2005; Alexander et al., 2006; Donat et al., 2013; 120 

Peterson et al., 2008; Sillmann et al., 2013a; You et al., 2011]. Detailed descriptions 121 

are provided in Table 2 (also see http://cccma.seos.uvic.ca/ETCCDI). 17 CMIP5 model 122 

simulations of 16 indices are chosen, and the root-mean-square error, the standard 123 

deviations and correlation betwee the model and observation are calculated. The 124 

comprehensive model rank (MR) [Chen et al., 2011; Z Jiang et al., 2015; Z Jiang et al., 125 

2012] which measures the consistency of simulations for each model is defined as: 126 
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Where m and n is the number of models and indices, and ranki is based on model’s 128 

order of performance on each index. The MR of the best-performing model is closer to 129 

1, indicating higher skill [Chen et al., 2011; Z Jiang et al., 2015; Z Jiang et al., 2012]. 130 

Based on MR the optimal models from 17 models are selected and the ensemble 131 

simulations were then performed. The temporal skill scores are calculaled as: 132 
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)2, where STDm and STDo denotes the interannual standard deviation 133 

of simulation and observations, respectively [Chen et al., 2011; Z Jiang et al., 2015; Z 134 

Jiang et al., 2012]. 135 

The Mann-Kendall test for a trend and Sen’s slope estimates are used to estimate trends 136 

[Sen, 1968]. This is a common method employed to compute trends in meteorological 137 

and climate extreme series [Bulygina et al., 2007; Choi et al., 2009; You et al., 2011; 138 

You et al., 2016; Zhang et al., 2011]. A trend is statistically significant if p<0.05. 139 

3. Results 140 

3.1 Evaluation of temporal variability 141 

Three assessment indices (the temporal correlation coefficient (a), the ratio of standard 142 

deviation (b) and the root-mean-square error (c) between observed and modelled 143 

extremes) are used to evaluate the ability of each model to simulate the 16 temperature 144 

extremes similar to the observed values (Figure 1). Correlation coefficients between 145 

observed and simulated extremes are nearly all positive (red cells in Figure 1a) for all 146 

16 temperature extreme indices, and they reach over 0.5 for TXn, TN90p, TN10p and 147 

FD0 (see Table 2). This suggests that CMIP5 models can simulate much of the 148 

interdecadal variability of temperature extremes in the TP. Using the ratio of modelled 149 

to observed standard deviation (Figure 1b), a value closer to 1 means a more realistic 150 

model simulation. With the exception of duration indices such as TR20, WSDI and 151 

CSDI, most ratios are quite close to 1 and thus the models are fairly realistic. For root-152 

mean-square errors (Figure 1c), many indices such as TNx, DTR and threshold indices 153 

such as TX90p and TN90p have fairly small values, indicating that these indices are 154 



captured relatively well by most CMIP5 models.  155 

To synthesize the three assessment indices an MR value is calculated for each model to 156 

illustrate their overall ranking (Figure 2). Each model is ranked from 1 (best) to 17 157 

(worst) for each index. The length of the color column is the summary of each ranking 158 

and shorter columns mean a better model performance. The colors reprsent the ranking 159 

of each individual index. The top five CMIP5 models are MPI-ESM-MR, CCSM4, 160 

HadGEM2-ES, BNU-ESM, and GFDL-ESM2M, respectively.  161 

3.2 Evaluation of spatial variability 162 

The spatial success of each model in reproducing observed patterns of extreme indices 163 

can be assessed in a similar way using equivalent spatial statistics (Figure 3). In Figure 164 

3a, the correlation coefficients between observed and modelled patterns of extremes are 165 

positive for some indices, especially DTR and WSDI. Hoewever there are also several 166 

indices with negative correlations such as TXx, TNx, SU25 and TR20. Thus compared 167 

with the temporal variability, the spatial variability of temperature extremes in the TP 168 

is only simulated well in some cases. However there are uncertainties in observations 169 

because of a lack ofstations in many sub-regions. For the ratio of modelled to observed 170 

standard deviation (Figure 3b), values near 1 are common. The exception is for TR20 171 

which shows extremely high ratios. DTR, TX10p and TN10p are closest to 1. Root-172 

mean-square errors are smallest for threshold indices such as TX90p and TN90p 173 

(Figure 3c) suggesting that most CMIP5 models are particularly good at simulating 174 

these. Duration indices such as SU25 and FD0 have larger root-mean-square errors. 175 

A similar spatial ranking of overall model performance (Figure 4) shows the best 176 



models to be BNU-ESM, CanESM2, EC-EARTH, HadGEM2-ES, and ACCESS1.0, 177 

respectively.  178 

 179 

3.3 A combined temporal and spatial ranking 180 

The relationship between temporal and spatial ranks for each model is shown in Figure 181 

5. Each dot represents a model, identified by its number on the right. The ranking is 182 

given a value between 0 and 1 for each model based on the three assessment indices. 183 

The correlation coefficient between the two is 0.448 meaning the inter-model 184 

consistency in simulating spatial pattern and inter-annual variability. Models closer to 185 

the top right of the diagram show better overall performance. The sum of the temporal 186 

and spatial ranking is shown in Figure 6, the top four models are: BUN-ESM (5), 187 

HadGEM2-ES (8), CCSM4 (10), and CanESM (11). These four will be defined as the 188 

optimal models. Two ensemble simulations were then performed: one with just the four 189 

optimal models, and one with all 17 models.  190 

The difference in climatology of extreme indices between the optimal/all models 191 

ensembles and the observations are shown in Figure 7. Time series of individual indices 192 

from these three datasets (optimal/all models ensembles and observations) are 193 

represented in Figure 8. Trends and temporal skill scores for each index in each dataset 194 

are summarized in Table 3. Although patterns are complex, compared with the all 195 

models ensemble, the optimal models ensemble is shown to greatly reduce the gap 196 

between simulation and observations for both spatial and temporal patterns. This is 197 

particularly the case for the indices of TNn, SU25, TR20, WSDI and CSDI (Figures 7 198 



and 8). The optimal model ensemble has good skill scores, and is lower than the all 199 

model ensemble score in 12 cases out of 16, showing that the optimal models ensemble 200 

is usually closest to the observations. 201 

In order to understand the differences in the success of various CMIP5 models in 202 

simulating temperature extremes, five climate variables from each model, potentially 203 

influencing Tmax and Tmin, are selected. These are  204 

1. the surface downwelling shortwave radiation (SDSR),  205 

2. the SDSR at clear sky (SDSRcs),  206 

3. the surface downwelling longwave radiation (SDLR),  207 

4. the SDLR at clear sky (SDLRcs) and  208 

5. the total cloud fraction (TCF). 209 

Figure 9 shows the relationship between Tmax/Tmin and these variables for each 210 

CMIP5 model. For Tmax, there are no significant correlations with TCF, the difference 211 

between SDSRcs and SDSR, and SDSR, respectively (Figure 9a,b,c), which suggests 212 

that incoming energy balance is not simulated well and cannot account for changes in 213 

Tmax. This lack of correlation of Tmax with radiation parameters is inconsistent with 214 

previous studies which showed that CMIP5 model differences in DTR seemed to be 215 

significantly controlled by clouds, and longwave and shortwave fluxes on the global 216 

scale [Lindvall and Svensson, 2015]. 217 

Tmin on the other hand has significant positive correlations with TCF (R=0.34), the 218 

SDLR-SDLRcs (R=0.39) and SDLR (R=0.71), indicating that nightime cloud-radiation 219 

differences are a partial control on Tmin in most CMIP5 models. Differences in TCF, 220 



SDSRcs-SDSR, and SDLR-SDLRcs between models are related to differences in 221 

aerosol loadings.  222 

The relationships between elevation and bias (optimal/all model ensembles minus 223 

observations) in simulations of temperature extremes are shown in Figure 10. 224 

Elevations are calculated from the 90 × 90 m SRTM (Shuttle Radar Topography 225 

Mission) DEM from the International Scientific and Technical Data Mirror Site 226 

(http://www.gscloud.cn). There is no significant correlation between elevation and any 227 

bias and thus no elevational dependancy in any bias of temperature extreme indices in 228 

the model ensembles. 229 

4. Discussion and Conclusions 230 

In recent decades, climate extremes have attracted much attention because of 231 

disproportionate impacts on society and ecosystems [IPCC, 2013]. We have examined 232 

changes in temperature extremes over the TP using standard indices defined by 233 

ETCCDI from CMIP5 models and compared these changes with those based on 234 

observations. It is informative to compare our results with past global studies to set 235 

changes in the TP in broader context. In particular it is of interest whether indices are 236 

changing in a similar way to the global scale. Since there are four main types of index: 237 

a) relative (percentile based), b) absolute, c) threshold and d) duration, we start by 238 

discussing each in turn, before considering more broad diurnal contrasts. The most 239 

comprehensive global analysis of trends in extremes in CMIP5 model simulations is 240 

that of Sillmann et al. (2013a) – hereafter S13, but unfortunately global trend 241 

magnitudes for each index are not defined in this paper which makes a direct 242 



quantitative comparison of our results difficult. 243 

In our study the relative indices based on observations show a decrease in cold days 244 

and nights (TX10p/TN10p) and increase in warm days and nights (TX90p/TN90p). All 245 

these are consistent with warming in the same indices reported by S13 but similar 246 

patterns have also been shown in equivalent analyses of observations on a global scale 247 

[Alexander et al., 2006; Frich et al., 2002]. Both optimal and all ensemble models also 248 

show trends in the relative indices in our study but they are smaller in magnitude than 249 

for the observations. The difference is particularly noticeable for TN10p and TN90p 250 

where the models fail to match the rapid nighttime warming in observations over the 251 

plateau.  252 

Previous global studies have also indicated an intensification in absolute temperature 253 

indices (TXn/TNn and TXx/TNx) in observations [Seneviratne et al., 2012; Vose et al., 254 

2005], reanalyses [You et al., 2013], and model simulations [Kharin et al., 2013; 255 

Rahmstorf et al., 2007; Sillmann et al., 2013a; Sillmann et al., 2013b]. In our study all 256 

absolute indices are increasing which agrees with the S13. TNn tends to have the 257 

strongest warming in the observations but TNx has in the models.  258 

Threshold indices (FD0, ID0, SU25, TR20) can have great influence on ecosystems and 259 

human infrastructure, and small changes in the indices can have relatively large impacts 260 

[Kang et al., 2010; Kharin et al., 2013; Peterson and Manton, 2008; Peterson et al., 261 

2008; You et al., 2013; You et al., 2008]. Global trends in S13 show a decrease in FD0 262 

and increase in TR20 (others not reported). Over the TP, frost days (FD0) and ice days 263 

(ID0) show rapid decreases in the observations but this is not picked up by the model 264 



ensembles. The ensembles even simulate weak increases, the reasons for which require 265 

more research.  266 

Finally, changes in duration indices (GSL, WSDI and CSDI) are also variable. On a 267 

global scale in S13 WSDI is increasing, sometimes significantly and CSDI decreasing 268 

(albeit at a slower rate).  Decreasing cold spell and increasing warm spell lengths also 269 

occur in both the observations and model ensembles in the TP, and again the increase 270 

in warm spell duration is particularly strong. Thus the TP is broadly representative of 271 

global trends, and the high elevation does not mitigate against the rapid increase in 272 

warm spells. There is however a discrepancy in our study in terms of growing season 273 

length which decreases in the model ensembles but increases in the observations. In 274 

summary the signs of the trends in most indices over the TP are in agreement with 275 

global trends reported in S13. 276 

Taken together the relative and absolute index changes in the observations imply that 277 

nighttime warming over the TP is much stronger than daytime warming, probably 278 

because the water vapour [Rangwala et al., 2009] and radiative [Ohmura, 2012] 279 

feedbacks critical at high elevations are enhanced at lower air temperatures [Rangwala 280 

et al., 2009; Rangwala et al., 2013]. Numerous other studies have shown elevation-281 

dependent warming whereby high elevations are warming more rapidly than the global 282 

mean [Pepin and Coauthors, 2015; Vuille et al., 2015; Wang et al., 2016]. However, 283 

any elevational signal is usually clearer in nighttime observations of Tmin in 284 

comparison to Tmax [Rangwala and Miller, 2012; Yan and Liu, 2014]. Interestingly 285 

however the CMIP5 model ensembles do not reflect this over the plateau. DTR is 286 



increasing in the model ensembles (albeit insignificantly) whereas it is strongly 287 

decreasing (-0.22˚C/decade) in the observations. The decreasing DTR may also partly 288 

be the reason why frost days are increasing and the growing season is shortening in the 289 

model ensembles. The cause of the lack of nighttime warming in comparison with 290 

daytime warming in the ensembles requires further investigation. One possible theory 291 

is that it is likely to be because the CMIP5 models in general are dominated by surface 292 

based (especially snow albedo) feedback mechanisms (which should be enhanced 293 

during the day) and less influenced by water vapour and Planck feedbacks (which 294 

should be enhanced at night). To start to appreciate the relative roles of various 295 

feedback mechanisms, we also investigated the relationship between cloud and 296 

radiation variables and daily maximum/minimum temperatures in the models (Figure 297 

9). At night there are strong relationships, again suggesting that cloud-related feedbacks 298 

are a dominant control of nighttime trends in Tmin. Although water vapour and cloud 299 

feedbacks are still relevant during the day, the situation is more complex with additional 300 

surface albedo loops due to snow/ice retreat [Kang et al., 2010] and vegetation changes 301 

[D Jiang et al., 2011] also being strongly important. Cryospheric change in the TP such 302 

as the shrinking of glaciers and melting of frozen ground [Kang et al., 2010; K Yang et 303 

al., 2014; K Yang et al., 2011; You et al., 2016] will preferentially enhance daytime 304 

warming. For example, more than 80% of glaciers in western China have retreated, 305 

losing 4.5% of their areal coverage since 1951 [Kang et al., 2010]. Vegetation is more 306 

complex since migration of treelines upslope could encourage warming through 307 

greening (in a similar way to the Arctic [Chapin et al., 2005], but this is not happening 308 



everywhere and there is also degradation in vegetation through overgrazing which 309 

could introduce other moisture-related feedback loops. The added influence of surface 310 

feedback loops (snow, vegetation) and their seasonal dependence means that the 311 

relationship between Tmax and cloud variables probably depends on season and 312 

location. 313 

The most successful models which formed part of the optimal ensemble were BNU-314 

ESM, CanESM2, CCSM4 and HadGEM2-ES. A comprehensive review of model 315 

performance is available in IPCC (2013), where assessed models according to the rates 316 

of change of tropospheric temperature and precipitable water for the tropics (20˚S to 317 

20˚N) – see Figure 9.9, p774 in IPCC (2013). All the models in the optimal ensemble 318 

apart from BNU-ESM for which there is no data, showed strong warming and wetting 319 

trends, indicative of stronger water vapour feedback. Thus models with strong tropical 320 

vapour feedback appear to do well in simulating temperature extremes over the TP, the 321 

reasons for which require more research. S13 also evaluated the success of all CMIP5 322 

models on a global scale at simulating trends in extremes and it is informative to 323 

compare their results with ours. CCSM4 and HadGEM2-ES also performed well 324 

globally, but BNU-ESM and CanESM2 showed more variable performance, and the 325 

latter was not good for TXx and TNn.   326 

A summary of individual feedbacks for each model in the CMIP5 experiment is 327 

presented in IPCC [2013]. Unfortunately it is difficult to find characteristics that stand 328 

out for the four models in the optimal ensemble, in comparison with the other models 329 

in this table. In part this is because a lot of models have missing data on vital feedbacks. 330 



Equilibrium climate sensitivity tends to be high for the optimal models, particularly 331 

HadGEM-E2 which has the second highest of any model at 4.6˚C. However, model 332 

feedbacks including lapse rate (negative), surface albedo (positive) and cloud feedback 333 

(positive or negative) show no strong pattern for the four best models. The absence of 334 

any obvious strong model signature or characteristics which define a “successful” 335 

model means that much more work is required to understand the physical processes 336 

associated with temperature extremes at high elevations typical of the plateau, and 337 

subsequently what feedback mechanisms are most critical in creating a successful 338 

hindcast of temperature extremes. 339 

Understanding the mechanisms by which extreme temperatures occur, especially at 340 

high elevations, is challenging. On a global scale, several explanations have been put 341 

forward to account for changing extremes which include changes in local and global 342 

SSTs [Alexander et al., 2006], changes in large scale circulation patterns [Kysely, 343 

2008], and the influence of land surface change [IPCC, 2013]. The last factor is 344 

particularly important in controlling daytime extremes. Successful modelling of soil-345 

moisture and land-atmosphere coupling is required for a model to simulate the influence 346 

of soil moisture anomalies on high-temperature extremes for example, and energy 347 

partitioning (sensible vs latent heat) is a critical control [E. M. Fischer and Knutti, 348 

2015]. Drier conditions and absence of soil moisture leads to greater extremes (both 349 

day and night) so long-term droughts (which maybe caused by persistent circulation 350 

anomalies) are an important factor. Any long-term degradation in vegetation on the 351 

plateau [Kang et al., 2010] could therefore contribute to increased extremes and needs 352 



to be part of any model. Changes in atmospheric circulation can also modify 353 

temperature extremes and their spatial distribution [Alexander et al., 2006; You et al., 354 

2011; You et al., 2008]. In the TP for example cold air outbreaks imported from Siberia 355 

are associated with nearly all extremely low temperature episodes. Finally there is 356 

strengthened evidence for an influence of human activity on the observed frequency of 357 

extreme temperatures [Coumou and Rahmstorf, 2012; E.M. Fischer and Knutti, 2013; 358 

Rahmstorf et al., 2007]. 359 

What is missing so far from the research into temperature extremes is an appreciation 360 

of how elevation itself could influence the various controlling factors and feedbacks 361 

discussed above. The high elevation environment is often thought of as naturally 362 

extreme, with a strong dependence of surface temperature on surface energy balance  363 

and a lack of atmosphere above to buffer response to direct radiation exchange.  364 

However it is not obvious how this natural tendency towards temperature extremes 365 

manifests itself in terms of past and future trends in extreme events. Recent research is 366 

beginning to uncover the forcing mechanisms of high elevation temperature change 367 

[Pepin and Coauthors, 2015] and critical to future understanding is an appreciation of 368 

elevation gradients in forcing due to snow albedo [Giorgi et al., 1997] and vegetation 369 

[D Jiang et al., 2011] feedbacks, water vapour and downwelling long wave radiation 370 

(Rangwala et al. 2009), the surface radiation/temperature feedback [Ohmura, 2012], 371 

clouds and latent heat release [Rangwala and Miller, 2012] and aerosols [Xu et al., 372 

2016]. Isolating the response to each forcing factor in future CMIP5 model runs is an 373 

important area for future high-elevation studies. 374 
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Table 1. CMIP5 models used in this study. 589 

No. Model Institution Country Resolution 

(Lon×Lat Levels) 

1 ACCESS1.0 Commonwealth Scientic and 

Industrial Research Organisation 

and Bureau of Meteorology, 

Australia 

Australia 192×145L38 

2 BNU-ESM Beijing Normal University, China  China  128×64L26(T42) 

3 CanESM2 Canadian Centre for Climate 

Modelling and Analysis, Canada 

Canada 128×64L35(T63) 

 

4 CCSM4 National Center for Atmospheric USA 288×192L26 



Research (NCAR), USA 

5 CESM1-BGC  National Science 

Foundation/Department of Energy 

NCAR, USA 

USA 288×192L26 

6 CMCC-CM  Centro Euro-Mediterraneo per I 

Cambia-menti, Italy 

Italy 480×240L31 

(T159) 

7 CNRM-CM5  Centre National de Recherches 

Meteorologiques, Meteo-France, 

France 

France 256×128L31 

(T127) 

8 CSIRO-Mk3.6.0 Commonwealth Scientic and 

Industrial Research Organization 

(CSIRO), Australia 

Australia 192×96L18 

(T63) 

9 EC-EARTH Royal Netherlands Meteorological 

Institute, Netherlands 

Netherlan

ds 

320×160L62 

(T159) 

10 FGOALS-s2 Instute of Atmospheric Physics, 

Chinese Academy of Sciences, 

China 

China 128×108L26  

 

11 GFDL-ESM2M Geophysical Fluid Dynamics 

Laboratory, USA 

USA 144×90L48 

12 GISS-E2-R Goddard Institute for Space 

Studies, USA 

USA 144×90L40 

13 HadGEM2-ES Met Office Hadley Centre, UK UK 192×145L40  

14 IPSL-CM5A-MR Institut Pierre-Simon Laplace, 

France 

France 144×143L39 

15 MIROC5  AORI, NIES, JAMSTEC, Japan Japan 256×128L40 

(T85) 

16 MPI-ESM-MR Max Planck Institute for 

Meteorology, Germany 

Germany 192×96L95 

(T63) 

17 MRI-CGCM3 Meteorological Research Institute, 

Japan  

Japan  320×160L48 

(T159) 

 590 

Table 2. Definitions of temperature extreme indices calculated by RClimDEX. 591 

Index Descriptive Name Definition Units 

TX10

p 

Cold day Count of days when TX < 10th percentile of 

1961-1990 

days 

TN10

p 

Cold night Count of days when TN < 10th percentile of 

1961-1990 

days 

TX90

p 

Warm day Count of days when TX > 90th percentile of 

1961-1990 

days 

TN90

p 

Warm night Count of days when TN > 90th percentile of 

1961-1990 

days 

DTR Diurnal temperature Annual mean difference between TX and TN ℃ 



range 

TXn Coldest day Annual lowest TX ℃ 

TNn Coldest night Annual lowest TN ℃ 

TXx Warmest day Annual highest TX ℃ 

TNx Warmest night Annual highest TN ℃ 

GSL Growing season length Annual count of days between the first span of 

at least 6 days with TG > 5℃ after winter and  

first span after the summer of 6 days with TG< 

5℃ 

days 

FD0 Frost days Annual count of days when TN< 0℃ days 

ID0 Ice days Annual count of days when TX <0℃ days 

SU25 Summer days Annual count when TX >25℃ days 

TR20 Tropical nights Annual count when TN >20℃ days 

WSDI Continued warm period Count of continued days when TX > 90th 

percentile of 1961-1990                        

days 

CSDI     Continued cold period Count of continued days when TN < 10th 

percentile of 1961-1990 

   days 

Note: TX is the daily maximum temperature; TN is the daily minimum temperature; 592 

TG is daily mean temperature; TNmean/TXmean is the mean of daily minimum/maximum 593 

temperatures for the period 1961-1990, respectively. 594 
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 605 

 606 

Table 3. Trends and temporal skill scores for each temperature extreme index from 607 

observations (OBS), the optimal models ensemble (OME), and the all-models ensemble 608 

(AME), respectively.  609 

Indices Trends Temporal skill score 

 OBS OME AME Unit OME AME 

TXx 0.21 0.02 -0.02 ℃/decade 5.11 6.82 

TNn 0.53 0.01 -0.02 ℃/decade 4.99 3.65 

TXn -0.07 0.01 -0.07 ℃/decade 3.57 2.74 

TNx 0.53 0.05 -0.01 ℃/decade 7.28 8.72 



DTR -0.22 0.01 0.05 ℃/decade 0.31 0.48 

TX90p 1.43 0.84 0.95 day/decade 1.22 2.11 

TX10p -0.87 -0.76 -0.71 day/decade 1.18 3.00 

TN90p 2.60 1.54 1.35 day/decade 1.30 2.39 

TN10p -2.29 -1.18 -1.07 day/decade 9.00 9.00 

SU25 0.94 0.01 -0.69 day/decade 37.98 44.57 

FD0 -4.00 0.23 0.75 day/decade 9.34 9.66 

TR20 0.41 0.04 -0.14 day/decade 78.34 111.55 

ID0 -3.08 0.33 0.30 day/decade 2.50 1.71 

GSL 3.64 -0.67 -1.00 day/decade 9.18 9.37 

WSDI 2.16 1.66 1.66 day/decade 0.57 0.73 

CSDI -0.99 -0.69 -0.61 day/decade 0.23 1.18 
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Figure 630 



 

 

      

 

Figure 1. Portrait diagram for temporal correlation coefficient (a, top panel), standard 631 

deviation ratio (b, middle panel) and root-mean-square error (c, bottom panel) of 632 

temperature extreme indices in the Tibetan Plateau between observations and CMIP5 633 

models. 634 



 635 

Figure 2. Comprehensive model ranking based on temporal correlation coefficient, 636 

standard deviation ratio and root-mean-square error for each temperature extreme index. 637 

The y axis is the sum of model ranking of all temperature extreme indices.  638 
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Figure 3. Same as Figure 1 but for spatial patterns.  654 

 655 



 656 

Figure 4. Same as Figure 2 but for spatial patterns. 657 
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 673 

Figure 5. Scatter diagram showing the relationship between temporal and spatial model 674 

rank (MR) value. Each dot represents a model, identified by its number on the right. The 675 

correlation coefficient between temporal and spatial MR value is 0.448. 676 
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 684 

Figure 6. Comprehensive model ranking based on temporal and spatial correlation 685 

coefficient, standard deviation ratio and root-mean-square error of temperature extreme 686 

indices in the Tibetan Plateau. x axis is the number of the model, the number below 687 

each model and y axis is the sum of model ranking of all temperature extreme indices.  688 
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 707 

Figure 7. The climatological differences of temperature extreme indices between the 708 

optimal models ensemble (a in each panel)/all models ensemble (b in each panel) and 709 

observations in the Tibetan Plateau. 710 
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 712 

Figure 8. Time series of temperature extreme indices from the optimal/all models 713 

ensemble and observations in the Tibetan Plateau during 1961-2005. 714 
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 720 

Figure 9. Relationship between the mean maximum temperature (Tmax), minimum 721 

temperature (Tmin), and climate variables from each CMIP5 model during 1961-2005 722 

in the Tibetan Plateau on the annual basis. Climate variables are the surface 723 

downwelling shortwave radiation (SDSR), the SDSR at clear sky (SDSRcs), the surface 724 

downwelling longwave radiation (SDLR), the SDLR at clear sky (SDLRcs) and the 725 

total cloud fraction (TCF), respectively. 726 
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 729 

Figure 10. Relationship between elevation and bias for each temperature extreme index 730 

(optimal/all models ensemble minus observations) in the Tibetan Plateau during 1961-731 

2005.  732 
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