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How smooth are particle trajectories in a �CDM Universe?
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ABSTRACT

It is shown here that in a flat, cold dark matter (CDM)-dominated Universe with positive
cosmological constant (�), modelled in terms of a Newtonian and collisionless fluid, particle
trajectories are analytical in time (representable by a convergent Taylor series) until at least
a finite time after decoupling. The time variable used for this statement is the cosmic scale
factor, i.e. the ‘a-time’, and not the cosmic time. For this, a Lagrangian-coordinate formulation
of the Euler–Poisson equations is employed, originally used by Cauchy for 3D incompressible
flow. Temporal analyticity for �CDM is found to be a consequence of novel explicit all-order
recursion relations for the a-time Taylor coefficients of the Lagrangian displacement field,
from which we derive the convergence of the a-time Taylor series. A lower bound for the
a-time where analyticity is guaranteed and shell-crossing is ruled out is obtained, whose value
depends only on � and on the initial spatial smoothness of the density field. The largest
time interval is achieved when � vanishes, i.e. for an Einstein–de Sitter universe. Analyticity
holds also if, instead of the a-time, one uses the linear structure growth D-time, but no simple
recursion relations are then obtained. The analyticity result also holds when a curvature term
is included in the Friedmann equation for the background, but inclusion of a radiation term
arising from the primordial era spoils analyticity.
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1 IN T RO D U C T I O N

Recent observational results (Planck Collaboration XVI 2014) indicate that we live in a spatially flat �CDM Universe which is nowadays
dominated by a cold dark matter (CDM) component and a cosmological constant, � > 0. In a primordial era, matter was tightly coupled to
radiation via electroweak interactions. This tight coupling prevented matter to cluster significantly at early times since the radiation pressure
acted as a counter force to the gravitational force. As the Universe expands its mean energy density decreases, which eventually lead to
a freeze-out of these electroweak interactions. This freeze-out of the interactions (non-instantaneous in space and time) happened roughly
380 000 yr after the big bang, eventually enabling the matter to cluster. This epoch, usually called decoupling or recombination, marks the
beginning of cosmological structure formation with initially smooth matter density fluctuations.

The observed large-scale structure of the Universe is mainly the result of the gravitational instability. To study the structure formation,
it is usually assumed that the CDM component behaves as a Newtonian pressureless and curl-free fluid (so-called cosmological dust). Such a
fluid is governed by the Euler–Poisson equations, together with the Friedmann equation, where the latter describes the background evolution
of the expanding Universe. Since that background evolution is by definition exactly homogeneous and isotropic, it is parametrized by a single
function (of cosmic time t): the cosmic scale factor a(t).

Analytical models for cosmological structure formation can be formulated in either the Eulerian or Lagrangian frame of reference (for
some reviews, see e.g. Bernardeau et al. 2002; Bernardeau 2015). The class of analytical models of the latter is dubbed the Lagrangian
perturbation theory (LPT; Buchert & Goetz 1987; Buchert 1989, 1992; Bildhauer, Buchert & Kasai 1992; Bouchet et al. 1992, 1995;
Catelan 1995; Ehlers & Buchert 1997). When using this technique, the only dynamical variable is the displacement, which represents the
gravitationally induced deviation of the particle trajectory field from the homogeneous background evolution of the Universe. To solve the
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Euler–Poisson equations in Lagrangian space, one usually requires some power series Ansatz for the displacement (for more information,
see also below in the Introduction).

The LPT is widely applied in cosmology. Buchert (1992) showed that the Zel’dovich approximation (Zel’dovich 1970) is actually an
instance of the first-order LPT (see also Novikov 1970). Simply and elegantly, it quite well describes the gravitational evolution of CDM
inhomogeneities, as long as the trajectories of fluid particles do not cross. A Lagrangian approach has been also used in the so-called
cosmological reconstruction problem in an expanding Universe (Frisch et al. 2002; Brenier et al. 2003), where it is shown that, in so far as the
dynamics are governed by the Euler–Poisson equations, the knowledge of both the present highly non-uniform distribution of mass and of its
primordial quasi-uniform distribution, uniquely determines the inverse Lagrangian map, defined as the transformation from present Eulerian
positions to their respective initial positions. The LPT is also an important tool in numerical investigations. In recent years, second-order LPT
(2LPT) has been successfully used to set up initial conditions for numerical N-body simulations (see e.g. Crocce, Pueblas & Scoccimarro
2006). The so-called biasing model, whose task is to find a relationship between the visible matter and the dark matter distribution, yields good
predictions to cosmological observations when formulated in Lagrangian space (Mo & White 1996; Matsubara 2008b). Also, semi-analytical
approaches to LPT deliver statistical estimators, such as the matter power spectrum and bispectrum, which compare favourably with results
from N-body simulations (e.g. Matsubara 2008a; Rampf & Wong 2012; Vlah, Seljak & Baldauf 2014). These approaches make use of the
LPT up to the fourth order (Rampf 2012; Rampf & Buchert 2012). Most of the LPT calculations are performed for a flat CDM universe with
vanishing cosmological constant, i.e. for an Einstein–de Sitter (EdS) universe, and only few investigations, up to the third order, are known
for a �CDM Universe (see, e.g. Matsubara 1995; Lee 2014). The LPT has also been generalized to General Relativity, for a non-perturbative
formulation see Buchert & Ostermann (2012) and Buchert, Nayet & Wiegand (2013). For a general relativistic treatment within the �CDM
model, see Rampf & Rigopoulos (2013), Rampf (2013) and Rampf & Wiegand (2014).

Although LPT is widely applied in cosmology, very little is known about its convergence properties, which requires some knowledge
about terms of arbitrarily high order. There are of course some exceptions; for example, Sahni & Shandarin (1996) investigated the case of
an initial ‘top-hat underdensity’ that is initially discontinuous, and found that low-order perturbation worked better than a higher order one,
which they regarded as a possible evidence for ‘semiconvergence’ of the perturbation series (see also Moutarde et al. 1991). Recently, a novel
Lagrangian-coordinate approach has been used to show that particle trajectories for an EdS universe are time analytical until a finite time
(Zheligovsky & Frisch 2014). Their approach is based on a little known Lagrangian formulation of ideal fluid flow derived by Cauchy in 1815
(Frisch & Villone 2014). In this paper, we show that the approach of Zheligovsky & Frisch (2014) can be extended to a �CDM Universe
(and even beyond, see below), derive novel recursion relations and prove time analyticity in the cosmic scale factor time, here used both as a
time variable and as an expansion parameter.

In the LPT literature, analytical results for �CDM usually employ an expansion in powers of small displacements, which amounts to
performing a (Taylor) expansion in powers of the initial peculiar gravitational potential, ϕ(init)

g ∼ 10−5. By this technique, one seeks (reasonably
well) approximate solutions of the non-linear Euler–Poisson equations. As a consequence of such an approximation technique, one is forced
to solve at each order in perturbation theory a second-order partial differential equation for the time coefficient of the displacement (the fastest
growing solutions of these time coefficients are usually denoted with D(t), E(t), etc.). Because of that it is impossible to obtain recursion
relations for �CDM by the use of such a ‘small displacement’ expansion. In this paper, by contrast, we perform a time Taylor expansion and
seek for exact analytic solutions for the fully non-linear Euler–Poisson equations in Lagrangian space. As a consequence of our expansion
scheme, the displacement is represented in terms of a power series in the cosmic scale factor (even for a �CDM Universe!), and there is thus
no need to explicitly solve partial differential equations (PDEs) for higher order time coefficients.

This paper is organized as follows. In Section 2, we present various forms of the Euler–Poisson equations in a Eulerian-coordinate
system and we show that regularity of the solution at short times requires certain slaving constraints on the initial conditions. In Section 3, we
turn to the Euler–Poisson equations in Lagrangian coordinates, which take a particularly simple form when using the cosmic scale factor as
the time parameter. Recursion relations are derived in Section 4, from which time-analyticity is derived in Section 5. Further results related to
time-analyticity are discussed in Section 6. This includes the dependence of the time of guaranteed analyticity on the cosmological constant
� (Section 6.1), the absence of shell-crossing during the time interval where analyticity can be proved (Section 6.2), the analyticity in the
linear growth time variable D (Section 6.3) and the persistence of analyticity when curvature effects are included, as well as the problem
that arises with radiation effects (Section 6.4). Finally, in Section 7, we summarize our main findings and highlight various challenging open
problems, such as using analyticity to develop a semi-Lagrangian numerical approach to the cosmological reconstruction.

2 TH E VA R I O U S FO R M S O F T H E EU L E R – P O I S S O N EQUATI O N S A N D T H E SL AV I N G C O N D I T I O N S

A flat, matter-dominated Universe may be studied as a Newtonian and collisionless fluid whose governing equations are the Euler–Poisson
equations. For a flat Universe with cosmological constant, the Euler–Poisson equations are (Peebles 1980)

∂t Ũ + (Ũ · ∇r )Ũ = −∇r φ̃g , (1a)

∂t �̃ + ∇r · (�̃Ũ) = 0 , (1b)

∇2
r φ̃g = 4πG�̃ − 3� . (1c)
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�CDM: How smooth are particle trajectories? 1423

Here, r is the proper space coordinate, t the cosmic time, Ũ the velocity of the fluid, its density �̃; the gravitational potential is denoted by
φ̃g. As to the cosmological constant, it is here denoted by 3�. Observe that, as long as we use the cosmic time as independent time variable,
the various dependent variables are surmounted by a tilde, which will be dropped when we change the time variable from cosmic time to
cosmic scale factor a. As usual, we decompose the mass density, fluid velocity and gravitational field respectively in a sum of two terms, one
describing the effect of the uniform background expansion, and the other the fluctuations against its background,

�̃ = ˜̄�(t)[1 + δ̃] , Ũ = ȧ

a
r + aũ , φ̃g = ˜̄φg + ϕ̃g . (2)

Here, δ̃ is the density contrast and aũ the proper peculiar velocity. Furthermore, a(t) is the cosmic scale factor which parametrizes the global
background expansion governed by the (first) Friedmann equation(

ȧ

a

)2

= a−3 + � , (3)

where we have used the fact that the background mass density is ˜̄�(t)∼a−3(t), and we have set 8πG�̄0/3 = 1 for convenience. The solution
for the cosmic scale factor is easily obtained from the Friedmann equation, namely

a(t) = �−1/3[sinh(3
√

�t/2)]2/3 , (4)

which is proportional to t2/3 for small t (see e.g. Kofman, Gnedin & Bahcall 1993).
After performing the aforementioned decomposition, derived in Appendix A, we obtain the Euler–Poisson equations for the (comoving)

peculiar velocity ũ

∂t ũ + (ũ · ∇x) ũ = −2
ȧ

a
ũ − 1

a2
∇x ϕ̃g , (5a)

∂t δ̃ + ∇x · [
(1 + δ̃)ũ

] = 0 , (5b)

∇2
x ϕ̃g = 3

2a
δ̃ . (5c)

Note that the peculiar Euler–Poisson equations depend on the comoving coordinate x ≡ r/a. Although these equations are indeed valid for a
fluid model with cosmological constant, the latter does not explicitly appear in the peculiar approach, but only implicitly through Friedmann’s
background evolution equation (3).

Before considering the Euler–Poisson system (equations 5a–5c) in Lagrangian space, let us briefly discuss the linearized system in
Eulerian space. Formally linearizing around the steady state ũ = 0, δ̃ = 0, we obtain the single differential equation for the density contrast,

¨̃δ = −2
ȧ

a
˙̃δ + 3

2a3
δ̃ . (6)

The solution of equation (6) is most easily obtained by changing the time variable from cosmic time t to the cosmic scale factor a, here called
a-time. We thus set δ̃(t) = δ(a(t)). We then have ∂t = ȧ∂a . The above differential equation is then

(1 + �a3)

[
∂aaδ + 3

2a
∂aδ

]
+ 3

2
�a2∂aδ − 3

2a2
δ = 0, (7)

where we have used the Friedmann equation (3). This equation has two solutions. One is called the decaying mode; it behaves as a−3/2 for
small a and thus blows up when a → 0, thereby invalidating the linearization. The other one, the growing mode, here called the linear growth
function, is taken to be D(a) = a

√
1 + �a3

2F1

(
3/2, 5/6, 11/6, −�a3

)
, where 2F1 is the Gauss hypergeometric function (Demianski, Golda

& Woszczyna 2005; Enqvist & Rigopoulos 2010; Hamber & Toriumi 2010). This solution is analytic around a = 0, has the small a expansion
D(a) = a − (2/11) �a4 + h.o.t. and thus essentially reduces to the cosmic scale factor at short times. This is the physically appropriate
solution, in which density fluctuations are growing linearly with a.

However, when studying the well posedness of the non-linear Euler–Poisson system (equations 5a–5c) and, subsequently, when looking
for analytic solutions in Lagrangian coordinates, a linear approach ceases to be appropriate. The latter just gives us a signal that the appropriate
time variable might be proportional to t2/3 or to a or D at short times. The non-linear theory can be developed in all three such time variables
but, for our purposes, it takes its simplest form when using the a-time (and not just at short ones). Indeed the Euler–Poisson system
(equations 5a–5c) can be rewritten in the following form:

(1 + �a3) [∂av + (v · ∇x)v] = − 3

2a
(v + ∇xϕg) − 3�a2v , (8a)

∂aδ + ∇x · [(1 + δ) v] = 0 , (8b)

∇2
xϕg = δ

a
, (8c)
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1424 C. Rampf, B. Villone and U. Frisch

where we used a new velocity variable v, the a-derivative of comoving particle positions, related to the old velocity by

ũ(x, t) = ȧv(x, a(t)) , (9)

and we have set ϕ̃g(x, t) = (3/2)ϕg(x, a(t)). Note that, with respect to �, the situation in equations (8a)–(8c) is the opposite of what we had
with equations (5a)–(5c): � appears now explicitly, but the Friedmann equation can now be omitted as long as we do not want to revert to the
cosmic time variable.

An important feature of equations (8a)–(8c) is the presence of cosmic scale factors in the denominators of the r.h.s. of equations (8a)
and (8c). It indicates that the solution will be singular at a = 0 unless the corresponding numerators also vanish, that is, we have to satisfy the
two following slaving conditions (Brenier 1987) at a = 0 (denoted by the superscript (init)):

δ(init) = 0, v(init) = −∇xϕ
(init)
g . (10)

The second slaving condition immediately implies the curl-free character of the initial velocity, which persists by equation (8a) in Eulerian
(but not in Lagrangian) coordinates. Traditionally, this irrotationality is often derived by linearizing the Euler–Poisson equations and showing
that the rotational component of the velocity decays in time (see e.g. Bernardeau et al. 2002). This linearization would be justified if the
velocity v would be small at short times as indeed the density contrast δ is. However, the velocity v and the gravitational force ∇xϕg do not
vanish as a → 0. Thus, a linearization-based argument is questionable.

The cosmic scale factor a, being dimensionless, is conveniently normalized to unity at the present-time epoch. At decoupling it then has
a value of about 10−3. Here, we let the cosmic scale factor start at the value zero, while using the Euler–Poisson model with slaving. As a
consequence, the whole primordial (pre-decoupling) cosmology is just reduced to the prescription of the slaving conditions (10). We shall
come back to this issue in the Concluding Remarks (Section 7).

3 TH E L AG R A N G I A N FO R M U L AT I O N O F �C D M

Time Taylor expansions can be carried out in either Eulerian or in Lagrangian coordinates. For such expansions to be convergent, i.e. for the
radius of convergence not to vanish, it is much preferable to work in Lagrangian coordinates. Indeed, if the initial conditions have spatial
derivatives only up to some finite order, the Eulerian solutions will have time derivatives only up to the same order. The reason is that,
when one takes a time derivative in Eulerian coordinates, this generates a space derivative, because of the (v · ∇x)v term. Hence, time Taylor
coefficients will not exist beyond that order. This does not happen in Lagrangian coordinates, where a limited amount of smoothness in
the initial data suffices to ensure time-analyticity (Zheligovsky & Frisch 2014). Even when the initial data are spatially analytic, so that the
solutions are time analytic in both Eulerian and Lagrangian coordinates, the Lagrangian radius of convergence, being controlled by the largest
strain in the initial data, is typically much larger than the Eulerian one, which depends on the largest initial velocity present (for more details
on such matters, see Podvigina, Zheligovsky & Frisch 2015).

We now turn to the Lagrangian formulation of the Euler–Poisson equations (8a)–(8c). For this we use the (direct) Lagrangian map
q �→ x(q, a) from the initial (a = 0) position q to the Eulerian position x at time a. The velocity v, as it is apparent from its definition (9),
is simply the Lagrangian a-time derivative of the position; more precisely, v(x(q, a), a) = ∂L

a x(q, a), where ∂L
a is the Lagrangian a-time

derivative. At initial time, a = 0, the velocity is

v(init)(q) = v(x(q, 0), 0) , (11)

which coincides with the Eulerian one. We shall also use the Jacobian matrix ∇L
j xi(q, a), where ∇L

j denotes the Lagrangian space derivative
with respect to qj, and its determinant J = det(∇L

j xi), the Jacobian. Note that after shell-crossing, i.e. the first vanishing of J, the map ceases
to have a unique inverse.

As an intermediate step to a fully Lagrangian formulation of the Euler–Poisson equations, we rewrite the momentum equation (8a)
and the Poisson equation (8c) in a mixed form: some terms are more naturally expressed in Lagrangian coordinates and others in Eulerian
coordinates; composition with the direct or inverse Lagrangian maps is here understood where appropriate:

(1 + �a3)∂L
aa x = − 3

2a

(
∂L

a x + ∇xϕg

) − 3�a2∂L
a x , (12a)

(1 + δ)J = 1 , (12b)

∇2
xϕg = δ

a
. (12c)

Equation (12b) is a straightforward expression of mass conservation in Lagrangian coordinates, which need not be derived from its differential
Eulerian counterpart. It is however invalid after shell-crossing. Due to the appearance of several velocities (multistreaming), there are several
branches of the inverse Lagrangian map. In that case, equation (12b) must be replaced by

(1 + δ) =
∑

n

1

|Jn| , (13)
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where n labels the various Lagrangian locations having the same Eulerian location (Buchert 1995). It is likely that each branch of the
multistreaming system still satisfies the Euler–Poisson equations with the density given by equation (13), but this requires further investigation.

The derivation of the full Lagrangian formulation of the Euler–Poisson equations has two parts. The first part is almost identical to
Cauchy’s 1815 derivation of the Cauchy invariants equation for incompressible fluids (see Frisch & Villone 2014). Since it is already given
in Zheligovsky & Frisch (2014) for the case of an EdS universe, we shall just recall the ideas briefly and give the final Cauchy equation.
We observe that in the r.h.s. of equation (12a), because of the curl-free character of the velocity ∂L

a x, all the terms are Eulerian gradients.
Multiplication by the Jacobian matrix changes these Eulerian gradients to Lagrangian gradients. These are then made to vanish by taking
a Lagrangian curl. After this, a quadratically non-linear equation is obtained for the Lagrangian map, which involves first and second time
derivatives. Cauchy observed that this equation can be exactly integrated in time. This ‘miracle’ has been interpreted much later as stemming
from the relabelling invariance of the variational formulation of the Euler equation and use of Noether’s theorem (Frisch & Villone 2014,
Section 5.2). The resulting Cauchy invariants equations have normally the initial vorticity in its r.h.s but, in the present case, the vorticity
vanishes and the equations take the following form:

εijk∇L
j xl ∂

L
a∇L

k xl = 0 , (i = 1, 2, 3) (14)

where εijk is the fundamental antisymmetric tensor, and summation over repeated indices is assumed. The l.h.s. of equation (14) is a Lagrangian
curl.

The second part makes use of all three equations (12a)–(12c), and gives a third scalar equation:

εiklεjmn∇L
mxk∇L

n xl

[
(1 + �a3)∂L

aa + 3�a2∂L
a + 3

2a
∂L

a

]
∇L

j xi = 3

a2
(J − 1) . (15)

This is done by taking the Eulerian divergence of equation (12a) to obtain the Eulerian Laplacian of the gravitational potential, which is then
substituted in equation (12c). The density contrast δ is expressed in terms of the Jacobian, using equation (12b) and also substituted in the
r.h.s. of equation (12c). Finally, the Eulerian divergence is expressed in terms of Lagrangian space derivatives and of the inverse Jacobian
matrix. The latter is given in terms of the Jacobian matrix using the following identity: ∇xi

qj = εiklεjmn∇L
mxk∇L

n xl/(2J ), which follows from
the observation that the Jacobian matrix of the inverse Lagrangian map is the matrix inverse of the Jacobian of the direct map (see e.g. Buchert
& Goetz 1987). This derivation fails if the Jacobian J is not everywhere strictly positive in the space and time domain under consideration.
In the latter case, the Lagrangian formulation equations (14) and (15) becomes invalid. We shall come back to this issue in Section 6.2.

4 TH E F O R M A L TAY L O R E X PA N S I O N A N D T H E R E C U R S I O N R E L AT I O N S

In the LPT literature, analytical derivations of results for �CDM usually rely on an expansion in powers of small displacements, which
amounts to performing a power series expansion in the initial peculiar gravitational potential (see e.g. Matsubara 1995; Bernardeau et al.
2002). In this paper, we follow a different approach and perform an expansion in powers of a-time. Note that for the case of an EdS universe,
one can obtain recursion relations for the displacement by both expansion techniques, and the resulting recursion relations are formally
identical (Rampf 2012). For a �CDM Universe, however, explicit results for the displacement will generally differ depending on what
expansion scheme is used.

We thus seek a solution to the Lagrangian equations (14) and (15) in the form of a power series in the a-time (i.e. a Taylor series) for the
displacement ξ ≡ x − q,

ξ (q, a) =
∞∑

s=1

ξ (s)(q) as . (16)

At first order, we have

ξ (1)(q) = v(init)(q) , (17)

as follows from v = ∂L
a x and equation (11). The convergence of the series (16) will be examined in the next section. The Jacobian of the

Lagrangian map J = det(I + ∇Lξ ), where I is the identity matrix, can be written as a sum of four terms. After substituting the expansion
(16), the Jacobian becomes

J = 1 +
∞∑

s=1

μ
(s)
1 as +

∞∑
n1+n2=s

μ
(n1,n2)
2 as +

∞∑
n1+n2+n3=s

μ
(n1,n2,n3)
3 as (18)

where the sums are restricted to values of n1, n2 and n3 that are strictly positive and where the various quantities μ1, μ2 and μ3 are expressions
linear, quadratic and cubic, respectively, in the Lagrangian gradients of the Taylor coefficients, given by

μ
(n1)
1 = ∇L · ξ (n1) , (19)

μ
(n1,n2)
2 = 1

2

(
∇L

i ξ
(n1)
i ∇L

j ξ
(n2)
j − ∇L

j ξ
(n1)
i ∇L

i ξ
(n2)
j

)
, (20)

μ
(n1,n2,n3)
3 = 1

6
εiklεjmn∇L

mξ
(n1)
k ∇L

n ξ
(n2)
l ∇L

j ξ
(n3)
i . (21)
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1426 C. Rampf, B. Villone and U. Frisch

Substituting the expansion (16) into (15) and identifying the coefficients of the various powers of a, we find, for s > 0,

(
s + 3

2

)
(s − 1) μ

(s)
1 =

∑
n1+n2=s

{ [
3

2
− 2n2

(
n2 + 1

2

)]
μ

(n1,n2)
2 − 2� (n2 − 3) (n2 − 1) μ

(n1,n2−3)
2

}

−� (s − 3) (s − 1) μ
(s−3)
1 +

∑
n1+n2+n3=s

{ [
3

2
− 3n3

(
n3 + 1

2

)]
μ

(n1,n2,n3)
3 − 3� (n3 − 3) (n3 − 1) μ

(n1,n2,n3−3)
3

}
. (22)

Here, by construction, all the μ coefficients vanish if one or several of their upper indices are zero or negative. We symmetrize the r.h.s. and
obtain a sequence of relations for s ≥ 1:

∇L · ξ (s) ≡ μ
(s)
1 = ∇L · v(init)δs

1 − �
s − 3

s + 3/2
μ

(
1s − 3)

+
∑

0<n<s

{
(3 − s)/2 − n2 − (s − n)2

(s + 3/2)(s − 1)
μ

(n,s−n)
2 + �

4s − n2 − (s − n)2 − 6

(s + 3/2)(s − 1)
μ

(n,s−n−3)
2

}

+
∑

n1+n2+n3=s

{
(3 − s)/2 − n2

1 − n2
2 − n2

3

(s + 3/2)(s − 1)
μ

(n1,n2,n3)
3 − �

n2
1 + n2

2 + n2
3 − 4s + 9

(s + 3/2)(s − 1)
μ

(n1,n2,n3−3)
3

}
, (23)

where δs
1 is the Kronecker symbol. Similarly, we obtain from the Cauchy invariants equation (14), for s ≥ 1

∇L× ξ (s) ≡ T (s) = 1

2

∑
1≤k≤3,
0<n<s

s − 2n

s
∇Lξ

(n)
k × ∇Lξ

(s−n)
k . (24)

As we see, equations (23) and (24) give the Lagrangian divergence and curl of the a-time Taylor coefficient of order s in terms of lesser order
ones. We observe that the first explicit occurrence of � in the recursion relations is at the fourth order, which is the same order at which the
linear growth D(a), at short a-times, differs from its EdS value: D(a) = a − (2/11)�a4 + O(a7).

Equations (23) and (24) give a Helmholtz–Hodge decomposition of ξ (s) into curl and divergence, from which it can be retrieved in a
standard way (cf. e.g. Arfken & Weber 2005), namely

ξ (s) = ∇−2(∇Lμ
(s)
1 − ∇L × T (s)) , (25)

where ∇−2 is the inverse Laplacian in Lagrangian coordinates (with the boundary conditions taken into account), and μ
(s)
1 and T (s) denote

the r.h.s. of equations (23) and (24), respectively.
Using equation (25) and considering the first-order Lagrangian derivatives of ξ (s)

ν , we can combine the two recursion relations (23) and
(24) into a single recursion relation for the gradient tensors ∇L

μξ (s)
ν of the time Taylor coefficients, which reads

∇L
μξ (s)

ν = ∇L
μv(init)

ν δs
1 − �

s − 3

s + 3/2
Cμνμ

(s−3)
1 +

∑
1≤j≤3,
j �=ν

Cμj

( ∑
1≤k≤3,0<n<s

2n − s

s

(
∇L

ν ξ
(n)
k

)
∇L

j ξ
(s−n)
k

)

+ Cμν

⎛
⎝ ∑

0<n<s

{
(3 − s)/2 − n2 − (s − n)2

(s + 3/2)(s − 1)
μ

(n,s−n)
2 + �

4s − n2 − (s − n)2 − 6

(s + 3/2)(s − 1)
μ

(n,s−n−3)
2

}

+
∑

n1+n2+n3=s

{
(3 − s)/2 − n2

1 − n2
2 − n2

3

(s + 3/2)(s − 1)
μ

(n1,n2,n3)
3 + �

4s − 9 − n2
1 − n2

2 − n2
3

(s + 3/2)(s − 1)
μ

(n1,n2,n3−3)
3

}⎞
⎠, (26)

where Cij ≡ ∇−2∇L
i ∇L

j is an operator of the Calderon–Zygmund type (cf. Zheligovsky & Frisch 2014). The recursion relations (26) are
explicit but look somewhat lengthy. Actually, they enjoy an important property which allows us to prove time-analyticity in the next section:
for s > 1, it is easily checked that all the coefficients involving s, n1, . . . are bounded (rational) functions. In those not involving �, the
coefficients are bounded by unity and the other ones by � > 0.

5 TH E T I M E - A NA LY T I C I T Y O F TH E L AG R A N G I A N SO L U T I O N

After having found explicit recursion relations for the time Taylor series of the displacement field, we are naturally led to ask is

ξ (q, a) =
∞∑

s=1

ξ (s)(q) as (27)

a convergent series that thus defines a time-analytic function in the neighbourhood of the origin?
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Let us give first some overall ideas on how the convergence results will be established. Given that the recursion relations take their most
compact form (26) in terms of gradients, it is simpler to first prove the convergence for the gradient series of

∇L
μξν(q, a) =

∞∑
s=1

∇L
μξ (s)

ν (q) as . (28)

From the recursion relations (26) for the gradients of the Taylor coefficients, we shall be able to derive polynomial recursion inequalities for
their norms. By reintroducing the a-time and summing over all orders (i.e. by using a generating function), we shall obtain a single inequality
for an a-dependent cubic polynomial. The study of the evolution of its roots will give us the required bounds on the norms of the time Taylor
coefficients of the gradient series, from which the convergence of the series (28) and thus time-analyticity are established. The analyticity of
the Lagrangian map and of the displacement field is then a consequence.

Let us proceed now with the details. First, we observe that the r.h.s.’s of the recursion relations (26) for the gradient tensors are
themselves mostly polynomials (of degree not exceeding three) of the lesser order gradient tensors. We write ‘mostly’ because there are also
the Calderon–Zygmund operators, Cij . In the present case, these operators stem from the non-local nature of the gravitational interaction.
Technically speaking, these are pseudo-differential operators of degree zero (because an inverse Laplacian is compensated by two space
derivatives). Essentially, such operators do not change the degree of differentiability of the functions they are applied to. But this is true only
when using a suitable function space in which the Calderon–Zygmund operators are bounded.

For our purposes, the function space in which such matters are simplest is the space �1 of spatially periodic functions, say, of periodicity
2π in all three space variables and such that their Fourier series is absolutely summable. Concretely, let a periodic function f (q) (of scalar,
vector or tensor type) be expanded in a Fourier series:

f (q) =
∑

k

f̂k eik·q , (29)

where the summation is over all triplets k of signed integers. A periodic function is said to be in �1, if the norm

‖f ‖ ≡
∑

k

|f̂k| (30)

is finite (for vector and tensor quantities, the modulus is defined as the maximum over all indices of the modulus of the various components).
Since, for any i and j, one has |kikj /k2| ≤ 1, the Calderon–Zygmund operators are obviously bounded by unity in this space. It is also
elementary to show that this space enjoys the algebra property:

‖ f g‖ ≤ ‖ f ‖‖g‖, (31)

for any pair of functions f and g of finite �1 norm. Other function spaces with similar properties may be more realistic for cosmological
applications in so far as periodicity is not required, such as Hölder spaces. For this we refer the reader to section 2.5 of Zheligovsky & Frisch
(2014).

Given the structure of the recursion relations (26) and using the boundedness of the Calderon–Zygmund operators and the algebra
properties of the �1 norm, it is elementary to show that if ∇Lv(init) is in the space �1, so will be the gradients of the Taylor coefficients ∇Lξ (s).
The assumption that the gradient of the initial velocity has absolutely summable Fourier coefficients is the key hypothesis of the present work.

Knowing that all the (Lagrangian) gradients of the Taylor coefficients are in �1 is not enough to ensure the convergence of the gradient
Taylor series. For this, we need to obtain suitable bounds on the �1 norms of ∇Lξ (s), and then we need to show that these bounds imply the
convergence of the gradient time Taylor series. Here we work with the time Taylor series for the spatial gradient of the displacement and
establish its time-analyticity, from which follows the time-analyticity of the displacement (and also, of course, of the full Lagrangian map).
To obtain the bounds on the �1 norms, we shall mostly follow the approach presented in Zheligovsky & Frisch (2014). Of course, due to the
presence of the cosmological constant, the third-order polynomials contain additional terms, and their study is more involved.

The first step is to bound the various ‖∇Lξ (s)‖, using the boundedness of the Calderon–Zygmund operators, the algebra property and the
boundedness of the rational coefficients, as explained at the end of Section 4. We use equation (26) and thereby obtain, for any s ≥ 1:∥∥∇Lξ (s)

∥∥ ≤ ∥∥∇Lv(init)
∥∥ δs

1 + 3�
∥∥∇Lξ (s−3)

∥∥ + 12
∑

i+j=s

∥∥∇Lξ (i)
∥∥ ∥∥∇Lξ (j )

∥∥ + 6�
∑

i+j=s

∥∥∇Lξ (i)
∥∥ ∥∥∇Lξ (j−3)

∥∥
+ 6

∑
i+j+k=s

∥∥∇Lξ (i)
∥∥ ∥∥∇Lξ (j )

∥∥ ∥∥∇Lξ (k)
∥∥ + 6�

∑
i+j+k=s

∥∥∇Lξ (i)
∥∥ ∥∥∇Lξ (j )

∥∥ ∥∥∇Lξ (k−3)
∥∥ . (32)

The second step is to introduce a generating function using gradients of Taylor coefficients, namely

ζ̃ (a) ≡
∞∑

s=1

∥∥∇Lξ (s)
∥∥ as . (33)

It is easily checked that this generating function is an upper bound for the �1 (absolutely summable Fourier series) norm of the gradient of
the displacement field at time a. Multiplying equation (32) by as and summing over s from one to infinity, we obtain the following inequality
for the generating function:

ζ̃ ≤ a
∥∥∇Lv(init)

∥∥ + 12ζ̃ 2 + 6ζ̃ 3 + 6�a3ζ̃ 2 + 6�a3ζ̃ 3 + 3�a3ζ̃ (34)

MNRAS 452, 1421–1436 (2015)Downloaded from https://academic.oup.com/mnras/article-abstract/452/2/1421/1061179/How-smooth-are-particle-trajectories-in-a-CDM
by University of Portsmouth Library user
on 13 September 2017



1428 C. Rampf, B. Villone and U. Frisch

Figure 1. Sketch of the polynomial (36), for λ = 0, i.e. for the case of an EdS universe. Shown are three values of the rescaled time a for which
0 < a< < T (λ = 0) < a>, illustrating the behaviour of real roots of p0(a, ζ ) (the roots are shown as the points of intersection of the graph of p0(a<, ζ ) and
the horizontal axis). On increasing a, the graph slides up as a rigid curve. As a result, the roots ζ 1 and ζ 3 move to the left (i.e. become smaller), whereas ζ 2

moves to the right (i.e. becomes larger). At the critical value T(0), when ∂p0/∂ζ = 0 and the discriminant � vanishes, the two roots ζ 2 and ζ 3 collide and
then disappear (with the emergence of a pair of complex conjugate roots).

where ζ̃ stands for ζ̃ (a). To study this cubic polynomial inequality, it is convenient to introduce rescaled variables defined as follows:

a ≡ a‖∇Lv(init)‖ , λ ≡ �/‖∇Lv(init)‖3 , ζ (a) ≡ ζ̃ (a) (35)

The polynomial inequality (34) becomes then

pλ(a, ζ ) ≡ 6(1 + λa3)ζ 3 + 6(2 + λa3)ζ 2 + (3λa3 − 1)ζ + a ≥ 0 (36)

Sketches of the cubic polynomial pλ(a, ζ ) for λ = 0 and for λ �= 0 are respectively given in Figs 1 and 2.
The cubic polynomial pλ(a, ζ ) has at least one real root. For a = 0, it has three roots: zero, a positive root and a negative root. Since the

displacement, and thus ζ , have to vanish at time a = 0, the only physically relevant root of the cubic polynomial is zero. Now, suppose we let
the (rescaled scale factor) time a be small and positive, then the physically relevant root moves from zero to a small positive value ζ2(a) ≈ a.
The polynomial pλ(ζ ) is then strictly positive over the whole open interval ]0, ζ2(a)[, as required from the inequality (36), and this is the only
physically relevant branch of positivity. Hence, within the interval [0, a], the values of the generating function ζ are bounded by ζ2(a). As we
increase the value of a, this boundedness property will hold as long as there are two positive roots in ζ for the polynomial pλ(a, ζ ). This is
true until the two positive roots merge into a double root and then turn into complex roots. The value of the rescaled time for which equation
(36) has a double root are the zeros of its discriminant, i.e.

�(a, λ) ≡ 12(14 − 684a − 81a2 − 76a3λ − 702a4λ − 162a5λ + 75a6λ2 − 81a8λ2 + 90a9λ3 + 90a10λ3 − 27a12λ4) = 0 (37)

Because �(0, λ) > 0 and the highest order term, proportional to a12 has a negative coefficient, it immediately follows by continuity that the
discriminant equation has at least one positive root. For our purposes, we need the smallest of such positive roots, since it is an upper bound
for the physically relevant branch of pλ(ζ ) ≥ 0:

T (λ) ≡ inf
i

ai

∣∣∣ �(ai , λ) = 0 , (38)

called here the critical time. (In Section 6.1, we shall show how T(λ) can be calculated.)
The importance of the critical time lies in the following result: for any |a| < T (λ) the time Taylor series for the gradient of the

displacement (now expressed in terms of the rescaled time) is convergent. (Here |a| denotes the modulus of the rescaled time a which can
now take also complex values.) Indeed, it follows from equations (33) and (35) that

ζ (a) =
∞∑

s=1

ζ (s)as , (39)
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�CDM: How smooth are particle trajectories? 1429

Figure 2. Sketch of the polynomial (36) for any fixed rescaled time variable a > 0 and λ �= 0 (i.e. the �CDM case). Three values of lambda are shown for
which λ < < λ� < λ > . The value λ� denotes the critical value for which the cubic polynomial pλ develops a double root, i.e. where ζ 2(T(λ)) = ζ 3(T(λ)). In
that case, the fixed value of the rescaled time a is precisely the critical value T(λ�) for which the generating function ζ of the displacement is bounded. On
increasing λ for any fixed rescaled time a > 0, the graph gets shifted into the upper left direction.

where ζ (s) = ‖∇Lξ (s)‖/‖∇Lv(init)‖s ≥ 0. If ζ (T) is bounded by some constant C, we have

ζ (T ) =
∞∑

s=1

ζ (s)T s ≤ C . (40)

Since all the terms in the sum are non-negative, it follows that

ζ (s) ≤ CT −s , (41)

and thus

ζ (a) ≤ C

∞∑
s=1

( a

T

)s

. (42)

For |a| < T , the Taylor series (42) is bounded by a convergent geometric series. We have thus shown the convergence of the Taylor series
in the complex time plane inside a disc, centred at the origin, a = 0 of radius at least T(λ). The actual radius of convergence of the Taylor
series, called the radius of analyticity, for which T(λ) is only a lower bound, in general, can only be determined numerically.

6 FU RT H E R R E S U LTS O N A NA LY T I C I T Y

6.1 The lower bound on the radius of analyticity and its dependence on the cosmological constant

The lowest positive root T(λ) of the discriminant equation (37) gives us a lower bound on the radius of analyticity of the time Taylor series
for the Lagrangian map. This discriminant equation is of 12th degree in the rescaled time variable a = a‖∇Lv(init)‖ and we have not been able
to solve it explicitly by radicals. We can however solve the discriminant equation perturbatively for small and large rescaled cosmological
constant λ = �/‖∇Lv(init)‖3 and numerically for other values.

For λ = 0, we recover the results for an EdS universe (Zheligovsky & Frisch 2014). In that case, the discriminant equation reduces to
�(a, 0) = 12(14 − 684a − 81a2) = 0, whose lowest positive root is

T EdS ≡ T (0) = 3
√

2 − 38/9 � 0.0204 . (43)

For small λ, it is then straightforward to obtain the λ-dependence of this root

T (λ) = T EdS − (T EdS)3 52 − 333T EdS

342 + 81T EdS
λ + O(λ2) � 0.0204 − 1.1197 × 10−6λ + O(λ2) (44)
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1430 C. Rampf, B. Villone and U. Frisch

Figure 3. Numerical solution of the discriminant equation (37). The results agree with the small- and large-λ expansions (44) and (47) in the appropriate
ranges.

For large positive λ, we make the changes of variable ã ≡ aλ1/3 and �̃(ã, λ) ≡ �(a, λ)/12, and rewrite the discriminant equation as

�̃(ã, λ) = P4(ã3) + λ−1/3P10(ã) + λ−2/3P8(ã) = 0, (45)

where

P4(ã3) = 14 − 76ã3 + 75ã6 + 90ã9 − 27ã12, P10(ã) = −684ã − 702ã4 + 90ã10, P8(ã) = −81ã2 − 162ã5 − 81ã8 . (46)

The polynomial P4(ã3) has a positive double root at ãc = 3−1/3, from which follows that, to dominant order, T(λ) is proportional to
3−1/3λ−1/3. The first subdominant correction is obtained by Taylor expanding the polynomial P4, P10 and P8 around ãc. This eventually
reveals the following large-λ behaviour:

T (λ) = 3−1/3λ−1/3 + O(λ−1/2) . (47)

We have solved the discriminant equation (37) numerically for more than 100 values of λ, suitably distributed between 10−2 and 1014.
The results are shown in Fig. 3 and agree with the small- and large-λ expansions (44) and (47) in the appropriate ranges. Note that T(λ) is a
monotonically decreasing function of λ.

Finally, we observe that, within the functional framework of the space �1 of absolutely summable Fourier series, the precise values of
the constants appearing in the low-λ expansion (44) and the large-λ expansion (47) can most likely be improved. This will result in longer
time intervals of guaranteed analyticity. For this one should adapt to the cosmological context the detailed Fourier-space estimates found, for
incompressible flow, in section 2.3 of Zheligovsky & Frisch (2014).

6.2 Shell-crossing and analyticity

In Section 3, we pointed out that the Lagrangian formulation and the subsequent time Taylor expansions as carried out in the present
paper are invalid if the Jacobian J vanishes during the interval of guaranteed analyticity. The vanishing of the Jacobian corresponds to
the crossing of various fluid-particle trajectories. It is generally known as ‘shell-crossing’. We now show that during the time interval of
guaranteed analyticity, no shell-crossing can occur. Actually, denoting as usual the Jacobian of the Lagrangian map by J, we shall show that
|J − 1| ≤ −37/9 + 3

√
2 ≈ 0.132, which trivially implies the non-vanishing of the Jacobian (and not even a close call).

For this, we observe that the Jacobian can be written as follows in terms of the displacement field

J = det(I + ∇Lξ ) = 1 + ∇L · ξ+
∑

1≤i<j≤3

[(∇L
i ξi

) ∇L
j ξj − (∇L

i ξj

) ∇L
j ξi

]+ det(∇Lξ ) (48)
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where I denotes the identity matrix. Using the Taylor expansion (16) of the displacement in powers of the a-time and the generating function
ζ = ∑∞

s=1 |∇Lξ (s)|as , we obtain the following bound

|J − 1| ≤ 6ζ 3 + 6ζ 2 + 3ζ ≡ Q(ζ ) . (49)

For convenience, we have plotted the cubic polynomial Q(ζ ) in Fig. 4.
As we have seen in Section 5, for any given rescaled cosmological constant λ and rescaled time a, the permitted values of the generating

function ζ are between zero and the smallest positive root ζ2(a) of the cubic polynomial pλ(ζ, a), given by equation (36). We claim that this
root is an increasing function of a for fixed λ. Indeed, pλ(a, ζ2(a)) = 0, over the whole range of relevant a values. By differentiating it with
respect to a, we obtain

∂pλ(a, ζ2(a))

∂a
= ∂ζ2(a)

∂a

∂pλ(a, ζ )

∂ζ

∣∣∣∣
ζ=ζ2(a)

+ 1 + 3λa2
(
6ζ 3

2 + 6ζ 2
2 + 3ζ2

) = 0 . (50)

Since [1 + 3λa2(6ζ 3
2 + 6ζ 2

2 + 3ζ2)] > 0 for ζ 2 ≥ 0, we infer that

∂ζ2(a)

∂a

∂pλ(a, ζ )

∂ζ

∣∣∣∣
ζ=ζ2(a)

< 0 . (51)

The positivity of ∂ζ2(a)
∂a

follows from ∂pλ(a,ζ )
∂ζ

|ζ=ζ2(a) < 0. The latter is a consequence of the fact that the polynomial pλ(a, ζ ) has three real
roots, for fixed λ and fixed a in the range of analyticity. Inspection of equation (36) shows that their product is negative, that one (ζ 1) is
negative and that two (ζ 2 and ζ 3) are positive. The derivative ∂pλ(a,ζ )

∂ζ
is obviously positive for large ζ > 0 and changes sign somewhere

between ζ 2 and ζ 3. Since ζ 2 < ζ 3, this derivative is negative at ζ 2. This proves the monotonic increase of ζ 2 with a.
Next, we use equation (49) to bound |J − 1| by 6ζ 3

2 + 6ζ 2
2 + 3ζ2. The largest possible value of ζ 2 is obtained at the critical value

a = T (λ) where the polynomial pλ(a, ζ ) has a double root in ζ . This value can be obtained by demanding the simultaneous vanishing of
pλ(a, ζ ) and of its derivative with respect to ζ , i.e. pλ(ζ2) = p′

λ(ζ2) = 0 and ζ 2 ≥ 0, where a prime denotes a partial derivative with respect
to ζ . From these conditions, we obtain

ζ2(T (λ)) = ζ3(T (λ)) = −4 − 2λT 3 + √
2
√

9 + λT 3(6 − λT 3)

6 + 6λT 3
(52)

Since this is a decreasing function of λ, it is bounded by its EdS value (λ = 0), where the latter is ζ2 = − 2
3 + 1

6

√
18 � 0.040 44. It follows

that |J − 1| < 0.132, which is well below the value unity where shell-crossing might occur (see the vertical thick line in Fig. 4).

6.3 Analyticity in the linear growth function D

As already stated in Section 2, it could be of interest in cosmological studies to use as time variable, not the cosmic scale factor a, but the
linear growth function D(a), which is the growing solution of equation (7). With the normalization lima → 0D(a)/a = 1, the linear growth
function is given by

D(a) = a
√

1 + �a3
2F1

(
3

2
,

5

6
,

11

6
, −�a3

)
, (53)

where 2F1 is the Gauss hypergeometric function. This solution is analytic around a = 0 and has the small-a expansion D(a) = a −
(2/11) �a4 + O(a7). [The full expression can be obtained from the Taylor expansion of the Gauss hypergeometric function, cf. Gradshteyn
& Ryzhik (1965, p. 1039).] As D(a) is analytic around a = 0 and also its derivative ∂D/∂a does not vanish at a = 0, it follows that
D(a) is invertible at around a = 0. The inverse linear growth function a(D) is also analytic and has the following low-order expansion:
a(D) = D + (2/11) �D4 + O(D7).

We have shown in Section 5 that the Lagrangian map x(q, a) is an analytic function of a, near a = 0. The composition
x(q, a(D)) of the Lagrangian map with the inverse linear growth function is also analytic in D. (This follows basically from the ob-
servation that analytic functions are complex-differentiable functions and the use of the chain rule.) We remark that this argument
is not valid when the cosmic time is chosen as time variable, instead of D, as the relation between a and t is not analytic near the
origin.

Can we obtain simple recursion relations for the D-Taylor coefficients of the displacement ξ , as we have done in Section 4? Recursion
relations, yes, but simple, no. Indeed, from equations (14) and (15), we can derive a set of Lagrangian Euler–Poisson equations in the time
variable D. However the D-dependence is then essentially not polynomial, but will involve the full inverse linear growth function a(D), whose
Taylor expansion has an infinite number of terms. As a consequence, the recursion relations will be very involved. If one really wants to
reexpress the displacement as a power series in D, it is much simpler to just substitute the Taylor series for a(D), obtained by inversion of the
Taylor series of D(a) into the expansion (16) in powers of a. Note that, with the latter strategy, there is no need to solve a succession of time
differential equations for the nth order growth function (usually denoted with E, F, . . . ), because the actual expansion parameter is precisely
the cosmic scale factor, used as a time variable.
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Figure 4. Lower bound on the norm of |J − 1| ≤ Q(ζ ) = 6ζ 3 + 6ζ 2 + 3ζ , see equation (49). The vertical thick line at roughly ζ = 0.040 44 indicates the
largest possible value of the smallest positive root ζ 2(T(λ = 0)) of the polynomial pλ(a, ζ ) for which analyticity is guaranteed. Since ζ 2(T(λ)) is a decreasing
function of λ (see equation 52), it follows that |J − 1| < 0.132 for any value of � > 0, which is well below the value unity where shell-crossing might occur
(the dotted line).

6.4 Effect on analyticity of the inclusion in the Friedmann equation of curvature and radiation terms

Inflation theory and observational evidence since the late nineties favour a flat Universe with zero curvature [see e.g. Linde 1984 and
Netterfield C. B. et al. (Boomerang Collaboration) 2002]. It is nevertheless of interest to point out that our analyticity result for a �CDM
Universe survives when a small amount of curvature is introduced in the Friedmann equation (3). The latter then becomes(

ȧ

a

)2

= a−3 + ka−2 + � , (54)

where k is here not limited to being 0, ± 1 (although according to Mukhanov 2005, the only trivial background geometries which do not
spoil exact homogeneity and isotropy are indeed the ones with curvature 0, ± 1). We have repeated the analysis of Sections 2–5, with this
modified Friedmann equation and found that very little is changed. The slaving conditions (10) are unchanged. The recursion relations (26)
are minimally modified. The polynomial inequality (36) in the generating function ζ takes now the following form in rescaled variables:

Pλ,K (a, ζ ) ≡ 6(1 + λa3 + 2Ka)ζ 3 + 6

(
2 + λa3 + 8

33
Ka

)
ζ 2 +

(
3λa3 + 12

7
Ka − 1

)
ζ + a ≥ 0 (55)

where K = |k|/‖∇Lv(init)‖, and a = a‖∇Lv(init)‖ and λ = �/‖∇Lv(init)‖3 as before. Analyticity in the (rescaled) cosmic scale factor a is
proved as before, by studying the discriminant equation associated with the cubic polynomial Pλ,K (a, ζ ). Indeed, this is again an equation
of 12th degree in a, whose lowest and highest degree terms, unchanged from the �CDM case, are respectively positive and negative, thus
implying the existence of at least one positive root.

All this is not surprising: Actually, the curvature term in the Friedmann equation involves the inverse second power of the cosmic scale
factor, which for a → 0 is subdominant with respect to the matter term a−3 and can thus not bring about much change. Very different would
be the inclusion in the background of radiation effects, stemming from a blackbody distribution of photons. This adds a term in the Friedmann
equation, proportional to the inverse fourth power of the scale factor, which drastically changes everything: slaving is lost, analyticity around
a = 0 is lost, etc. The current favoured �CDM model has a background radiation density well below the matter density at decoupling and
can actually be discarded after decoupling. When relating our results to numerical results or observations, it may be more convenient to use
the cosmic time t rather than the a-time. Of course, when performing that change of variable, the radiation term in the Friedmann equation
does not need to be omitted.
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7 C O N C L U D I N G R E M A R K S

In a Eulerian framework, space and time are intertwined by Galilean transformations (in the Newtonian approximation). It follows that,
with the limited spatial smoothness assumed in the present work – roughly, that the initial density fluctuations are slightly better than
continuous in the spatial variables – one cannot obtain better than a corresponding limited temporal smoothness. In a Lagrangian framework,
as we have seen, the situation is drastically different: provided we use an appropriate time variable, such as the cosmic scale factor a
or the linear growth function D. Obtaining analyticity in time of the Lagrangian trajectories requires then only a limited initial spatial
smoothness.

Even more surprising is that this analyticity is around the point a = 0, which seems to extend this utterly smooth birth of our structured
Universe to the very origin of time, well before decoupling of matter from photons. Of course, this is just a property of the mathematical
model used here to describe structure formation, namely the Euler–Poisson equations in a �CDM Universe. The interesting feature is that this
model allows us to have a well-posed problem, devoid of catastrophic behaviour near decoupling, provided we use the slaving conditions (10)
at a = 0. These slaving conditions resemble those used to start N-body simulations at early times, (i) small density fluctuations, and (ii) an
initial curl-free peculiar velocity field, related to the gravitational potential as in the Zel’dovich approximation. That these slaving conditions
can be extended all the way to a = 0 means, from the point of view of boundary layer analysis (Cole 1968), that the matter-dominated era
constitutes an outer solution for which, to leading order, the boundary matching to the inner solution (describing the primordial era) can be
replaced by just an initial condition. This is true as long as, in the Friedmann equation for the background evolution in the matter-dominated
era, we include only a matter term, a cosmological term and a possible curvature term, but no radiation term.

We remind the reader that our way of proving analyticity in the a-time is fully constructive. It rests indeed on a set of novel all-order
recursion relations (26) for the time Taylor coefficients of the displacement of (fluid) particles. Not only are these relations fully explicit, but
they have a very specific mathematical structure, allowing us to obtain bounds for all the Taylor coefficients and thus to establish analyticity
by elementary means.

We now briefly indicate some of the possible future developments exploiting the analyticity result and the recursion relations. We shall
mention two interlinked topics. One is about numerical integration of the Euler–Poisson equations by a multistep technique and the other one
about cosmological reconstruction.

The Taylor method as described in Sections 4 and 5 allows us to determine the solution of the Euler–Poisson equations for any time
0 < a < R(0), where R(0) is the radius of convergence of the Taylor series around a = 0. (Here, it is best not to work with the rescaled time
a.) A procedure, inspired from the Weierstrass analytic continuation technique for analytic functions, may allow us to obtain the solution
beyond the time R(0). For this, we select a sequence of times 0 < a1 < a2 < a3 < . . . in such a way that an+1 is within the disc of convergence
of the time Taylor series around the time an, that is such that |an+1 − an| < R(an), where R(a) is the radius of convergence of the Taylor
expansion of the solution around time a. What we here call the solution is not just the Lagrangian map, but includes also the density which
is controlled by the inverse of the Jacobian. Indeed, if the Jacobian vanishes, shell-crossing takes place and the Lagrangian map ceases to
be invertible. Invertibility is essential, because at the end of each step, we must revert to an Eulerian description to be able to make a fresh
start. Methods combining a Lagrangian step with a reversion to Eulerian coordinates are called semi-Lagrangian. A detailed description of
a semi-Lagrangian method, called the Cauchy–Lagrangian method, which makes use of Cauchy’s Lagrangian formulation of the ideal fluid
dynamics can be found in Podvigina et al. (2015).

When dealing with the cosmological Euler–Poisson equations, the method of Podvigina et al. (2015) must be suitably adapted. One of
the new difficulties stem from the non-autonomous character of our Euler–Poisson equations: the time appears explicitly in the equation. As
a consequence, the Euler–Poisson equations are not invariant under a-time translations, but this problem can be circumvented.

In so far as the regime described by the Euler–Poisson equations does not include multi-streaming, a Cauchy–Lagrangian numerical
method will not be able to address the same questions as N-body simulation techniques. There is however one important problem for which
it appears well suited, namely the reconstruction of the dynamical history of the Universe from present-epoch galactic surveys (Frisch et al.
2002). It has been shown by Brenier et al. (2003) that the solution to the Euler–Poisson equations is uniquely determined by two boundary
conditions, the slaving conditions (10) at the initial time and the density of matter at the current epoch. The latter is obtained from large
galactic surveys. Euler–Poisson reconstruction is an extension of the variational N-body reconstruction, introduced by Peebles (1989) for
handling galaxy data on relatively small scales, such as that of the Local Group. Euler–Poisson reconstruction, which is meant for significantly
larger scales where a continuum description is applicable and where multistreaming can be ignored, does not suffer from the non-uniqueness
problem of the variational N-body reconstruction. So far, Euler–Poisson reconstruction has not used the full solutions of the Euler–Poisson
equations but just low-order Lagrangian perturbation approximations, such as the Zel’dovich approximation or the next order, denoted by
2LPT. Within such approximate frameworks, reconstruction becomes a Monge optimal transport problem (Frisch et al. 2002) with quadratic
cost, which, after discretization, can be solved by very efficient assignment algorithms such as the auction method of Bertsekas (1992).
Alternatively, one can use Brenier’s theorem (Brenier 1987) and solve an equivalent 3D Monge–Ampère equation non-linear PDE by iterative
techniques (Zheligovsky, Podvigina & Frisch 2010). Reconstruction by such methods is known as Monge–Ampère–Kantorovich (MAK). We
propose to use the MAK reconstruction as a starting point of full Euler–Poisson reconstruction, applying an iterative Newton-type method in
which at each stage a Euler–Poisson initial value problem is solved by a Cauchy–Lagrangian method.

Finally, we remind the reader that our proofs were given entirely within a Newtonian framework. In that framework, the time-analyticity
results revealed a strong asymmetry between space and time in Lagrangian coordinates. The reason for that strong asymmetry is the ‘missing’
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convective term in the Newtonian fluid equations, when formulated in Lagrangian coordinates. (In the notation of our Eulerian approach in
Section 2, the convective term is v ·∇xv.) An interesting question is whether our time-analyticity results could be generalized to a Lagrangian
coordinates formulation of a curl-free dust fluid in General Relativity. It is well known that the so-called synchronous-comoving coordinate
system corresponds to a relativistic Lagrangian frame of reference, and, similar to the Lagrangian coordinates approach in the Newtonian
framework, there is indeed no convective term in the relativistic equations of motion (in the so-called ADM approach; see e.g. Matarrese &
Terranova 1996). These relativistic fluid equations are however decorated with Ricci tensors that involve (single and double) spatial gradients
acting on the metric (and on its inverse), and this could well imply a limited temporal smoothness for limited spatial smoothness. Besides that
unsolved problem, to obtain a time-analyticity result in General Relativity along lines similar to those of the present paper, it seems necessary
to first obtain explicit all-order recursion relations. A possible starting point for such investigations could be the Lagrangian equations recently
obtained by Alles et al. (2015).
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A P P E N D I X A : D E R I VATI O N O F TH E P E C U L I A R E U L E R – P O I S S O N E QUAT I O N S W I T H
C O S M O L O G I C A L C O N S TA N T

Here, although entirely elementary, we highlight the derivation of the peculiar Euler–Poisson equations (5a)–(5c) for the sake of completeness.
We begin with the (full) Euler–Poisson equations (1a–1c), which we repeat here for convenience:

∂t Ũ + (Ũ · ∇r )Ũ = −∇r φ̃g , (A1)

∂t �̃ + ∇r · (�̃Ũ) = 0 , (A2)

∇2
r φ̃g = 4πG�̃ − 3� . (A3)

Here Ũ = Ũ(r, t) denotes the velocity field, φ̃g = φ̃g(r, t) denotes the cosmological potential, �̃ = �̃(r, t) is the fluid density, and here the
cosmological constant is 3�. Let us solve these equations for the background variables in an exactly homogeneous and isotropic Universe,
where �̃ = ˜̄�(t), Ũ = H̃ (t) r ≡ (ȧ/a)r , and φ̃g = ˜̄φg. We substitute these expressions into the above equations. For the divergence of equation
(A1), we then have

3 ˙̃H + 3H̃ 2 = −∇2
r

˜̄φg , (A4)

whereas for equation (A3), we have at the background level

∇2
r

˜̄φg = 4πG ˜̄� − 3� . (A5)

By substituting the last expression into equation (A4), we obtain

ä

a
= −4πG

3
˜̄ρ + � . (A6)

This is the usual form of the second Friedmann equation for a pressureless fluid. In the units after equation (3) in the main text, the above is
ä/a = −a−3/2 + �, whose solution is a(t) = �−1/3[sinh(3

√
�t/2)]2/3.

Now we take the fluctuations of our variables into account, i.e. we demand

�̃ = ˜̄�(t)
[
1 + δ̃

]
, Ũ = ȧ(t)

a(t)
r + a(t)ũ , φ̃g = ˜̄φg + ϕ̃g , (A7)

In order to write the Poisson equation for the peculiar potential ϕ̃g, we use equations (A3) and (A5), and obtain

∇2
r ϕ̃g = ∇2

r φ̃g − ∇2
r

˜̄φg = 4πG(ρ̃ − ˜̄ρ) = 4πG ˜̄�δ̃ . (A8)

Observe that � has dropped out in the peculiar Poisson equation, i.e. � does only affect the background evolution of the Poisson equation.
Let us now derive the peculiar evolution equation of equation (A1) by use of equation (A7). We have

∂t

(
ȧ

a
r + aũ

)
+

[(
ȧ

a
r + aũ

)
· ∇r

] (
ȧ

a
r + aũ

)
= −∇r ( ˜̄φg + ϕ̃g) . (A9)

Let us do the calculations in equation (A9) step by step. The l.h.s. of equation (A9) can be written as

l.h.s. = ä

a
r − ȧ2

a2
r + ȧũ + a∂t ũ + ȧ2

a2
(r · ∇r )r + ȧ(ũ · ∇r )r + ȧ(r · ∇r )ũ + a2(ũ · ∇r )ũ

= ä

a
r − ȧ2

a2
r + ȧũ + a∂t ũ + ȧ2

a2
r + ȧũ + ȧ(r · ∇r )ũ + a2(ũ · ∇r )ũ . (A10)

We thus obtain

a∂t ũ + a2(ũ · ∇r )ũ + 2ȧũ + ȧ(r · ∇r )ũ = −∇r ϕ̃g. (A11)

Now, we change the dependence of the above functions from r to x = r/a. For an arbitrary function f̃ (t, r) = f̃ (t, a(t)x), we have

∂t f̃ |x fixed = ∂t f̃ |r fixed + ȧ(x · ∇r )f̃ |t fixed . (A12)
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Doing the same for our equations (A11), and note that ∇r = 1
a
∇x , we obtain

a∂t ũ|r fixed − ȧ(r · ∇r )ũ + a2

(
ũ · 1

a
∇x

)
ũ + 2ȧũ + ȧ(r · ∇r )ũ = − 1

a
∇x ϕ̃g. (A13)

Then, we divide by a and obtain

∂t ũ + (ũ · ∇x)ũ + 2
ȧ

a
ũ = − 1

a2
∇x ϕ̃g . (A14)

The above equation, for an EdS universe was derived by Brenier et al. (2003). Note that we have corrected a typo in their equation (A12).
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