
Intelligent Systems Conference 2017
7-8 September 2017 | London, UK

Hybrid Functional Networks for PVT
Characterisation

Munirudeen A. Oloso
and Mohamed G. Hassan

School of Engineering
University of Portsmouth

Portsmouth, United Kingdom
Email: Munirudeen.oloso@port.ac.uk
Email: Mohamed.hassan@port.ac.uk

Mohamed Bader-El-Den
School of Computing

University of Portsmouth
Portsmouth, United Kingdom

Email: Mohamed.bader@port.ac.uk

James M. Buick
School of Engineering

University of Portsmouth
Portsmouth, United Kingdom

Email: James.buick@port.ac.uk

Abstract—Predicting pressure volume temperature properties
of black oil is one of the key processes required in a successful oil
exploration. As crude oils from different regions have different
properties, some researchers have used API gravity, which is used
to classify crude oils, to develop different empirical correlations
for different classes of black oils. However, this manual grouping
may not necessarily result in correlations that appropriately
capture the uncertainties in the black oils. This paper proposes
intelligent clustering to group black oils before passing the
clusters as inputs to the functional networks for prediction.
This hybrid process gives better performance than the empirical
correlations, standalone functional networks and neural network
predictions.
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I. INTRODUCTION

The API gravity is one of the important pressure volume
temperature (PVT) properties of crude oils. Crude oil is
classified based on this property to determine its heaviness
which consequently determines its marketability. Table I shows
a typical oil classification based on API gravity [1], [2].
Knowledge of the API gravity and other PVT properties such
as bubblepoint pressure (Pb), oil formation volume factor
(B0) and oil viscosity are important for determining future
production or oil reserves from petroleum wells.

Some of the PVT properties, e.g. API gravity, can easily
be measured or determined onsite while others, e.g. Pb and
B0, are ideally determined through laboratory experimenta-
tion. However, this laboratory analysis, which requires special
expertise, is expensive and time consuming. Hence, there is a
need for a less rigorous, cheaper and quicker solution.

For a long period of time the petroleum industry has
used equations of states (EOS) for determining these PVT

TABLE I. CRUDE OIL CLASSIFICATION BASED ON API

Classification API Range

Light API > 31.1

Medium 22.3 ≤ API ≤ 31.1

Heavy API < 22.3

Extra Heavy API < 10.0

properties. However, the EOS are considered computation-
ally complex and require extensive detailed compositions of
reservoir fluids. Consequently, many empirical correlations
have been developed to meet the industrial demands for less
complex, quicker, cheaper and acceptable solutions.

Empirical correlations for predicting PVT properties are
generally developed by performing linear or non-linear regres-
sion analysis using easily acquired crude oil properties as the
inputs. In order to improve the performance of the correlations,
some researchers have used API gravity to group crude oils
into two or more groups and determine correlations for each
group [3].

For more reliable and improved prediction performance
of these PVT properties, other researchers have implemented
machine learning [ML] algorithms to predict different PVT
properties [4]–[7]. However, none of the previous works found
in the literature which have applied ML techniques in this
field, have taken diversity of API or other input properties
into consideration. For instance, if the data that are used to
train an ML algorithm have more light crude oils than heavy
oils, then the model is confined to the constraints of the light
oils. This type of data is called imbalanced data set which is
well known in the classification problem [8].

This paper proposes a hybrid solution of K-Means clus-
tering and functional networks (FN) for predicting crude
oil PVT properties. K-means clustering is used to generate
clusters of the input dataset before using functional networks
to perform the prediction of the actual target variables, Pb

and the oil formation volume factor at bubblepoint pressure
(B0b). The performances of the hybrid solution (K-Means+FN)
is compared with the standalone FN, feed forward neural
network (FFNN) and selected empirical correlations which are
either commonly used in the petroleum industry or recently
developed.

The rest of the paper is organised as follows. Section
II discusses the empirical correlations and ML methods that
have been used to predict different PVT properties. A brief
explanation of K-Means clustering and functional networks
in comparison with neural networks is given in section III.
This is followed by the proposed hybrid solution in section
IV. Results and discussion of the performances of the hybrid
model and other compared models are done in section V with
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a brief analysis of sensitivity of FN learning parameters. The
conclusion is given in section VI.

II. RESEARCH CONTRIBUTION

In this paper, a hybrid of K-Means cluster and FN has
been developed to estimate PVT properties. This paves way
for intelligent grouping or clustering of crude oils. Also unlike
the existing practice where only the API gravity of crude oils
is used for grouping them, all the independent variables are
used for grouping the crude oils.

III. METHODS FOR PREDICTING PVT PROPERTIES

Aside the EOS, there are two main categories of meth-
ods for predicting PVT properties in the literature: empirical
correlations and ML techniques.

A. Empirical Correlations for Predicting PVT Properties

Many correlations have been developed for the estimation
of Pb and Bob. Usually, the procedure involves linear and/or
non-linear regressions on the available data sets.

Standing developed graphical correlations for both Pb and
Bob based on 105 sets of experimental data [9]. These graph-
ical correlations were later expressed by equations [10]. The
input variables that Standing used for the Pb correlation are:
gas solubility (Rs), gas gravity (γg), oil API gravity (γAPI )
and reservoir temperature (T ). For the Bob correlation, the
correlating parameters were: Rs, γg , oil gravity (γo) and T.
On this basis, many other correlations have been developed
for both Pb and Bob [2], [11]–[16].

For Pb, Standings functional form is:

Pb = f(Rs, γAPI , γg, T ). (1)

For the Bob correlation, the most common functional form
is

Bob = f(Rs, γAPI , γg, T ). (2)

B. Machine Learning Techniques for Predicting PVT Proper-
ties

The quest for better PVT prediction.models to improve
the current performances of the empirical correlations has
driven applications of different ML techniques in PVT char-
acterisation. The most commonly used ML technique for
PVT prediction is artificial neural network (ANN) and its
variants [17]. While many of the authors have reported good
performance from the developed ANN models, others have
pointed out that ANN may not necessarily perform better than
the empirical correlations [11]. It should be noted that the
performance of any ML model depends on careful selection
of its learning parameters.

The black box representation of ANN has made it unattrac-
tive for adoption in industrial PVT application. Sequel to this,
some representative ML and evolutionary techniques have been
used such as support vector machine (SVM), genetic algorithm
(GA), adaptive neuro fuzzy system (ANFIS), functional net-
works (FN) and so on [5], [7], [18].

Fig. 1. A Standard Neural Network

Generally, an ML solution usually involves minimization
of the error in the learning algorithm. It is notable that many
of the machine learning algorithms work by performing a local
search that may become stuck in a local minima which causes
the model to perform poorly when presented with new data
[19]. An ML model could be stuck in local minima as a result
of inefficient learning parameters or imbalanced data sets.
However, this problem has not been adequately addressed in
prediction of PVT properties with ML techniques though some
efforts have been made in empirical correlation development
with some possible accuracy improvement [3]. However, this
involves manual grouping of crude oils and generating different
correlations for the groups. This paper proposes intelligent
clustering of data before applying an ML technique to the
generated clusters.

IV. HYBRID MACHINE LEARNING SYSTEM

Hybrid ML system is normally developed so that the
consisting sub-systems complement each other. The aim of
a hybrid system is to fill the gap that a single method cannot
necessarily fill. This paper implements a hybrid of K-means
clustering and FN.

A. K-means Clustering

K-means is a widely used data mining technique. It puts a
number of input observations into a number of clusters which
must have been defined a priori. The goal of clustering is to
allow natural grouping of data [20]. The implementation, pros
and cons of the K-Means algorithm have been well discussed
in the literature [20].

B. Implementation of Functional Networks

FN were introduced as a powerful alternative to neural
networks [21], [22]. Unlike neural networks, functional net-
works have the advantage that they use domain knowledge in
addition to data knowledge. The network initial topology can
be derived based on the modelling of the properties of the real
world. Once this topology is available, functional equations
allow one to obtain a much simpler equivalent topology.

Simplified general topologies for ANN and FN are shown
in Fig. 1 and 2. In these figures, X1, X2 and X3 are the
inputs into the network. X4 and X5 are the outputs of the
hidden layer. Wmn (m = 4, 5, 6; n = 1, 2, 3, 4, 5) are the
weights while Y is the output in both cases.

There are some quite significant differences between ANN
and FN. Notably, the functions in FN are truly learned during
the structural learning unlike the ANN where neuron functions
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Fig. 2. A Standard Functional Network

are assumed to be fixed and known and only the weights are
learned. The implemented FN is shortly described below.

Given a data set {xij |yi; i = 1, 2, ..., n; j = 1, 2, 3, 4}
where xij are the predictors and yi is the output. Mathemati-
cally, the relationship can be given by

Y = f(X1, X2, X3, X4) (3)

Note that j refers to the number of inputs which is 4 here.
The general form of a functional network that learns from the
data can be given as follows [22]:

yi = sump
j=1

m∑
r=1

Crϕr(xij), i = 1, 2, ..., n (4)

where ϕr are the linear independent functions which are
used to learn the coefficients Cr. Some possible functions for
ϕr are:

1) Polynomial function:

ϕ = {1, x, x2, ..., xm} (5)

2) Exponential Function:

ϕ = {1, ex, e−x, ..., emx, e−mx} (6)

3) Fourier Function:

ϕ = {1, sin(x), cos(x), ..., sin(mx), cos(mx)} (7)

4) Logarithm Function:

ϕ = {1, log(x+ 2), log(x+ 3), ..., log(x+m)} (8)

The aim is to get which is an estimate of Ŷ such that the
square of the error ε is minimised. That is

min

{
1

n

n∑
i=1

(
Yi − Ŷi

)2}
. (9)

Hence, the aim is to produce an estimate Ŷ that gives minimal
error ε which can be represented as:

ε = min(Y − Ŷ ). (10)

This final equation can be solved using least square opti-
mization.

Fig. 3. Steps for the hybrid k-means and Functional Networks

C. Proposed Hybrid K-means and Functional Networks

The proposed hybrid implementation is shown in Fig. 3.
The clusters serve as inputs to the FN. FN has been specifically
chosen for the hybrid modelling as it has been shown to
perform very well on both small and large data sets [22]. It
is important to note that the clustering takes all the predictors
into consideration to generate the clusters unlike the manual
grouping based on only API grouping, which is done for some
empirical correlations.

All the four functional forms stated above have been tested
with degree between 3 and 10 which is sufficient in most
cases [22]. The best chosen model is the one that gives both
the minimum root mean squared error (RMSE) and average
absolute percentage relative error (Ea).

D. Simulations

A total of approximately 1400 data points were available
for the simulation. 327 data points were collected from dif-
ferent published papers [12], [23]–[25]. The remaining data
are unpublished and they are from different sources such as
GeoMark Research and Shell Company. The data comes from
diverse crude oils across the globe.

In the hybrid systems, four input clusters have been
generated which are passed to the functional networks. All
the stated learning functions were tested and the polynomial
function of degree five gave the best results for both the
hybrid K-Means+FN and the standalone FN. For the ANN
model, different activation functions, number of hidden layers
and neurons were explored. The best ANN model has been
achieved with sigmoid activation, one hidden layer and ten
neurons.

V. RESULTS AND DISCUSSION

Simulation results of hybrid K-Means+FN for both Pb and
Bob are presented and compared with the standalone FN and
ANN, popular and recently proposed empirical correlations.
Mainly, two statistical error measures, RMSE and Ea are used
to compare the prediction capability of the models. Whenever
there is a tie between these two parameters, then Emax and
CC are used respectively for comparison. The lower the error
parameters, RMSE, Ea and Emax, the better. On the other
hand, the higher the CC the better.
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A. Comparison of Hybrid K-Means+FN with other Models

For Pb prediction, the proposed hybrid K-Means+FN
model gives both minimum RMSE (344.8264) and Ea

(11.0829) as shown in Table 2. K-Means+FN hybrid model
also has the least Emax (81.8879) which implies that it has the
least tendency of over-fitting. Likewise, K-Means+FN has the
highest CC (0.9652) which is an indication that its predicted
output are more correlated with the target than others.

Among all these compared models for Pb prediction, the
least performance is in the correlation of [16]. From the results,
both ANN and standalone FN also perform better than all the
listed empirical correlations.

The results for the Bob prediction are shown in Table 3.
Clearly, the hybrid K-Means +FN gives the best performance
with the least RMSE (0.0489) and Ea (1.3856). Also the
K-Means+FN hybrid has the minimum Emax (31.8356) and
maximum CC (0.9807). A very significant improvement in
performance can be seen in the hybrid system compared
to both ANN and standalone FN. However, both ANN and
standalone FN trail one of the correlations [15] in performance
with respect to both RMSE and Ea.

B. Sensitivity of Functional Network Parameters

In this section, the sensitivity of the FN parameters in
the overall performance of the hybrid K-Means+FN models is
examined. In the previous section, the best achievable model
for the hybrid has been used. Boxplots for the four most
important statistical parameters are presented in Figs. 4-7.

It is noted that the performance of the hybrid models,
largely influenced by the linear independent function and its
degree for the FN, can vary over a wide range. For both Pb

and Bob, polynomial function of degree five gave the best
performance.

From the box plots in Figs. 4-7, it can be seen that
performances of the hybrid K-Means+FN varied significantly
for CC, RMSE, Ea and Emax. For Pb, CC ranges from
0.9079 to 0.9652, RMSE from 344.8264 to 552.5147, Ea

from 11.0829% to 31.2093% and Emax from 81.8879% to
2911.8493%. For the Bob, CC ranges from 0.9614 to 0.9807,
RMSE from 0.0489 to 0.0689, Ea from 1.3856% to 3.2082%
and Emax from 31.8356% to 61.7369%.

VI. CONCLUSION

A hybrid system using K-Means clustering and functional
networks has been developed to predict crude oil PVT based
on worldwide data which a wide range of different crude oil
with diverse thermodynamic properties. The clustering part of
the hybrid is inspired by the common API grouping of crude
oils.

Functional networks which resemble neural networks in
architecture have been used for the actual prediction. The
neurons in a functional network are functions defined by the
modeller and it does not suffer from the black box indictment,
though it is more computational demanding.

For the two PVT properties, Pb and Bob, that have been
modelled in this work, the proposed hybrid system outperforms
all the compared empirical correlations, feed forward neural

Fig. 4. Pb Boxplot for K-Means+FN and CC/RMSE

Fig. 5. Pb Boxplot for K-Means+FN and Ea/Emax

Fig. 6. Bob Boxplot for K-Means+FN and RMSE/Emax
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TABLE II. MODEL PERFORMANCES FOR BUBBLEPOINT PRESSURE

Correlation Method CC RMSE Er Ea Emin Emax SD

Standing [9] 0.9057 616.2760 -3.4038 17.5340 0.0190 548.9583 0.3414

Al-Marhoun [12] 0.9187 812.2788 -12.9768 20.0810 0.0084 388.6760 0.2222

Vazquez and Beggs [13] 0.9091 765.8636 -13.0168 20.6291 0.0212 603.2238 0.4345

Kartoatmodjo and Schmidt [26] 0.8911 882.2240 -11.1193 21.9222 0.0095 602.7154 0.4991

Dokla and Osman [24] 0.8596 678.0152 -5.3107 21.8189 0.0093 511.0192 0.7033

Petrosky and Farshad [15] 0.9347 793.0799 10.7982 39.7123 0.0022 1357.4589 0.0706

Velarde et al. [27] 0.9328 529.5030 -5.2997 14.9442 0.0385 443.4241 0.1801

Al-Shammasi [11] 0.8962 579.3566 -2.2827 18.9615 0.0334 576.1059 0.3534

Dindoruk and Christman [28] 0.9247 540.7703 -6.8919 18.2234 0.0300 467.5842 0.4716

Khamehchi et al. [29] 0.8947 1036.8969 -24.4490 29.5174 0.0142 654.9375 0.8214

Arabloo [30] 0.9104 551.5070 3.4806 16.5968 0.0001 461.4342 0.4964

Jarrahian [16] 0.8597 2004.4451 73.7602 73.8764 25.8628 96.8158 0.1077

ANN 0.9457 410.1738 -1.2703 13.0577 0.0268 117.0041 0.6855

Standalone FN 0.9522 390.5335 -5.6662 14.5618 0.0057 154.4435 0.2733

Cluster + FN (Present work) 0.9652 344.8264 -2.9911 11.0829 0.0056 81.8879 0.1188

TABLE III. MODEL PERFORMANCES FOR OIL FORMATION VOLUME FACTOR AT BUBBLEPOINT PRESSURE

Correlation Method CC RMSE Er Ea Emin Emax SD

Standing [9] 0.9574 0.0744 -0.4097 2.2852 0.0007 68.1578 0.1468

Vazquez and Beggs [13] 0.9374 0.0866 0.4498 3.5164 0.0047 63.0057 0.2384

Al-Marhoun [12] 0.9611 0.0716 0.5751 2.2557 0.0007 53.0750 0.0499

Kartoatmodjo and Schmidt [26] 0.9624 0.0679 0.3174 2.1148 0.0025 56.5184 0.0770

Dokla and Osman [24] 0.9594 0.0759 0.5801 3.1316 0.0012 65.1839 0.0101

Al-Marhoun [31] 0.9646 0.0655 0.2331 1.9317 0.0038 57.4667 0.0962

Omar and Todd [23] 0.9434 0.0896 -0.3410 3.1626 0.0119 77.3916 0.2419

Almehaideb [24] 0.9472 0.0834 0.2608 3.8067 0.0055 54.3641 0.0846

Petrosky and Farshad [15] 0.9642 0.0654 -0.0645 1.4851 0.0001 53.0785 0.0902

Al-Shammasi [11] 0.9490 0.0851 -2.6715 3.7926 0.0206 67.3687 0.1473

Dindoruk and Christman [28] 0.9086 0.1128 0.4307 3.3049 0.0012 95.3749 0.0869

Ikiensikimama and Ajienka [32] 0.9629 0.0670 -0.1210 2.1352 0.0013 55.7279 0.0258

Arabloo [30] 0.9636 0.0671 0.4658 2.0435 0.0002 56.2252 0.1346

ANN 0.9507 0.0830 1.4421 2.9658 0.0220 35.6288 0.1405

Standalone FN 0.9699 0.0742 -0.2664 2.0167 0.0095 50.4549 0.2843

Cluster + FN (Present work) 0.9807 0.0489 -0.0714 1.3856 0.0069 31.8356 0.0146

Fig. 7. Bob Boxplot for K-Means+FN and Ea/Emax

network and standalone functional networks. The results show
that the clustering of the data before prediction by the func-

tional networks has significantly improve the results compared
to the standalone functional networks. The attempt to solve the
impact of imbalanced data set by pre-processing the data into
clusters to prevent domination by most predominant crude oil
with similar properties has shown its significance.

It is also clear that the learning parameters of the func-
tional networks must be carefully selected to get a good
high performance. It should be noted that different data sets
in different problem will probably be modelled by different
linear independent functions as expected. Hence, different ones
must be explored in each problem to attain the model that
appropriately captures the uncertainties in the input data set.

APPENDIX

Statistical Measures for the performance Analysis

A. Average percent relative error

Er =
1

n

n∑
i=1

Ei, (A.1)
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where,

Ei =

(
Xexp −Xpred

Xexp

)
i

× 100, i = 1, 2, ..., n (A.2)

B. Average absolute percent relative error

Ea =
1

n

n∑
i=1

|Ei (A.3)

C. Maximum absolute percent relative error

Emax = max
i
|Ei| (A.4)

D. Standard Deviation

SD =

√√√√ 1

(n− 1)

n∑
i=1

(Ei − Er)
2
, (A.5)

where Er = 1
n

∑n
i=1Ei.

E. Root mean squared

RMSE =

√√√√ 1

n

n∑
i=1

Ei (A.6)
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