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Abstract Modified Rodrigues parameters (MRPs) are tri-
plets in R

3 bijectively and rationally mapped to quaternions
through stereographic projection. We present here a com-
pelling case for MRPs as a minimal degree-of-freedom
parameterization of orientation through novel solutions to
prominent problems in the fields of 3D vision and com-
puter graphics. In our primary contribution, we show that
the derivatives of a unit quaternion in terms of its MRPs
are simple polynomial expressions of its scalar and vector
part. Furthermore, we show that updates to unit quater-
nions fromperturbations in parameter space can be computed
without explicitly invoking the parameters in the computa-
tions. Based on the former, we introduce a novel approach
for designing orientation splines by configuring their back-
projections in 3D space. Finally, in the general topic of
nonlinear optimization for geometric vision, we run perfor-
mance analyses and provide comparisons on the convergence
behavior of MRP parameterizations on the tasks of abso-
lute orientation, exterior orientation and large-scale bundle
adjustment of public datasets.
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1 Introduction

Orientation or attitude is a prominent facet of problems per-
taining to disciplines such as computer graphics, computer
vision, photogrammetry, robotics and augmented reality. A
typical example of such a problem in computer animation
is the interpolation of orientation during a process known as
key-framing, themain objective ofwhich is to achieve esthet-
ically pleasing results in the representation of the motion of a
rigid object not only in terms of translation, but also in terms
of the changes in its orientation [66].

In an inverse fashion, 3D computer vision deals with
3D reconstruction, also often referred to as structure from
motion estimation (SfM). This consists in using sets of
images depicting an unknown scene and captured from
unknown locations, in order to automatically extract a 3D
geometric representation of the imaged scene plus the cam-
era intrinsic parameters and their poses, i.e., positions and
orientations [26,45]. Several solutions to the SfM problem
involve the estimation of the sought parameters by iteratively
minimizing the total geometric error pertaining to overdeter-
mined sets of image measurements. Considering that a 3D
rotation matrix has nine elements but only three degrees of
freedom (DoF), suitable (and preferablyminimal) parameter-
izations of rotation are thus necessary in order to intrinsically
incorporate orthonormality constraints on rotations during
the optimization.

The modified Rodrigues parameters (MRPs) constitute a
minimal rotation parameterization with attractive properties.
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Despite being well-established in the field of aerospace engi-
neering, MRPs are, to the best of our knowledge, unheard-of
in the computer graphics, vision and robotics communities.
MRPs are essentially the stereographic coordinates of quater-
nions and, as such, they aremapped rationally and bijectively
to the quaternion sphere. This paper studies the representa-
tion of orientation via MRPs. An important finding is that
the Jacobian of a quaternion is a polynomial function of
its scalar and vector parts, thereby yielding simple expres-
sions in rotation derivatives. Furthermore, it is shown that
quaternions can be updated from a given perturbation in
parameter space without explicitly using the MRPs. These
two findings are very important for iterative optimization,
because they allow both Jacobian computation and orienta-
tion updates to be carried out using exclusively quaternion
components in simple additions and multiplications. As a
consequence, iterative optimization completes with fewer
calculations in less time. The paper also demonstrates the
applicability of MRPs in problems related to orientation
interpolation and pose estimation and provides experimental
evidence that their use leads to new solutions or the simplifi-
cation of existing ones and, in most cases, the improvement
of performance.

The rest of the paper is structured as follows. A brief
overview of orientation representations with respect to vari-
ous applications is given in Sect. 2, followed by descriptions
of common problems involving parameterized orientation
and respective solutions in Sect. 3. A derivation of the
MRPs based on stereographic projection is provided in
Sect. 4, whereas Sect. 5 discusses special properties of
MRPs as vectors parallel to the rotation axis; such prop-
erties include the relationship with axis-angle and Gibbs
vectors as well as the Cayley transform from MRPs to
rotation matrices. Section 6 focuses on the differentiation
properties of the MRP parameterization. In Sect. 7, the prob-
lem of smooth interpolation on the quaternion sphere is
examined and a general method for spline based fitting is
presented. Experimental results comparing the performance
of MRPs against different parameterizations of rotations are
given in Sects. 8 and 9 summarizes the contributions of the
paper.

2 Rotation Representations

The literature provides many representations of rotation
using 3 × 3 matrices and vectors of three or four com-
ponents. Representing spatial rotations is challenging due
to their non commutativity and the fact that their topology
does not permit a smooth embedding in Euclidean 3D space.
Besides, different practical uses of rotations have different
requirements. This section briefly presents the representa-
tions most commonly employed in the fields of graphics,

robotics and vision, and discusses their strengths and weak-
nesses.

2.1 Rotation Matrices

Rotation matrices are 3 × 3 orthonormal matrices that
arguably constitute the most intuitive representation of ori-
entation. The reason for this is that ordinary linear algebra
can be employed to express common operations involving
rotations. For example, a point can be rotated using standard
matrix-vector multiplication, two rotations can be composed
via matrix multiplication, whereas a rotation can be inversed
via matrix transposition. A rotation matrix consists of nine
elements but has only three DoFs due to the six independent
constraints imposed by orthonormality.

Being quadratic, these constraints are cumbersome to
impose, typically in the context of a Lagrangian function.
This, however, does not render the representation entirely
unattractive. For instance, Carlone et al. [7], Olsson and
Eriksson [43] aswell asBriales and Jimenez [6]make explicit
use of matrix orthonormality constraints to formulate the
Lagrangian of the camera pose registration problem. The
advantage of this approach is that it provides measures for
the optimality of solutions of relaxations by monitoring the
duality gap in the original problem.

In overall, rotationmatrices are typically used to represent
rotations when transformations of objects such as points and
lines are involved but not very often used in other operations
such as interpolation and estimation. For future reference, the
set of all rotation matrices is the 3D rotation group, denoted
SO(3).

2.2 Euler Angles

Euler angles define a rotation in terms of three consecutive
elemental rotations around the orthogonal axes of a Carte-
sian coordinate system. There exist twelve possible sets of
Euler angles, depending on the chosen, non commutative
order of rotation axes. Even for a particular axes sequence,
Euler angles are not unique since supplementary and/or
negative angles can yield the same overall rotation [58].
Although an easily conceptualized and minimal DoF encod-
ing, there exist several arguments as to why Euler angles
are a parameterization scheme unsuitable for most applica-
tions [16,28,51].

Notwithstanding their ambiguity, the primary drawback
of Euler angles is that they suffer from singularities near
which infinitesimal changes in orientation can cause large
jumps in the values of their elemental constituent rota-
tions [51,58]. When represented with Euler angles, every
orientation is at most 90 degrees away from a singularity.
Such a singularity, known as gimbal lock from its phys-
ical manifestation in gyroscopes, occurs when two of the
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three rotation axes coincide and results in the loss of one
degree of freedom, i.e., one rotation having no effect [44].
Since gimbal lock is a discontinuity in the Euler angle
representation, it might have undesirable side-effects such
as ill-conditioning or instabilities in applications involving
rotation operations like iterative optimization, filtering, aver-
aging or interpolation. Thus, the use of Euler angles in
describing large and especially arbitrary rotations is lim-
ited. Furthermore, the kinematic differential equations of
Euler angles are fairly nonlinear, involving computationally
expensive trigonometric functions [51]. On the other hand,
beingmore understandable to humans, Euler angles are com-
monly used in user interfaces for 3D rotations in graphics and
CAD software. Another favorable application concerns the
use of Euler angles with a linear Kalman filter for position
and orientation tracking, as they maintain a linear process
model.

2.3 Axis-Angle

Every rotation can be represented as a revolution by an angle
θ around an axis parallel to a unit 3-vector u. The vec-
tor ω = θu is the angle-axis representation of a rotation.
This representation is not unique, since an equivalent repre-
sentation for the same rotation is −(2π − θ)u. The matrix
representation in SO(3) of an axis-angle rotation ω is given
by the infinite series

exp
(
[ω]×

) = I +
∞∑

n=1

1

n! [ω]
n× , (1)

where [ω]× is the cross-product skew symmetricmatrix asso-

ciated with ω
def= [

ω1 ω2 ω3
]T
:

[ω]× =
⎡

⎣
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤

⎦

Equation 1 is referred to as the exponential map and can be
evaluated with Rodrigues’ formula for θ = ‖ω‖ [48]:

R(ω) = exp
(
[ω]×

) = I + sin(θ)

θ
[ω]× + 1 − cos(θ)

θ2
[ω]2×

(2)

The axis-angle representation is a many-to-one mapping and
has singularities at θ = 2nπ , n ≥ 1. Furthermore, although
the formula converges to the identity matrix for very small
values of θ , in practice it presents numerical issues which
call for approximating sin(θ) and cos(θ) with their Taylor
series expansions near the origin and using them to simplify
the two fractions in Eq. 2. On the other hand, it is surjective,

i.e., every rotation has a representation as the exponential of
a skew symmetric matrix. Since it is minimal and does not
require any additional constraints, the axis-angle representa-
tion is very often employed in vision and robotics problems.
The terms axis-angle and exponential map are used inter-
changeably.

Although the exponential map is periodic, a rotation
matrix logarithm1 from rotation matrices to axis-angle vec-
tors can be defined for θ ∈ (−π, π):

log R = θ

2 sin θ

(
R − RT

)
(3)

θ = arccos

(
Tr (R) − 1

2

)
, (4)

where Tr() denotes a square matrix’s trace, i.e., the sum of its
diagonal elements. Evidently, the rotation matrix logarithm
converges to the zero vector at the identity, but in practice it
is necessary to resort to approximations in order to avoid the
effects of very small numbers in the denominator.

In the specific case where Eq. 4 yields θ = π , the axis-
angle vector cannot be recovered with Eq. 3. Instead, we
initially obtain the absolute values of the components of ω

as follows:

|ωi | =
√
rii + 1

2
, (5)

where i ∈ {1, 2, 3} and ri j is the element of R in the ith row
and jth column. Since ω is sign-ambiguous, we may choose
the component which has the largest absolute value to be
positive. The remaining two components can be recovered
from the off-diagonal elements of R as follows:

ω j = rk j
ωk

, (6)

where k = argmaxi {|ωi |} and j ∈ {1, 2, 3} − {k}.

2.4 Unit Quaternions

One of the most popular ways to unambiguously represent
orientation in 3D is with the Euler–Rodrigues parameters,
as a location on the unit sphere in 4D. The modern formal-
ism for Euler–Rodrigues parameters are unit quaternions,
which form a multiplicative group that fully describes 3D
rotations. Unit quaternions constitute a redundant parame-
terization which does not suffer from gimbal lock. However,
their numerical estimation in practice is complicated by the
need to incorporate a unit-norm constraint; more details on
this are provided in Sect. 3.2.

1 The formula in Eq. 3 is readily obtained by taking the difference
R − RT using Rodrigues’ formula. Similarly, the angle in Eq. 4 is
obtained by taking the trace of R + RT .

123



J Math Imaging Vis

For consistency of notation throughout the rest of the
paper, the field of quaternions will henceforth be denoted
with H, and an arbitrary quaternion q ∈ H will be written in
the form

q = ρ + υTϕ, (7)

where ρ ∈ R is the scalar part, υ ∈ R
3 is the vector part

and ϕ = [
i j k

]T
is the vector of the 3 imaginary units (also

referred to as fundamental quaternion units). The reader is
referred to [16,29,44,61,64] for more detailed introductions
on quaternions and their properties.

A quaternion q ∈ H such that ‖q‖ = 1, is called a unit
quaternion. Unit quaternions lie on the unit sphere in 4D (also
known as the quaternion sphere in kinematics or 3-sphere S3

in topology) and form a group under multiplication which
precisely describes the group of rotations. In particular, pro-
vided a quaternion q = ρ + υTϕ such that ρ2 + υTυ = 1,
it can be shown that it corresponds to the following rotation
matrix [41]:

R =
(
ρ2 − υTυ

)
I3 + 2υυT + 2ρ[υ]× (8)

It is worth noting that the formula in Eq. 8 implies that the
elements of the rotationmatrix are polynomial expressions of
the unit quaternion components. It is also evident from Eq. 8
that the same rotation matrix corresponds to quaternions q
and −q. Thus, when treated as elements of the special 3× 3
orthogonal group, antipodal unit quaternions represent the
same rotation.

In direct analogy to the exponential map from the space of
skew-symmetric matrices to the group of rotation matrices,
there exists an exponential map from the space of axis-angle
vectors to unit quaternions:

exp

(
1

2
ωTϕ

)
= cos

θ

2
+ sin

θ

2

(ω

θ

)T
ϕ, (9)

where ω ∈ R
3 is the axis-angle vector or the rotation

associated with q and θ = ‖ω‖. Note that the right-hand
side of Eq. 9 can be obtained with the Taylor expansion of

exp
( 1
2ω

Tϕ
)
, provided the observation

(
ωTϕ

)2 = −θ2.
As in the case of rotation matrices, unit quaternions can

be mapped to the corresponding axis-angle vectors via a log-
arithmic function:2

log q = θ

2 sin θ
2

(q − q) (10)

θ = 2 arccos

(
q + q

2

)
, (11)

where q denotes the conjugate of q, i.e., q = ρ − υTϕ.

2 Formulas are derived from Eq. 9 by considering q − q and q + q
respectively.

3 Common Problems and Standard Solutions

This section briefly describes prevalent problems involving
parameterized orientation alongwith themost common solu-
tions employed and their typical shortcomings. Although
applications may vary, these problems essentially fall under
two major categories, namely interpolation of orientation
and estimation of rotation parameters.

3.1 Interpolation of Orientation

The problem of interpolating rotational motion from a
sequence of key orientations often arises in computer anima-
tion, computer-aided design and robot kinematics applica-
tions [11,27,30,49,53,59]. Since quaternions conveniently
possess the properties of a metric space (i.e., R4), it is very
common to perform this task on the unit sphere in 4D where
properties such as smoothness, length and curvature can be
measured and manipulated with standard calculus.

Suppose that a sequence of key orientations is given in
the form of unit quaternions q0, q1, . . . , qn, . . . and the
goal is to interpolate the sequence with a smooth spherical
curve. Possibly the most popular tool for elementary inter-
polation on a great arc between two successive quaternions
is Shoemake’s classic formula for spherical linear interpo-
lation (abbreviated as slerp) [56]:

slerp(qn qn+1; u) = sin (1 − u) Φ

sinΦ
qn + sin uΦ

sinΦ
qn+1, (12)

where u ∈ [0, 1] is the interpolation parameter, Φ =
arccos (qn · qn+1) is the angle between qn , qn+1 and · denotes
the dot product between quaternions as vectors in R

4.
Interpolation of more than two key orientations is a far

more challenging task, primarily because the constituent seg-
ments of the curve have to be pieced smoothly at the data
points. A popular solution is Shoemake’s spherical quadran-
gle interpolation (squad) [57]. In a nutshell, squad is the
spherical analog of parabolic blending between quaternions
qn and qn+1:

squad (qn, qn+1; u) = slerp
(
slerp (qn, qn+1; u) ,

slerp (αn, αn+1; u (1 − u))
)
, (13)

where u ∈ [0, 1] is the interpolation parameter and αn , αn+1

are auxiliary points chosen specifically to impose smoothness
at the key points that can be computed with the following
formula:

αi = qi exp

(

− log
(
qiqi−1

) + log
(
qiqi+1

)

4

)

(14)
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Shortly after Shoemake’s contribution,Duff followedwith
[20], introducing a B-spline spherical curve interpolating
the data similarly to planar B-splines. More recently, a con-
struction scheme in R

3 for smooth quaternion curves was
proposed in [32]. The main shortcoming associated with the
aforementioned methods is the lack of a general strategy to
enforce arc length and curvature minimization constraints,
owing to the complexity of the corresponding expressions
for the spherical polynomial derivatives. In their thorough
report on Shoemake’s work, Dam et al. [13] show that
finding a generic, curvature minimizing smooth exponen-
tial curve on the sphere is highly impractical, primarily
due to the complicated derivatives of the curve. Another
ramification of the generally intractable differentiation is
that in most cases, speed adjustment is performed purely
numerically (cf. the chord-length approximation method
[67]).

Following Shoemake’s work, several solutions for ori-
entation interpolation have been introduced, taking matters
from a different perspective. For instance, Johnstone and
Wiliams [31] introduced a rational function mapping 4D
Bézier curves onto the quaternion sphere. Although they
were unaware at the time, this mapping is the general-
ized form of stereographic projection [17], which, without
any precautions will cause distortions on the sphere. Other
geometric methods were proposed in [3,46,47]. With the
exception of the method by Roberts et al. [47], these
approaches focus on minimizing functionals defined on
characteristics of the curve such as tangential velocity or
centrifugal acceleration primarily bymaking approximations
to the actual expressions. The common drawback of these
approaches is that they are relatively complex to implement
and not so flexible to configure under different circum-
stances.

An interesting alternative to the mainstream is the work
of Boumal [5], which optimizes a cost function directly
over rotation matrices. Since it is difficult to fit a para-
metric function on matrices with orthonormal constraints,
Boumal defines a cost function over a sequence of rota-
tions with penalty terms on chordal distance3 from the
key-rotations as well as on first- and second-order finite
differences in SO(n) to impose smoothness. To iteratively
optimize the cost function on the rotation manifold, ana-
lytical expressions for the Riemanian derivatives of the
penalty terms are obtained as orthogonal projections of
Euclidean matrix derivatives onto the tangent space of
the current rotation estimates [1]. The method can be
adapted either for interpolation or regression and applies
to problems involving orthogonal matrices of arbitrary
dimensionality.

3 The Frobenius norm of the difference of rotation matrices.

3.2 Estimation of Orientation and Rotation Matrix
Differentiation

At the very core of several key problems in computer
graphics, vision and robotics lies the problem of estimating
orientation. The typical formulation of orientation estima-
tion problems involves a cost function which is a sum of
positive (by means of a suitable metric) error terms, in
which the unknown rotation matrices act on vectors mea-
sured in different coordinate frames. The usual method of
minimizing such a cost function is by setting its deriva-
tives equal to zero and solving the resulting equations. The
Jacobian of the rotation matrix is therefore crucial to the
estimation.

It becomes evident from the exponential map expres-
sion in Eq. 1 that differentiation of the rotation matrix R
with respect to the axis-angle vector ω is not trivial and
the associated Jacobian contains complicated transcendental
expressions. Most importantly, the derivative of the expo-
nential map presents a “malignant” singularity at the origin,
owed to the presence of an angle in the denominator. A com-
plete list of analytic expressions for these derivatives can be
found in a report by Diebel [16].

Recently, Gallego and Yezzi [23] have discovered a rea-
sonably compact expression for the Jacobian of the rotation
matrix:

∂R

∂ωi
= ωi [ω]× + [ω × (I3 − R) ei ]×

θ2
R, (15)

where i ∈ {1, 2, 3} indexes the components of ω and ei is
the ith canonical basis vector ofR3. It should be stressed that
despite the denominator θ2 in Eq. 15, the derivatives of the

rotation matrix are continuous at the origin, ω = [
0 0 0

]T

and are equal to the cross-product skew symmetric matrices
associated with the canonical vectors ei (also known as the
infinitesimal generators of the Lie algebra so(3) and denoted
Gi ) [54]:

∂R

∂ωi

∣∣∣
∣
ωi=0

= [ei ]×
def=Gi (16)

Gallego and Yezzi’s formula in Eq. 15 is a significant
improvement, yet it still is not simple enough, let alone it
entails the evaluation of a few trigonometric expressions. Fur-
thermore, the singularity at the origin must still be accounted
for with the aid of Taylor approximations.

The alternative to computing the actual derivatives of the
rotation matrix with respect to the axis-angle vector is either
the use of finite differences or incremental rotationswith ana-
lytical derivatives at the identity. Suppose, for example, that
we are attempting to optimize the parameters of a rotation
matrix in the context of an iterative method. The idea is to
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replace the rotation matrix R at step k with another rotation
R′ given by the product of the current estimate and a per-
turbing rotation matrix exp

(
[u]×

)
which is initially equal to

the identity. Thus, instead of taking the actual derivative of
R with respect to its current axis-angle parameters as given
in Eq. 15, the much simpler derivative of R′ in terms of u is
taken at the origin:

∂R′

∂ui
= R

∂ exp
(
[u]×

)

∂ui

∣∣∣∣
ui=0

= RGi (17)

The workaround of Eq. 17 found early advocates such as
Taylor [60], or Drummond and Cipolla [18] and is popu-
lar in practice [19,33]. On the other hand, by all accounts,
it is not the actual derivative of the rotation in terms of
the axis-angle parameters, but rather the derivative of an
expression that has a corrective effect on the current esti-
mate. As such, it is a mapping that has the characteristics
of a retraction from the tangent space of R to SO(3) as
defined by Absil et al. [1] and can therefore be used to
provide a valid direction of descent on the rotation mani-
fold. The latter suggests that the application scope of this
approach is limited only to problems involving iterative opti-
mization.

A special class of problems which involve the recovery of
orientation and have attracted considerable attention recently
is that of rotation averaging [10,12,24,25]. The objective in
this case is to recover the absolute or relative orientation
most consistent with many estimates. Typically, these prob-
lems are solved iteratively and require the determination of
a direction of descent either in parameter space or directly
on the rotation manifold. Several solutions to rotation aver-
aging problems presented by Hartley [25] incorporate the
incremental rotation approach of Eq. 17 to establish descent
directions.

Another approach for obtaining the derivatives of a rota-
tion matrix is to parametrize it with a unit quaternion.
Although practical by virtue of the rotationmatrix expression
in terms of a quaternion in Eq. 8, this approach unfortunately
requires imposing a hard unit-norm constraint on the quater-
nion components. To impose this constraint in the context
of Euclidean bundle adjustment, Lourakis and Argyros [37]
optimize only the vector part υ of a quaternion and implicitly
obtain the scalar part as ρ = √

1 − υTυ (cf. Eq. 7). Clearly,
this does not allow for negative scalar parts and, therefore,
the rotation must be limited to the range [−π/2, π/2]. To
overcome this, the initial orientation of every camera before
the optimization is retained and only the difference from the
initial orientation is optimized. This local update is certain
to lie within the aforementioned range, and the approach
is also referred to as an incremental update in Sect. 6.2.2
of [59].

4 Derivation of Modified Rodrigues Parameters
with Stereographic Projection

Stereographic projection is a rational, bijectivemapping from
a sphere to a plane often encountered in complex anal-
ysis, topology, quantum computing, etc. However, it has
been largely overlooked in the computer graphics and vision
communities as a practical means of parameterizing ori-
entation. In contrast, aerospace engineering literature has
several notable references to the potential of this formalism,
also known as the modified Rodrigues parameters (MRPs),
e.g., [40,50,58,63,68].

4.1 Derivation of Projection/Back-Projection Maps

To establish notation for the rest of the paper, a brief deriva-
tion of the stereographic projection formulas is in order at
this point. Consider a unit quaternion q = ρ +υTϕ such that
ρ ∈ R and υ ∈ R

3 with ρ2 + υTυ = 1. We designate the
“South Pole” of the sphere to be the unit quaternion S = −1.
Let now r (t) be the ray parameterized by t ∈ R passing
through q and a purely imaginary quaternion ψTϕ:

r (t) = S + t
(
ψTϕ − S

)
, (18)

where ψ ∈ R
3. Thus, the subspace of purely imaginary

quaternions can be regarded as an equatorial hyperplane
that “slices” the 4D unit sphere along 3 canonical directions
through the origin and the “South Pole” as the center of pro-
jection, throughwhich, the unit quaternionq is projected onto
ψTϕ in the hyperplane. A visualization of this projection is
provided in Fig. 1.

When the ray intersects the sphere, the resulting quater-
nions should have a unit norm, i.e., |r (t) |2 = 1. Substituting
the expression of r (t) from Eq. 18 into the unit-norm con-
straint yields a solution for the parameter t when the ray
intersects q:

t = 2

1 + ‖ψ‖2 (19)

The unit quaternion can now be expressed in terms of ψ by
substituting Eq. 19 into Eq. 18:

q = 1 − ‖ψ‖2
1 + ‖ψ‖2 + 2

1 + ‖ψ‖2ψTϕ (20)

Conversely, it is fairly easy to project a unit quaternion onto
the equatorial hyperplane. It suffices to solve first for ‖ψ‖2
in terms of the quaternion scalar part, ρ:

‖ψ‖2 = 1 − ρ

1 + ρ
(21)
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Fig. 1 A visualization of stereographic projection in 3D. The unit
quaternion S = −1 is the center of projection and ψT φ is a quaternion
in the equatorial plane. The ray r (t) = S+ t

(
ψT ϕ − S

)
intersects the

unit sphere at q

Thus, ψ can be expressed in terms of the components of q
using Eqs. 20 and 21:

ψ = υ

1 + ρ
(22)

It should be stressed here that the components of ψ can

assume infinite values. Thus, more rigorously, ψ ∈ R
3
,

where R = R ∪ {−∞,+∞} is the affinely extended set of
real numbers and this notation will be used throughout the
rest of this paper.

4.2 Related Parameterizations: The Gibbs Vector

For completeness, we remark that a representation closely
related to toMRPs is theGibbs or classical Rodrigues param-
eter vector g [25,51,58]. The Gibbs vector is defined by the
projection of the quaternion parameters from the center of the
unit sphere onto the hyperplane tangent to its “South Pole”,
given algebraically as:

g = υ

ρ
(23)

Classical Rodrigues parameters provide a minimal DoF rep-
resentation that is singular and discontinuous at the angle
of rotation π . Using the axis-angle parameterization ρ =
cos

(
θ
2

)
and υ = sin θ

2
θ

ω, it is straightforward to derive a rela-
tionship between g and ω [58]:

g = tan θ
2

θ
ω (24)

As demonstrated in Sect. 5, the relationship between the
Gibbs vector and the axis-angle vector given in Eq. 24
becomes particularly useful in deriving a Cayley transform
from the space of MRP vectors to the respective rotation
matrices.

5 Modified Rodrigues Parameters as Vectors
Parallel to the Rotation Axis

Depending on the choice of projection center, the resulting
expressions for the coordinates of the projected quaternion on
the equatorial plane will vary. In order for these coordinates
to be valid modified Rodrigues parameters, the projection
center should lie on the real axis4 as is the case with the
derivation of Sect. 4. To state this more clearly, consider a

unit quaternion q = ρ + υTϕ where ϕ = [
i j k

]T
and its

axis-angle parameterization, such that:

ρ = cos
θ

2

υ = sin θ
2

θ
ω

withω ∈ R
3 and ‖ω‖ = θ . The vector ofmodifiedRodrigues

parameters associated with q is the triplet of stereographic
coordinatesψ that back-projects to the corresponding spher-
ical point in the following way:

1 − ‖ψ‖2
1 + ‖ψ‖2 = ρ = cos

θ

2
(25)

2ψ

1 + ‖ψ‖2 = υ = sin θ
2

θ
ω (26)

Thus, the vector part of the quaternion is always represented
by 2ψ/(1 + ‖ψ‖2), which is collinear with the parameter
vector.

Withψ being parallel to υ, it follows from Eq. 26 that it is
also parallel to the rotation axis. This implies that MRPs are
a member of the so-called family of vectorial parameteriza-
tions [4]. In particular,MRPs andGibbs vectors belong to the
tangent family, which enjoys certain important properties,
the most prominent of them being the inter-connections in
terms of the Cayley transform explained in Sect. 5.1. Using
Eqs. 25 and 26, the relationship between the axis-angle vec-
tor ω and the MRPs of a rotation is straightforward for a
rotation angle θ ∈ [0, 2π) [40,58]:

ψ = tan θ
4

θ
ω (27)

4 In other words, it should be either 1 or −1.
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Thus, comparing Eq. 27 to the corresponding relationship for
Gibbs vectors in Eq. 24, it can be inferred that theMRPvector
ψ has twice the rotational range of the classical Rodrigues
parameters g. In the special case where θ = 2π , any MRP
vectorψ with at least one of its coordinates equal to “infinity”
will back-project to -1 on the quaternion sphere.More details
on this representation peculiarity are given in Sect. 5.2.

Furthermore, using Eqs. 26 and 25, it is easy to derive a
composition rule between MRP vectors based on quaternion
multiplication. Specifically, for the unit quaternion product
q3 = q1q2, we obtain the following corresponding relation-
ship in MRP space [58]:

ψ3 =
(
1 − ‖ψ2‖2

)
ψ1 + (

1 − ‖ψ1‖2
)
ψ2 − 2ψ1 × ψ2

1 + ‖ψ1‖2‖ψ2‖2 − 2ψ1 · ψ2

(28)

5.1 MRPs and the Cayley Transform

The Cayley transform is a mapping from the space of skew-
symmetricmatrices directly to the group of rotationmatrices.
In particular, it is straightforward to show that the Cayley
transform maps the skew symmetric matrix [g]× of a Gibbs
vector to the respective rotation matrix as follows [40,62]:

R = (
I3 + [g]×

) (
I3 − [g]×

)−1 (29)

where I3 is the 3 × 3 identity matrix. It is relatively easy
to show that both factors in the product commute and are
invertible5 for any skew-symmetric matrix [g]×. The inverse
Cayley transformmaps a rotation matrix to its corresponding
Gibbs vector as follows:

[g]× = (R − I3) (R + I3)
−1 (30)

The transformation from anMRP skew-symmetric matrix
[ψ]× to the corresponding rotation matrix is a so-called
second-order Cayley transform, given by the following map-
ping [62]:

R = (
I3 + [ψ]×

)2 (
I3 − [ψ]×

)−2 (31)

It is worth outlining here the rationale behind the derivation
of theCayley transform forMRPs as expounded by Schaub et
al. [52]. The idea is to observe the relationship between classi-
cal Rodrigues parameters (Gibbs vectors) andMRPs through
axis-angle vectors as given in Eqs. 24 and 27. Evidently, the
rotation matrix obtained by employing the first-order (stan-
dard) Cayley transform formula of Eq. 29 on [ψ]× yields a

5 One way of showing this is to observe that matrices I3 + [ψ]× and
I3−[ψ]× have sameeigenvectors andnon-vanishing complex conjugate
corresponding eigenvalues.

rotation matrix with half the angle of the actual rotation that
corresponds to the MRP triplet. This can be demonstrated
with the aid of exponential notation:

exp

(
1

2
[ω]×

)
= (

I3 + [ψ]×
) (

I3 − [ψ]×
)−1

, (32)

where R = exp
(
[ω]×

)
. Thus, since matrices I3 − [ω]×

and
(
I3 − [ω]×

)−1 commute, squaring both sides in Eq. 32
yields the second-order Cayley transform for MRPs given in
Eq. 31. Schaub et al. report that, unlike classical Rodrigues
parameters, there exists no similar expression for the inverse
mapping from rotation matrices to MRPs [52].

5.2 Negated Quaternions and Shadow MRPs

Twoantipodal (i.e., opposite) quaternionsq and−q represent
the same rotation. Nevertheless, the stereographic coordi-
nates of these two quaternions will differ. Markley calls the
stereographic coordinates of the negated quaternion shadow
MRPs [40]. Shadow coordinates can be easily worked-out
from Eq. 20:

η = − ψ

‖ψ‖2 (33)

It should be noted that the last formula is not valid for
ψ = (0, 0, 0), in which case the shadow quaternion coin-
cides with the center of projection (i.e., the chosen “South
Pole”) and the rotation has a single representation at the ori-
gin of the hyperplane. As the MRP vector moves far away
from the origin of the hyperplane, the corresponding quater-
nions converge asymptotically to q = −1 at the projection
center. This is a direct consequence of the fact that the line
y = −1 is the asymptote at both +∞ and −∞ of function
(1−t2)/(1+t2), i.e., the quaternion’s scalar part fromEq. 25,
as shown in Fig. 2. The plot clearly indicates that decay is
fast and for |t | ≥ 15, the function is already very close to
−1; it becomes even closer for larger values. For example,
the deviation of the function from −1 for t = 102 is in the
order of 10−4.

The above observation suggests that it is possible to
approach the projection centerwith high accuracyusingMRP
vectors whose components are well within the nominal float-
ing point range. Hence, this is a reasonable alternative to
representing thequaternion at the center of projectionwithout
resorting to shadow coordinates which could cause discon-
tinuities in applications such as interpolation. However, as
will be explained in the following sections, our analysis is
focused on the quaternion sphere,whileMRPs are essentially
used to provide the theoretical underpinning that allows us
to work with unit quaternions without the need to impose
the norm constraint. Thus, with the exception of interpola-
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Fig. 2 Plot of function (1 − t2)/(1 + t2) for |t | ≤ 20 shown in solid
blue. The horizontal asymptote y = −1 is shown with a red dashed line
(Color figure online)

tion, unit quaternions can be directly manipulated in terms
of their MRPs, without having to explicitly switch parameter
domain.

6 Differential Properties of Unit Quaternions with
Respect to Modified Rodrigues Parameters

It is clear from Eqs. 26, 25 that the derivatives of a unit
quaternion with respect to its MRPs are rational functions of
ψ . This is an advantageous fact not only from the aspect of
computational efficiency but, most importantly, in terms of
the complexity of the resulting expressions in the Jacobian
[61]. In this section, we will provide a very important novel
observation regarding these derivatives, which will not only
simplify the computation of the Jacobian of a rotation matrix
(refer to “Appendix A” for a complete set of formulas), but
will also provide simple relationships between the derivatives
of curves on the hyperplane and the derivatives of their back-
projections on the sphere.

6.1 Quaternion Jacobian

Proposition 1 Let q = ρ + υTϕ where ϕ = [
i j k

]T
be a

unit quaternion. Then, the Jacobian ∇q of q with respect to
its modified Rodrigues parameters is:

∇q = ∇
[
υ

ρ

]
= −

[
υυT − (1 + ρ) I3

(1 + ρ) υT

]
(34)

Proof Let ψ ∈ R
3
be the MRPs of the unit quaternion. It

follows from Eq. 26 that the derivative of the vector part υ

with respect to ψ will be:

∂υ

∂ψ
=

∂
2ψ

1+‖ψ‖2
∂ψ

= −
2ψ

∂
(
1 + ‖ψ‖2)

∂ψ
(
1 + ‖ψ‖2)2

+ 2

1 + ‖ψ‖2
∂ψ

∂ψ

= − 2ψ2ψT

(
1 + ‖ψ‖2)2

+ 2

1 + ‖ψ‖2 I3

= −
(

2ψ

1 + ‖ψ‖2
)(

2ψT

1 + ‖ψ‖2
)

+ 2 + ‖ψ‖2 − ‖ψ‖2
1 + ‖ψ‖2 I3

= −
(

2ψ

1 + ‖ψ‖2
)(

2ψT

1 + ‖ψ‖2
)

+
(
1 + 1 − ‖ψ‖2

1 + ‖ψ‖2
)
I3

= −υυT + (1 + ρ) I3

Similarly, using Eq. 25, the derivative of the scalar part in
terms of ψ will be:

∂ρ

∂ψ
= −

(
1 − ‖ψ‖2) ∂

(
1 + ‖ψ‖2)

∂ψ
(
1 + ‖ψ‖2)2

+
∂
(
1 − ‖ψ‖2)

∂ψ

1 + ‖ψ‖2

=
∂
1−‖ψ‖2
1+‖ψ‖2
∂ψ

= −
(
1 − ‖ψ‖2) 2ψT

(
1 + ‖ψ‖2)2

− 2ψT

1 + ‖ψ‖2

= −
(

2

1 + ‖ψ‖2
)(

2ψT

1 + ‖ψ‖2
)

= −
(
1 + 1 − ‖ψ‖2

1 + ‖ψ‖2
)(

2ψT

1 + ‖ψ‖2
)

= − (1 + ρ) υT

The Jacobian formula of Eq. 34 is very important because
it has low complexity of expressions and involves only the
quaternion components in simple additions and multiplica-
tions without the need of additional constraints. This means
that, by virtue of the rotation matrix expression in terms
of a unit quaternion given in Eq. 8, the components of the
rotation matrix Jacobian tensor will in turn comprise simple
polynomial expressions of the quaternion components (see
“Appendix A”). In other words, the computation of the rota-
tionmatrix derivatives entails exclusivelymultiplications and
additions on previously stored quantities.

6.2 Quaternion Updates from Perturbations in MRPs

Although the Jacobian of a unit quaternion with respect to
MRPs can be expressed without the explicit presence of the
parameters in the respective expressions, it will, however,
produce a perturbation in parameter space during iterative
optimization. Thus, it would appear that, in order to obtain
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the new quaternion estimate, one is required to convert it to
MRPs, then perform the update inR3 and eventually, convert
the resulting parameters to the new quaternion estimate. In
Proposition 2, we show that the current estimate of a quater-
nion can be updated without alternating among parameter
spaces.

Proposition 2 Consider a perturbation δ ∈ R
3
in the modi-

fiedRodrigues parameters of a unit quaternion q = ρ+υTϕ.
Then, the scalar and vector part of the unit quaternion
q ′ = ρ′ + υ ′Tϕ corresponding to the perturbed MRPs can
be obtained as follows:

υ ′ = υ + (1 + ρ) δ

1 + υ · δ + 1
2 (1 + ρ) ‖δ‖2 (35)

ρ′ = ρ − υ · δ − 1
2 (1 + ρ) ‖δ‖2

1 + υ · δ + 1
2 (1 + ρ) ‖δ‖2 (36)

Proof Let ψ be the MRP triplet associated with q. Then,
taking the stereographic projection formula in Eq. 26 for υ ′,
we have:

υ ′ = 2 (ψ + δ)

1 + ‖ψ + δ‖2 =
2(ψ+δ)

1+‖ψ‖2
1+(ψ+δ)·(ψ+δ)

1+‖ψ‖2

=
2ψ

1+‖ψ‖2 + 2
1+‖ψ‖2 δ

1 +
(

2ψ
1+‖ψ‖2

)
· δ + 1

2

(
2

1+‖ψ‖2
)

‖δ‖2

=
2ψ

1+‖ψ‖2 +
(
1 + 1−‖ψ‖2

1+‖ψ‖2
)

δ

1 +
(

2ψ
1+‖ψ‖2

)
· δ +

(
1 + 1−‖ψ‖2

1+‖ψ‖2
)

‖δ‖2

= υ + (1 + ρ) δ

1 + υ · δ + (1+ρ)
2 ‖δ‖2

Similarly, taking the stereographic projection formula in
Eq. 25 for ρ′, yields:

ρ′ = 1 − ‖ψ + δ‖2
1 + ‖ψ + δ‖2 =

1−(ψ+δ)·(ψ+δ)

1+‖ψ‖2
1+(ψ+δ)·(ψ+δ)

1+‖ψ‖2

=
1−‖ψ‖2
1+‖ψ‖2 −

(
2ψ

1+‖ψ‖2
)

· δ − 1
2

(
2

1+‖ψ‖2
)

‖δ‖2

1 +
(

2ψ
1+‖ψ‖2

)
· δ + 1

2

(
2

1+‖ψ‖2
)

‖δ‖2

=
1−‖ψ‖2
1+‖ψ‖2 −

(
2ψ

1+‖ψ‖2
)

· δ − 1
2

(
1 + 1−‖ψ‖2

1+‖ψ‖2
)

‖δ‖2

1 +
(

2ψ
1+‖ψ‖2

)
· δ + 1

2

(
1 + 1−‖ψ‖2

1+‖ψ‖2
)

‖δ‖2

= ρ − υ · δ − 1
2 (1 + ρ) ‖δ‖2

1 + υ · δ + 1
2 (1 + ρ) ‖δ‖2

Propositions 1 and 2 have a significant impact in the way
rotations parameterized with MRPs are updated during iter-
ative optimization. In particular, Proposition 1 ensures that

the elements of the rotation matrix Jacobian are computed
with a few multiplications and additions of previously stored
numbers (i.e., the four quaternion components); furthermore,
Proposition 2 ensures that the updated rotationmatrix in each
step of the iterativemethod can be obtainedwithout having to
compute the MRPs of the previous estimate. In other words,
both the Jacobian computation as well as the update of the
rotation matrix do not explicitly require the use of MRPs and
both can be computed with a few primitive operations on
previously stored numbers.

6.3 Arc Length of Quaternion Curves parameterized
with MRPs

Being a rational map, stereographic projection can be used
to back-project smooth 3D curves on the sphere. The result-
ing spherical curves have certain differential attributes which
could be useful in manipulating their properties in the more
familiar space R3.

Lemma 1 For any unit quaternion q, the Grammatrix of the
Jacobian with respect to its MRPs is a scalar multiple of the
3 × 3 identity matrix:

(∇q)T∇q = (1 + ρ)2 I3 (37)

Proof Using the result of Proposition 1, we have:

(∇q)T ∇q =
[
υυT − (1 + ρ) I3

(1 + ρ) υT

]T [
υυT − (1 + ρ) I3

(1 + ρ) υT

]

= [
υυT − (1 + ρ) I3 (1 + ρ) υ

] [υυT − (1 + ρ) I3
(1 + ρ) υT

]

=
(
υT υ − 2 (1 + ρ) + (1 + ρ)2

)
υυT + (1 + ρ)2 I3

=
⎛

⎜
⎝ρ2 + υT υ
︸ ︷︷ ︸

1

− 1

⎞

⎟
⎠ υυT + (1 + ρ)2 I3

= (1 + ρ)2 I3

A direct consequence of Lemma 1 is that the columns of
the quaternion Jacobian must be orthogonal for every unit
quaternion q �= −1. More formally:

Corollary 1 For any unit quaternion q �= −1 , the columns
of the Jacobian of q with respect to its MRPs constitute
an orthogonal basis of the tangent space of the quaternion
sphere at q.

Lemma 2 Let ψ (t) = (x (t) , y (t) , z (t)) : R → R
3

be a smooth curve. Then the unit quaternion function
q (t) = ρ (t)+(υ (t))T ϕ obtainedas the stereographic back-
projection of ψ (t) on the quaternion sphere is also smooth
and the arc length s (t) of q (t) is given by the following
expression:
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s (t) = 2
∫ t

0

1

1 + ‖ψ (u) ‖2
∥∥∥
dψ

du

∥∥∥ du (38)

Proof It naturally follows from Proposition 1 that, by means
of the chain rule, the first derivative will be a product of
smooth functions and consequently, higher order derivatives
will be the sum of such products. Thus, the spherical back-
projection of ψ (t) will be smooth. Another way of arriving
at this conclusion is to simply consider that stereographic
projection is a rational mapping and therefore maps smooth
functions to smooth functions.

To prove Eq. 38, we make use of Lemma 1, starting from
the standard formula for the arc length of q (t):

s (t) =
∫ t

0

√(
dq

du

)T dq

du
du

=
∫ t

0

√(
∇q

dψ

du

)T (
∇q

dψ

du

)
du

=
∫ t

0

√√√
√√

(
dψ

du

)T

(∇q)T ∇q
︸ ︷︷ ︸
=(1+ρ(u))2 I3

dψ

du
du

=
∫ t

0
(1 + ρ (u))

∥∥∥
dψ

du

∥∥∥ du

It can be easily inferred from Eq. 25 that 1 + ρ (u) =
2

1+‖ψ(u)‖2 . Thus,

s (t) =
∫ t

0

2

1 + ‖ψ (u) ‖2
∥∥∥
dψ

du

∥∥∥ du

7 Quaternion Interpolation

Quaternion interpolation is ubiquitous in the fields of com-
puter graphics, robotics and aerospace engineering [8,21,22,
44,55]. Generating smooth orientation paths between key
orientations is a very challenging task, primarily because we
wish to attach linear interfaces onto steering mechanisms
which, by definition, manipulate objects (i.e., rotations) that
reside in a spherical manifold. In other words, the desired
attributes of the generated sequences are hard to attain, due
to the topological nonlinearities of the group of rotations.

Stereographic projection is a smooth, bijective mapping
from R

3 to the unit sphere in R
4. Consequently, lines in 3D

become distorted on the sphere to account for the incompat-
ibility between the two topological spaces. In this section,
we provide a simple solution to cope with the distortion
caused by perspective projection, while designing the spher-
ical curve in the hyperplane. The idea is to interpolate the
derivative of the spherical curve, in addition to interpolating
the data.

7.1 Configuring Unit Quaternion Derivatives on the
Hyperplane

Suppose we wish to establish a relationship between the
derivative of a parametric unit quaternion curve q (t) =
ρ (t) + (υ (t))T ϕ and the derivative of the corresponding
MRP curve ψ (t). The chain rule for q (t) yields:

q ′ (t) = ∇q ψ ′ (t) , (39)

whereψ ′ (t) = dψ

dt
and∇q is the Jacobian of the quaternion

curve at ψ . Clearly, Eq. 39 defines a 4 × 3 linear system of
equations in the components of ψ ′ (t). We claim that for
q (t) �= −1 this system has the following unique solution:

ψ ′ (t) = 1

(1 + ρ)2
(∇q)T q ′ (t) (40)

Lemma 3 For the unit quaternion q = ρ + υTϕ, examine
the 4 × 3 linear system ∇q ξ = b, where b ∈ R

4 and ∇q
is the Jacobian of q with respect to its modified Rodrigues
parameters.

(a) For q �= −1, consider the vector:

ξ = 1

(1 + ρ)2
(∇q)T b (41)

(i) If b lies in the tangent space of q, then ξ is the unique
solution of the system.

(ii) if b is not in the tangent space of q, then ξ is the least
squares minimizer of the system and consequently,
∇q ξ is the projection of b on the tangent space of q.

(b) For q = −1:

(i) If b �= 0, the system has no solutions.
(ii) If b = 0, any ξ ∈ R

3 is a solution.

Proof The proof is trivial for q = −1. For q �= −1, we
multiply by∇q on the left to get the 3×3 equivalent system:

(
(∇q)T ∇q

)
ξ = (∇q)T b

FromLemma1,weknow that theGrammatrix of the gradient
will be a non-zero scalar multiple of the identity:

(1 + ρ)2 ξ = (∇q)T b

⇔ ξ = 1

(1 + ρ)2
(∇q)T b

The solution of the 3×3 overdetermined system inEq. 41will
satisfy all the original equations because b is in the tangent
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Fig. 3 Standard Catmull–Rom interpolation. The tangents at the data
points pn and pn+1 (shown as black solid lines) are parallel to the linear
segments definedby pn−1, pn+1 and pn , pn+2 (shownwithdashed lines)

space of q and we know from Corollary 1 that it can be
expressed as a linear combination of the columns of ∇q.

7.2 Spherical Catmull–Rom Splines manufactured in 3D

Equation 41 provides the means to configure the differential
properties of a 4D spherical curve by manipulating its pro-
jection in R

3. To demonstrate how effective this approach
is in terms of eliminating projective distortion, we present a
sample scheme for designing spherical Catmull–Rom splines
[9].

Standard Catmull–Rom splines are composed of polyno-
mial segmentswith end-point derivatives thatmatch the slope
of the linear segments that connect data points immediately
preceding and trailing the end-points (see Fig. 3). We con-
sider an analog of Catmull–Rom splines on the sphere in
whichwe require the derivative of the spherical curve at a spe-
cific data-point to be collinear to the tangent-space projection
of the linear segment defined by the trailing and preceding
data points (Fig. 4).

To interpolate between two key points qn and qn+1 accord-
ing to the spherical analog ofCatmull–Romsplines described
in this section, we must solve for the coefficients of a
cubic polynomial ψ (t) = b3t3 + b2t2 + b1t + b0, where
b0, b1, b2, b3 ∈ R

3 and t ∈ [0, 1]. It follows thatψ (t) should
interpolate the projections of two data points atψn andψn+1

for t = 0 and t = 1, respectively. Hence, the following
conditions should apply:

b0 = ψn (42)

b3 + b2 + b1 + b0 = ψn+1 (43)

Furthermore, we require that the tangents at the spherical
points are parallel to the chords that connect the trailing and

Fig. 4 Spherical Catmull–Rom interpolation. The tangents of the
spherical curve at qn and qn+1 are parallel to the projections of lin-
ear segments qn−1 qn+1 and qn qn+2 onto the tangent spaces of qn and
qn+1, respectively

preceding data points, as shown in Fig. 4. Thus, two addi-
tional constraints are obtained on the coefficients of the cubic:

b1 = λ (∇qn)T (qn+1 − qn−1)

(1 + ρn)
2 (44)

3b3 + 2b2 + b1 = λ (∇qn+1)
T (qn+2 − qn)

(1 + ρn+1)
2 , (45)

whereρi is the scalar part ofqi andλ is a user-defined positive
scalar. Using Eqs. 42, 43, 44 and 45, the coefficients of ψ (t)
can be computed in the following order:

τ1 = (∇qn)T (qn+1 − qn−1)

(1 + ρn)
2 (46)

τ2 = (∇qn+1)
T (qn+2 − qn)

(1 + ρn+1)
2 (47)

b0 = ψn (48)

b1 = λτ1 (49)

b3 = λτ2 + b1 − 2 (ψn+1 − b0) (50)

b2 = ψn+1 − b3 − b1 − b0 (51)

It should be noted that the scheme for designing spherical
Catmull–Rom splines is intended as an example of a more
general methodology for eliminating perspective distortion
by configuring the planar curve to produce a back-projection
that matches the desired differential properties on the sphere.
The result of Eq. 41 is a tool with multiple uses when design-
ing spherical splines on the plane.

Figure 5 illustrates an 8-point spherical Catmull–Rom
spline along with the corresponding spherical quadrangle
interpolation (squad) curve. Clearly, both curves fulfill the
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Fig. 5 Spherical Catmull–Rom (blue) and squad interpolation (red)
for 8 key-quaternions (black dots) (Color figure online)

primary requirement of smoothness. Still, a more careful
observation reveals that the spherical Catmull–Rom spline
achieves a generally shorter distance between the key points
in comparison with squad. Obtaining shorter arc lengths in
orientation interpolants is important in robotic and anima-
tion applications [14,27,49,53] because they yield reduced
torque in the rotational motion. For similar reasons, minimal
curvature is an equally important attribute [13]. Particularly
in the case of animation, approximately constant speed in
spherical curves is desirable because it can bewarped into any
desirable acceleration profile (e.g., trapezoidal moves) [66].
In summary, it would appear that connected great arcs can be
loosely regarded as the “ideal” interpolants in terms of the
aforementioned attributes (minimal arc length, minimal cur-
vature and constant speed) if we could somehowoverlook the
lack of smoothness at the end-points. In Sect. 8.1, we study
the characteristics of generated Catmull–Rom and squad

curves and use the great arcs between data points as a bench-
mark to obtain quantifiable measures on their performance.

8 Experimental Results

This section presents experimental results comparing the per-
formance ofMRPs in various applications against alternative
parameterizations of rotation.

8.1 Spherical Catmull–Rom Splines as Orientation
Interpolants

The method proposed in Sect. 7.2 for the design of spherical
Catmull–Rom (SCR) splines was merely a demonstration
of the ways that the properties of a spherical curve can be
configured in the hyperplane. However, the resulting curve,
although not optimal in all aspects, exhibits, besides smooth-
ness, significant improvements in terms of arc length and
curvature when compared to the one produced by squad.
Furthermore, it approximates the great arcs between the key
points better than squad in the majority of cases.

For demonstration, we performed comparisons on three
sequences of eight key quaternions each, generated by suc-
cessive random “jumps” in polar coordinates. In particular,
the angles of each jump are uniformly sampled from a spec-
ified range in degrees. The range from which the angles are
sampled determines the density of the key points which in
turn affects the behavior of the interpolants. To observe the
qualitative characteristics of the spherical curves in datasets
of varying sparsity, the angular jumps used in the three gen-
erated sequences were sampled from the intervals [10◦, 40◦],
[10◦, 70◦] and [10◦, 100◦], respectively. Figures 6, 7, 8 illus-
trate arc length, speed and distance from great arc for both
spherical Catmull–Rom splines and squad in the three afore-
mentioned sequences.

(a) (b) (c)

Fig. 6 Arc length, speed and distance from the great arcs for a sequence of 8 points generated using polar jumps in the interval [10◦, 40◦] (to be
viewed in color). a Arc length, b speed, c distance from great arc
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(a) (b) (c)

Fig. 7 Arc length, speed and distance from the great arcs for a sequence of 8 points generated using polar jumps in the interval [10◦, 70◦]. a Arc
length, b speed, c distance from great arc

(a) (b) (c)

Fig. 8 Arc length, speed and distance from the great arcs for a sequence of 8 points generated using polar jumps in the interval [10◦, 100◦]. a Arc
length, b speed, c distance from great arc

The results indicate that SCR splines produce curves
that are often much more proximal to great arcs than those
obtained from squad,with generally shorter arc lengths, sug-
gesting that the quality of interpolation attains similar, if not
higher standards. The latter is an indication that perspective
distortion is either not present or minimal as a direct conse-
quence of configuring spherical derivatives in the hyperplane.
On the other hand, squad presents speed patterns that match
slerp closer than SCR splines. This is not necessarily a bad
trait, primarily because SCR curves consistently produce a
symmetric bell-shaped speed profile, which can be perceived
as a smooth trapezoidal pattern. It should be noted that squad
is twice differentiable at the key points, while SCR curves are
only continuous in the first derivative, a direct consequence
of the definition of Catmull–Rom splines. In summary, SCR
curves are smooth interpolants presenting little distortion on
the sphere and bell-shaped symmetric speed patterns which
can be easily warped to produce other speed profiles. On the
other hand, velocity is not differentiable at the key points, a
factwhichmaybear consequences, depending on the applica-
tion. It should be noted, however, that the underlying general
interpolation rationale involving the interpolation of deriva-
tives side-to-side with data points is a method successful in

producing spherical interpolants which are devoid of distor-
tion and can be adapted to suit spherical interpolation based
onmore general planar curves such asB-splines, for instance.

8.2 Descent Behavior of MRPs

Aiming to assess the descent behavior of MRPs in a situation
involving a single unknown rotation, we chose to employ
absolute orientation [29] as a test problem. It is widely
known that this problem can be dealt with non-iteratively,
e.g., [15,28,29,36]. However, our objective in this experi-
ment was not to provide yet another solution, but rather to
benchmark how MRPs compare against other parameteriza-
tion schemes in the context of a basic, quadraticminimization
problem in only the rotation parameters. Specifically, the
parameterization schemes compared with MRPs were axis-
angle, normalized quaternion and incremental rotation.

Given two 3 × N matrices X and Y comprised of N cor-
responding points in two different reference frames with the
same origin, absolute orientation requires determining the
rotation R(p∗), where

p∗ = argmin
p

∥∥R (p) Y − X
∥∥2, (52)
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p ∈ R
3 is the orientation parameter vector and ‖.‖ denotes

the Frobenius norm for matrices.6

In our experimental setup, the dataset comprises 100 cor-
respondences, i.e., matrices X and Y have size 3 × 100.
The unrotated points X were sampled from a 3D Gaussian
with a covariance matrix 102 I3, thus producing a “spread”
of roughly 10 metric units. The ground-truth rotation matrix
was synthesized by uniformly sampling the 3 Euler angles
from the interval [20◦, 80◦]. This rotation was then applied
to every row of X to yield Y .

To study the descent behavior of MRPs against alter-
native parameterizations across multiple levels of noise,
the optimization was carried out for 100 incremental stan-
dard deviation levels of noise from 0 to 2.5 using the
Levenberg–Marquardt algorithm [34,42]. The noise is pre-
sumed Gaussian and was added to Y , which, by virtue of
the property of linear propagation of covariance, is statisti-
cally equivalent to contaminating the relative position of the
correspondences.

For each noise level, the same experiment (i.e., using the
same ground-truth data) was repeated 40 times from a ran-
dom starting point to convergence and the error in each step
was recorded, as well as the overall steps to convergence
(or maximum permissible iterations). Since we know that
the absolute orientation cost function has 4 stationary points
which are the eigenvectors of a data-dependent matrix, we
would expect the process to occasionally get stuck in one of
the 3 suboptimal points. In practice, we observed that this
rarely happens. However, to ensure that the descent observa-
tions are not biased by the occasional convergence to local
minima, we used median values for the error and the number
of steps to convergence. Figure 9 illustrates plots of steps-
to-convergence versus standard deviation of Gaussian noise.
It should be noted that the iterative process terminates when
any of the following conditions are met: (a) squared error
below 10−6, (b) change in squared error below 10−12 and,
(c) the process has reached 100 iterations.

The incremental rotation approach employed here has
been adopted by several notable pieces of work in vision,
e.g., [18,33,39,60]. The rationale behind this approach is to
take advantage of the fact that the tangent space of a rotation
matrix R comprises all matrices RS× where S× is a skew-
symmetric matrix. It is therefore possible to devise a very
simple retraction [1] R′, which maps the tangent space of R
onto SO(3) by applying a perturbing rotation on the right7

of R:

6 Solving absolute orientation amounts to estimating a rotation and a
translation. Yet, as explained by Horn in [28], the problem can be re-
formulated to an equivalent one involving only rotation. Historically,
this rotation-only formulation was originally introduced in astronautics
as a satellite attitude estimation problem by Wahba [65].
7 Could also be applied on the left.

Fig. 9 Steps to convergence for added Gaussian noise up to 2.5 in a
synthetic point-set with spread over 10 metric units

R′(S×) = R exp (S×) (53)

It can be easily shown that R′ is a retraction, since the expo-
nential map is smooth and R′ ([0]×

) = Rexp
(
[0]×

) = R.
Most importantly, R′ satisfies the local rigidity requirement,
since the directional derivative

dR′ (tU×)

dt

∣∣∣∣]t=0
= RU×

is the identitymapping in the tangent space of R for any skew-
symmetric matrixUx . Consequently, the 3 descent directions
on the manifold are RG1, RG2, RG3, and they are obtained
by differentiating R′ at the origin.

The results of Fig. 9 clearly indicate that MRPs and incre-
mental rotations consistently reach a converged state within
10 to 20 iterations, while normalized quaternions and axis-
angle parameters require roughly between 20 to 60 iterations.
We conjecture that the incremental approach combined with
MRPs would most likely improve the number of steps to
convergence, but the gain would be marginal. This con-
jecture is based on the observation (using the formulas in
“Appendix A”) that the derivatives of a rotation matrix with
respect to MRPs at the origin are the scaled multiples of
infinitesimal rotations, 4G1, 4G2, 4G3.

The evolution of error during the entire Gauss-Newton
process is consistent with the convergence rates of Fig. 9.
Indicative plots of how the error evolves throughout the
Gauss-Newton process for three different added Gaussian
noise levels (standard deviation 0, 1.5 & 2.5) are shown in
Fig. 10. The error in each step is obtained as the median esti-
mate of the error values in the same step across 20 distinct
Gauss-Newton executions. It is clear that MRPs and incre-
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(a) (b) (c)

Fig. 10 Median error versus iteration in the Gauss-Newton method for added Gaussian noise with standard deviation 0, 1.5 and 2.5. a Noise level
0, b noise level 1.5, c noise level 2.5

mental rotations present a similar error curve with a very
steep slope, as opposed to the axis-angle parameters and,
to a lesser extent, normalized quaternion; furthermore, this
pattern is consistent throughout the various levels of noise.
We attribute this behavior primarily to the numerical stabil-
ity of the rotation derivatives associated with the MRPs and
the incremental rotation. In contrast, axis-angle and normal-
ized quaternion Jacobians contain variable quantities in the
denominator and very small/large values in these quantities
may produce unstable descent patterns.

The noticeable abrupt “dives” in the error curves in Fig. 10
most likely correspond to periods in which the Levenberg–
Marquardt damping factor grows upon successive steps in
order to shorten the step size in the search for a better solution.
This would account for the occasional nearly-constant error
values for certain periods. Subsequently (but not in all cases),
the error curve introduces a steep “dive” that corresponds to
a step size that reached-out to an improved solution lying in
a steeper region of the search surface.

8.3 Sparse Bundle Adjustment

Given a set of images depicting a number of 3D points from
several different viewpoints, bundle adjustment (BA) is the
problem of simultaneously refining the 3D coordinates of
these points, as well as the parameters of the relative motion
and possibly the optical characteristics of the camera(s)
employed to acquire the images, according to an optimality
criterion involving the cumulative image reprojection error
of all points. BA amounts to a large, nonlinear optimiza-
tion problem on the 3D structure and viewing parameters
(i.e., camera pose and possibly intrinsic calibration and radial
distortion). It is employed as the last step of most feature-
based 3D reconstruction pipelines, since its solution yields a
reconstruction which is optimal in the MLE sense under the
assumption that the noise pertaining to the observed image
features is zero-mean Gaussian [37].

BA constitutes a special type of a nonlinear least squares
problem, since the lack of interaction among parameters
for different 3D points and cameras results in the underly-
ing normal equations having a special “arrowhead” sparse
block structure [35]. sba [37] is a software package that
efficiently solvesBAusing a sparse variant of theLevenberg–
Marquardt algorithm that exploits the particular zero pattern
of the underlying normal equations.

With the aid of publicly available, real-world datasets
from [2], we tested different rotation parameterizations
applied to BA. These datasets originate from incremental
3D reconstruction for large-scale community photo collec-
tions. More specifically, we used the first two data files from
each of the “Ladybug”, “Trafalgar Square”, “Dubrovnik”,
“Venice” and “Final” datasets. The sba [37] package was
used to optimize those datasets using its default, quaternion-
based local rotation parameterization described in Sect. 3.2.
We also adapted sba to employ a global rotation parameter-
ization based on the MRPs and compared it against the local
quaternion parameterization. The results of the comparison
are illustrated in Fig. 11, which shows the execution times
and the number of iterations for the two rotation parameter-
izations.

In all applications ofsba, the default convergence param-
eters were employed; in particular, the maximum number
of iterations was set to 150. With the exception of the last
data file (namely ‘394-100368’), both parameterizations con-
verged to the same global minimum. In the last dataset, the
parameterization employing MRPs required roughly four
times more iterations but converged to a better minimum,
which corresponded to over 60% lower average reprojection
error compared to that obtained with quaternions. For the
majority of datasets, both parameterizations required very
similar numbers of iterations to converge. However, MRPs
converged with noticeably fewer iterations for two datasets.
The execution times were generally lower for the parame-
terization based on MRPs, owing to the simpler calculations
involved in the evaluation of the image projections and their
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Fig. 11 Execution times for various BA datasets and two rotation
parameterizations (orange for MRPs and blue for quaternions). Notice
the logarithmic scale in the vertical axis. Following [2], each dataset
in the horizontal axis is labeled as C-P, C and P being, respectively,
the numbers of cameras and 3D points it involves. The actual execution
times are shown in bold near the top of every bar. The numbers in ital-
ics near the bar bottoms are the iterations needed for convergence. The
increased execution time required by MRPs for the rightmost dataset
is due to that they required 4 times more iterations but converged to a
much better minimum (Color figure online)

derivatives. Still, we note that the execution time for each
iteration of sba is dominated by the time needed for the
linear algebra operations involved in the solution of the nor-
mal equations (in particular, the Cholesky factorization of
the Schur complement, cf. [37]), which does not depend on
the choice of rotation parameterization.

8.4 Exterior Orientation

Exterior orientation refers to the estimation of the position
and orientation of a camera given its intrinsic parameters and
a set of n ≥ 3 correspondences between known 3D points
and their 2D image projections. This problem, also known
as the PnP or camera resection problem,8 has received much
attention due to is applicability in various domains. Exterior
orientation is typically dealt with by embedding minimal-
size PnP solvers to robust regression frameworks such as
RANSAC (see [38] and references therein). However, as
minimal solutions ignore much of the redundancy present
in the data, they suffer from inaccuracies. To remedy this, an
additional step comprised of nonlinear optimization with the
Levenberg–Marquardt algorithm is employed to minimize
the reprojection error pertaining to all inliers [38].

Starting with the datasets employed for bundle adjustment
in Sect. 8.3,we extracted the 3Dpoints projecting to their first
frames. Then, those 3D points along with their projections

8 Strictly speaking, camera resectioning is slightly different since
photogrammetrists define it as determining the projection matrix corre-
sponding to a set of 3D–2D correspondences, i.e., the camera intrinsics
are unknown.

Fig. 12 Execution times for exterior orientation problems correspond-
ing to the first frames of the datasets employed in Sect. 8.3, using two
rotation parameterizations (orange for MRPs and blue for axis-angle).
The actual execution times are shown in bold near the top of every bar,
whereas the number of iterations are in italics at the bar bottoms (Color
figure online)

in the first frame of each dataset were used for estimating
the corresponding camera poses using the posest library
implementing [38]. We also modified the nonlinear refine-
ment step of posest to employ a rotation parameterization
based on MRPs and compared it with its native axis-angle
parameterization. Since the execution times for pose estima-
tion are in most cases very small, and in order to accurately
measure them, each pose estimation was run 100 times and
the elapsed time scaled accordingly.

Figure 12 shows the execution times and the number of
iterations for both rotation parameterizations. Similarly to the
BA experiment described above, all optimizations converged
to the same poses for both parameterizations. However, the
execution times pertaining to MRPs are shorter, despite that
the number of iterations is occasionally slightly higher com-
pared to those spent for the exponential parameterization.
Compared to the BA experiment, the difference between the
execution time performance of the two parameterizations is
more evident. This is due to the small size of the nonlin-
ear minimization of the single view reprojection error and its
consequent lowcomputational cost, and clearly demonstrates
the performance benefits gained by the use of MRPs.

9 Conclusion

Modified Rodrigues parameters is a formalism for the repre-
sentation of orientation based on stereographic projection,
originally introduced in the field of aerospace engineer-
ing by Wiener [68] in 1962. Stereographic projection is
a well-established mathematical construct with primarily
theoretical applications in complex analysis, topology and
projective geometry. However, the practical significance of
thismapping in appliedfields such as computer vision, graph-
ics and robotics has been overlooked.
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This paper has advocated the use of MRPs for parameter-
izing rotations in problems arising in the fields of computer
graphics and vision. Its primary objective is to familiarize the
community with this formalism from the aspect of practical
applications involving the recovery and/or interpolation of
orientation by emphasizing its graceful properties not only
as a rational parameterization but also in terms of differenti-
ation.

In particular, it was shown that the Jacobian of a quater-
nion is not only a rational function of its MRPs, but also
a polynomial function of its scalar and vector part. This
is favorable from the perspective of nonlinear optimization
problems involving the recovery of orientation, considering
that the Jacobians corresponding to parametric unknowns
such as normalized quaternions or axis-angle vectors yield
occasionally highly complicated and non-rational expres-
sions. In addition to the succinct Jacobian, it was shown that
the update of a quaternion from a perturbation in its MRPs
does not require the use of the actual parameter vector. This
means that there is no need tomove through parameter spaces
in iterative optimization, which is also an important benefit
from a numerical and algorithmic standpoint. To support our
claims, this paper has also provided experimental evidence
regarding the practical advantages stemming from the use of
MRPs in small as well as large-scale iterative optimization
in classic problems in 3D computer vision.

Further advantages of MRPs include the flexibility in
constructing smooth quaternion curves with minimal dis-
tortion in more intuitive ways. Specifically, we presented a
novel general strategy for designing quaternion splines in
the hyperplane by interpolating not only the key points, but
also the derivatives of the spherical curve while working on
its projection in the hyperplane. This yields smooth ratio-
nal interpolants with minimal perspective distortion that are
very competitive with popular algorithms such as spherical
quadrangle interpolation (squad).

Concluding, we briefly summarize the benefits of MRPs
and stereographic projection as an orientation parameterizing
scheme. It is a multi-purpose tool with convenient proper-
ties that allows for less complicated solutions in otherwise
difficult, nonlinear or even intractable problems and offers
efficiency up-to and beyond the standards of existing solu-
tions aswell as simplicity of design and implementation.C++
and Matlab code implementing most formulas in the paper
is available in the following repository: https://github.com/
terzakig/Quaternion.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix A: RotationMatrix Jacobian Tensor with
Respect to MRPs

The derivatives of the elements of a rotationmatrix R = [
ri j

]

in terms of MRPs are simple quadratic expressions of the

quaternion components, ρ and υ = [
υ1 υ2 υ3

]T
and they

are obtained via the chain rule, using Eqs. 8 and 34. Since
the Jacobian is a 3 × 3 × 3 tensor, it is more convenient to
give the gradient of each element separately:
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